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Abstract

We study the WKB periods for the third order ordinary differential equation (ODE) with polynomial
potential, which is obtained by the Nekrasov-Shatashvili limit of (A, Ay) Argyres-Douglas theory in
the Omega background. In the minimal chamber of the moduli space, we derive the Y-system and the
thermodynamic Bethe ansatz (TBA) equations by using the ODE/IM correspondence. The exact WKB
periods are identified with the Y-functions. Varying the moduli parameters of the potential, the wall-crossing
of the TBA equations occurs. We study the process of the wall-crossing from the minimal chamber to the
maximal chamber for (A3, A>) and (A,, A3). When the potential is a monomial type, we show the TBA
equations obtained from the (A, Ay) and (A2, A3)-type ODE lead to the D4 and Eg-type TBA equations
respectively.
© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

The ODE/IM correspondence [1,2] shows a non-trivial relation between the spectral problem
of the ordinary differential equation (ODE) and the functional relations in the quantum integrable
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model (IM). This has been first studied for the Schrodinger equation with monomial potential.
A generalization to the higher order ODE with monomial potential has been studied in [3—7]. The
Wronskians of the basis of the solutions at different singularities of the ODE provide the Baxter’s
Q-functions, while the solutions at infinity define the T-functions as well as the Y-functions as
the cross ratios of the T-functions.

The higher order ODE studied in this correspondence is also obtained from the conformal
limit of the linear problem associated with the modified affine Toda field equation [8—11]. In
particular, for a simply-laced Lie algebra, the Bethe ansatz equations obtained from the ODE
can be transformed into the Non-linear integral equation (NLIE), from which we can identify the
effective central charge of the corresponding CFT [7,12,13].

The ODE/IM correspondence has been recently generalized to the second order ODE of the
Schrodinger type with generic polynomial potential [14]. In particular, the Y-functions of the
integrable model can be identified with the exponential of the exact WKB periods (the Voros
symbols), which share the same asymptotics and the discontinuity in the complexified Plank
constant plane. One can determine the quantum periods directly by the Thermodynamic Bethe
ansatz (TBA) equations [15] satisfied by the Y-functions. See also [16-24], for more general
potential.

The WKB periods of the second order ODE with a polynomial potential also appear as the
quantum Seiberg-Witten (SW) periods of the Argyres-Douglas (AD) theories defined in the
Nekrasov-Shatashvili limit of the Omega background [25], where the SW curve is quantized
with the Omega background parameter as the Planck constant. The TBA equation is a very
useful tool [26] to study the non-perturbative structure of the strong-coupled field theories and
their relation to 2d theories [27-29]. The wall-crossing of the BPS spectrum is quite important
for studying strong coupling physics. Interestingly, the TBA equations also change according
to the wall-crossing and describe different integrable models in each chamber of the moduli
space. Then we need to explore the whole structure of the TBA systems in the modulis space.
In particular, the superconformal point of the AD theory is in the maximal chamber, where the
corresponding integrable model is that obtained from the 4d/2d correspondence [26]. Based on
the singularity structure at the superconformal point in the moduli space, the equivalences be-
tween (A1, A;) ~ (A, A1), (A, Ap) ~ D4 and (A,, A3) ~ Eg AD theories have been found in
[31]. However, the quantum SW curves of these equivalent AD theories at Omega background
appear in a very different form. It is not obvious to see these dualities in the Omega background.
In this work, we will see this equivalence by investigating the TBA equations which describe the
quantum periods.

The wall-crossing of the TBA equations were also studied in the context of four-dimensional
gauge theories [30], the cluster algebra [31] and the gluon scattering amplitudes [32,33]. This
phenomenon is also understood as the cluster mutation of the Voros symbols for the Schrodinger
type ODE [34].

So far, the wall-crossing in the context of gauge theory is most well studied in the rank one
case [30,35-37],! while the TBA equations and their wall-crossing have been studied for the
second order ODE. It is interesting to explore the similar relation for the higher order ODE in
order to study more general AD theories and the integrable models. For recent developments,
see [40-45]2Ina previous paper [46], we studied the WKB expansion of the higher order ODE

1 See also [38,39] for the higher rank case.
2 1n [45], the authors have studied the (A5, Ap) case numerically using the approach of [30].
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and found the relation between the WKB periods and the Y-functions associated with the TBA
equations. In particular, we considered the case of the quadratic potential, which is found to cor-
respond to the (A,, A1)-type TBA system. We have also shown that the wall-crossing phenomena
occur for the third order ODE with cubic potential.

In the case of the Schrodinger type ODE, the correspondence has been studied in [14], where
the TBA equations change when the parameters of the potential cross the wall of marginal sta-
bility. The approach of the ODE/IM correspondence provides a concrete method to study the
wall-crossing phenomena and its relation to integrable models characterized by the TBA equa-
tions. In this paper, we will work out the third order ODE in detail by taking the examples of cubic
and quartic polynomial potential, which show an essential feature of the wall-crossing of gen-
eral polynomial potential. When the potential is a monomial type, we show the TBA equations
obtained from the (A3, Az) and (Aj, A3)-type ODE lead to the D4 and E¢-type TBA equations,
respectively, by tracking the wall-crossing. In the context NV = 2 theories in four dimensions, this
relation is understood as the duality of (A», A2) and (D4, A1) or (A, Az) and (E¢, A1) theories
which share the same singularity point [31,47].

This paper is organized as follows: In section 2, we study the WKB solution of the third or-
der ODE and the WKB periods based on the differential operators. We also comment on the
Borel summability and the discontinuity of the WKB period. In section 3, we introduce the
Y-functions from the Wronskians of the subdominant solutions of the ODE and compute their
classical limit from the Stokes graph. We then propose a relation between the Y-functions and
the WKB periods. In section 4, we construct the TBA equations satisfied by the Y-functions,
where the associated WKB periods are in the minimal chamber. We will check the relation nu-
merically for cubic and quartic potentials. In section 5, we will consider the wall-crossing of
the TBA equations. We will work out numerically for the cubic and quartic potentials to test
the identification between WKB periods and Y-functions. In particular, we construct the TBA
equations in the maximal chamber, which includes the monomial potential. We find that these
TBA equations at monomial potential are equivalent to the D4 and E¢-type TBA equations, re-
spectively. In section 6, we present the conclusions and discussion. In Appendix A, we present
the D4 and Eg type TBA equations based on the scattering theories. In Appendix B, we show the
definitions of the new Y-functions of (A», A3) case for completeness. In Appendix C, we show
the twelve TBA equations in the maximal chamber for (A, A3) case.

2. Third order ODE
2.1. WKB analysis

In this section, we study the WKB analysis of the third order ODE defined in the complex
plane:

d3
<e3ﬁ + p(x)) ¥ () =0, 2.1)
X
where € is a complex parameter. p(x) is a polynomial in x of order N + 1:
p) = uox™ ! uxN 4 ung, (2.2)

where u; (i =0, ..., N + 1) are complex parameters. The ODE (2.1) is regarded as the quantum
SW curve of the AD theory of (Az, Ax)-type defined in the Nekrasov-Shatashvili limit of the
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Omega-background. We also refer it as the (A, Ay)-type ODE. In a previous paper [46], we
have studied the N = 1 case. We consider the WKB solution of the (2.1) of the form

X

1 o
¥(x) =exp E/P(x/)dx/ , P(x):ZE”pn(x). (2.3)

n=0
P (x) satisfies the Riccatti equation
p(x)+ P> +3e¢PP + PP =0. (2.4)

Substituting the e-series of P(x), we can determine p, (n > 1) recursively by

1
Po= (_P)3 )
n—1n—i
=3 poan iPit Y Y Pnic ,p,p,+32pn PPy | n=L
i=1j=0
(2.5)
The first few examples of p, are found to be
p/
pr=—"=, (2.6)
pPo
(rp)* 215
pr=——% =2, 2.7)
Po 3 1’0
2(py)? 2p0p” 1p(3)
Py P 3 r
App* 16 (pp)’py 2 (pp)* 10 pop@ 1py)
pi=——r 4 2 +2 (29)
Po Po r 9 r 9 py

Explicit calculation of p,, we observe that p, for odd n takes the form of total derivatives, which
is the same as the Schrodinger equation. Moreover pgi+a (i =0,1,2,...) also become total
derivatives. We introduce the WKB curve X:

¥ = —p(o). (2.10)

This is the SW curve of (A3, Ayx)-type AD theory. On the curve (2.10), there is a basis of mero-
morphic differentials [48]

xi—ldx xi—ldx

y y

i=1,...,N—1, @2.11)

in which £ dx ( dx) fori <X ;L L (i < %) are holomorphic differentials. The number of
the holomorphlc dlfferentlals determines the genus of the WKB curve, which is equal to N for
N=0,1(mod3) or N —1for N=2 (mod 3). For an one-cycle y on the curve X, one defines

the WKB period

M, (e) = / P(x)dx. (2.12)

14



K. Ito, T. Kondo and H. Shu Nuclear Physics B 979 (2022) 115788

The WKB period is expanded in €:

o0
My (e) =Y " my, (2.13)
n=0
where
i = / Pu(x)dx. (2.14)
Y

The corrections I17 vanish for odd # and n = 6i +4 (i =0, 1, ...) since the corresponding p,
is the total derivative.

Now we compute the quantum corrections to the periods by using the differential operators.
Since the differential p,dx for n = 6i or n = 6i + 2 defines a meromorphic differential on the
WKB curve, one can express it as a linear combination of the basis (2.11):

2 N-1

prdx=3"%" B(") dx +d (%), (2.15)

a=1 i=1

where B[(l:.l) is a function of u;’s. d(*) denotes a total derivative term.” In (2.15), n dependence
appears only in the coefficients, from which one can see the asymptotic series structure of the
WKB periods. We can evaluate the period integrals of p, in terms of those of the basis (2.11). It
is useful since in the direct integration of p, it is necessary to regularize divergence of p, near
the branch points.

For example, for the curve with p(x) given by (2.2), it is found that

NA+1 : N+1—i
1 . (N4+2—Duj_qu \ x
dx=ydx =———— 3 (iu; - dx +d(x). (2.16
podx = yax 3+N+1i2<’”’ (N + Duo ) 7 rtd. (216)

Here the last term is the total derivatives. From the expansion (2.15), the quantum periods are
expressed as

2
My(e)=)
a=1

=1 i=

N-1
Bi(e)(Tgi)y, 2.17)
1

where
By (€) —ZB(") n (2.18)
and (I1,;), are the period integrals of the basis (2.11):

i—1
(Hai)y=/x dx. 2.19)

ya

14

For example, from (2.16), we find that B f?) =0and

3 See [14] for the similar expression in the case of the second order ODE.

5



K. Ito, T. Kondo and H. Shu Nuclear Physics B 979 (2022) 115788

O _

1 .
By = TN T4 <(N +2—iunyo—i —

iMN+1iM1) (2.20)

(N + Duy
We then introduce the Seiberg-Witten differentials y*dx (a = 1, 2), which generate the basis of
meromorphic differentials:

fuyidx =~ 25 221
;Y ax = _3))37_” X. (2.21)
We also define the SW periods
(My), = / yedx. (2.22)
14

Here the classical WKB period corresponds to the SW period with a = 1: l'[g,o) = (I 1)y. From
(2.21), we obtain

a A
(nai)y = _58L1N+2_[H3—ay~ (223)

Finally, the quantum correction is expressed by the classical SW periods by acting the differential
operator with respect to the moduli u;:

2
n;/n) — Z O,Sn)ﬁayv (2.24)
a=1
where
N—1 3
SR S 225)

i=1

We refer O‘(ln) ’s as the Picard-Fuchs operators. Then one can compute the higher order corrections
in the WKB expansion from the classical SW periods.

Since the r.h.s. of (2.18) is an asymptotic series in €, the Borel resummation is necessary.
The Borel resummed period defines an analytic function on the complex e-plane, which has
singularities and discontinuities. The aim of the present work is to explore its analytic structure
using the TBA equations, which we will study in the following sections.

We will explain quantum corrections by two examples: (A2, A2) and (A;, Az)-type ODEs.
We first consider the (A>, A2)-type ODE (2.1) with the potential

px) = uox3 + u1x2 + uprx + us. (2.26)

The WKB curve has the genus g = 1, where only ‘;—’2‘ is a holomorphic differential. One can

compute the corrections as follows:

2
n® =09 My, =-Y By 30, 1y,
i=1 2.27)

6) 63, =
HJ(/6) = Oi )Hly = _351)53%1_[1%

where the coefficients in the Picard-Fuchs operators can be expressed in #;. They are simplified
as follows:
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1 Dou 1 D
@ 041 ) 0
B = a3 B =15 (2.28)
i
P = —aoes 29 (21983D0 823446u3 D3 A + 6633171uig A%). (2.29)

Here A is the discriminant of the WKB curve

A = —ulu3 + duzus + 4uoud — 18uouauzuy + 27udu3, (2.30)
Dy is defined by

Do = 2u3 — uouaut + 27udus. (231)

The PF operators contain a common factor Dy. It is interesting to note that Dy = 0 for u| =
u3 =0, 1ie. pkx)= upx> + usx and hence the quantum corrections become zero. We have also
confirmed that some higher order terms vanish. This implies that the classical periods give the
exact result, where a similar phenomenon happens in the harmonic potential for the Schrodinger
equation. This result is shown to be consistent with the TBA equations as we will see in sect.
4.2.1.

Next we consider the (A, Az)-type ODE with

px) = uox4 + u1x3 + u2x2 + u3x + uy. (2.32)

The second order corrections are given by

3
2 A
NP =-Y " B30, 1y, (2.33)
i=1

where

1
2
B(l) =Tex (2141142 8u0u2 9u1u2u3 + 40u0u1u2u3 +4uou1u2u3 78u0u2u%

+ 9u0u1u3 + 27u1u2u4 — 150u0u1u2u4 + 16Ou0u2u4 + 9u0u1u3u4

+ 112u(2)u1u2u3u4 + 72u(3)u§u4 + 72u%u%ui — 512u8u2u%), (2.34)
1
2
Béz) _F <6u?u% — 24uou1u§ — 27u‘fu2u3 + 118u0u%u%u3 + 8u%u%u3 + 21u0u?u%

— 27Ou%u1u2u% + 108u(3)u§ + 81u?u4 — 450u0u?u2u4 + 464u(2)u1u%u4

+ 588u(2)u%u3u4 — 288u8u2u3u4 — 960u8u1ui), (2.35)
5u0
g) BTN (—ZM%M% + 8140sz1 + 9u?u2u3 — 40u0u1u§u3 — 3u0u%u§ + 72u%u2u§
— 2Tufus 4+ 14dugutusug — 128ududug — 192uduuzus + 384u0u4) (2.36)

Here A is the discriminant of the curve

A—u%u%% 4u0u2u3 4u1u3+18u0u1u2u3 27u0u3 4u1u2u4

+ 16u0u2u4 + 18u1u2u3u4 — 80u0u1u2u3u4 — 6u0u1u3u4 + 144u0u2u§u4 (2.37)
— 27uuf + 144ugulusu’? — IZSM%M%MZ 192u(2)u1u3u421 + 256u8u2.

Higher order corrections can be calculated in a similar way.
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T
_.7 —1 Th+1
Fig. 2.1. The choice of the branch cuts and the definition of the cycle y, x, where the solid and dotted lines are on the
a-th and a + 1-th sheet respectively.

2.2. Classical period

We have seen that the WKB periods are expressed as the linear combinations of the period
integrals of the meromorphic differentials defined in (2.19), that are expressed by the first-order
derivatives of the classical SW periods (2.22). The periods are also specified by one-cycles on
the WKB curve, which are determined by the branch points xx (k =0, 1,..., N),i.e. p(xx) =0.
In this paper, we consider the WKB curve whose branch points are distinct. The classical SW
periods (2.22) are then given by

N
(1), =/u§ [[ec—x0%dx,  a=1.2. (2.38)
k=0
Y

To specify the cycle y, we have to choose the branch cut. We label the branch points such
that Re(xp) > Re(xy) > --- > Re(xy). Then we choose the branch cut to be as in Fig. 2.1. We
introduce the one-cycle y;x (! =1,2,3, k=1,..., N) on X, where y;  encircles the branch
points x;_1 anticlockwise and x; clockwise, respectively, on /-th and (/ 4 1)-th sheets. Here we
defined the sheet / on which y = y;:

wi=eTlpmi,  1=1,23. (2.39)

With this choice of the branch cuts and the other notation, the classical SW period (lcla)y,vk
(@=1,2,1=1,2,3,k=1,2,...,N)is

N 2mi 2mi a
(Ha)yz,k _ (e z l_g 3 (l+l)) % p(x)3dx

Yi.k
(2.40)

Xk—1 N
, mi ¢ . ma a
:—2163(21+1)“u8 sin —~ / H(x—x,-)3dx,
Xk i=0

which is the generalized hypergeometric integral. Let us evaluate the integral of (lﬁla)ylv , for the
N =2 and N =3 cases.

We first consider the N = 2 case, where branch points are xo, x1, x2 and the cycles are y;
and y; 2. By using the fractional linear transformation, the SW classical periods (2.40) for N =2
are evaluated in terms of hypergeometric function as

N mi —2-2 a 4 Ta
(Fla)y = = 20T CHREREDG T ey — ) Fug sin =
B(1+ 5145 )R (240 14+ 52+ 2M), a=12,
3773 37773



K. Ito, T. Kondo and H. Shu Nuclear Physics B 979 (2022) 115788

(2.41)
where
& — Xkt1 — Xk—1 (2.42)
(X — Xp—1) (Xk — Xk+1)
(1) (k =1, 2) are defined by
L (243)
X2 — X0 X0 — X1

8(k, a) is a phase factor that ensures the integrand of (2.40) to be the principal value. B(a, b) and
2F1(a, b; c; z) represent the Beta function and the hypergeometric function, respectively, that are
defined by

1
B(a,b):/t“*‘(l — b4, Re(a), Re(b) > 0,

0 (2.44)

lb 1(1 t)cfbfl
Fi(a,b; dr, <l1.
2F1(a,bic;z) = B(bc—b)/ 1 =20 lz| <

Next, we consider the N = 3 case where the branch points are xo, x1, x2, x3 and the cycles are
vi.1, Y12 and y; 3. In the same way, one can evaluate the SW classical periods:

160 = — 2 ¥ LIk 2500 — ) (i — i)

B<1+a1+a)F (4G gyda ay 20 0 0 1.2
. = = = - T, N , , a=1,2,
3 T3)0 3 373 3%k

(2.45)
where z{"" (k = 1,2, 3) are defined by
zil) = u, zél) = M, zél) = M. (2.46)
X2 — X0 X3 — X1 X0 — X2
(2) is defined by
Z](Cz) — Gk = D) (k1 — Xk+2)7 k=123, (2.47)
(k1 — Xk—1) (Xk — Xk42)
and Fi(a,b,b', x,z(V, z?) is the Appell hypergeometric function which is given by
1
RN T p— a Nt (2.48)

B(a,c—a) ) (1—zD)b(A — D)V
0

2.2.1. Classical periods for the monomial potential

In this subsection, we summarize the classical periods for the monomial potential of degree
N + 1, which is the most symmetric and suitable potential to see the dualities of ODE. Since the
potential is now expressed as
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u
P =uoxV ! Fuy i =uo N =0y, w=— ’Lf: (2.49)

we can label the zero points as

ko1 =uNTe N | k=12, N
1 _amik N (2.50)
X2k =uN+le N+I| k=0,1,2,...,|_7j

The period integrals along the cycles y, x take simpler form for these branch points, where one
can compute the period integral (2.19) directly:

(Maidyzes = X52) (5 + Hvgany ) + 150 k=120 1L,
, 2.51)
]1 9 ey |_

. g ’.
Mai)y e = — 221 (Ifjl + Ifz\l/+2—j>’ k= 1.

o=

Here Ila’ji (j=1,2,...,N) is defined by the integral along the cycle which encircles the zero
. 1 2@i(—D . . 1 2mij .
points at u N+Te” N+T anti-clockwise and u N+T e N+T clockwise on the a-th and a 4 1-th sheets:

| 2xiGi-)
uNFT ¢ NFI
ai _2mig 24y X'l
I =(em 3 —e ) — _dx
’ (uoxN“‘l—u)?
1 2mij
W N+T ¢ NF1
4 2ni(—%a(l+%)+,{,;+lli+5(l,j))
N+1
Coma . omi - o4 i a
X sin — sin uON“uxrl SBl ——,1— =},
3 N+1 N +1 3

where the phase §(/, j) = (82, + 93, j)% which ensures the integrand to be principal value.
2.3. Borel resummation and discontinuity

The WKB period (2.13) is an asymptotic formal series in €, which has a factorial growth. To
promote the series, we consider the Borel transform of the WKB period

1
BIM, 1) =) —M{Ve" (2.52)

n>0" "
and the Borel resummation along the direction ¢
ooe'?

1
S (M) (€) = = / e S BII, 1(&)dE. (2.53)
0

We also denote by s(I1,,)(¢) the Borel resumed WKB period at real and positive €. The WKB
period IT, is said to be Borel summable when the resumed period s, (11, )(e) converges for

10
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2+
1L
° o o
| | | | | |
-1.5 -1.0 -0.5 0.5 1.0 15
~ LY
e® °,
1L
2L

Fig. 2.2. The singularity structure of the Borel transform of ITy, | (blue) and ITy; , (yellow) obtained by using the

Borel-Padé technique applied to order € 160 terms of the formal power series. Here the potential is chosen to be p(x) =
3
—x” +7x +6.

small €. If B[I1, ] has singularity along the direction ¢, there arises a discontinuity for the Borel
resummed WKB period

discy Iy (€) = s5,+(I1))(€) — 54— (Hy)(e))
= lim (s(I,)(e*7%) —s(I1,) (")), (2:54)

—U4
Moreover, the singularity of Borel transform can be approximated numerically by using the stan-
dard Borel-Padé technique. In Fig. 2.2, we plot the singularity structure of the Borel transform

of [T, , (blue) and IT,, , (yellow) obtained by using the Borel-Pad€ technique (order €160y,
3. Y-function and WKB period

In this section, we will study the ODE/IM correspondence of the ODE (2.1). From the solu-
tions of the ODE, one can introduce the Y-functions, which satisfy Y-system and TBA equations
in the integrable model. In the case of Schrodinger equations, the Y-functions are identified with
the WKB periods in the ODE. A similar identification is also expected for the third order ODE
[46]. In this section, we first introduce the Y-functions for the (A, Ay)-type ODE. Then in
the sec. 3.2, we identify the Y-functions with WKB periods by the leading order of the WKB
approximation.

11
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3.1. Y-function for (Aa, Ay)-type ODE

We introduce the Y-function by using the ODE/IM correspondence.” The (A, Ay )-type ODE
(2.1) is invariant under the Symanzik-Sibuya rotation:

x—>a)71x, u,-—)ufiu,-, i=0,1,...,N+1, 3.1

2mi/3

where w := ¢27!/(N+4) This rotation is equal to the transformation € — ¢ € since the rotated

function
Yo 'x, {w*"ui ]; )=y (x, u;}; e 3e) (3.2)

satisfies the same ODE (2.1). Let us consider a solution ¢9 whose asymptotic property is

o, (ui}: ©) € 7N3+16 1 3 N4 x| oo, largx| T

x,{u;j}; ) ~ —=x xp| —— x 3 ), |x|— oo, x| <

o iv3 PUTen+4 N
(3.3)

and its rotated solutions ¢:

o {uis €)= o (x. {u;}; e 3 Ke). (3.4)

Here we have set ug = 1 without loss of generality. The solution ¢y is called the subdominant
solution since it decays fastest in the Stokes sector Sy (k € Z) defined by

2rk b4
Sk = C; -— . 3.5
& {xe argx — <N+4} (3.5)
Note that the solution has property:
Pra N4 (x, {ui}s €) o pp(x, {ui}; €). (3.6)

The set of the subdominant solutions {¢x, ¢x+1, Pr+2} are the basis of the solutions of the ODE
(2.1), since the Wronskian of these solutions is equal to one:

Widk, Pr+1, br+21=1, 3.7
where the Wronskian of the functions f is given by
fkl sz fk3

W[fk]vszv fk3]:det axfkl axsz 8xfk3 . (38)

R fi, 02 fi, 9%fis
We introduce the T-functions 7, x (0 <a <3,k € Z) by
Tox=Wip—1,¢0. 011 V=1, Tix=Wip_1, do, 1],
Dok = Wido, i1, drr2l 7, Ty 0 = Widk, dugr, drr2l ™ =1,
where we used the notation
¥ it o) = fuik e 3re). (3.10)

Using the Pliicker relation

(3.9)

4 See [3,6] for the case of the third order ODE with a monomial potential.

12
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Wifo, fi, 2IWLfo, f3, fal = Wi fo, f1, F31Wfo, f2, fal + Wl fo, f1, falW(fo, f3, f2]
(3.11)

and the property of the Wronskian

Wik b1 $io 1™ = Wi sk, Sk bkl k€ Z, (3.12)
one finds that the T-functions satisfy the functional relations called T-system:

TENTEN = Ty ) T + Tako1 Tair (3.13)
with the boundary conditions:

Tao=Tan+1=1, a=1,2. (3.14)

The cross-ratios of the T-functions define the Y-functions:
Ta—1xTav1,k

, a=1,2, k=1,...,N. (3.15)
To k1T 141

Ya,k =

From the T-system (3.13), one can derive the functional relations of the Y-functions:

ylHyl=1 _ I+ Yeo160)(+ Yot )

&k Lak = - = (3.16)
YL DU+ Y )
with the boundary conditions:
Yor=Y3x=0, Ys0=Ysnt1=00, a=1,2. (3.17)

The system (3.16) is (A2, An)-type Y-system [15].
3.2. Stokes graph and WKB approximation of the Y-function

In this subsection, we discuss the asymptotic behaviors of the Y-functions. Since the Y-
functions are cross-ratios of T-functions that are the Wronskians of the solutions to the ODE, we
first evaluate the Wronskians by the WKB approximation. We should choose the region where
the WKB approximation is valid. These regions can be found by considering the imaginary part
of the solutions. The Stokes curve [49] starting from the turning points on the complex plane is
defined by

X
Ime_m/(ya(x)—y;,(x))dx:O, a,b=1,2,3, a#b, (3.18)
Xk

where ¥ is the phase of €, a and b are the labels of ordered pair of distinct three sheets of X, and
X4 18 a turning point at which y, (x4) = y»(x,). We label the Stokes curve (a, b) on which

Ree™” / (Va(x) — yp(x))dx <0 (3.19)

holds. The Stokes curves will end on the other turning points or extend to infinity. Furthermore,
if the curves contained in the Stokes graph intersect, we need to add a new curve depending on
their intersection angles [49,50].

13
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For general third order ODE with simple turning points, where the characteristic equation has
simple zeros, three Stokes curves emerge from the point [51,52]. For the case of the ODE (2.1),
however, all the zeros of p(x) are not the simple turning point, from which eight Stokes curves
stretch along the directions:

_3 (2n+l)n+ﬁ_(a+b)n_argp/(x*) ’ nel.
4 2 3 3
Fixing ¢ and the pair a, b with a < b, one finds the directions the curves can stretch. The condi-
tion (3.19) indicates that for odd n we have to assign the label (a, b) to the curve, and for even
n we assign the label (b, a). We can read the labels of the curves with the starting point x, in
ascending order of ¢ in the range of —% arg p’(xy) to 2w — %argp/(x*): (1,3), (1,2), (3,2),
G, D,....

The label of the curve can also be read off by considering the dominant or subdominant
solutions in asymptotic regions. In addition to the subdominant solution ¢ in the sector Sk
(k € Z), we introduce the solution ¢, of the adjoint ODE [4,7,13] which is defined by

S (x, {uils €)= g (x, {ui}; —€), ke (3.21)

Note that ak is subdominant in the sector Sg43/2. Obviously, from the definition (3.21), in the
region where ¢y is subdominant, ¢, is dominant and vice versa. We introduce asymptotic direc-
tions

(3.20)

— i (2k+3)

b= eVHR,,  fp=e MRy, kel (3.22)

Along ¢, (€y), the solution br @k) is subdominant. More precisely, the line ﬁk (€1) is in the mid-
dle of the sector Sg (Sk+3/2). Now we consider_ the sheets on which ¢y and ¢, live, respectively.
In the asymptotic region, the solutions ¢y and ¢, are

X — X
Sk — Sk
oK ~ exp - / Vo, dx’ [, b > exp - / va, dx’ |. (3.23)
ooexp[?v”—ié] ooexp[—”’ﬁﬂ'”]

— 2mi
Here ay,ay € {1, 2,3} are the sheet’s labels of X, and &, §; € {1, eiT} ensure the asymp-
totic behaviors of the solutions studied in the previous subsection. Suppose, around direction

—”lk . . . - . n
eXN+H R (k € Z), one has the asymptotic direction £, and £;,, where solutions ¢, _and P,
become subdominant, respectively. A Stokes curves related with solutions ¢, and ¢, thus

exist in the direction eﬂx’—[ﬁ‘”RJr (k € Z). Since on the Stokes curves Im Ya, = Im Yay, and
Re Yar, > Re Yay, are satisfied, the labels of the curves are (ay,, ax,). For the case of k =1 and
the branch cut chosen as in Fig. 3.1, one finds that k; =0, k = —1, ax; =3 and ay, = 1, which
leads to the label of the curves (1, 3).

3.2.1. The cycles associated with Y-functions

Using the Wronskian representation of the Y-functions and the Stokes graphs, we can asso-
ciate the cycles on the Riemann surface to the Y-functions. The cycle can be constructed by
using the abelianization tree [53] made of junctions and lines. For completeness, we review the
construction of the cycles following [40]. An abelianization tree is a junction that has three end-
points at the infinity of £;, (i =1, 2, 3) where the solution ¢, in the Wronskian W[y, , ¢x,, ¢i; ]

14
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becomes subdominant. The line starting from the junction and ending at the infinity point of
£ (£x) has the label ay (ay), the sheet label of the subdominant solution ¢y (¢;). To make sure
the precision of the WKB approximation, the line with the label a; cannot cross the Stokes curve
with the label (ag, a;).

When we substitute (3.23) into the Wronskian, one obtains the leading term in 1/€. It depends
on the end points of the integration paths of the three solutions. However, if we set these points
as the same, the contributions from the integrals cancel. Then it becomes independent of the final
point. We can use this property to deform the contour associated with the Y-function.

A Y-function is defined by four Wronskians, which thus provide four abelianization trees.
Combining these four trees, we obtain a closed cycle associated with the Y-function. Let us
consider the cycle made of the abelianization tree associated with the Y-function. We illustrate
the procedure by taking an example of Y; 1 of (A3, A2)-type ODE, which is given by

Vi = W[¢—1,¢1,¢2]W[¢—2,¢—1,¢0]. (3.24)

Wig—2,¢-1,021Wid—1, ¢0, ¢11

The Wronskian W[¢_», ¢_1, ¢o] is represented by the junction which ends on the infinity points
of £_5,€_1, and {( expressed by the green tree in Fig. 3.1. The lines of the trees represent the
integration paths of the solutions in (3.23). On each line, we assigned the arrows associated with
the direction of the integration path. Let us consider the abelianization tree for the Wronskian
Wlo—1, o1, ¢2]. At the asymptotic region, the lines representing the integration paths of ¢y, ¢,
and ¢_ are labeled by 2, 1, and 3, respectively. However, the line labeled by 3 starting from
the infinity of ¢_; will cross the Stokes curve with the label (3, x). We indicate the point just
before the crossing as the red dotted point in the figure. After the red dotted point, we relabel
the line as 3, which lives on the same sheet three with opposite arrows. The solution ¢_1 is
subdominant before crossing the red dot, while after the crossing, on line 3, the solution ¢,
becomes subdominant. The line with label 3 cannot cross the Stokes curve labeled by (x, 3).
Similarly, for the Wronskian W[¢_»>, ¢_1, ¢2], we added a point on the line with sheet labels 1
and 1.

Since Wronskians are independent of the location of the junction, we can move the junctions
of the Wronskians to the appropriate points and find that the integration path can be identified

with the cycle y; 1. In the same way, one can identify the cycles for other Y-functions. For Y] 2,
Y] +1]

it is convenient to draw the diagram for rather than Y7 »:

i —1, 5 W -2, Y1
+1]({M Lhe)=Yio({uil; e 3e)= Wz—i 2(2) zgwtz; 2_1 ZZ} (3.25)

Then the corresponding Stokes curve is rather than that of adjoint ODE. The Stokes graph be-
i (2k—1)
comes the same as in Fig. 3.1 but with the asymptotic directions replaced by ¢, = e ¥+ R,
27i(k+1)
and G =e N R

Repeating the same process for Yz[]l] and Y », we thus found one-cycles for the Y-functions.

At the leading order in € ~! of the WKB approximation, one obtains the following behaviors of
the Y-functions

1 _
logY; 1 ~e€ 1l'[gl))l, long[E PN 11'[%,2)2,

1] _ 10 ' 1) e — 0. (3.26)
log Y2,1 HJ/I 1+v2,1° log Y2’2 ~e n)/3 2+v1,2°

Note that since 1,1 + 2,1 = —y3,1 and y3 2 + y1,2 = —)2.2, Y-functions have the Z;-symmetry
Yix =Y2x (k=1,2) in the limit € — 0. As we will see in the next section, the asymptotic
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T2 T1 L0

(b)

Fig. 3.1. The stokes curve of (A;, A>)-type ODE with the potential p(x) = x3 — x and the abelianization tree for ¥ 1.1
(a) and the cycle y1 1 (b).

behavior and the TBA equations together with the discontinuity structure of the WKB periods
lead to the relations between the logarithm of the Y-functions and the WKB periods:

[—1]

log Y1 1 =E_1Hym, logYi 2= [E_IHJ/,%.Z] ’
| (1] » (3.27)

log¥s 1= |:€ HV1,1+V2,1] . logYop =€ Ty, 14y,

which will be tested by numerical calculations in the following sections. From the analysis of
(A, Ay) and (Aj, A3), we arrive at the formula which identifies the Y-functions with WKB
periods of (A2, Ax)-type ODE:

1 [a—k] .
log Yy r = [EH%J‘} s VYak =Vookkto FVar1-kk, a=1,2, k=1,...,N.
(3.28)

We will check these relations for the (A,, A) and (A,, A3) cases. We note, however, that (3.28)
is valid in the minimal chamber of the moduli space. Outside the minimal chamber, we need to
replace them with new Y-functions obtained from the wall-crossing of the TBA equations. This
is the subject of Sect. 5.

4. TBA equations in minimal chamber
In this section, we derive an integral equation, called the TBA equation, starting from the Y-
system and the asymptotic behaviors discussed in the previous section, especially in the case of

the minimal chamber.
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4.1. TBA equations in minimal chamber

The Y-system for a pair (g, h) of simply-laced Lie algebras g and h has been studied in [54].
Our Y-system (3.16) corresponds to g = Ay and ) = A,, and the Y-functions are the inverses of
them. Then, the (Ay, Ay)-type Y-system (3.16) can be rewritten as follows:

(+11y[-1] —1\G,

Yoo Yoo o Il (+Y, 0% 4.1)

ot Vi A+ YDA+ Y0
where the matrix G, is the incidence matrix of A>. Herea =1,2, k=1, ..., N. The boundary
conditions for Y-functions are given by

Yor =Y3x =0, Ya,0=Ya nt1 =00, a=1,2. (4.2)
At the large and positive 6, which is defined by 6 := —loge, the logarithm of Y, 4 is assumed to
behave as

log Yo k(0) ~ mq ke’ 43)
which is the leading order of (3.28):

My =e3 k=0 ® “.4)

Vak'

The cycle 9, x and y3_, « are different only by the living sheets; their classical periods are related
by

n® —, 562000 ;12 k=1,...,N. (4.5)
Ya .k Y3—a,k
From (3.28), one obtains
mi g =mayk, k=1,...,N. 4.6)
(4.6) can be written
2
T
2cos(—)ma,k=ZGabmb,k, a=1,2, k=1,...,N, 4.7)
3 b=1

which can also be derived from the leading order of the Y-system. We can follow the standard
approach to convert the Y-system to the TBA equations [15] for these mass parameters. Taking
the logarithm of the Y-system (4.1), we get

2 2
SO+ N =3 Ganfox = GabLvk — Lak—1 — La1. (4.8)
b=1 b=1

where

fak(®) :=10g Yy 1 (0) — my e’

49
Lax(®) :=1log(1+Y,1©)). @9
Taking the Fourier transformation
Foy=7i1m = [ f@e o, (4.10)
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then (4.8) becomes

2
Tp ~ ~ ~ ~
> (28a0005h (=2 )oas = G ) Fou(P) = Y Gas Lo (P) = Laim1 () = Lt ().
b=1 3 b=1
@4.11)

Solving about fa,k and taking the inverse Fourier transformation of both sides, then we get a set
of the TBA equations:

log Yo x(0) = ma e’ + K * (Laj — Laj-1 = Lag+1).  a=12, 4.12)
where we have used Y; ;(6) = Y2 4(6), which is a conclusion of the Z, symmetry of the masses,

i.e. my s = my . Here the kernel function is given by

1 4+/3coshd
K@O)=———— (4.13)
27 14 2cosh26
and the convolution is defined by
(e.¢]
KxL= / d9'K (@ —0)L(®'). (4.14)

—00

In the following, we only consider the TBA equations for @ = 1 since that for a = 2 is the copy
of the one for a = 1. For the complex masses, it is more convenient to shift the arguments of the
Y-functions, such that the leading order is real and positive:

log Y1 (0 —ign) = |mixle’ + K *Lig — Kik—1 % Lij—1 — Kiks1 % Liks1,  (415)

where Za,k(G) =Ly k(0 —idi). Ki, i, 1s the kernel with the argument shifted in the imaginary
direction, defined by

K 1, (0) = K (0 — i (¢x; — Pr))s (4.16)

where ¢ denotes the phase of the mass:

O = argmy g, k=1,...,N. 4.17)
It is convenient to rewrite the kernel as
K@) = ! ! + ! ! (4.18)
S 27 cosh(6 + %) 27 cosh(6 — %) '
The kernel function K has the poles at
i
O:i? + nmi, nez. 4.19)

Therefore in the case of the minimal chamber, i.e. |¢px — ¢r+1| < /3, the integration path of the
TBA equation can be shifted without causing the wall-crossing phenomenon. In the numerical
calculation, the equations (4.15) are helpful to see the convergence of the solution under the
iteration. The case where |¢pr — ¢r+1| > /3, however, the solutions do not give the correct
solution. This will be treated in the next section.
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The integrable model corresponding to the ODE is characterized by the (kink) TBA equations
(4.15), which is described by a conformal field theory [55]. The effective central charge of the
conformal field theory is given by

N o
6 —
coir 1=2 X — Z / Im1x[L1x@)e? 46, (4.20)
k=1_"
where the factor 2 is due to the summation of @ = 1, 2. This can be evaluated by the 6 — —oo
limit of TBA equations, where the deriving term vanishes and thus leads to constant Y-functions
satisfying

log Yy 1 (—00 — i) = La k(—00) — Lg j—1(—00) — Ly k41(—00). (4.21)
The solution to these equations has been found in [56,57] as
gin Zk+D ) wk+2)
Yor(—o00 —igp) = — 2 — b — 1. (4.22)
sin N”—+4 sin S5

Using the Rogers dilogarithm identity [58], the effective central charge becomes

N
6 I IN(N + 1)
=2x =YL = , 4.23
ceft X;ﬂg <1+Y1,k(—oo—i¢k)> N+4 *-239)

where L(¢) is the Rogers dilogarithm function defined by

13
1 log(1—1¢)  logt'"\ .,
L() ._—§/< R L (4.24)

0

The central charge (4.23) is that of the generalized parafermion SU(N + 1)3/U (DN Its mas-
sive deformation is described by the homogeneous sine-Gordon model based on the same coset,
whose TBA system is the same as (4.12) [59].

4.2. Numerical test: minimal chamber

We now compare the WKB periods with the Y-functions in the minimal chamber numerically.
In particular, we will calculate the coefficients of the expansions of (3.28) in € = e~? and will
check

Il O O (4.25)
where mﬁ'fk_l) is defined by the e’e—expansions of log Y1 x(0):

o0
log Y1 x(0) =my e’ + Y m{ e (4.26)

n=1

(=1)

- (n)
Here my g

=mi, m(lo,){ =0, and m ; with positive integer n is given by

o0
my') =k / (Lix(©)e" 790 — Ly 41 (0)e" 7% — L) 4 11(0)e" @' P+10)do, (4.27)

—00
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Table 4.1
The quantum corrections for p(x) = —x3 4+ 7x +6.

(n) (n—1)
" H?l,l "1
2 0.2172157436i 0.2172157436i
6 —1.519567945i —1.519567945i
8 —20.48661777i —20.48661776i
12 20065.20970i 20065.20605i
14 1160395.676i 1160393.422i

and

k, = l(sin(fn) T sin<2—”n>) (4.28)
" 3 3 ‘ '

H;’T)k has been calculated by using the Picard-Fuchs operator discussed in section 2.1. On the

D

other hand, m(I",: is computed by solving the TBA equations numerically.

4.2.1. (A2, A2)
Let us consider (A, Az)-type ODE in the minimal chamber studied in a previous paper [46].
The Y-system (3.16) becomes

_ 14+Y _ 14+Y
plyl n_ (I+Y21) 1]yl n_d+Yi)

IS B 1o fan o = 1
(1+7Y73) (1+753,) ws9)
+1y-1] _ (I1+Y22) +1ul-1 _ (I+Yi2) '
Yo Yy =——73 Ny V, =——7
(1+Y1,1) (1+Y2’1)
and the TBA equations (4.15) read
log¥1,1(0 —i¢1) =|mi1]|e’ + K «Li1 — Ki2x L2, 4.30)

log Y12(0 —i¢n) = |m12]e’ — Koy xLii + K Ly 2,

with effective central charge ceif = 2. As an example, we consider the case where all branch
points are aligned on the real axis:

P =—(x =3+ D +2)=—x> +7x +6, 4.31)

which is different from the one in the previous paper [46]. The mass parameters are defined
through the classical periods and are computed by (2.41) as

miy =113 ~13.14579499i,

i 0) (432)

mip=es3 1'[?] , = 1.514970717i.
In Table 4.1, we compare the coefficients mi’ffl) to the quantum corrections Hg,'f?l numerically.
From the TBA equations, it is easy to find m(I”; D _ —mi"f 1), which is also checked from the

WKB periods. One of the interesting properties of (A, Azj—type TBA equation is that the quan-
tum corrections for log Y1 1 and log Y1 » become the same up to the sign, which can be checked
numerically from the calculations of the WKB periods. It is worth noting that this symmetry of
quantum correction is very non-trivial from the viewpoint of the Picard-Fuchs operator.
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Another characteristic of (A2, Ay)-type TBA is that the correction terms vanish when m 1 =
m1 2, which can be produced by considering the potential such that the zeros are symmetric with
respect to the midpoint. An example of the potential is p(x) = x(x 4+ v)(x — v). The (A3, A>)-
type TBA equations (4.30) become

log Y1,1(0 —i¢1) =|my1]e’ + K «(L1,1 — L12),

_ o 4.33)
logY12(0 — i) = |mi2|e” — K (L1,1 —Li ).

Then one finds Za,l = Za,g, which means that the higher order terms of e~ -expanswn m(1 ,1,

n =1, ..., 00 vanish. This corresponds to the case Dy in (2.31) and the Picard-Fuchs operators
vanish. This example can be regarded as the third-order version of the harmonic oscillator.

4.2.2. (A3, A3)
Let us demonstrate another example for the third order ODE with the potential of fourth order
in the minimal chamber. The Y-system (3.15) is

G(L? Ga
yilyl [Tp=i (1 + Y5 1) Iy l=1 [Ty (1+ Yp )%

@ A+v;n e Ay A+ wan
ylrtypt=t _ o (14 Y5 3) % '
a,3 a,3 (1+Y 2)

where a = 1, 2. The TBA equation (4.15) can be written as

log Y116 —ip1) =|m1 1€’ + K+ L1 — Ki2% L2,
log Y12(0 — i) =|m12le® — Koy xLi1+K*L1o—Kazx Ly, (4.35)
log¥13(0 —i¢3) =|m13le” + K+ Li3— K3p%Lip

with effective central charge ceff = 27—4. As an example, we set the potential to be

pP)=—(x—-Hx—DEx+Dx+2)=—x*+2x>+9x2 —2x - 8. (4.36)

The masses m , the corrections mi"k D and their counterpart periods n )k are shown in Ta-

ble 4.2. Again, one sees the agreements of the WKB periods and the Y- functlons numerically.

4.3. Discontinuity of WKB period from TBA equations

So far, we have shown the identification between the Y-function and the WKB period in the
e-expansion (3.28). Thus the WKB period and the € expansion of the Y-function are the same
asymptotic series of €. Moreover, since the Y-function is an analytic function on the e-plane, our
TBA equations include more information i.e. singularities. To make a more precise statement for
(3.28), we replace the asymptotic series with the Borel-resummed one:

1 [a—k]
log Yo 1(6) = s [gnﬁa,k] , 4.37)

where the right hand side has discontinuity on the € plane as discussed in section 2.3. To test
this statement, we compute the discontinuity formula of the Y-functions, and then compare them
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Table 4.2

The quantum corrections for p(x) = —x*4+2x3 +9x2 —2x 8.

Nuclear Physics B 979 (2022) 115788

n n¢ POl (0 S A=mp®
Y11 Y12 Y1,3

0 14.29120679i 5.748396528i 2.197175863i

2 0.06210586398i 0.1352435882i —0.09711585835

6 —0.002344098573i —0.2410756322i 0.2410502603i

8 —0.002115215318i —1.544858396i 154485473 1i

12 0.009495408700i 339.9172291i ~339.9172287i

14 0.03754344682i 9328.147139i —9328.147139i

R i D

0 14.29120679i 5.748396528i 2.197175863i

2 0.06210586398i 0.1352435882i —0.09711585835

6 ~0.002344098573i ~0.2410756322i 0.2410502602i

8 —0.002115215317i —1.544858396i 1544854731

12 0.009495407453i 339.9171779i —339.9171774i

14 0.03754338997i 9328.131493i —9328.131493i

with the one of the Borel resummed WKB periods. For simplicity, we will focus on the minimal
chamber of (A3, A>) case. Other cases can be studied in a similar way.
Let us consider the case Arg(my,1) = ¢1, Arg(m2) = ¢ with —% < —¢| < % The TBA
equations are given by (4.30). We thus can express the WKB periods by
o)

log Yy 1(8) =my e + / do'K (@ — 6" +ip1)L11(8)

—0o0
oo

- / do'K(@©O — 60" +ig)L120) + -,

e (4.38)

00
mi o—ZL / 1 . i — /
long,z(Q—?):ml,ze 3+ do'K (O —6 +l¢2—?)L1,2(9)

—0o0
oo

/ / . nl T /
— / dO°K@ — 60" +i¢p) — ?)LU(G)—F--- ,
—00

where the --- means the residue due to the shift of 6, which can be ignored in the discussion of

discontinuity. From the pole structure of the kernels in the TBA equations, we find log Y1 1(6) is

Borel non-summable in the directions

T 21 T 21
6= :I:(g +nmw) — ¢1, :l:(? +nmw) — ¢1, :I:(g +nmw) — ¢, :I:(? +nm) — ¢2,

(4.39)

where n € Z>¢. logY12(6 — %i) is non-summable in the direction

T 27
0 =—¢| —nm, (—E—M)—dm (—3 +nmw)—¢1, mw—¢1+nm,
(4.40)

T 27
— ¢ —nm, (—g—nﬂ)—aﬁz, (?Jrnn)—d)z, T — ¢+ nmw.
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When Arg(mq,1) = Arg(mi ) = 2 , 1.e. the case studied in Table 4.1, one finds the directions of
non-summability of Y-functions from (4.40), which reproduce the locations of the discontinu-
ity of s([1 s, D) and s([111;,,])(0) obtained from the Borel-Padé technique, see Fig. 2.2.
Since the exact WKB periods are uniquely determined by their asymptotic behaviors and the dis-
continuity [60], we thus expect our TBA equations provide the exact form of the WKB periods.

5. Wall-crossing of TBA equations

In N = 2 supersymmetric gauge theory, the BPS spectrum can be expressed by using the
central charge in the N'=2 SUSY algebra:

ZGi, iy =0 Ne+ap -Mm, Mg, i,y =1Zg, il 5.D

where M is the mass of the BPS particle with charge (7i., 7i,,). d is the vev of the scalars in the
Cartan subalgebra, and dp is its dual. The central charge corresponds to the SW period T, of
the low-energy effective theory, associated with the cycle y = nLo' +n; ,3’ where o' and 8 ! are
one-cycle for a' and aj,, respectively. Let us consider the decay process Yo —> Zl | Vi- From
the conservation of the charges and masses, one finds that the phase of each IT,, in the decay
process has to be the same value. In other words, when the vectors of the SW periods are in
parallel, which leads to the wall of marginal stability in the moduli space, the BPS particle is
unstable. Let us spell out this in detail in the case of (A3, A2) AD theory, where we have seen
two independent SW periods H](;?)l and H;?)Q' The marginal stability walls are located at

n®\ |n® )
Yo | | v . _ Ty _
Im o0 | = |qo sm(¢1 ¢y + 3 ) =0, 5.2)
V1,2 V1.2

where we used mp, 1 = H(Ao)l and mj o = e H(AO) , and ¢y is the phase of mj . The condition

(5.2) thus leads to half of the marginal stability conditions. Note that 1'[(0) = e ;?) which

implies m1 2 =e" 119 . Then the marginal stability condition
’ 2,2

n®\ |n® -
2 | _ 22| . T _
Im o0 | = |qo sm(¢2 + 3 ¢>1) =0 5.3)
V1,1 V1,1

leads to the remaining half of the marginal stability conditions. Therefore, the marginal stability
walls are located at

TR 54
b — 1= 3 3 (5.4)
which is nothing but the locations of the pole in the TBA equations.

The marginal stability walls divide the moduli space into several chambers. Crossing these
walls, we have to modify the TBA equation, which is called the wall-crossing of the TBA equa-
tions. The chamber with the minimal (maximal) number of BPS spectrum is called the minimal
(maximal) chamber. Note that the general structure of the wall-crossing of the BPS spectrum in
the rank one gauge theory is first presented in [30]. However, the general case for higher rank
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gauge theory/higher order ODE is not well known.”> The TBA equations presented in the previ-
ous section are valid in the minimal chamber of moduli space. In this section, we analytically
continue the TBA equations to the whole moduli space, and show the identification between new
Y-functions and WKB periods.

5.1. General procedure of wall-crossing of TBA equations

Now we will see how the TBA equations change under the wall-crossing. Let us consider the
TBA equations (4.15) of (A2, Ay)-type in the minimal chamber, which are written as

log¥1.1(0 —i¢1) =|my1le’ + K« Li1 — KioxLio,
log Y12(0 — i) =|m12le® — Koy xLi1+K*L1o—KazxLy3, (5.5)
log¥13(0 —i¢3) =|m13le’ + KxLi3— KsoxLio—K3axLiag, .

The TBA equations (5.5) are valid only in the minimal chamber, namely the region
b4
|r — 1] < 3 (5.6)

When the moduli parameters change such that ¢ — @+ crosses £%, :I:ZT”, -+, one needs to
modify the TBA equations by picking the contributions of the poles of the kernels, as discussed
in the previous section. This modification of TBA equations is known as the wall-crossing of the
TBA equations [32,61,62].°

Without loss of generality, we consider the situation where ¢o — ¢; crosses 7 /3 while all
other |¢r — ¢r+1| < /3. Other situations of (A, Ay) can be treated in a similar way. We thus
need to pick the residue of the pole in the kernels of the first and the second TBA equations:

. - - T,
log¥1.1(0 —i¢1) =|mi1le® + K+ Ly — KioxLia— L1206 — 3~ i$1),
log Y120 —ip) =|m12le’ —Ka1xL11+KxLio—Ka3%L13 5.7)

Tio.
— L1180+ 3 — i),

log ¥13(0 —i¢3) =Im13le’ + K« L13—Ksp*Lig— Kza*Lig, -,
while other TBA equations keep the same form. To obtain a closed system, we also need to shift
the spectral parameter of Y 1 and Y > to obtain the equations for log Yy 1(6 + % —i¢p) and
log Y1200 — % — i¢1). We thus obtain a closed system with N + 2 TBA equations.
It would be more interesting to introduce new Y-functions Y7, and Y,

Y1 0) =Y110)(1 + —), Y10 =Y120)(1 +

Y1200 — & Y110 + %’J)’

) 1 5.8
n I+ Y1207 T e ) (5.8)
20 = 1 v Yo=Yk

Y1‘1(9)Y|,2(9—%i

5 See [38] for higher rank cases.

6 This idea was originally used to calculate the excited states of the integrable model in finite volume [63]. However,
the origins of the poles are different. In [63], the pole appears when 1 + Y = 0. See also [24] for its application to the
Schrodinger equation with centrifugal potential.
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to absorb the residue in the right hand side of (5.7), satisfying

1 1 1
1+ =(1+ 1+ ,
e =) e
1 1 1
1+—)=(1 ), |
) U e ) 59)

i 1
Y1 (O)Y], (60 — ?) =YL (1+ %).
From (5.9), one finds the mass for the Y-function Y[, (0) is m2 =my 1 +my2e” nTi, whose phase
is defined by ¢1>. The first three TBA equations (5.7) thus become

log Y11 (0 —ig1) =Imy1le’ + K« L} | — Kia* Ly o+ Ky 1, % L1,
log ¥{'y(0 — i) =Imyale’ + K« L}, — Ky Ly — Koz L} 3 — K5 1, % L,
log ¥{'3(0 —i¢3) =Imy3le’ + KL} 3— K3axLj,— Ki ,«Lj, — Ksax Ly,
(5.10)

where K*(0) = KIF1(0) = K (0 + %i). We have shifted the integral path associated with Y,
because the values |¢p12 — ¢1], |2 — % — ¢12| are small enough. To obtain the TBA equations
associated with Y7}, we evaluate the first two TBA equations in (5.7) at the appropriate value and
then take the summation

log Y150 —ig12) = mizle’ + K« LY, — K5 ywLis+ Ky  « L} | — Kb, LY ,. (5.11)

(5.10), (5.11) and other N —3 TBA equations provide a closed system with N + 1 TBA equations.
Using the relation (5.9), it is easy to rewrite the effective central charge (4.20) in terms of the
new Y-functions

o0 N
6 _ _
Car =2 — / (|m12|e9L‘fz+§ |m1,k|e9LT’k>d0. (5.12)
A k=1

Similarly, as in the case in the minimal chamber, one can find the constant value of the Y-function
at 6 — —oo through

log ¥(—00 — i) = M - L.(—00), (5.13)

where ¥ and L are the vector of (Y] (=00 — iy), Y]y (=00 — i12))" and (ZT’k(—oo),

Zrllz(—oo))t , respectively. M is a constant matrix which can be obtained by the integration of the
kernel. M represents the connection matrix of the Y-functions in the TBA equations at 6 — —oo
[21]. The matrix M can also be obtained from the Fourier transform of the kernel matrix evalu-
ated at zero momentum. Using the Rogers dilogarithm identity and the constant solution of the
new Y-function, one finds the value of the effective central charge is the same as the one in the
minimal chamber.

From the asymptotic behavior of the TBA equations, we find the new Y-functions Y 1“ | and
Y 1" , are related to the cycles p; 1 = y1,1 and p; 2 = y32. We thus find that the new Y-functions
are identified with the WKB periods at the region 7/3 < ¢» — ¢1 < 27/3:

i

3 ). (5.14)

log Y7 (0) =Ty |, log¥P,(@) =e? Ty, (0 +
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0.2 04 0.6 0.8 1.0

Fig. 5.1. t-dependence of the phase difference ¢y — ¢; for0 <z <1.

Noting the relation

_ - _ O (]
mpp=mjp+e 3m1,2_l'l};“ +H)91,2’ (5.15)

we find Y7}, is related to the cycle P11 + y1,2:
log Y15(0) = €Ty (0) + TNy, ,(0) =TI 4y, . (5.16)

One has to pick the contribution of the pole in the TBA equation of log Y, (6 — ”Ti) if one wants

to compute 691_[);1‘2(9) from the second equation of (5.14). From the viewpoint of the Gauge
theory, the basis of BPS states changes from (91,1, P12, -+, VI.N) 0 (P1,1, V1.2, -+ s VILNs Y11+
P1.2) in the progress of wall-crossing [30]. We thus need to identify the WKB periods with the
new Y-functions rather than the original one. Similar redefinitions are found for further wall-
crossings. We will repeat this procedure from the minimal chamber to the maximal chamber
for non-trivial examples of (A3, Az) and (Aj, A3z) in the following. The first wall-crossing of

(A3, A7) TBA has been studied in [46]. We, however, repeat the analysis here for completeness.
5.2. (Ap, Ap)

In this subsection, we study the wall-crossing of the (A», A2) TBA equations and compare
the Y-functions with the WKB periods in each chamber. Let us consider particular points in the
minimal chamber and the maximal chamber with the potential p(x) = (x —3)(x + D(x +2) =
x3 —7x —6and p(x) = x3 — 8, respectively. These two sets of branch points are interpolated by
the path

xo()=3—1, x1(t)=—1+3it, x2(t)=—-2+1—+3it, 0<r<I, (5.17)

whose potential is given by p(x; 1) = (x — xo(¢))(x — x1(¢))(x — x2(¢)). From this potential, we
are able to compute the classical periods and masses for Y-functions through (4.4) for 0 <t < 1.
The difference of phases ¢; and ¢, for 0 <t <1 is plotted in Fig. 5.1. In the path (5.17), we thus
find two walls associated with ¢ — ¢1:

T nY

r=0.162117..., ¢ — = =, Im| —22)=o0, (5.18)
3 0o
Y11
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©0)
2 mn

r =0.397459..., by — = 2, Im | —22 ) =o0. (5.19)
3 ),

5.2.1. The first wall-crossing
The first wall-crossing occurs when ¢, — ¢; cross 7. Following the general procedure in the
previous subsection, we define the new Y-functions

1
), YhO) =Y120)(1+

(D
YO©) =y, @001+ ——), S
b L@ Y1200 — 5% Y110+ %)

),

1 1
Yi200-% + Y1,1(0)
-t ’
Y1101 200-%

(5.20)

Yy 6) =

where the superscript (i) labels the Y-function after the i-th wall-crossing. The TBA equations
(5.10) and (5.11) read

Do, (1) U NN)
log ¥, )@ —ig1) =lmy1le’ + K +Ly | — KioxLyy+ K|, %Ly,

. —(1 —1 _ =
log ¥{3(0 —i2) =Imyle’ + K« L} — Ko1 x L} — K5 1, # Ly (5.21)
1 . () (@ +(1)
log ¥}, (6 —ig12) =lmiale’ + K +Ly;) + K5 %Ly — K5, % Ly .
The matrix M introduced in (5.13) now becomes

0

1
MO =1 o ) (5.22)
1

—_

where the vector ¥V is arrayed by (Y](ll)(—oo —i¢y1), Yl(lz)(—oo — i), Y]g)(—oo —ig12)) . We
thus can find the constant solutions and the effective value Ceff = 2.

The new Y-functions Yl(’ll) Y 1(12) and Yl(%) are associated with the cycles p;.1, 12 and P11 +
1.2 respectively by
i
—)s

(1) 0 (D LU
logY,; [ (0)=¢"T1; logY; 5(0)=e3e Il (0 +
g1y 1 RS P12 3 (5.23)

7110
Mgy 0
log¥, (6) =e H)’l,1+371.2(0)’

which is valid in the region /3 < |¢> — ¢1| < 27/3. To test these identifications, we compare
the expansion of WKB periods with the e~? expansion of the TBA equations

oo
log ¥ (©) = my ke’ +> m{)y e,

n=1

- (5.24)
log¥{y (0) = mppe’ + > m{y) e,

n=1
To avoid confusion with many superscripts, we will omit the superscript (1) or (i) for the further
wall-crossing on the right hand side. In Table 5.1, we perform the numerical comparison of the
€ expansion of (5.23) at t = %, which shows the agreement in high precision. The way of the
first wall-crossing can be visualized by plotting the classical periods on the complex plane, see
Fig. 5.2. Before the wall-crossing (left), we plot the vectors of the classical periods IT,, | =TTy, |,

27



K. Ito, T. Kondo and H. Shu

Nuclear Physics B 979 (2022) 115788

Table 5.1
The WKB periods n® ,e%(lﬂ')ﬂ&") and T , and the masses mgnl_l), mgnz_]) and mle_l)
711 1.2 712 , ,

forr=1=0.2.
n n® mgnl_l)

Y11 .
0 —9.747530080 + 6.701716666i —9.747530080 + 6.701716666i
2 0.1568931454 — 0.1561575487i 0.1568931454 — 0.1561575487i
6 1.037931258 — 0.1841377709i 1.037931259 — 0.1841377696i
8 —0.7530182822 + 12.31639555i —0.7530183059 + 12.31639556i
1 —4657.014593 + 7803.136493i —4657.014191 4 7803.135760i

N

T
71,2

(n—1)
my o

0 —1.280370055 — 1.004961987i —1.280370055 — 1.004961987i
2 —0.1568931454 + 0.1561575487i —0.1568931454 + 0.1561575487i
6 —1.037931258 + 0.1841377709i —1.037931259 + 0.1841377696i
8 0.7530182822 — 12.31639555i 0.7530183059 — 12.31639556i
1 4657.014593 — 7803.136493i 4657.014191 — 7803.135760i
n n—1
1 n§71,)1+171,z m§2 )
0 —11.25803772 4 7.308068666i —11.25803772 + 7.308068666i
2 —0.05678983152 — 0.2139522239i —0.05678983147 — 0.2139522240i
6 0.6784336165 + 0.8068059514i 0.6784336157 + 0.8068059527i
8 10.28980229 + 6.810330737i 10.28980228 + 6.810330760i
12 —9086.221728 — 131.5246971i —9086.220893 — 131.5247156i

classical periods before
the 1st wall-crossing
(t=0) (t=0.162117...)

(o]

classical periods on the
1st wall

a

b

Cc Cc

classical periods after
the 1st wall-crossing
(t=0.279788)

Fig. 5.2. The classical periods in the process of the first wall-crossing. The vectors of the classical periods before, middle
and after the wall-crossing are shown from left to right. The arrows labeled by a, b, ¢, d and e represent the periods

(] ) ) ) .
HVl,l s HVSA,Z’ HV1,2 and HV1,1+)/3,2 respectively.

Iy, , and I1y,, = I}, , corresponding to the Y-functions Y; 1, Y22 and Y 2, respectively. At

the wall of the first wall-crossing, Hg,??] and l'lgg?z are in parallel; see the middle of the figure

and (5.18) for the condition of the marginal stability of the first wall-crossing. We thus need to
introduce a new period related to the cycle y1,1 + 3,2 to obtain a closed system. After the first
wall-crossing (right), we thus need to consider vectors of four periods, including Ty, | + Iy, ,.

5.2.2. The second wall-crossing

As t increases to the value of t = (0.397459..., one arrives at the second wall-crossing with
¢y — P = ZT” We pick the poles in the first two TBA equations in (5.21) and introduce the new
Y-functions. We find a closed TBA system:
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2., —(2) Q) em T
log ¥\ (6 — i) =lm11le® + K« Ly ) — Kiox Ly +Kj %Ly
_ —©2)
+ (K, 3+ K )+ L,
2, e FQ - T
log Y560 —i¢) =Im1ale’ — Koi x Ly + K *Li)— K5 1, * L}

- —(2)
— (K, + K, ) *Liy,

12 (5.25)
2 . —2 —(2) —(2 ’
log Y36 —ig12) =Imiale® + Ky  » L\ — Ky o« Lia+ K« Liy
+2)
+ (K12,1N2 + K1-21~2) *sz s
2 . +2 +(2)
log Y5 (6 — i) =Impzle’ + (K + Kb )* Ly — (K&, + K o)+ Loy
_ +2) +2)
+ (K1, + K1~2,12)*L12 +3KxLp,
where we have introduced the new Y-functions Y 1(2]), Y 1(22) , and YI%) defined by
1
2 (D 2 (1)
YO =Y 01+ —5—) Y20 =Y ,0(1+—F—5)
| | npe-%H v | e+
1+ Y“)(el 2miy + Y(l%(e) (5.26)
2 2V T3 , 2 1
Yf%)(@) — 1,2 13 1,1 , Yl(z)(e) — Y1(2) (0)
Y OY5 0%
The mass of the new Y-function Y 1%) ) is
~ ~ 2 _©
mp=my1+e Imp=IL"_, ., (5.27)
whose phase is defined by ¢ 3. The connection matrix M and the vector Y@ become
Y13 (=00 —igy)
1 1 1 2 o)
- Y5 (=00 —igy)
MO — } } } ; 7 7O (‘2)2 . ¢ (5.28)
Y5 (o0 —igi2)
2 2 2 3

@ e

We thus can find the constant solutions and the effective value cef = 2.
The new Y-function Y 1%) (0) is thus related to the cycle y;,1 — y1,2. In this chamber, the WKB
periods are identified with the new Y-functions as

2 2 i i
log V(@) =¢"Ty, . log¥(30) =€ e'My, 0+ ), (5.29)
log V3 (0) = "Il 15, 0), log¥S(0)=eTly, , y,,(6).

To test these identifications, we compare the € expansion of WKB periods with the expansion of
the TBA equations:
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Table 5.2

The WKB periods n(y’;)l,e%“*")n@ % and

. Y127 712
(n—1) (n—1) . 3
mi, andm1~2 fort = 7_0.428571....

Y1,17Y1,2°

Nuclear Physics B 979 (2022) 115788

and the masses mgnl_l) m{D

Mo

n n® minl_l)
Y11 ;
0 —8.308190190 + 7.043627188i —8.308190190 + 7.043627188i
2 —0.009010340904 — 0.1441424592i —0.009010340904 — 0.1441424592i
6 —0.01783306296 + 0.03546352561i —0.01783306296 + 0.03546352561i
8 —0.07558676701 + 0.1018527964i —0.07558676698 + 0.1018527964i
12 5.797603169 — 3.782968514i 5.797602298 — 3.782967938i
" B 1= () mgnz—l)
V1,2 s
0 —0.2795945545 — 3.111293527i —0.2795945545 — 3.111293527i
2 0.009010340904 + 0.1441424592i 0.009010340904 + 0.1441424592i
6 0.01783306296 — 0.03546352561i 0.01783306296 — 0.03546352561i
8 0.07558676701 — 0.1018527964i 0.07558676698 — 0.1018527964i
12 —5.797603169 + 3.782968514i —5.797602298 + 3.782967938i
n n—1
" H;I?H‘?l,z m§2 )
0 —11.14244670 4 5.730116412i —11.14244670 4 5.730116412i
2 —0.1293362019 — 0.06426804547i —0.1293362019 — 0.06426804547i
6 —0.03962884557 + 0.002287877251i —0.03962884557 + 0.002287877251i
8 0.05041372566 + 0.1163864586i 0.05041372564 + 0.1163864586i
12 6.174948420 4 3.129387368i 6.174947485 + 3.129386902i
n n—1
n g’l?l V1.2 mi~2 )
0 —10.86285215 + 8.841409938i —10.86285215 + 8.841409938i
2 —0.1383465428 — 0.2084105046i —0.1383465428 — 0.2084105046i
6 —0.05746190853 + 0.03775140286i —0.05746190853 + 0.03775140286i
8 —0.02517304135 4 0.2182392551i —0.02517304134 + 0.2182392550i
12 11.97255159 — 0.6535811464i 11.97254978 — 0.6535810356i

o
log Ya(zlz 0) =mg e’ + Zmé’f,)(e_”e,

n=1

o0
log ¥y (0) =me’ + > m{ye ™ (5.30)

n=1

o
log Yg) ) = m1~2e(9 + Zm%)e_"e.

n=1
In Table 5.2, we perform the numeric comparison of (5.29) in the € expansion, which shows
good agreement numerically.” This process of the second wall-crossing can be visualized by
plotting the classical period on the complex plane, see Fig. 5.3. Before the second wall-crossing
(left), we plot the vectors of the classical periods I1y, |, [Ty, ,, I1y;,,, n?

Y11tY32
corresponding to the Y-functions Y l(li, Yz(l%, Y l(l% Yl(lz) and Y 1(~12)’ respectively. At the second wall,

and

7 In [45], the authors have studied numerically the spectral coordinates obtained from the TBA-like equations and those
obtained by solving the ODE for (A3, Aj).
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a
d
b
C
classical periods before classical periods on classical periods after
the 2nd wall-crossing the 2nd wall the 2nd wall-crossing
(t=0.279788)

Fig. 5.3. The classical periods in the process of the second wall-crossing. The vectors of the classical periods before,
middle and after the second wall-crossing are shown from left to right. The arrows labeled by a, b, ¢, d and e represent

: (0) (0) 0) 0 (0) .
the periods Iy, , TTy,; ', Ty Y H)’l 1730 and HVI 1=vi2 respectively.

l'[g,(l))1 and 1'[(0)2 are in parallel; see the middle of the figure and (5.19) for the condition of the

marginal stability of the second wall-crossing. We thus need to introduce a new period I'I),1 =12
related to the cycle y1,1 — y1,2 to obtain a closed system. In the new four TBA equations, one
finds many new types of kernels, which could have led to new poles and further wall-crossing.
We have checked numerically that no new wall-crossing occurs. We thus conclude that the TBA
equations are valid in the region 27 /3 < ¢ — ¢1 < 7w (0.397459... <t <1).

5.2.3. Monomial potential
When ¢ =1 in (5.17), which is in the maximal chamber, we arrive at the monomial potential

px)=x’ -3, (5.31)

and the TBA equations are given by (5.25). Using the method explained in section 2.2.1, one can
compute the classical periods and the masses. We find

Imi1| = |mial=|mpl, |mpl=~3m1 (5.32)

and
T T
¢ —¢1=m, ¢12—¢1=§, ¢f2—¢1=g- (5.33)

From the TBA equations, it is easy to find the relation
2y VSN Dy e ﬂ
logY O —igy) = logY («9 ipy —mi)=1logY |y (0 —igy 3 ). (5.34)

We obtain a reduced TBA system

log Y3 (0 — ighy) =Im 11e® +3K (60 — 0"« L1,

(2

+KO -6+ —) «ID 1 KO -0 - —) «L3,

, B (5.35)
tog Y0 — iy — ) =By 1le” +3K 6~ )+ L)

+3K0O -6 +—) «I) +3K0 -0 - —) SI1).

Note that the TBA equations are D4-type TBA whose definition is given in Appendix A.1 [15,
64,65]. From the wall-crossing, we can relate (A2, A2)-TBA and (D4, A1)-TBA, which shows
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Table 5.3
The quantum corrections for t = 1.
n n—1
" H;l?l mgvl :
0 —5.299916251 4 9.179724222i —5.299916251 4 9.179724222i
2 —0.04277896287 — 0.07409533719i —0.04277896287 — 0.07409533719i
6  0.0001166129817 — 0.0002019796092i 0.0001166129817 — 0.0002019796092i
8 —0.00003383735446 — 0.00005860801712i  —0.00003383735445 — 0.00005860801710i
12 0.00001446736332 — 0.00002505820832i 0.00001446736106 — 0.00002505820443i

(n)
Y1LI=Y1.2

(n—1)
"

—15.89974875 + 9.179724222i
—0.1283368886 — 0.07409533719i
0.0003498389452 — 0.0002019796092i
—0.0001015120634 — 0.00005860801712i
12 0.00004340208996 — 0.00002505820832i

o NN O

—15.89974875 + 9.179724222i
—0.1283368886 — 0.07409533719i
0.0003498389452 — 0.0002019796092i
—0.0001015120633 — 0.00005860801710i
0.00004340208323 — 0.00002505820443i

the equivalence of the quantum SW curve of (A2, A2)-AD theory and (D4, A1)-AD theory at the
special point in the moduli space [31,47]. The ODE/IM correspondence for the third order ODE
with monomial potential has been studied in [3], where the third order potential is related to the
D4 model by comparing the spectrum of NLIE and the TBA numerically. In the present work,
we derived the TBA equations directly from those in the minimal chamber.

Since the monomial point is a special point after the second wall-crossing, the identifications
between WKB periods and Y-functions should be the same as in (5.29). In Table 5.3, we perform
the numeric comparison of (5.29) in the € expansion for the monomial case, which shows good
agreement again. The effective central charge of the TBA equations is evaluated as (5.35)

6 —2) —@
Ceff =2 X ;/ (3|ml,1|e9LL1 + |ml~2|e9L§~2 )d@ =2. (5.36)
Comparing the first two terms in (5.30) and using (5.36), one finds
m Oy = e = ——. (5.37)
' 43 24/3

Note that this relation is regarded as the special case of the PNP-type relation [66,67].
5.3. (Ag, A3)

We next study the process of wall-crossing of the (A;, A3) TBA equations from the min-
imal chamber to the maximal chamber. This example contains more chambers than (A», A2)
and shares similar features of general (A, Ay) theory. We start with the point in the minimal
chamber whose WKB curve has the branch points {2, 1, —1, —4}, and the potential is given by
p(x) = x* +2x3 — 9x2 — 2x + 8. We end with the monomial potential p(x) = x* — 81 in the
maximal chamber, which has the turning points {3, 3i, —3, —3i}. We consider the path

xo(t) =2+1t, x1(t)=1-—1+3it,

x3()=—-4+¢r 0=<r<l,

(5.38)

x2(t) = —x1(1),

whose potential is given by p(x; 1) = (x — xo(t))(x — x1(¢))(x — x2(¢))(x — x3(¢)). For any ¢,
we compute the classical periods and the masses for the Y-functions. Moreover, we compute the
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a: g2 — ¢1

b: ¢ — ¢3

c pr2— g3+ 3
d: a3 — 1+ 3
e ¢312 — P2

£ —d3—3

Fig. 5.4. The differences of the phases of the masses from ¢ =0 to t = 1, which are relevant to the wall crossing. The
nine dotted vertical lines show the locations of the walls.

differences of the phases in the kernels of the TBA equations. For the kernel K ,ﬁflkz, if ¢r, —

¢k, Fn% crosses £/3, +27 /3, the wall-crossing occurs. The differences of the relevant phases

in the kernels of the TBA equations for 0 <7 <1 are plotted in Fig. 5.4.
As t increases, we find the nine walls in the moduli space, given by

t=0.123142...,
t =0.163685...,
t =0.202635...,
t =0.290017...,
t =0.360924...,
t =0.434148...,
t =0.449568...,
t =0.608205...,
t =0.65489...,

_7T
¢2_¢1 = 5,
P 7

2—¢y—§,
¢12 —¢3=0,
# _271
2—¢r—§n

_271
¢2—¢y—7;,
o —p3=0,

2
¢312—¢2=—Tn,
¢m—¢r=%,
P12 — ¢3 = %

33

(0)
Iy, —0
H(O) -
Y11

(V]
I1
Y1,1+Y3,2 ) —0,

)
I,"
YL1VL2 ) —0,

(0)
ITyss

(O]
HV1,1+V3,2+V3.3 )

©)
H}’l.z

(]
I1
Y1,2+V1,3 ) =0,

(0)
Iy,

)
IT
Y12+72.1 ) —0.

(0)
ITys 5

(5.39)

(5.40)

(5.41)

(5.42)

(5.43)

(5.44)

=0, (5.45)

(5.46)

(5.47)
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In our choice of path 0 <t < 1, no other wall-crossing occurs at the same time, so that we only
need to add one new Y-function for each wall-crossing. The TBA equations in each chamber
are rather complicated. In Appendix B, we will show only the definition of new Y-functions
for completeness. The TBA equations are valid at any point in the chamber, not only on the
path. Here, we show the TBA equations at the typical chamber, which includes the symmetric
potential. Since the symmetric potential plays an important role in the non-perturbative analysis
of quantum mechanics [68], it would be worth writing down the TBA equations for the third
order case. In the minimal chamber, we have Y-functions Y; ¢, kK = 1,2, 3, whose masses are
given by mj x with phase ¢y, kK =1, 2, 3. In the chamber after the i-th wall-crossing, we denote
the Y-function by ¥ @,

The symmetric case 1 ~ After the third wall-crossing, one obtains a closed system with six TBA
equations with the Y-functions ¥; (3) and the new type Y-functions Y(3) ), Yz(g) (0) and YS% ).
See Appendix B for the deﬁnltlons of the new Y-functions. The masses associated with these
new Y-functions are

_mi _mi
mpp=mi1+mize 3, mpz=mi3+mipe 3, m3p=my3+mmp, (5.48)

whose phases are ¢12, ¢23 and @312, respectively. In the symmetric case, i.e. m| = ms3 and mi2 =
m23, the six TBA equations reduce to

log ¥ (6 —ig1)

—((3) —@3) _ —3)
=[my1|e’ + K+Ly — Kipx Ly + (K1,12 — ki, 12) +L) + Ky 512* L3,

log Y(3) O —ign)

+3) +3) 3)

- 703
=|mole” — 2Ky 1+ Ly + KLy — 2K2,12*L12—<K2312+K2312)*Lmv

log ¥} (0 —ig2)
- ©) —3) —3) 70
=|mule’ +(K121 K123>*L11 Kiya*Lis+ KLy + K3, Ly,

log Y3, (0 — i¢312)
—(3) —(3) —(3)
= |m312]e? + 2K;12 1 *Li— <K312 2+ K312 2) * Ly +2K5, 1%Ly
(5.49)

In Table 5.4, we compare the € expansion of the Y-functions with the WKB periods, which show
agreement in high precision.

The symmetric case 2 After the sixth wall-crossing, we obtain nine TBA equations with Y-
functions ¥,%), ¥5(6), Y33 (0), Y51} (6) and three new Y-functions ¥ (6), Y5 (0) and Y 2 (0).
The masses of the new Y-functions are denoted by
_2mi _ 2z
mp=mi+e 3 myp, mypz=my3+mipe 3, M5y =m3+mp (5.50)
with their phases ¢3, ¢53 and ¢373, respectively. In the symmetric case, m| = m3, m12 = m3
and m 5 = ms33, the nine TBA equations reduce to
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The quantum corrections for p(x) = x4 — 2(8 + i)x2 + 32i.
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. oy oo s

0 —11.39881594 + 14.23487415i —11.39881594 + 14.23487415i

2 0.01642381444 — 0.03753315426i 0.01642381444 — 0.03753315426i

6 0.00002288822247 — 0.00002208917405i 0.00002288822247 — 0.00002208917405i

8 2.625484666 x 1070 +4.618462473 x 107%; 2.625484666 x 1070 + 4.618462473 x 106;
12 5.362388326 x 10~7 +8.038711226 x 10~ 7i 5.362387829 x 1077 4 8.038710559 x 10~
o Sy iz

0 —9.359933633 — 9.149856867i —9.359933633 — 9.149856867i

2 0.004980601291 + 0.05664415536i 0.004980601291 + 0.05664415536i

6 —0.00002031318068 -+ 0.00002774220366i —0.00002031318068 + 0.00002774220366i

8 —2.074149509 x 1070 — 4.697564517 x 10~%; —2.074149509 x 10~° — 4.697564517 x 10~%;
12 —5.119551461 x 10~7 —7.947194982 x 10~ 7i —5.119550997 x 10~7 —7.947194331 x 10~ 7;
n ni”:)lﬁfz 2’ g/n3?2+1/3,3 m% 1) (2’% b

0 —24.00279124 + 17.76588602i —24.00279124 + 17.76588602i

2 —0.03014116243 — 0.004897749341i —0.03014116243 — 0.004897749341i

6 0.00003675708525 + 9.373658279 x 1070 0.00003675708525 + 9.373658279 x 100

8 5.656620120 x 1070 + 4.734140485 x 10~ 7i 5.656620119 x 1070 +4.734140483 x 10~ 7i
12 —4.079860148 x 10~ 7 + 8.498775356 x 10~ —4.079859849 x 107 + 8.498774613 x 1077
n H;VI,)1+V3,2+V3.3 mgizl)

0 —35.40160718 + 32.00076016i —35.40160718 + 32.00076016i

2 —0.01371734800 — 0.04243090360i —0.01371734800 — 0.04243090360i

6 5.964530772 x 1075 — 1.271551577 x 10~5; 5.964530772 x 107 — 1.271551577 x 10~5i
8 8.282104786 x 1070 +5.091876522 x 10~0; 8.282104785 x 1070 +5.091876521 x 10~9;
12 1.282528178 x 1077 + 1.653748658 x 100 1282527980 x 1077 + 1.653748517 x 10~%;

log Y96 —igp) =my11e + K « L} — K12« L)
+ (K — K| 12)*L§62)+(K1 n+2K; 12)*L(6)
+ Ky 312*L§61)2+(K1312+K1312) Léﬁl)z’
log Y6 — i¢) =Imy2le® — 2Kz« Ly} + K L}
—2K5,+Lyy — 2Ky ;s + Ky ) + Ly
(K2312+K2312)*L§61)2 (2K2312+K2312) Z;%,
logY (6 — ig12) =Imiale” + (K, 12,1 K121)*L§6i K122 Lg
+ KL + (Ko, +2K12 i) *L(6)
+K1+2,312*z§12+2K1+2312*L(361)2’
1og ¥{$) (0 — i¢312) =|m3iale? +2K3, | + L) — (K122 + Kifp,) % L1 (5.51)

3

5



K. Ito, T. Kondo and H. Shu Nuclear Physics B 979 (2022) 115788

_ —(6) —(6)
+2K5, 1%Ly +4K5, p* Ly

+(6) _ + 79
+ K x L3y + (2K315m + K5}, 513) * L3

) +(6)

*L) —(K1~2,2+1<t

7(6)
12,2)

6 .

log Y90 —igps) =Imisle” + (Kps, + 2K |
~ - +(6) (©6)

+ (K1 +2K1~2’12) *Ly, +5K(©0 -0 «Ly
+(6)

- 7 + N
+2Kp3 310 % Lap + (Kf‘zjrz +3K73573) * L3,

©) ; b _ - 7©
log Y33 (0 — i¢1) =Imsmale” +2(Kapp + K5ps ) * Ly )
— + O\, T© - T
— (2K513, + sz) *Lyy+4Kg |, * L
— —(6) +(6)
+(6K31a, 13 + 2K 535 3) * Ly +5K(© —0) x L3
)+

+ (2K35m2.312 + K55 51,) * Lana-

312,312

The distribution of the branch points of the symmetric potential of case 2 is point-symmetric
about the origin as in the case of the symmetric potential 1, but closer to that of monomial
potential.

Monomial potential After the ninth wall-crossing, we finally arrive at the maximal chamber,
where twelve TBA equations for the Y-functions Y. 1(9,3 ,Y 1(3), Yz(g), Y3(19;, YD v9 . vD and the

2°723° 7312
new Y-functions Y;?;z, Yz(gi, Y% appear. These equations are shown in Appendix C. For the
new Y-functions Y3(?32, Yz(g i, Y%, their masses are defined by

2mi

_ 2l _mi _ ;i
m3j =m3ip+mize” 3, mozy=my+e 3my3, mpp=mi3+e 3my, (5.52)

whose phases are denoted as ¢3122, ¢231 and ¢33, respectively. There exists a maximally sym-
metric point such that the potential becomes a monomial potential. In our example, the potential
is given by

px) =x*—8l, (5.53)

which corresponds to ¢ = 1. In general, for the monomial potential, the masses satisfy the rela-
tions

Imui 1| =lmi 3| =Imi2| =|masl, |mi2|=|m32l,
|mps| =|ms3| = [mo31| = |mizzl, |msp3] = Im3122], (5.54)
lmi 2| sin(m/4) Impp|  sin(/6) Imsp|  sin(w/4)
imiil sinw/6)”  Imiglosin(r/12)" |migl o sin(r/12)
with the phase
b4 117
$1=¢3= R ¢12=¢23=—?,
b =033 = %T $231 = P33 = 2?71 (5.55)
b4 S5t 37 117
¢2=—§, ¢312—?, ¢3’1§=T, $31220 = 7
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up to an overall phase. These relations can be shown by using (2.51). One then observes that some
of the TBA equations take the identical form, from which we find the identifications among the
Y-functions as

log¥1,1(0 —i¢1) =logY 30 —ig3) =logY12(0 —ih12) =log Y23(8 — i¢ha3),
log Y13 (0 —i¢piz) =log Y53(0 — ih53) = log Y231 (0 — i¢h231) =log Y13(0 — idhy33),

log Y12(0 — i) =logY312(0 — i312), logY513(0 —igsps) =log ¥3122(0 — igp3122).
(5.56)

The TBA equations thus reduce to four independent TBA equations

_ 9 _
logY(9)(9—z¢1)—|m1|e +(K+K1 1 — K 12)*L(1)1+(K1312 Ki2)*L

+(K1 n+2K

+©
1,2
11~2+2K1 231+ K 231)*L1~2

+ (K503 + K 5 + 2K %122)*L312’

1,312
9 9 9
log Y%} (0 — i¢2) =Imale’ — (2Ka,1 + 2K 1)) # Ly ) + (K — Ka31i2 — Ky 30) Ly »

(2K2 12+2K2 12+4K2231)*L1~2

—(9)
— (2K, 513 + K, 155 + K2.3122 + 2K5 3155) * Lapys

2312
log Y3 (0 — i) =Impple” + (Kz, +2KE | +2K3 10+ K5, — KE ) * <LV
_(Kf22+K~ 2K12312)*L§9%
+ (5K + 3K 031 + 3K ;) * LY
+ (Klz 1 T3K133m2 + K5 5100 +3K1.3122) * Li)z
log Y2 (0 — i) =lmspyle” + (2K, +2K50; | +4Kpy 1)) * L)
+ (2K5m2,310 + K310 — 2K5m2 K3+12 ,)* L%
+ (6K373, 13 + 2K 15 T 0K3m.031 + 2K312 231) * L(N)
+ (5K +3K3m3120 +3K535 515,) * L§91)2

(5.57)

In Table 5.5, we compare the € expansion of the Y-functions with the WKB periods, which show
agreement in high precision. This closed system reproduces the E¢ TBA in Appendix A.2 under
the following identifications:

logY1,1(0 —ig1) < €1(8), logY12(0 —i¢n) < €3(0),
log Y3 (0 —ippz) <> €4(0), logYz3(0 —igsp3) <> €6(0),

where €, are the pseudo energies of the Eq TBA equations given in Appendix A.2. Integrating
the kernel matrix, one obtains the connection matrix at &6 — —oo, where the Y-function becomes
constant, satisfying the algebraic relation related with the connection matrix at 6 — —oo. See
Appendix B for details of the definition of the matrix. It is worth to note that the connection

(5.58)
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Table 5.5

The quantum corrections for p(x) = x4 —8l.
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n

ne a-mpe
Y110 71.3

(n—1) (n—1)
myy M3

0 —7.469227532 4 27.87553664 —7.469227532 + 27.87553664i
2 —0.009523311889 — 0.03554148383i —0.009523311889 — 0.03554148383i
6 —3.287667860 x 107 — 8.809279480 x 10~3; —3.287667860 x 10~ — 8.809279480 x 10~ 8;
8 —1.483370697 x 10~8 4 3.974679804 x 10~ —1.483370697 x 1078 + 3.974679803 x 10~%i
12 —1.084025230 x 1010 4+ 4.045637237 x 10~10; —1.084025095 x 1010 4 4.045636732 x 10~19;
n e%i(l_n)H(An) mgnz_l)

1,2 ’
0 20.40630911 — 35.34476417i 20.40630911 — 35.34476417i
2 0.02601817194 + 0.04506479572i 0.02601817194 + 0.04506479572i
6 —2.406739912 x 10~7 + 4.168595808 x 10~ 7i —2.406739912 x 10~7 + 4.168595808 x 10~ i
8 —1.085902717 x 10~8 — 1.880838678 x 10~ 8; —1.085902716 x 10~ — 1.880838677 x 10~ 8;
12 2961612006 x 1010 — 5.129662467 x 10~19; 2.961611637 x 10710 — 5.129661827 x 10~10;
n n;?l -y “;’;)3—;/._2 (1%71),”1%71)
0 —15.89974875 4+ 9.179724222i —15.89974875 + 9.179724222i
2 —0.06155965576 — 0.03554148383i —0.06155965576 — 0.03554148383i
6 1.525811964 x 10~7 — 8.809279480 x 10~ 8; 1.525811964 x 10~7 — 8.809279480 x 1078
8 6.884347364 x 10™9 +3.974679804 x 10~%i 6.884347362 x 10~2 +3.974679803 x 10~
12 —7.007249243 x 10710 4 4.045637237 x 10~19; —7.007248369 x 10710 4 4.045636732 x 10~19;
n 1(/7;?1*1/1,#)/3,3 m%i :
0 —23.36897628 + 37.05526087i —23.36897628 + 37.05526087i
2 —0.07108296765 — 0.07108296765i —0.07108296765 — 0.07108296765i
6 —1.761855896 x 10~ — 1.761855896 x 10~ 7i —1.761855896 x 10~/ — 1.761855896 x 10~ 7i
8 —7.949359608 x 10~2 + 7.949359608 x 10~9i —7.949359605 x 102 4 7.949359605 x 10~
12 —8.091274473 x 10710 + 8.091274473 x 10~10; —8.091273464 x 10710 4 8.091273464 x 10~19;

matrix at the monomial potential can be obtained from the matrix after the ninth wall-crossing
under the identification (5.56), which also coincides with that of the E¢ TBA. See Appendix B.

To realize this observation in the gauge theory side, we note that the (A, A3) AD theory
and (Eg, A1) AD theory have the common AD point y> + x* = 0 and can be regarded as the
equivalent theory [31,47]. The ODE with the monomial potential (5.53) can be interpreted as the
quantum SW curve of Eg-type AD theory.

In [3], the ODE/IM correspondence for the third order ODE with monomial potential has
been studied. In particular, it is observed that the NLIE obtained from the solutions of the ODE
has the same spectrum of the TBA system of the integrable model. This includes the non-trivial
correspondence such that cubic potential and D4 TBA, quartic and Eg TBA.

6. Conclusions and discussion

In this paper, we have studied the correspondence between the WKB periods of the ODE and
the Y-functions of the integrable model for the third order ODE. Here the ODE is regarded as a
generalization of the Schrodinger type ODE, where the second order derivative is replaced by the

higher order derivatives. In particular, we have studied the case of polynomial potential with cu-
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bic and quartic orders in detail. We first studied the minimal chamber where the Y-functions from
the TBA equations and the WKB periods agree with each other numerically. We then investigated
the wall-crossing of the TBA equations and rewrote them by introducing new Y-functions. We
have chosen the special path in the Coulomb branch moduli space, which connects a point in
the minimal chamber to the point in the maximal chamber, where the potential becomes mono-
mial. We have traced the change of the TBA system and finally obtained the TBA system in the
maximal chamber.

The maximal chamber of the theory contains the monomial potential, where the TBA system
has some extra symmetry. We found that for (A,, Az)-type ODE, we obtain the TBA system
of D4-type, and for (A;, A3), we obtain Eg-type. It is natural to expect the Eg-type TBA from
the (A;, A4). Nevertheless, it is complicated to compute the TBA equations by wall-crossing.
We need a more systematic approach to work out the structure of the wall-crossing of the TBA
equations like the diagrammatic method for the (A, Ay)-type [62]. The cluster algebra [34,69]
would be helpful for this analysis.

It is interesting to explore more general higher order differential operators. For example, one
can introduce the monodromy around the origin, which modifies the T-/Y-system and corre-
sponding the integrable models. For the monomial potential case for the higher order ODE
associated with the linear problem of the affine Toda field equations, the corresponding T-Q
relations and the Bethe ansatz equations have been studied [13]. Then it is interesting to gener-
alize this to the polynomial potential. See [70,71] for the case related to the second order ODE.
It is also interesting to include more irregular/regular singular points in the potential, which will
help us to study the four dimensional N' = 2 super Yang-Mills theory [17,18,20,22,23].

When the ODE has simple turning points where the differential operator factorizes into the
product of the second order and the other, it has been shown that the WKB analysis essen-
tially reduces to the second order [49]. By degeneration of the WKB curve, we can obtain the
ODE presented in this work. It would be nice to study the limit and the change of the TBA
system. We have found the TBA equations for the WKB periods which determine the pertur-
bative/non-perturbative corrections in €. However, we should study the Borel resummation and
their resurgence structure for a deep understanding of the theory.

We did not investigate the full structure of the marginal wall of stability. We expect that for
each chamber surrounded by the walls, there exist integrable models. It is important to determine
them for the higher order ODE for the complete characterization of the ODE/IM correspondence.
Through the wall-crossing, different integrable models are unified by the same ODE but with
different moduli parameters. It is important to see how these integrable models are connected in
the IM side.
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Appendix A. D4 and E¢ type TBA equations

In this Appendix, we summarize the D4 and Eg-type TBA equations, which are used to
compare with the TBA equations obtained from the (A;, A7) and (A», A3)-type ODE at the
monomial potential.

For two-dimensional massless scattering theories with the S-matrix [64,65] associated with
simply-laced Lie algebras g = ADE of rank r, the TBA equations take the form of the integral

equations for the pseudo energies €,(0) (a=1,...,r) [15],
0 — 1
€a(0) =mye —;Emwb(e), (A.D)
where (my1,mo, ..., m,;) is the Perron-Frobenius eigenvector and
Ly(6) = 1og(1 n e*b@). (A2)

The kernel function is defined by
dk - iko
Gap(0) = g(pab (kye'™, (A.3)

-1
bap(k) = =27 (21 cosh (%) - G) Gep. (A.4)

ac

Here £ is the Coxeter number of g, G, is the incidence matrix and [ the identity matrix of rank
r. The kernel functions ¢, (6) can be also expressed in terms of the S-matrix as

. d
Gab(0) = —i —log Sap (0). (A.5)
do
We write down the kernel functions for g = D4 and E¢ explicitly and compare the TBA equa-

tions with those of the monomial point in the maximal chamber, which have been obtained in
Section 5.

A.l. Dy

For the Lie algebra D4 with the Coxeter number & = 6, we label the particlesbya = 1,2, s, s’
and their S-matrices are expressed as [64]
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St ={1}{5},

S12 = 821 ={2}{4},

S2 = {IH5}{3H3},

Sgs = Syy = {115},

Sss = {3}

Sy1 = Ss1 =815 = 815y = {3},
Sy = S50 = 825 = Soy = {2H4}.

Here we have defined

K=G+Dx-1D

and

(A.6)

(A7)

(A.8)

For the mass parameters satisfying m| = m; = my, the pseudo energies also have the Z3-

symmetry:

€] = €5 = €g/.

Then, the TBA system reduces to

1 1
er=mie’ — —(¢11 +2¢15) x L1 — —¢12* Lo,
2 2
) 1 1
e =mpe” —3—¢r x L1 — —¢n* Lo,
2 2
where

1 4+/3cosh(d) — K@)

1 1
7,010 = 5—¢1:(60) = 27 1+2cosh(20)

| 1 . .
— $12(0) = ——6cosh(20) sech(30) = —K (0 + ) — K (0 — =
2 2 6

1 124/3cosh(d)

—— = = -3K(0).
27w 1+ 2cosh(26)

1
7y P20) =

The TBA system is now the same as (5.35).
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A.2. Eq

We next consider the E¢-type TBA equations, where the S-matrices are given by [64]
S = {147},
S ={5H11}, S ={1}{7},
S31=4, S3n=4, Su=15,
Sa1 = {4H{6}{10},  Sa> = {2H{6}{8},
Si3=35, Sau={1{3H5HTY9}, (A.15)
Ss1={2}{6}{8},  Ss2 ={4}{6}{10}, Ss3 =35,
Ssa=(BHSIHTHOHILY  Sss = {L}BH5HTY(9).
Se1=35, Se2=35, Se3=246,
Sea=2426, Ses=2476, See=13%5
where we have defined
={n}{12 —n}. (A.16)
For the masses satisfying m| = my and m4 = ms, the pseudo energies have the Z, symmetry:
€] =€), €4=FE€;5. (A17)

Then the TBA equations (A.1) reduce to

er=me’ — [(¢11+¢12)*L1+¢13*L3+(¢14+¢15)*L4+¢16*L6],
e3=mze’ — [(¢31+¢32)*L1+¢33*L3+(¢34+¢35)*L4+¢36*L6]» Al
€4 =mye ——[(¢41+¢42)*L1+¢43*L3+(¢44+¢45)*L4+¢46*L6], o
€6 =mge’ — E[(d’ﬁl + ¢62) * L1 + 63 * L3 + (¢4 + ¢65) * La + pes * Ls |-

The explicit form of the kernels is shown to be

—4(3 + +/3) cosh(30) — 6 sech(26)

o1+ P12 = I+ 2cosh(dd) ,
_ 2v/2cosh(6)(3 + v/3 + +/3sech(26)
3= V3 + 2cosh(26)
168/2((3 + 2+/3) cosh(36) — 3 cosh(9) sech(29))
P14+ @15 =

4 — 8 cosh(40)
b1 = 43+ 2\/15) cosh(30) — 6sech(20) ’ (A.19)
+ 2 cosh(49)
d31 + @32 =2013, P33 =011+ P12 P34 + P35 =216,
$36 = —23/3((—=3 + 2+/3) cosh(8) + (3 + 2+/3) cosh(56)) sech(66), (A.20)

Q41 + G2 = Pra + P15 P43 = P16,
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4(9 + 5+/3) cosh(30) + 18 sech(d)

$a4 + Pas = — I+ 2cosh(d6) ,

Ba6 = —v/2((=9 + 5+/3) cosh(6) + (9 + 5+/3) cosh(56)) sech(66), (A21)
b6l + de2 = P34 + P35, P63 = P36,  Poa + Pos =2¢64, P66 = Paa + Pus. (A.22)
The TBA equations (A.18) are shown to agree with (5.57).

Appendix B. New Y-functions of (A3, A3) case

In this Appendix, we show the definition of new Y-functions in the process of the wall-
crossing of (A», A3). We start with the minimal chamber, where three independent Y-functions
Y1« exist. We denote by ¥©) the new Y-functions after the i-th wall-crossing. The TBA equa-
tions after the i-th wall-crossing take the form

log V) =mye’ + K§px LY, (B.1)

whose effective central charge is evaluated as

o0
6 ; 6 1
cairi=— ) / maLy )¢’ do = — 25(7), (B.2)
A s A

147 (—00)

In the limit & — —o0, the Y-functions becomes the constants and the TBA equations reduce to
the equations

log Y (—00) = M, LY (—o00), (B.3)

where MX; = f fooo doK X;} (0) is the connection matrix, which shows the connectivity of the Y-
functions in the TBA equations at & — —oo. The connection matrix is an integer valued matrix.
When one goes from the minimal chamber to the maximal one, the size of the matrix increases.
At the maximal chamber, we observe that the TBA equations show the maximal connectivity.
Solving (B.3), one obtains the constant solution of the Y-functions. Substituting these constant
solutions into (B.2), one obtains the value of the effective central charge.

The first wall-crossing The first wall-crossing occurs when ¢, — ¢; crosses /3, at t =
0.123142..., while all other absolute values of the phases difference are smaller than 7 /3. At
this wall, the vectors of classical periods Hg,(l)?l and Hgg)z, corresponding to the Y-functions Y7 ;
and Y » respectively, are in parallel. After the wall-crossing, one new BPS particle, namely a
new Y-function, be produced. See Fig. B.1. The Y-functions after the first wall-crossing are
given by

YO =100+ ). 3O =ra@) (14—
’ Y1200 -5 ’ Y110+ %)

),

1 1
V20— T Vi@

1
Y1,10)Y1200-%

B.4)

1
v, )= . YO =1150),

where the Y-functions without superscript is the original ones before the wall-crossing. For the
vector
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C
b
a
d
classical periods before classical periods on the classical periods after
the 1st wall-crossing 1st walll the 1st wall-crossing
(t=0.061571) (t=0.123142...) (t=0.143414)

Fig. B.1. The classical periods in the wall-crossing process. The vectors of the classical periods before, middle and

after the wall-crossing are shown from the left to right. The arrows labeled by a, b, c¢,d and e represent the periods

1@ 1@ 09, n® and n®

v Hysoo Hys s, YL1+Y32 respectively.

L2 and

YO = (1) (00 —ign). Y[ (=00 —ig), ¥\ "{ (—00 — igh3), Y} (00 — ip12))', (B.S)

the matrix M becomes

MY = (B.6)

—_0 O =
|
—
—_
|
—

which leads to the effective central charge ceff = 24/7.

The second wall-crossing The second wall-crossing occurs when ¢» — ¢3 crosses 7w /3 at t =
0.163685.... The process can be realized by plotting the classical periods, see Fig. B.2. The Y-
functions after the second wall-crossing are defined by

0)) o) ) (1) 1
Y130)=Y 301+ —5——-), Y 50)=Y,0) —T -
1,3 ( (1)(9__ ) 1,2 ( (1)(9+m))
1+ —p— + - (B.7)
(2) Y, 0% Yy 50) y® y®
(9) - 1 ’ others (9) = others (9)

Yo e—1)
For the vector
Y (—00 — i)
Y3 (—00 — i)
Y® = Y(z)( oo—ig3) | (B.8)

(2)( 00 —i¢12)
Y(z)( 00 — i¢h3)
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classical periods before classical periods on the classical periods after
the 2nd wall-crossing 2nd wall the 2nd wall-crossing
(t=0.143414) (t=0.163685...) (t=0.18316)

Fig. B.2. The classical periods in the 2nd wall-crossing process. The vectors of the classical periods before, middle and
after the 2nd wall-crossing are shown from left to right. The arrows labeled by a, b, c,d, e, f, g and h represent the

- (0) (0) (0) ©) (] ©) ©) , ) . :
periods l'[),l_1 R 1'[7/3‘2, 1'[1,3,3, l'Ilez, HV1.1+V3,2’ HV2,1+V1,2’ HV3,2+V3,3 and HV1.2+V1,3 respectively.

the connection matrix then becomes

10 0 1 0
01 0 1 1

MP=10 0 1 -1 1 (B.9)
11 -1 1 0
01 1 1

We thus can find the constant solutions of new Y-functions and the same value of the effective
central charge.

The third wall-crossing  After the second wall-crossing, the phase ¢12 — ¢3 4 /3 appears in
the kernel of TBA equations. The third wall-crossing occurs when ¢12 — ¢3 + /3 crosses 7 /3 at
t = 0.202635.... The process can be realized by plotting the classical periods, see Fig. B.3. The
new functions after the third wall-crossing are

1 1
3) ?2) 3) 2)
Y@ =Y50)(1+—5—), Y5, O=Y7O(1+—F—)
' ’ C Y30)
1 4,1 B.1
@3) 1+ Q) * Y3 ) 3) %)) ®10
Y312(0) = 1 ’ Yothers (9) = Yothers (6)

Y3613 ®)
For the vector
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h
classical periods before classical periods on the classical periods after
the 3rd wall-crossing 3rd wall the 3rd wall-crossing

(t=0.18316)) (t=0.202635...) (t=0.246326)

Fig. B.3. The classical periods in the 2nd wall-crossing process. The vectors of the classical periods before, middle and
after the 2nd wall-crossing are shown in turn. The arrows labeled by a, b, c,d, e, f, g, h and i represent the periods

1'[5,?)1 ’ Hgg)Z’ Hg/g)%’ H;?)Z’ Hg’?)l“ﬂ@ 2’ Hl(’g)l+yl 2’ H;(g)2+y3 3’ H;?)z-'-m 3 and HJ(/1)1+V3 2133 respectively.
Y3 (—00 —igy)
Y13 (=00 — i)
_ Y13 (=00 —igs)
7O — (%) (B.11)
5 (=00 —id12)
(3)( 00 — ign3)
Y3 (—00 —i312),
the connection matrix is
M® = (B.12)

—_—_o = 0O~
—_—_——o = O
—_——_ 0 =0 O
—_O = O = -
_—— O = = O
S S S U U

We thus can find the same effective central charge.
In the following, we will only show the definition of the new Y-functions and the connection
matrix M for each wall-crossing progress:

The fourth wall-crossing The fourth wall-crossing occurs when ¢» — ¢ crosses 27/3 at t =
0.290017.... We thus need to introduce a new Y-function related with Y(3) and YG)
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1

@ 3) @) 3)

Y5O =yY0(1+—7——-), Y,0=Y,01+———)

1,1 1,1 ( Y1(,32)(9_23ﬂ)) 1,2 1,2 ( Y1(31)(9+2%))

I+ o + 5o (B.13)

@) Yo6-75) Y5O @ ®)

Y5 (0)= T » Yothers (@) = Yoners (0,

Y3 6-3
Y} (—o0 —ig1)
1101012 Y (—00 —ig)
1101 112 @ :
0010110 Yi5(=00=i¢3)

M9P»=l1 1010 1 2 YD =1 v5 (—co—ig1a) |. (B.14)
01101 11 @ ,
111112 Y3 (=00 —i¢n3)

2 2021 2 3 Y;?%(—OO—l'QﬁS]z)

) e
Y5 (—00 — igiz)

The fifth wall-crossing The fifth wall-crossing occurs when ¢o — ¢3 crosses 2w /3 at t =
0.366924..., which leads to introduce a new Y-function related with Y 1(42) and Y 1(433:

1
(5) @) ) @)
Y30 =Y 30 (1 + —g——=), Y@ =Y 70 (1+—Fg—)
| | nae-3HT | Y@+
I+ s+ = (B.15)
) Yi,0-55) 150 ) “)
Y2~3 ®) = 1 : ’ Yothers @)=Y, others ©),

N3O 60—

Y (—o0 — i)

110101 21 Y (—00 — i)
11111122 &) ,
YO (o —
01101102 13(700 = 1¢3)
s |1t 10101 21 s Y5 (—00 —ig12)
M® = 011011152 YO =1 . (B.16)
Y3 (—o0 —i¢n3)
11111122 .
Y5 (—o0 —ig312)
2 2 0 21 2 3 2 312 312
5 .
12212223 YS) (—00 — igiy)

5 .
Y2~3 (—o0 —igs3)

The sixth wall-crossing The sixth wall-crossing occurs when ¢ — ¢3 crosses 0 at 1 =
0.434148.... This process of wall-crossing leads to introduce a new Y-function related with Y S)

(5).
and Y1,3.
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OB RIOIR

5
]Y1(~2)](«9)
I+ -5+ 5
Y50 Y=<' (O
VOO = Y0 = Y0,
r3e) v ®)
110101212
111111223
01 1011122
110101 212
M=o 11011 122]| YO=
111111223
221 2123 2 4
1 2212223 4
2 32223 445

(6) (5)
), er ®) = Y1~2 (9)(1 +

Nuclear Physics B 979 (2022) 115788

—),

Y{36)
(B.17)

Y9 (—00 —igpy)
Y9 (—00 i)
Y9 (—00 — i¢p3)
Y (—00 — i)
Y3 (—00 — idh3)
Y3 (—00 — ig312)
Y9 (—00 —igi3)
Yy (o0 —igg)

©) o
Y (—00 — isp)

(B.18)

The seventh wall-crossing The seventh wall-crossing occurs when ¢312 — ¢ crosses —2m /3 at
t =0.449568..., which leads to new Y-function related with Y;f% and Y 1(62)

1 1
) ©) ) ©)
Y20 =Y 201+ —g——), Y3p@ =Y3p0)(1+ ————),
| | Vi@ + 3 120 -5H
1+ -5+ 7@ (B.19)
™ nUE-FH Y6 ™ ()
Y3122(9): 2 1 > 1312 ’ Yothers(e):YOthers(e)’
Y20—%H Yihe)
Y} (—c0 — i)
YD (—o0 — i)
1 101012122 s
1 1 11122233 Y5 (=00 — i)
01 10111222 o .
Y, (—o0 —1i
1 101012122 1(%( ¢12)
M(7)_ o1 101 112 2 2 ?(7)_ Y23 (—00 —ign3)
1t 21111223 3)| =1 .o .
Y (=00 —1
221 2 1 23 2 4 4 w ‘¢>312)
1 2212 2 2 3 4 4 Y5 (=00 —i¢p3)
2322234456 Y (—o0 — ipse)
53 73
232223 4465 VO (oo i)
in 312
Yi (=00 — i¢3122)
(B.20)
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The eighth wall-crossing The eighth wall-crossing occurs when ¢»3 — ¢ crosses /3 at t =
0.608205.... We introduce new Y-function related with Yg) and Y 1(71) :

1
) (@) ) 7
Y50 =Y 01+ ———), 130 =Y (1 +———),
1,1 1 23 23
B.21
®) H_Y”)(;f”—" +Y(7§<9) ®) ™) o
23 3 1,1
Y231 (9) = 1 ’ Y, others (9) = Yothers (9) ’
YOy o)
8 .
Y5 (—00 — i)
Y8 (—00 — i)
1101 1121222 ®) .
Y —00 —
11111222332 1.3 i)
01 101112221 Y (—o0 —ig12)
11010121221 ®) .
11101112222 ) Y3 (=00 —i¢n3)
M®=]12 111122332 Y® = v®)(—oo—iga12)
22121 232 4 43 ® .
1 221222 3 4 4 3 Y (00 —i¢p)
8 .
23222 3 4456 4 Y2(~3)(—oo—l¢2~3)
23222 3 446 5 4 5 ‘
221 12233443 Yip (=00 — i573)
Yé?%z(_oo —i$3122)
8

i3 (00 — ign31)

(B.22)

The ninth wall-crossing The ninth wall-crossing occurs when ¢ — ¢3 crosses 7 /3 at t =
0.65489.... One thus needs to introduce new Y-function related with YS) and Y 1(83)

1
Vi3 + %)

8)

v ©) =y 6)(1+ ), YR =rS o)1+

),

e
1y 0 —%)

1 (B.23)

1 _ 4
Y9 — Yy 0-%)  v%0) v
m( )= 5 18) ’ others

Y5O 0-5)

1+

) =r® (),

others
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110111212221
111112223322
01 11 11122212
111101212212
1 11011122221
yo_|[1 21111223322
221212324433}
1 2212223 4 433
232223 4456 44
232223446544
221 12 233 4 432
1 22212334423
Y (—00 — i)
Y(3(—00 i)
1(,92) (B.24)
Y1’3 (—o0 —id3)
Y5 (=00 — ig12)
O,
Y23(001¢23)
7O _ Yg((f%(—oo—i%]z)

9 .
Y1(~2)(—oo —i$p)
) P
Yf; (—Oo—l¢23)

© S

Y3/1\2(—OO — l¢312)
9 .

Y3(1%2(—00 — i$3122)

9 .
Yi3) (—00 — ign31)

©) ,
YOL(—00 — idpy3)

Monomial potential At the monomial potential, one finds the identification (5.56). Under this
identification, we find the connection matrix

9 .
Y (00 —igy)

32 6 4 N .
4 3 8 6 S Y5 (=00 —igr)

mono __ mono __ ’

M 16 4 11 8 ¥ - Y(~9)(—oo—i¢~) ’ (B.25)
8 6 16 11 i2 12

© i b

which coincides with — %qg(k =0) in (A.4) for Eg under the identification (A.17).

Appendix C. TBA equations in maximal chamber

The TBA equations at the maximal chamber for (A7, A3) case are
9 . +© +©) - +© +©
log ¥ (@ —i¢1) =|my1]e’ + K«Ly) — KiaxLjs+ K 3% Ljy — K py % Lo
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- SN T e T e T
+ (K1,12+K1,1~2)*L1~2 + K xLyy + K35 % Lap

e 7O ~ 70
+ (K57 + K| 155) * L3ty + 2K 31 * L3

1,312
+ (K131 + Kipyy) * Loyt + K 23 % Dy, (oA
log Y{?z)(e —i¢n) :|m1,2|69 — K> *Zf; + K *Zf; — K>3 *Z(l?g
-K, *Zﬁgz) — K, *Zg —(Ky ;3 + Kz_fz) *f%)
— (Ky53+ Kz_g) *Z%) — (K2312+ K5 35) *Z_ggl)z
- (2K2,3’1§ + K2_31’§) *Z% - (K273122 + 2K’Z3122) *Z§91)22
—2K2,031 % Lygy — 2K, 133 * Loas. (C.2)
log Y (6 — ih3) =|my3|e® — K3owLis+ K xLya—Kip#Liy + Ky Ly
+K 5 * L+ (Ky 5+ K 5) ALY + Ky« Loty
+(Ks5m + K5 ) AL +2K3 315 * Ly
+ Ka o3 % Ly + (Ky 3 + K 1) # L%, (C3)
log Y20 — i) =Imsle’ + Ky L) — Kty Ly s — Ky % L3+ K+ Ly
+ (Ko + K1+21N2) *z%) + K1+22~3 *Zg +Kb 50 *Zégl)z
+ 2K1+2,3’1\2 *Z% + (K12’3122 + K1+2,3122) *Zggl)zz
+ K o3 % Loy + (K 135 = K7 735) * D (C.4)
log Y19 (6 — i¢n3) =masle’ — Ky, xLyy — Kify o x Ly g+ Kify s x Ly s+ K # Ly
+ K2+%1N2 *Z(lgz) + (K2+32N3 + K23,f3) *Zg) + K2+3,312 *Zggl)z
+ 2K;3,3’1\2 *Zggl’)é + (K23’3122 + K2+3,3122) *Zggl)zz
+ (K35 031 = K33.031) Ly + K;&m *Z%, (€5
log Y31 (60 — ig312) =Imanale” + K3, | «IV) = (K322 + K35) «IV)
+ K3+12,3 *z(l?%+K3_12,12 *2592)"‘1(3_12,23 *Z%) +2K315. 12 *Z%)
+2K310.53 *Z%) +K *Zggl)z + (2K35m + K3+123/1\2) *Z%
+ (K312.312 + 2K312,3122) *Zg)zz + (K203 + K312,231) *Zg’)l
+ (K;rlzm + Ky, 135) * L%, (C.6)
log Y3 (0 — i) =|mps e + (Kis, + K ) «IV) = (Ko + K% ) «IY)
+ Klim *Z% + (K2 + K5 p5) IV + K5 03 Ly,
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9
13K —0) LY +2K3 53 x L) +2Kp 312 % Lyt

+©)

—9)
1+ 3K5m) * L +

( 12,3122 + 3K, %122) * L3

9) 9)
* Loy + (2K +Kp, 123)*L123’

12,123
(C.7)

+( 2,312

+ (2K 931 + Klz 231)

7©)

9 ©)
log Y (0 —igp53) =|mz|e” + K& Ly —

+K53,)* Ly,

+)
L12

(K5 32
+ K53, 3)*L§9;+K

9
* Ly

+( 33,3 23,12

+2Ks5 p* Ly +3K(©0 —0) LY

—(9)
+2K53 31, * L312 + (KL + 3K3351) * L3

33,312
—(9)
* Ly + (

+©)
+2K33 133) * Lz, (C.8)

—(9) -9
Ly - (2K3122+K Ly,

«IY) + 2K =

+ (K23 23 + K23 23)

+ 3 —9)
+(3Ks533122 + K5 2K % 531 + K33531) * Lo3;

23, 3122)

+( 23,123

9
log 3(1;(9 i¢1) =|mple” + (K5, + K5

312, 1) 312, 2)

)

+(K3123+K *Ly3+2K - * Ly

*LQ)

312, 3) 312,12 312,23

3K5m3. 12 + K3 )"Z~ + (K5 + Ky

( 312,12 312, 23)

(O] —(9)
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