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N =4 supersymmetric Schwarzian with D(1,2;a) symmetry

Nikolay Kozyrev* and Sergey Krivonos®'
Bogoliubov Laboratory of Theoretical Physics, JINR, 141980 Dubna, Russia

® (Received 14 January 2022; accepted 14 March 2022; published 19 April 2022)

It was recently demonstrated that super-Schwarzian derivatives can be constructed from the Cartan forms
of the superconformal supergroups OSp(1|2), SU(1,1|1), OSp(3]2), SU(1,1|2). Roughly speaking, the
super-Schwarzian is just the component of the corresponding Cartan forms with the lowest dimension. In this
paper, we apply the same approach to superalgebra D(1,2;a). The minimal set of constraints we used
includes: (a) introducing new superspace coordinates the Cartan forms depend on, which are completely
invariant with respect to the corresponding group; (b) nullifying the form for dilatation. In contrast to the
SU(1,1]2) case, the new super-Schwarzian appears to be a df® component of the form for su(2)

automorphism.
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I. INTRODUCTION

The breaking of the conformal symmetry in the
Sachdev-Ye-Kitaev model [1-4] results in an effective
Lagrangian for time reparametrization which is given by
the Schwarzian. The supersymmetric versions of the SYK
model up to N/ = 2 supersymmetry have been constructed
and analyzed [5-7]. However, the construction of N = 3,
4 supersymmetric SYK models and associated super—
Schwarzians is not straightforward, especially in the case
of N' = 4 supersymmetry.

A new approach to the construction of Schwarzians and
their supersymmetric extensions has been initiated in [8] and
then consistently applied to A" = 1, 2, 3, 4 supersymmetric
cases in [9-12]. The cornerstone idea of this approach is
based on the invariance of the bosonic Schwarzian S(z,7)

defined as
\2 )
(T> , t = 0,t,
t

under SL(2,R) Mobius transformations acting on #[z] via

(1.1)

at+b
N

t .
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(1.2)
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The immediate consequence of this statement is the con-
clusion that the Schwarzian can be constructed in terms of
s1(2,R) Cartan forms—which are essentially the unique
geometric invariants of the conformal group SL(2, R).This
idea was realized in [8]. The straightforward generalization
of this approach to the supersymmetric cases means passing
from one dimensional conformal group SL(2,R) to its
supersymmetric extensions—the supergroups OSp(1|2),
SU(1,1[1), OSp(3|2), SU(1,1]2) and D(1,2;a). The
relevant super-Schwarzians must be invariant with respect
to these supergroups and, therefore, should be constructed
from the corresponding Cartan forms.
While trying to construct the Cartan forms and the
invariants from them, one may encounter two problems:
(i) One has to find a way to reduce the number of
independent fields parametrizing the group element,
(i) One has to understand how the invariant (super)
space’ enters the game.
The approach initiated in [9] works perfectly in the cases
of N =0, 1 supersymmetries, but it puts unreasonably
strong conditions in the cases of higher supersymmetries.
In our recent paper [13] we proposed the set of constraints
which perfectly reproduced all known super-Schwarzians
till the N' = 4 one, related to the supergroup SU(1, 1|2).
These constraints can be easily summarized as follows:
(i) For the supergroup containing the super Poincaré
subalgebra {Q;, Q;} = 26;;P the invariant super-
space {r,6;} should be introduced as

wp = dr —1d0'0, wp =do" (a)

'We meant the superpartners of the time 7 in (1.1).
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(i) The unique additional constraint is

wp =0 (b).

Here, wp, a)iQ, and wp are the Cartan forms for translation,

supertranslations and dilatation, respectively.

In this paper we are going to demonstrate that our
approach works perfectly in the most complicated case—
the super-Schwarzian associated with the most general
N = 4 superconformal group D(1,2;a) [14]. Despite the
simplicity of the constraints (a) and (b), their application is
not trivial. Indeed, one may quickly see that the straightfor-
ward calculations shortly become quite complicated and
rather cumbersome. That is why we decided to use the
Maurer—Cartan equations, which drastically simplify the
analysis. Thus, to be able to check the basic steps we put
the main formulas in the body of the paper, transferring
more technical things to the Appendixes A, B, and C.

II. PRELIMINARY STEPS: SUPERALGEBRA,
CARTAN FORMS AND ALL THAT

A. Superalgebra D(1,2; )

The structure of the superalgebra D(1,2;a) is quite
simple: it contains nine bosonic generators T2, T%, Jjab
spanning three commuting subalgebras s/(2) x su(2)x
su(2). The eight fermionic generators G4 transform as
the doublets with respect to each of these algebras. The
anticommutator of the fermionic generators contains all
bosonic generators as

{GA,i,a’ GB,j,b} ~ €ab€ijT.»148 + aeABeijJab

— (14 a)e?BestTi. (2.1)
Here, all indices can take values 1 or 2, and €”/, €??, €45 are
antisymmetric symbols, normalized as €*' = 1. The
parameter @ measures the balance between two su(2)
subalgebras. For the two values of @ = 0, —1 one of the
su(2) sub-algebras decouples and D(1, 2; ) reduces to the
su(1,1]2) x su(2) superalgebra. Another interesting case
corresponds to osp(4[2) algebra with @ = —1, when both
su(2) subalgebras occur in the same way. In what follows,
we exclude consideration of the cases with a = 0, —1
which can be found in [13]. Thus, we may easily divide
any expressions by a and/or by a + 1.

From a physical point of view, the s/(2) subalgebra T48
is the conformal algebra of one-dimensional space.
Therefore, it is natural to introduce the generators of
translation, dilatation and conformal boosts as [15]

P=T%, D= -T2, K=Ti'. (2.2)
Correspondingly, the supercharges divide into ordinary Q™
and superconformal Si@ ones, as

Qia — _GZia’ Sia — Glia' (23)

The full list of the nonzero (anti)commutators can be found
in the Appendix A.

B. Cartan forms

To obtain the D(1, 2, @)-invariant super-Schwarzian, we
are going to use the method of nonlinear realizations,
developed in [16—19]. In the present case we need to
construct a nonlinear realization of the superconformal
group D(1,2; ) with the group element g parametrized as

g= el 1P p5ia Q" pWiaS™ pi 2K piuD i vy TV fichap I (2_4)

The Cartan forms Q are defined in a standard way as

Q=g 'dg=iwpD + iwgK + iwpP + i(a)J)th“b
+i(0r);; TV + (0g) ;40" + (@s);4 S (2.5)

The Cartan forms for the scalar generators can be easily
computed2

wp = e7(dt —1d&;,£) = e At,

wp = du — 2zat + iy, dE“,

wg = e <dz + 22t = 2izy i, dEC + iy, dy'

[\

— % (14 2a)y iy ynde).

W

(2.6)

AN —

+—ar(l + za)WiaWiijija> :

The fermionic and su(2) x su(2) forms look more
complicated3

'zThe‘.su(Z) indices are raised and lowered as A; = ¢;;A7,
Al =¢€l'A;, where the antisymmetric tensor €" satisfies
Gijgjk = 65{, €1p = €21 =1. )

We define the matrix-valued functions (e”)! and (e?)? in a
standard way: nth term in Taylor series expansion of e’ is

ki k j . L
understood  as iv»lka...v{{ .- In particular, this implies
n-

n! i

3
Ny 2o siny/% .
(ev).l{ = COoS \/%5{ + \/\é:y-l(’ 2 = 1)1]1)”, etc.
5 )
2
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(@), =€ H(e")] (e")h(de —wpat).

u

X i )
(a)S)ia = ei(@”)i.‘(e(/’); <dl//kc _Eijdé:]hch
i 4 4
aa(wpdel+uede] v
i .
—5(1 +a) <ijd§f+ll/kbd§?)l//{-

i .
—3( +2a)Any Ry e — 2(dEpe —An//kc)> . (2.7)

and

(@)1 = €xj(e™)]d(e")}, + (e")i(e")n(dr);; and

(@))ap = €aa(e?)d(e?); 4 (9)5(e)i(@))car (2.8)
where

i(or); = (1 + a)(_l//ihl//‘?At + WiadE + yj,dEy),
(@) = Al jyhat — i dE) — yjpdEh). (2.9)

C. Constraints and their consequences

As we already said in the Introduction, the constraints we
have to impose on the Cartan forms to find a proper super-
Schwarzian read

wp = dr —id0,;,0'" = Az,

ol =do“,  (2.10)

wp = 0. (2.11)

Note that the covariant derivatives with respect to z, 8;, are

0 , 0 0
— Dia = igie —
%= a0 20, ' ar
{Dia, DI} = 2ielieab),, (2.12)
Therefore, for any superfield A we have
dA = Atd. A+ d0“D,, A. (2.13)

With our definitions of the Cartan forms (2.6), (2.7), (2.8)
the constraints (2.10) and (2.11) read

wp = e (dt —idE ") = e ar = Ar,

(00)ia = €2 (e")/(e?)h(dEy, — Aty y) = db;,  (2.14)

wp = du — 2zAt + 2y, dE = 0. (2.15)
The constraints (2.14) imply

Ditt—DUgyEb =0, i-ig,& =", (2.16)

Djbgia = eu/Z(e—v){(e—lﬁ)Z’ Vie = e_uéia’ (217)
while the constraints (2.15) are resolved by the following
relations

Z:%e_“it, Diau:2il;/ijia§jb. (218)
We observe that it is possible to covariantly express some of
the group parameters in terms of other parameters and their
derivatives. This a manifestation of the inverse Higgs
phenomenon [20]. Note that these constraints involve both
dt and dO projections of the forms, unlike the constraints
considered in [12]. This allows us, in particular, to express z
in terms of u (or &) without putting any constraint on the
forms of the superconformal generators.
As a result of (2.17) and the following identities

eeje); = —(e7)s,

and ey () = —(e )
D¢, satisfies the relations

Djbgia — 6”/2(60)5-(64))2 = Diaé:kc Djbé:kc — 5;5;6“,

chéj,,chfi“ = 5;-526”, (2.19)
and, moreover,
. 1 .
Dy D" ¢y = = 8iD Em D¢, et (2.20)

2

Thus, we see that all our superfields—coordinates of the
group element g (2.4) can be expressed through the
derivatives of the superfields ¢&;,, only.4 In principle, it
should be the end of the story and the technical step is to
find among the components of the surviving Cartan forms
the super-Schwarzian. Unfortunately, this technical step is
too involved and the direct straightforward calculations
quickly become a rather cumbersome. The simplest solution
we found is to use the Maurer—Cartan equations to rewrite
the Cartan forms with the constraints (2.10) and (2.11) taken
into account.

III. ' =4 SUPER-SCHWARZIAN

A. Maurer—Cartan equations
If the Cartan form Q is defined as in (2.5)

Q(d) = g7'dg = iwpD + iwgK + iwpP +i(wy),, ]
+i(wr) TV 4 (0g);, 0" + (05);,5,

then by construction it obeys the Maurer—Cartan equation.
We prefer to deal with this equation in the form used in [21].

*The superfield 7 can be in principle found from the Eq. (2.16).
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There, two independent differentials d,, d, were introduced,
so that dyd, = d,d; and differentials of bosons and fermions
are bosons and fermions, respectively. Therefore, the relation

turns into identity upon substitution Q; = g~'d;g. At the
same, one can substitute €; as a general expansion in
generators (2.5) and find the list of relations the individual
forms satisfy. In the case of D(1,2;a) Eq. (3.1) can be

HQ —diQ =1Q,.Q,)], Q =Q(d). Q=Q(d) expanded into following set of equations’
(3.1)
|

i(dyo1p — dywrp) = —i[wrpw1p — ©1p@ap] + 2(W10);4(@20)™,

i(dza’u( - dla)2K)

ilwypw g — @1pwag] + 2(@y5), (025)",

i(dyo1p — dywrp) = =2i[wrx 01 p — w1 gWrp] + 2[(0)1Q)m(0)25)m - (wZQ)ia(wlS)m]’

i(dy(@17)ap — di(@27) )
i(dZ(wlT)ij —d, (wzr)ij)

1

i[(a)ll)ac(wZJ)bc - (wZJ)ac(le)bc] - 2“[(0)1Q)i(a(wzs)§,> - (wZQ)i(a(wlS)Z)],

i[(@17)i(@2r)* = (@) (@17) ]+ 2(1 + @)[(@10) g (@25)§) = (@20) ia(@15)§ ]

dz(wlg)ia - dl(wzg)m = ) [wzn(wlg)m - wlD(wzg)m} + lel)ab(wZQ)? - (wQJ)ab(le)ib]

+ [(a)lT>ij(a)2Q){t - (sz)ij(a)lQ){l] = [@1p(@25) 10 — @2p(@15) 4]

1

dy(w15)iq — d1(@25) 14 = ) [02p(015)iq — @1p(@25) 4] + [(%J)ab(wzs)f? - (a)21)ab(w15)?]

+ [(a)lr)ij(wzs)'é - (wZT)ij(a)lS)é] + @1k (@20) 0 — @2 (@10)4]-

The forms should be subjected to the conditions

wp = AT, (00)iq = dOia;

wp =0,  Ar=dr—id;0". (3.3)

To analyze the consequences of these constraints let us
represent other forms in most general way as

(w5);, = 870 + dO A7,
(@1) gy = AT(S)) 4y + dOkZa) .
(wr);; = a2(Sy);; + dOy I1 ;%

g = ATC + d@iariu,

(3.4)

Here ‘Pia’ Aiajb’ C, Fia? (SJ)ab’ z:(ab)kc’ (ST)
are superfields that depend on 7, 6,,.

The first of equations, dwp in (3.2), is satisfied identi-
cally due to the condition (3.3). Indeed, the left-hand side of
the first equation in (3.2) reads

i and Tl

i(dyoo1p = dy@p) = i(=1d,0,,d,0" + idy0;,d,0™)

= 2d,0,,d,0°. (3.5)

Clearly, (3.5) coincides with

SRound brackets are used to denote symmetrization of indices,
1
Agij) = 3 (Aij + Aji)-

(3.2)

z(le)m(Wzg)m = 2d16iad29m~ (3.6)

The analysis of other Maurer—Cartan equations in (3.2) is
straightforward, but it is rather involved. These technical
calculations are presented in the Appendix C. The result of
these analysis can be summarized as follows: the Cartan
forms can be expressed through the fermionic superfield
o'“ as

wp =501, wp=0, wg=a2arC+idd,, V", (3.7)
1
(@0))ap = A7(S)) g + 3 (dOr,0) + dOy,0%), (3.8)
1
(wr);; = 87(S7);j — 3 (dO;.06 + db.c7), (3.9)

(C‘)Q)m =db;y, (05);, = 6T — deib(SJ)Z - dgka(ST)f’

(3.10)

where the superfields C, ¥, (Sy),;, (S,),, have the form

085010-4
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(8)* =

i 1 1
T a [ﬁ (Dkaall; + Dkbaz) - §0fna’”b} ,

! I o 1 . .
l.]:__DlL‘C D]L‘lc _lC]c,
(S =, |5 (Dol + Dial) + gotar |
i
 3a

1. .
C= 1 (DY, +2(8;)* + 2(Sr)?.

. 4
vl [Dkb (S8))ap + 05 + 3 (31)364 ;

(3.11)

In addition, the superfield ¢“ in virtue of the same
constraints (3.3) has to obey the following conditions

Wp = e_”(dt - ldgjbgjh) = AT = Diat - Diaé:jhgjb = 0,
(@g)ia = e (e")i(e?)b(dEy, — Atyjy) = db;, = DIPE, = e"/?(e7")](e™?)h,

As a result of (3.13), Di“éjh satisfies relations

D& = e"/2(e")i(e?)) = D& Dyt = 5is)e",

D¥&;, Dy £ = §i54e", (3.14)
and, moreover,
Dy E9DM ¢, = %5;DkC§m“Dkb§md, etc. (3.15)
Using these relations, it is possible to find D, e"
el = lDiaffchiaka = Dyge = 2§Dy, (3.16)

4

The super-Schwarzian 6,, can be obtained as a df-
projection of either the forms @y or ;. For example, T part
of the Cartan form reads

i(wr), T = i8t(Sy) T — 51 T d0;,0°

J

= i (e hd(e),

+iTH" () (") (@r);;- (3.17)
where (&7);; is given by (2.9).
To obtain df-projection of (e=?)¥d(e"),, one should

note that due to (3.13),

Dy D E°DI%E,, = 55‘/](55Dld€" + e"52(e7")IDyy(e");

T s (e )LDy (e (3.18)

3 (D%, D6, =3i5", D'c/®) + Dileg®) =0. (3.12)
Clearly, the fermionic superfield ¢'* is a candidate for the
super-Schwarzian. The final step is to express ¢ in terms

of gia .

B. The super-Schwarzian

To find the explicit expression for the super—Schwarzian,
one should calculate the d@-projections of wr, w; forms,
taking into account explicit consequences of conditions
(3.3). Expanding (3.3) into Az and d@ projections, one
can find

i_ iéiagia =e",

Via = e_uéia‘ (313)

|
Substituting this into relation

Dy Dy E°D%E;, = {Dy..D1g}yE“DIPE; — Dy D1y DIPE,

(3.19)
and taking trace over ¢, b, one can find
Zeu(e_v){Dzd@v);} + eu(e_”ﬂDkd(e”)f
= —2i8}&1,D1g€" — 18]&; DyE
- 2i€k15mDi1§m - 5{€M(€_¢)2Dkb(€¢)§- (3.20)

Therefore,
e"(e7?)o Dy (e?)4 = —e“(e_”){:Djd(e“);; — 3i&;, Dy,
e* (e Due")f = 3 dle (¢ D)
- 33l (e Daale ).
e"(e™")"D,q(e")} = %Ddikbngjbgia
— Dy

(3.21)

The rest of the form reads

—do"(1 + ‘X)Tkm(e”)i(e”){#(‘//iaDldff +yaDiad?)
= 21+ )T 0, () Yy

=2(1 + Q)T dB e EDIE,,. (3.22)

085010-5
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These results ensure that d@-projection of the form w; has
the structure (C5), with oy, being

1 L
Oak =7 e ™[D;4, D |E“ D¢,

3. wia
+ 51(1 +2a)e™ED iy (3.23)

Analogous study of form w;

2i .
(@) I = 187(S))p T + gljabd‘giaglb

= =i/ d(e™)5d(e?)s + T4 (e?)3 () () s
(3.24)

leads to the same expression (3.23).

Thus, we see that all the Cartan forms can be expressed
through the fermionic superfield o,,; (3.23). We associate
this field with N' = 4 super-Schwarzian we are looking for:

[Dja: Dci]fkajcéjkb
Dmdénel)mdéne
E"Dii
Dmd&neDmdgne

S(T’ e)iu =

+6i(1 + 2a) (3.25)

IV. N =4 SCHWARZIAN ACTION

Like the previously considered cases [13], one may ask
whether the superfield Schwarzian action, which provides
the D(1,2;a)-invariant generalization of the bosonic
Schwarzian action,

S:—%/dTS(t,T) :-%/ﬁ(é-%@z), (4.1)

could be constructed. As is shown in the Sec. III and the
Appendix C, the Maurer—Cartan equations imply that the
only superfields, invariant with respect to D(1,2; @) group
transformations, are the super-Schwarzian ¢“ and its
derivatives. Therefore, it would be natural to expect that
the superfield action is some integral of 6 over the part of
superspace. Indeed, let us show that the expression

S = dtD* Dy, D,,,6" |4 (4.2)

72

is invariant with respect to N' = 4 supersymmetry, realized
on superspace coordinates 7 and 6;, as

St =—ic'0,,, 00, =€, OAT=0, 6d0,=0. (4.3)

The active variation of any superfield f with respect to
transformations (4.3) is given by the formula

*x £ af 8f __ Aia

o f = 575 5‘9ia87m= €. 0"f,

Aia __ 9 ipia 9

0" = g0 g (4.4)

It can be straightforwardly shown that the differential
operator Q' anticommutes, as expected, with the covariant

derivative D/* and differs from it by the sign of the 00,-
term. Therefore,

1 A .
0*S = ﬁ/ dtD*D;.Dyy€;,0" 0™ |5

1 s
:ﬁ%/dTQkaCchDkbﬁlbb—»o‘ (4.5)

As after applying differential operators on ¢'“ we take limit
6 — 0, the 60,-term in 0 is irrelevant, and Q' can be
replaced with D®. Therefore

1 .
0" = =5 €ia / dzD"“D* D, .Dyy0" |y

1 .
:ﬁeia/dT[ZiDkacbkc

—iD{(D"5}, + D"6})]lgng = 0. (4.6)

where the expression for D“D*¢D,.D,,¢'* is a consequence
of the constraint (3.12).

The supersymmetry invariant integral over dr can be
presented as an integral over part of the superspace:

1
S = 7—2/d1d0kcd9,cd(9kb61b. (47)

One can also evaluate the component form of this action.
Simplest way to do so is to observe that the Az projection of
the form wg = A7C + --- (3.11) contains the third deriva-
tive of 6’ [this expression can be found in the Appendix C
(C21)]. Comparing this with the projection which can be
obtained directly from (2.6) after applying all the necessary
conditions, one can obtain that

085010-6
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1 1
S = _ﬁ/ dTDkCDICDkbGlbb_)O = —/dT |:§a(l -+ (X)(

. éiaéia 1 —v\i v
+la(1+0)m—§aar(6 )[a,[(e )
—v\J v\l g gkb
BN G X

i‘ - iéiaém

Here, we denote the first component of each superfield with
the same letter, and 4F = D"“c,,. |- Note that the first
component of the super-Schwarzian ¢'* should be treated
as an independent one, as D;,D jbékc cannot be expressed in
terms of time derivatives of anything else. The same applies
to D"¢c,,., 100.

The action (4.8) is invariant with respect to the whole
D(1,2;a) group for general a and should contain
SU(1,1/2) case, which corresponds to @ =0 or —1, as a
particular limit. However, simply setting « =0 or —1 in
(4.8) would remove the most important terms in the action.
To take the limit properly, we should, at first, “renormalize”
the action by dividing it by a(1 + @), thus removing «
dependence from the most of the terms. Second, one should
remove o;.|yoo and F by their equations of motion,
6'“lpo =0 and F =0. Third, one should set to zero
@?, if limit @ — 0 is to be taken, or v/ if a — —1.
Then the action becomes nonsingular in @ and after taking
the appropriate limit coincides with one obtained in [13].
Note that the somewhat confusing difference in signs of
kinetic terms of v/ and ¢“* allows us to obtain proper sign
of the kinetic term of the remaining field in the SU(1, 1|2)
action for ¢ = 0 and a = —1.

V. CONCLUSION

In this work we applied the method of nonlinear realiza-
tions to the construction of the N' = 4 super-Schwarzian
associated with the D(1,2;a) conformal group. As com-
pared to the previous attempt to utilize the nonlinear
realizations for construction of the N =4 super-
Schwarzians [12] we successfully used the minimal set of
the constraints on the Cartan forms advocated in [13]:

(i) For the superalgebra containing the super Poincaré
subalgebra {Q™, Q/*} = —2¢¢®’ P the invariant
super-space {z,;,} defined as

wp = dt —1d0"0,,, (09)i, = dbiy (a)
|

ar(t - iéiaém) _ E (t - iéiaé:my)
P—igp et 2(i—iEjEt)?

43 (1), (e )3, ()

(€_¢)lgar(€¢)géjdéjc 3 i(',kco, 1 }

VAN P2, 4.8
r— iémfm 9 ‘ 9 ( )

(i) The unique additional constraint has to be imposed
on the Cartan form for dilatation

op =0 (b).

From the general structure of the Cartan forms upon
imposing the constraints (a,b), it follows that the fermionic
components of the forms in (3.7), (3.8), (3.9), and (3.10) are
quite nontrivial. Therefore, any constraint would be imposed
on these forms will result in the constraints on the super-
Schwarzian o,,. That is why our minimal set of the
constraints is the maximally possible one. We also demon-
strated that the Maurer—Cartan equations greatly simplified
all calculations helping to express all Cartan forms in terms
of the single object—N" = 4 super-Schwarzian. However, to
find the expression of the A = 4 super-Schwarzian in terms
of the basic superfields one has to again use all set of
constraints.

We are planning to apply the proposed approach to N -
extended superconformal group including the variant of
OSp(n|2) superconformal symmetry. Another interesting
problem is to obtain nonrelativistic and/or Carrollian versions
of the Schwarzian [22], as well as to the flat space analogue
of the Schwarzian [23].
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APPENDIX A: SUPERALGEBRA D(1,2;a)

The set of the generators spanning D(1,2;a) super-
algebra includes

Bosonic generators: P, D, K — forming s/(2) algebra

the su(2) x su(2) generators T% = T/, job = jba,

Fermionic generators: Q™ S,

ij=12, ab=12

(A1)
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which obey the following conjugation rules

(1) =Ty, () =Ju.  (P.D.K)"=(P.D.K). () =Qi. (5" =S (A2)

The nonzero (anti)commutators are
i[P,K] = -2D, il[P,D] = —P, i[K,D] = K,
{[T¥, TF") = eikim 4 eimTik, i[Jab, Jed] = gac Jbd 4 gbd jac,
i[P, Sia] _ _Qia, i[K, Qia] _ Si“, i[D, Qia] _ %Qia’ i[D,Si“] _ —%Si“,
1 1
2 3
[T, $ka] = %(eiksja + elkgia), i[Jab, sic] :%(eacsib + ebesiay,

i[Tij, Qka] — (eiija + eijia)’ i[]ab’ Qic} — eaCQib + ebCQi“),

{Qia’ ij} — _2€ij€abP’ {Sia,Sjb} — _2€ij€abK’
{0, 81} = 2(=€lie™ D + aeliJe — (1 + a)etT'). (A3)

APPENDIX B: su(2) ROTATIONS

Using the commutator relations of the D(1, 2; a) algebra (A3) it is not too complicated to find the effect of the su(2) x
su(2) rotations on the fermionic and su(2) generators

i - v? sin \/% y
el U'TQkCel vT (ev)lrchmc — cos ?ch + - ’U],(anC, 1]2 = Uijvljv (Bl)
7
2 sin \/E
emiI Qke gl — (eqb)Zde — cos %ch + _2¢ch&1’ P = b, (B2)
4)2
Ve
Siw Lo sin V202 1 — cos V222 .
eivTThmeivT — Thm 4 AT (vp "™ + oy T™) + —p (=0T + 20507 TY), (B3)
~ i in/2¢* 1 —cos \/2¢*
e—1¢~Jchel¢-J = Jd + %@bi]bd + ¢Z1bc) 4 %qs(_dﬁjcd 4 zvgvg‘lab)7 (B4)
and
. ~ 1- 20? , V20? — sin V20? .
AT = iy | i LS i 4 2SI o g (9
v v°V20

_ 2 2 _ o 2
eI gt = idg,, { Jab 4 1 0052\/ 2¢ @ Jib 4 N 2¢° —sin\/2¢
@ 202/ 24>

It is less evident to note that the expressions (B3) and (B4) can be written, similarly to (B1) and (B2), as

(=gt + z¢z¢zﬂd>} . (86)

e—i'v-TTkmeiL“T — (ev)ngij(ev);n and e—i¢-J]cdei¢-J — (e(]ﬁ)zjab(eqﬁ)z" (B7)

Finally, the expressions (B5) and (B6) can be also written in a simplified way as
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e—i1;~Tdeiv-T — _i(T)km(e—v){gd(ev)in and

e det = —i(J),b(e)5d(e?);. (B8)

Note the useful identities which simplify the explicit
calculations

2
2 sin \/7 z
v 2

(e")k = cos /=% + k

2
2
. 2
k v sm\/% k ki j
-0 J— I 1 U\
(e7")m = cos 7%‘7%—6 emj(e’);.
v
2

(B9)

APPENDIX C: SOLUTION TO THE MAURER-
CARTAN EQUATIONS

As we already demonstrated the equation dwp (3.2) is
satisfied due to the condition (3.3). In contrast, dwg,
equation is not trivial. After substitution of (3.3), it
separates into two equations:

(Ale29jb - A2Td19jb) 0= _Aiajb _ 5{(81)5117 _ 5Z<ST)ZJ.’
dlekcdzeld: 0= 55261‘1\/‘0 + 5?{200\111

+ 54 4 ek ()

The first of these equations straightforwardly expresses
A;,/? in terms of (S;),” and (S7),/, the second one is more
elaborate. At first, multiplying it by §/6%, one can obtain

zcd\kc +Hlk\ld 0= ch\kc — de, Hlklld 2 (C2)

) i, .. .
A17dy0y — Dytd O IDF(S))  — 3 (52515 + 52"’5) =

1
3
dOredr0)q: 2Me°4(S;) +x

3

Next, multiplying by just 5! and taking into account (C2),
one obtains

2 1
Zzad\kc 4 Zac\kd _ 526kd 0= Zad|kc _ gﬁgakd _ 55261«‘.

(C3)

Multiplying by 09, one obtains

2 1
2Hil\kc + Hik\lc + 5{;0.10 =0= Hik|lc — _g(sfo.kc —|—§5§GZC.
(C4)

Substituting these relations back into (C1), one notes that
df x df equation is satisfied with no further constraints on
o*4, and w; and w; forms can be written as

1 . .
(@0))ap = BT(S)) g + 3 (dB,,0}, + db;,0y,).

(r) = 8e(S1), = 3 (010" + 001, (©3)
The fermion o;, is an obvious candidate for the super-
Schwarzian. Note that if « = 0, —1, the generators of one of
SU(2) groups do not appear at the right-hand side of
commutators of supercharges. If this decoupled SU(2) is
dropped entirely from the coset space, Eq. (C1) would not
contain either X or I1. This equation would, as it follows
from (C2), set the remaining fermion to zero and, as was
already found, the bosonic component of the automorphism
form becomes the super—Schwarzian. We, therefore,
assume that a # 0, —1 in further considerations.

Not all the equations have been written down. The dw;
equation also separates into two:

i

3 (5Z<Sl>ad6§ + 64 (Sj)bd"]é)

((Sh)a‘oh + (S)c00) + al(55 5 + 65%)).

(éngdolg + 5ZDMO'5 + 6Zchalb + 5§Dk"0£,)

2i . 2i
= eklecd <_§6ma6}[;n - 2(1(8])“,,) + (5568 + 8564) <2a(ST)k’ - 50?0'”). (Co)
Substituting D“c/® into the second equation as most general combination of tensors of various symmetries
Diao.jb _ €ij€abF _ %eijF(ab) _ %eabF(ij) + F(ij)(ab)7
1 ke ij 1 ic J JjC 1 ab 1 ka ~b kb ~a
F:ZD Cres F :E(D ol + Di°cl), F :E(D o} + D"6?), (C7)

one can obtain that second equation (C6) implies F(/)(@?) = 0, relates F/ and F°* to (Sy)% and (S,)?"
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: ab a mb
w1 |F OO
(S1) 1+a[6 9 }
i[Fii  ololc
=g 6+ %) (c8)

and places no restriction on the scalar F. Therefore, '
satisfies the differential constraint

Diao.jb _|_Dja6ib —l—DibGja +Djb6ia — 0’

S o 1 ..
Dlllo.jb + Djbala — EeueakaCO—kc-

(C9)

To study the first equation of (C6), one should find the
derivative of (S;), and, therefore, of F, F/ and F.
Using their definition (C7) and commutation relation of
derivatives (2.12), one can obtain the relations

Equation dwy is very much similar to dw;:

1 1
chFah — _ g €ach:1th _ g 6,!)51)/;’1;'@(17

S R
D¥FY = =2 " DiFI! = /D F,

DK F = ik, DLF = 6i6'* — D¢F*.  (C10)
We prefer to express derivatives of F/ in terms of
derivatives of F/. Substituting (S;)* (C8) into first
equation (C6) and evaluating derivatives, it could be
obtained that all the terms neither proportional to & or
oj, vanish and the rest imply that

j i ia 1 arij 1 ia 1 il ~a
a(1—|-0l)‘1"'“:—§a0 —ED1F1+§FU _EFIGI

1 . .
ac .1 I ~C Mma
——F%ocl. +—o.o5,0Mm.

18 81 (C1)

. i, .. .. i . .
Ay7dy Oy — By1d Oy DM (Sy);; + 3 (6165 + &of) = 3 (65(Sr)'of + 87 (Sr),'of)

i
+3((Sr)ifof + (Sr)fof) = (1 + @) (&) ¥5 + 577,

d)Ordy014: 264 e (S7),; = = (8£D"05 + 85D"of + 81D 0! + 5LD o)

2i 2i
= eklecd <— glaiaa;’ +2(1+4a) (‘ST)U) + (616" + 6767 (—2(1 +a)(Sy)c - —lafna’”d> . (C12)

Substitution of relations obtained above (C7), (C9), (C8),
(C11) guarantees that these two equations are satisfied in
the same manner as dw; equations (C6).

The equation dwp, results in the following relations:

ria _ i‘Pia, Aia|jb +Ajb|ia =0. (C13)

The second equation in (C13) is satisfied after substitution
Allib = —¢li(§,)b — ¢ (S;) (C1), while the first one
expresses the I through P,

Now, combining everything together we will have the
following expressions for the Cartan forms

wp=07, wp=0, wx=ArC+id0, ¥, (Cl4)
1
(0))ap = B2(S))ap + 3 (dOr.0) + dOy,0%), (C15)

9

1

(wr);; = 87(Sr);; — 3 (dO;.06 + dbj.o7), (C16)

(wo)=db™, (ws)" =tV —db;,(S;)s—dO,(Sr)t,
(C17)

with only one function C remaining to be determined by
study of dwg and dwg equations.
The dwg equation again separates into two

DIPWia 4 ¢li(§)ab 4 ¢ab (&)
- j
= —5€e (8] + 87 -2C) +2(S,)*" (S)"

1

— (€ (aLWIC + 6LPI) — €1l (6VPH + 6hPR)),  (C18)

w
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_ €iIch(Sj)ad _ €iled(Sj)ac _ eadec (ST)il _ €achd(ST)ik _ 2i€kl€cdlpia

— _1€zl€alekL _ 1€lk€a“‘Pld +§ (_eacezlakb

(Sl)bd — e“detol? (S))p°

+ eilo.ka(SJ)cd + eikgla(SJ)Cd + €ikglc(81)ad + eilakd(SJ)ac + GkIGCdGih(SJ)ba)

1 .
+ g (_eacakd(ST)tl _

+ €kl€cd0.?n(ST)im _ €ik€ad0fn(ST)lm _ €il

Equation (C19) is satisfied identically after substitution of
i@ (C11) and (S,), (S7)¥ (C8). In this calculation, one
should use the formula

DPDeF* = 3ie? F — Ze”e“szDdF"’, (C20)

which follows from (C10) and commutation relations
(2.12). Equation (C18) after substitution of ¥ (CI1)
and (S,), (S7)" (C8) reduces to €/e*’-projection, which
determines C

o
a(1+a)C = —%aF +— DD, F¥

72
Ap o Ly 1 p e
9" 720" M 2(1+a)
1

1
cd m ki d
o0} — F¥oy.0]

" 54(1 +a) 54a

+15k66 —I—L l—I—L or0hot ol
9" ke e\ 1) kT4

(c21)

€adGZC (ST)ik G

GiC(ST)kl _ €acaid(ST)kl

6066% (ST)km) .

(C19)

Finally, studying dwy equation we will get the following
relations

W - DIC = Di(WL(S,) + WE(SHM).  (C22)
2€lietb C — piagib _ pibypia
= €l (87 + S§7) = 4(Sp)(8))P. (C23)

Here, S = (S;)*(S,),;, and 87 = (Sr)"(Sr),;- The rela-
tion (C23) is simply a consequence of (C18) and therefore, is
satisfied identically. Finally, substituting C (C21), ¥ (C11)
and (S;)*, (S7)¥ (C8) into (C22) and using formula

D“D$D, FX = —4iD§F', (C24)

one finds that (C22) is also identically satisfied, leaving no
extra constraints on ¢'%.
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