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We study the magnetic moments of the octet, decuplet, low-lying charm, and low-lying
bottom baryons with nonzero light quarks in symmetric nuclear matter using the quark–
meson coupling (QMC) model, which satisfies the constraint for the allowed maximum
change (swelling) of the in-medium nucleon size derived from the y-scaling data for 3He(e,
e

′
) and 56Fe(e, e

′
). This is the first study to estimate the in-medium magnetic moments of

the low-lying charm and bottom baryons with nonzero light quarks. The present QMC
model also satisfies the expected allowed maximum enhancement of the nucleon magnetic
moments in nuclear matter. Moreover, it has been proven that the calculated in-medium to
free proton electromagnetic form factor (EMFF) ratios calculated within the QMC model
reproduce well the proton EMFF super ratio extracted from 4He(�e, e′�p)3H at Jefferson Lab-
oratory. The medium modifications of the magnetic moments are estimated by evaluating
the in-medium to free space baryon magnetic moment ratios to compensate the MIT bag
deficiency to describe the free space octet baryon magnetic moments, where ratios are often
measured directly in experiments even without knowing the absolute values, such as the free
and bound proton electromagnetic form factors, as well as the European Muon Collabo-
ration effect to extract the structure function F2 ratio of the bound to free nucleons by the
corresponding cross section ratio. We also present the results calculated with the different
current quark mass values for the strange and bottom quarks to see the possible impact.
Furthermore, for practical use we give the explicit density-dependent parametrizations for
the vector potentials of the baryons and light-(u, d) quarks, as well as for the effective masses
of the baryons treated in this study, and of the mesons ω, ρ, K, K∗, η, η′, D, D∗, B, and B∗.
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1. Introduction
Studying the properties of hadrons containing both the heavy quarks (charm (c) and bottom
(b)) and the isodoublet light quarks (up (u) and down (d)) is particularly interesting, since the
heavy quarks can be regarded as static color/gluon sources, while the isodoublet light quarks
surrounding them can be regarded as interacting strongly with other hadrons. (Hereafter, we
will simply denote the isodoublet light quarks u and d as light quarks, but not the strange
quark s, unless otherwise stated.) This gives an alternative picture for the structure of heavy
hadrons additional to that of the hadrons composed of purely light quarks. In heavy hadrons
with light quarks, the light quarks contribute to their masses by dynamical symmetry break-
ing. Thus, when the heavy hadrons with nonzero light quarks are produced in nuclei, e.g. in
the future antiProton ANnihilations at DArmstadt (PANDA) experiment, we can advance our
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understanding of hadron structure [1]. The physics of PANDA aims explicitly to produce the
heavy hadrons in nuclei among the other physics issues. Of course, to study the in-medium
properties of hadrons with strange (s) quarks, such as (strange) hyperons, is also very inter-
esting and important in connection with the strange hypernuclei, and the “hyperon puzzle” in
neutron star structure.

In astrophysical laboratories such as neutron stars and compact stars, as well as in the dense
nuclear medium produced in heavy ion collisions, the effects of the strong magnetic field on the
hadron properties have been studied [2–17]. Furthermore, the effects of the baryon (anomalous)
magnetic moments on (proto-)neutron star structure under very strong magnetic fields were
investigated in Refs. [6,11,15,16]. Moreover, the effects of the charm quark in a dense medium,
namely the stability of a charm star, was studied in Refs. [18–20].

In this study we focus on the modifications of baryon magnetic moments in a nuclear medium
of the octet, decuplet, the low-lying charm, and the low-lying bottom baryons with nonzero
light quarks. Through this, we can study the in-medium electromagnetic interactions of the
light and heavy baryons, the differences in the medium modifications, and the roles of the light
and heavy quarks in a nuclear medium.

We studied in Ref. [21] the strong interaction properties for the octet, low-lying charm, and
low-lying bottom baryons with nonzero light quarks in symmetric nuclear matter by the quark–
meson coupling (QMC) model invented by Guichon [22]. In this study, we extend further to
include the decuplet baryons, and proceed to study the modifications of the magnetic moments
in a nuclear medium that have potential impacts on studies of neutron star and magnetar struc-
ture. In particular, the � baryon properties in a nuclear medium have garnered renewed interest
[23–32].

The QMC model has been successfully applied in various studies, e.g. for the properties of
finite (hyper)nuclei [33–42], in-medium hadron properties in medium [43–49], nuclear reactions
[50–58], and neutron star structure [59–63]. (See Refs. [64–66] for reviews.) It should be empha-
sized that the 15

� C hypernucleus single-particle energies predicted by the QMC model [39,67]
were indeed observed very closely in experiments [68]. This may give some confidence in the
treatment of the strange quark sector in the QMC model to be explained below.

Self-consistent exchange of the Lorentz-scalar-isoscalar σ -, Lorentz-vector-isoscalar ω-, and
Lorentz-vector-isovector ρ-meson fields, coupled directly to confined, relativistically moving,
light u and d quarks, is the key mechanism of the QMC model. This mechanism, though simple,
is known to achieve novel saturation properties of nuclear matter: saturation is achieved due
to the quark structure of the nucleon and quark dynamics. All the relevant coupling constants
between the light quarks and the σ -, ω-, and ρ-meson fields in any hadrons can be treated the
same as those in the nucleon, once the coupling constants are determined/constrained by the
fit to the nuclear matter saturation constraints.

The physics behind the simple picture of the QMC model is associated with dynamical sym-
metry breaking, although the usual QMC model, such as the present one, does not have explicit
chiral symmetry due to the lack of a pion (Goldstone boson) field in the model. (See Refs.
[69,70] for the chiral quark–meson coupling (CQMC) model, which explicitly incorporates the
pion field using the cloudy bag model instead of the MIT bag model, to be consistent with
chiral symmetry.) Namely, the light-quark condensates are expected to reduce the magnitude
faster than those of the strange and heavier quarks as nuclear density increases, and this is sup-
ported by: (i) studies of the in-medium strange and light quark condensates in connection with
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the φ-meson mass shift in nuclear matter in the quantum chromodynamics (QCD) sum rule
approach [71,72] (see also P. Gubler, private communication, August 2021), (ii) studies based
on the NJL model [73,74] for the strange and light quark condensates in medium, and (iii) the
result that the heavy quark condensates are proportional to the gluon condensate that is ob-
tained by the operator product expansion [75] and also by a world-line effective action-based
study [76], together with the model-independent result that the magnitude of gluon condensate
at the nuclear matter saturation density decreases by only about 5 QCD trace anomaly and
Hellman–Feynman theorem [77]. The light quark condensates are associated with dynamical
chiral symmetry breaking and partial restoration of chiral symmetry in the nuclear medium,
where the latter is related to the reduction of the light quark condensates. Although the QMC
model Lagrangian does not have chiral symmetry, the model incorporates the expected facts of
the density dependence of the in-medium quark condensates phenomenologically. That is, the
model approximates that the σ -, ω-, and ρ-meson fields couple directly only to the light quarks,
but not to the strange or heavier quarks. Although one can consider the couplings of strange
quark with the φ-meson field and some other types of Lorentz scalar-meson fields, these would
introduce unconstrained coupling constants which cannot be determined/constrained by the
nuclear matter saturation properties, where the nuclear matter saturation properties are the
basic properties for calibrating any reasonable nuclear matter model.

As mentioned already, studying the in-medium properties of heavy baryons with nonzero
light quarks is very important to understand dynamical symmetry breaking, its partial restora-
tion, and the roles of the light quarks in medium. These phenomena can provide us with addi-
tional information on the origin of (dynamical) masses of hadrons and “normal” (not “dark”)
matter, which we can observe directly in our universe. Because of the importance, many studies
have been undertaken for heavy baryon hypernuclei as well as the properties of heavy baryons
with nonzero light quarks in a nuclear medium [40–42,49,78–99].

In effective models such as the present one, the (current) quark mass values do not have a
direct connection with QCD, but we may regard the quark mass value effect as a model param-
eter dependence. We therefore also present the results calculated with different values of the
current quark masses for the strange and bottom quarks in this study. Although the magnetic
moments of the octet [100–102] and decuplet [103] baryons in medium were studied, there are
currently no studies for the low-lying charm or bottom baryons with nonzero light quarks in
a nuclear medium, while some studies in free space have been performed with symmetry-based
quark models [104–106], the MIT bag model [107–110], QCD sum rules [111,112], a relativis-
tic three-quark model [113], a nonrelativistic hyper central model [114], an independent-quark
model based on the Dirac equation [115], and a relativistic potential model [116].

As for the in-medium modification of the bound nucleon size, or the bound nucleon elec-
tromagnetic form factors (EMFFs) which are directly associated with the present study, the
constraint on the allowed maximum change (swelling) of the bound nucleon size was derived
by the y-scaling data for 3He(e, e′) [117] and 56Fe(e, e′) [118]. It was concluded that the allowed
maximum increase of the bound nucleon size is 3%–6% in 3He and 2%–3% in 56Fe. More pre-
cise analysis was performed by McKeown, and the upper limit of 3.6% in 3He was obtained
[119]. Larger upper limit values may possibly be obtained by different methods. In Ref. [120]
the relative change of the proton charge radius of 13% ± 4% in a heavy nucleus was suggested,
based on analysis of the longitudinal Coulomb response function (Coulomb sum rule) us-
ing the effective momentum approximation, where the quenching of the longitudinal response
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function was reinterpreted assuming the dipole expression for the proton charge form factor.
However, the derived value seems to be more indirect than that obtained by the y-scaling data
analysis.

The bound nucleon size (charge and magnetic radii) has been discussed in the past in con-
nection with the predictions of the bound nucleon EMFFs in the QMC [121,122] and CQMC
models [69]. In Ref. [122] it was stated that the 10% decrease of the bag constant at the normal
nuclear matter density ρ0 (=0.15 fm−3) is already quite large, and this would severely reduce
the bound nucleon EMFFs. Using the average baryon density estimated by the QMC model,
〈ρB(3He)〉 � 0.35ρ0 and 〈ρB(56Fe)〉 � 0.71ρ0, the y-scaling-based results lead to allowed max-
imum change (swelling) of the nucleon size at ρ0 of 8.5%–17.1% and 4.2%–8.5% respectively.
Since the MIT bag model for both the matter (charge) radius and the magnetic moment of
the proton are proportional to the bag radius, neither the bag radius nor the nucleon magnetic
moment at ρ0 can be enhanced by more than 17.1% if one takes the y-scaling result properly.
Although the range 4.2%–8.2% derived from the 56Fe data is expected to be more appropriate
to extrapolate to the normal nuclear matter density ρ0, we allow the larger range in the discus-
sion. There have been studies of the in-medium octet baryon magnetic moments [100] and their
impact on neutron stars under a strong magnetic field [11], and the authors reported about a
25% enhancement of the nucleon magnetic moment, and about a 20% increase of the nucleon
bag radius at a density of 0.17 fm−3 (1.133ρ0 = 1.133 × 0.15 fm−3). The results seem to give
too large an enhancement, which originates from the density-dependent bag constant using
the modified quark–meson coupling (MQMC) model. In this study we use the standard QMC
model, and indeed the results will turn out to satisfy even the tighter y-scaling data constraint.
Thus, the present results are expected to be constrained by the allowed in-medium modifica-
tions of the octet baryon magnetic moments, as well as for those of the decuplet and low-lying
charm and bottom baryons with nonzero light quarks.

Although it is known that the MIT bag model has a deficiency in producing the magnitude
of the free-space octet baryon magnetic moments, we can focus on the in-medium to free space
ratios, as many experiments directly measure ratios to extract meaningful physical quantities,
such as to extract the free proton [123,124] or bound proton [125,127,128] EMFF ratios by
simultaneously measuring the transverse (Pt) and longitudinal (Pl) recoil proton polarization
to extract the proton electric (Gp

E) over magnetic (Gp
M) form factor ratio Gp

E/Gp
M. Indeed, the

super ratio [Gp
E/Gp

M(4He)]/[Gp
E/Gp

M(1H)] calculated using the in-medium to free EMFF “ratios”
predicted by the QMC model reproduce the data well, as shown in Refs. [125–127]. Note that
the meson cloud contributions for the total medium modifications of EMFFs are of the order
of a few tens percent, namely 0.2%∼0.3% for total modifications of about 10%. Furthermore,
the relativistic kinematic factors are canceled out in the EMFF ratios calculated with the QMC
model. Because the in-medium modifications apply directly for the light quarks in the QMC
model and the reproduced data are for a proton composed of purely light quarks, as far as the
effects of light quarks are concerned we may have some confidence in the in-medium to free
EMFF ratios for the strange and heavy baryons, where the light quark medium modifications
are mainly responsible for the medium modifications of these baryons. Recall also the successful
predictions for the 15

� C hypernucleus single-particle energies associated with the strange quark
sector.

Furthermore, in Ref. [123] it is stated that for the method of measuring the ratio, “Nei-
ther the beam polarization nor the polarimeter analyzing power needs to be known, which
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results in small systematic uncertainties.” The examples for the experiments mentioned above
clearly demonstrate the usefulness of measuring/calculating ratios of physical quantities. An-
other example is to extract the structure function (F2) ratio of the bound to free nucleons,
[F bound nucleon

2 /F free nucleon
2 ] by measuring the corresponding cross section ratio (see, e.g., Ref.

[129,130]), known as the “EMC” effect (ratios) [131].
Concerning the magnetic moments of heavy baryons with c and/or b quark(s), some ambi-

guities arise in constructing the flavor–spin wave functions [106]. These are associated with the
so-called “quark order,” originating from the fact that the spin, isospin, SU(3) flavor symmetry
and the Pauli principle cannot help much. The possible different quark orders in the flavor–
spin wave functions yield different results for the calculated magnetic moments. This concerns
the �c,b baryons in the present study. For these �c,b baryons, the two lightest quarks (u and s)
or (d and s) are taken as the first two quark antisymmetric pairs, denoted as [u, s] or [d, s], in
the wave functions [132], and thus the magnetic moments of �c,b are given by μc,b [106,108]
and are nearly the same as those of the 
c,b. Thus, the free as well as the in-medium magnetic
moments of the �c,b are almost the same as those of the 
c,b baryons, as will be shown explic-
itly later. Thus, although some issues exist for the quark order as discussed in Ref. [106], we
may assume the natural quark order as realized for the octet baryon sector, and study the mag-
netic moments and the transition magnetic moments of the octet, decuplet, low-lying charm,
and low-lying bottom baryons with nonzero light quarks in symmetric nuclear matter. Note
that the “1–2 quark order” is supported in Ref. [106] as the best quark ordering for flavor-
degenerate baryons for the masses. Furthermore, we discuss possible ambiguities originating
from the MIT bag model artifact for the transition magnetic moments. This is the first study to
estimate the in-medium magnetic moments of the low-lying charm and bottom baryons with
nonzero light quarks.

As an important side remark, we would like to emphasize that the explicit density-dependent
parametrizations are given for the vector potentials of the baryons and light (u, d) quarks, as
well as for the effective masses (Lorentz-scalar-isoscalar mean field potentials) of the low-lying
baryons treated in this study, and of the ω, ρ, K, K∗, η, η′, D, D∗, B, and B∗ mesons for practical
use.

2. The QMC model
In this section we outline the QMC model following Refs. [64,65]. Since the Hartree–Fock ap-
proximation in the QMC model gives very similar results to those of the Hartree approximation
[133], we use the Hartree approximation to be consistent with Ref. [21]. (See Ref. [62] for the
Hartree–Fock approximation in the QMC model applied for studying the neutron star structure
with hyperons.)

Furthermore, the one-gluon-exchange-based color–magnetic interaction between the quarks,
which enhances the in-medium mass splittings between the � and 
 baryons [39] as well as the
N and � baryons [29], playing an important role in studies of hypernuclei and neutron star
structure, is not included in this study.

In a practical aspect, we would like to emphasize that the explicit density-dependent
parametrizations for the Lorentz-vector potentials of the baryons, as well as for the effective
masses (Lorentz-scalar-isoscalar potentials) of the low-lying baryons and mesons except for
the pion, will be given in this section.
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2.1 Nuclear matter
Using the Born–Oppenheimer approximation, a relativistic effective Lagrangian density for a
“hypernucleus” in the QMC model may be given by the following [38,42,64,65] (to consider the
nuclear matter limit, we call the following configuration a “hypernucleus”using the terminology
“hyperon (Y)” for each baryon indicated in Eq. (3)):

LHY
QMC = LN

QMC + LY
QMC, (1)

LN
QMC = ψN (�r)

[
iγ · ∂ − m∗

N (σ ) −
(

gωω(�r) + gρ

τN
3

2
b(�r) + e

2

(
1 + τN

3

)
A0(�r)

)
γ0

]
ψN (�r)

− 1
2

[
(∇σ (�r))2 + m2

σ σ (�r)2] + 1
2

[
(∇ω(�r))2 + m2

ωω(�r)2]
+ 1

2

[
(∇b(�r))2 + m2

ρb(�r)2] + 1
2

(∇A0(�r))2, (2)

LY
QMC = ψY (�r)

[
iγ · ∂ − m∗

Y (σ ) − (
gY

ωω(�r) + gY
ρ IY

3 b(�r) + eQY A0(�r)
)
γ0

]
ψY (�r)(

Y = 
, �0,±, �0,−, �0,±,++, �∗ 0,±, �∗ 0,−, 
+
c , �0,+,++

c , �0,+
c , 
0

b, �
0,±
b , �0,−

b

)
,(3)

where the quasi-particles moving in single-particle orbits are three-quark clusters with the
quantum numbers of a nucleon, a � baryon, a strange, a charm, or a bottom “hyperon” when
expanded to the same order in velocity [33,34,38,40,42,49]. In the above, ψN (�r) [ψY (�r)] is the
nucleon [� baryon, hyperon (strange, charm, or bottom baryon)] field. The mean-meson fields
represented by σ , ω, and b are the Lorentz-scalar-isoscalar, Lorentz-vector-isoscalar, and third
component of the Lorentz-vector-isovector fields, respectively, while A0 is the Coulomb field.
Hereafter, the quantities in medium will be denoted with an asterisk superscript. Note that in
the Lagrangian density of Eq. (3), the phenomenologically introduced effective Pauli poten-
tials, which also contain the channel-coupling effects at the baryon level for the 
, �, and �

[38], are not written explicitly. The potentials were needed to reproduce the observed lowest
single-particle energy in the 208


 Pb hypernucleus, as well as the energy difference between the

 and � hyperons obtained in the G-matrix calculation in nuclear matter [38], in addition to
the effective Lagrangian density, Eq. (3). But these repulsive “Pauli” (vector) potentials will
be included in the explicit density-dependent parametrizations, while the one-gluon exchange
interaction in medium, that yields agreement with “no experimental observation of the � hy-
pernuclei,” will not be included, where the interaction was introduced in the latest version of
the QMC model [39]. Thus, in order to agree with this fact, we will include a phenomenological
repulsive vector potential for the �, in such a way that it yields the � total potential of ∼+ 30
MeV at ρ0; the corresponding parametrizations for the vector potential will also be given.

The coupling constants of the hyperon appearing in Eq. (3) are gY
ω = (nq/3)gω and gY

ρ ≡ gρ =
gq

ρ , with nq being the number of valence light quarks in the hyperon Y (nq = 3 for N), where
gω and gρ , which appear in Eq. (2), are the ω–N and ρ–N coupling constants, respectively.
IY

3 and QY are the third component of the hyperon isospin operator and the electric charge
in units of the positron charge, e, respectively. The couplings between the meson fields and
quarks, as already mentioned, reflect the fact that the magnitude of the light quark condensates
is expected to reduce faster than those of the strange and heavier quarks as baryon (nuclear)
density increases.
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The σ -field-dependent σ–N [σ–Y] coupling strength for the nucleon N [hyperon Y], gN
σ (σ )

[gY
σ (σ )], implicit in Eq. (2) [Eq. (3)], is defined by

m∗
N,Y (σ ) ≡ mN,Y − gN,Y

σ (σ )σ (�r) (Y = 
, �, �, �, �∗, �∗, 
c, �c, �c, 
b, �b, �b), (4)

where mN [mY] is the free nucleon [hyperon] mass. Note that the dependence of the coupling
strengths on the scalar field σ must be calculated self-consistently within the quark model
[22,33,38,40,41,49] (the MIT bag model in the present case). This characterizes the QMC
model differently from quantum hadrodynamics (QHD) [134,135], as well as from other naive
symmetry-based approaches. Namely, although in such approaches gY

σ (σ )/gN
σ (σ ) may be 2/3 or

1/3 depending on the number of light quarks nq in the hyperon Y in free space (means σ = 0),
this may not be true any more in a nuclear medium. (Even in free space this is not true, since
the bag radii of the nucleon and hyperon are not exactly the same [38,136].)

For later convenience, we define CN,Y(σ ) ≡ SN,Y(σ )/SN,Y(σ = 0) and SN,Y(σ ) in connection
with m∗

N,Y [21], denoting the light quarks by q( ≡ u, d), as

dm∗
N,Y (σ )

dσ
= −nqgq

σ

∫
bag

d3y ψq(�y)ψq(�y)

≡ −nqgq
σ SN,Y (σ ) = − [

nqgq
σ SN,Y (σ = 0)

] (
SN,Y (σ )[

nqgq
σ SN,Y (σ = 0)

]
)

≡ − [
nqgq

σ SN,Y (σ = 0)
]

CN,Y (σ ) = − d
dσ

[
gN,Y

σ (σ )σ
]
, (5)

where gq
σ is the (light quark)–σ coupling constant, and ψq is the light quark ground state wave

function in N or Y immersed in a nuclear medium, where the in-medium masses m∗
N,Y are as-

sociated with the quark scalar charge. The σ–N and σ–Y coupling constants in free space (i.e.
σ = 0) are defined by

gN,Y
σ ≡ gN,Y

σ (σ = 0) ≡ nq gq
σ SN,Y (σ = 0). (6)

Note that the values of SN(σ ) and SY(σ ) in Eq. (5) are different, since the light quark ground
state wave functions in N and Y are different in free space and in medium. Since the light quarks
in any hadrons are expected to feel the same scalar and vector potentials as those in the nucleon,
one can systematically study the hadron properties in medium using the same (light quark)–
meson coupling constants, which are constrained by the nuclear matter saturation properties.
This is one of the big advantages of the QMC model.

Next, we consider the rest frame of symmetric nuclear matter, a spin and isospin saturated, in-
finitely large system with only the strong interaction. In this case, the self-consistent effect from
the embedded one-hyperon to the (nuclear matter + one hyperon) system can be neglected,
although for a hypernucleus, the effect is self-consistently included together with the influence
of the Pauli potentials and channel couplings as a 1/A effect, with A being the total baryon
number of the hypernucleus (see Refs. [21,22,38,64] for details). Thus, the quark–meson cou-
pling constants that are determined by the saturation properties of symmetric nuclear matter
(without a hyperon), as well as the total energy per nucleon, will not be affected in the (nuclear
matter + one hyperon) system.

The Dirac equations for the quarks and antiquarks in nuclear matter, in a bag of a hadron h
(q = u or d, and Q ≡ s, c or b, hereafter), are given, for x = (t, �x) and |�x| ≤ bag radius) [44,47–
50], by
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[
iγ · ∂x − (mq − V q

σ ) ∓ γ 0
(

V q
ω + 1

2
V q

ρ

)] (
ψu(x)
ψū(x)

)
= 0, (7)

[
iγ · ∂x − (mq − V q

σ ) ∓ γ 0
(

V q
ω − 1

2
V q

ρ

)] (
ψd (x)
ψd̄ (x)

)
= 0, (8)

[
iγ · ∂x − mQ

]
ψQ(x) = 0,

[
iγ · ∂x − mQ

]
ψQ(x) = 0, (9)

where the mean field potentials are defined by V q
σ ≡ gq

σ σ , V q
ω ≡ gq

ωω, and V q
ρ ≡ gq

ρb, with gq
σ , gq

ω,
and gq

ρ being the corresponding quark–meson coupling constants. We assume SU(2) symmetry,
mu,ū = md,d̄ ≡ mq,q̄. The Lorentz-scalar “effective quark masses” are defined by m∗

u,ū = m∗
d,d̄

=
m∗

q,q̄ ≡ mq,q̄ − V q
σ , and thus m∗

q is dominated by −V q
σ as baryon density increases, and can be

negative. Note that mQ = m∗
Q, since the σ field does not couple to the heavier quarks Q = s,

c, b. Furthermore, since the ρ-meson mean field becomes zero, V q
ρ = 0, in Eqs. (7) and (8) in

symmetric nuclear matter in the Hartree approximation, we will ignore it.
The same mean fields σ and ω for the quarks in Eqs. (7) and (8), satisfy self-consistently the

following equations at the nucleon level, with m∗
N (σ ) to be calculated by Eq. (13):

ω = gω

m2
ω

ρB ≡ gω

m2
ω

4
(2π )3

∫
d3k θ (kF − |�k|), (10)

σ = gN
σ

m2
σ

CN (σ )ρs ≡ gN
σ

m2
σ

CN (σ )
4

(2π )3

∫
d3k θ (kF − |�k|) m∗

N (σ )√
m∗2

N (σ ) + �k2
, (11)

where kF is the nucleon Fermi momentum.
Because of the underlying quark structure of the nucleon used to calculate m∗

N (σ ) in the nu-
clear medium, CN(σ ) decreases as σ increases, whereas in the usual point-like nucleon CN(σ ) =
1. It is this variation of CN(σ ) (or equivalently the σ -dependence of the coupling as gN

σ (σ (ρB)))
that yields a novel saturation mechanism for nuclear matter—σ -dependence originates from
the quark structure of the nucleon. The important dynamics, which originates from the quark
structure of the nucleon, is included in CN(σ ). This CN(σ ) also yields three-body or density-
dependent effective forces at the nucleon level [66,137]. As a consequence, the QMC model
gives a nuclear incompressibility of K � 280 MeV with the free space inputs mq = 5 MeV and
nucleon bag radius 0.8 fm [64]. This value is in contrast to a naive version of QHD [134,135]
that results in much larger value, K � 500 MeV, where the empirically extracted value falls in
the range K = 200–300 MeV. (See Ref. [138] for details.)

Once the self-consistency equation for the σ field in Eq. (11) is solved, one can calculate the
total energy per nucleon:

E tot/A = 4
(2π )3ρB

∫
d3k θ (kF − |�k|)

√
m∗2

N (σ ) + �k2 + m2
σ σ 2

2ρB
+ g2

ωρB

2m2
ω

. (12)

The parameters appearing in the Lagrangian density of Eqs. (1)–(3), and also above, are mω =
783 MeV, mρ = 770 MeV, mσ = 550 MeV, and e2/4π = 1/137.036 [33,34]. The coupling con-
stants, gN

σ ≡ gσ , gN
ω ≡ gω, and gN

ρ ≡ gρ at the nucleon level, are determined by the fit to the
binding energy of 15.7 MeV at the saturation density ρ0 = 0.15 fm−3 (k0

F = 1.305 fm−1) for
symmetric nuclear matter, as well as gρ to the symmetry energy of 35 MeV. The correspond-
ing quark–meson coupling constants determined, and the current quark mass values (inputs),
respectively denoted by “Set I” and “Set II,” are listed in Tables 1 and 2, where in Set I the
current quark mass values of the strange (ms) and bottom (mb) quarks are different from those
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Table 1. (Set I) Current quark mass values (inputs), quark–meson coupling constants, and the bag con-
stant Bp [21], obtained with the following inputs: free nucleon bag radius RN = 0.8 fm, empirical values
Etot/A − mN = −15.7 MeV (mN = 939 MeV) at the saturation density ρ0 = 0.15 fm−3, and a symmetry
energy of 35 MeV.

mu,d 5 MeV gq
σ 5.69

ms 250 MeV gq
ω 2.72

mc 1270 MeV gq
ρ 9.33

mb 4200 MeV B1/4
p 170 MeV

Table 2. (Set II) As Table 1, but the current quark mass values for the strange (ms) and bottom (mb)
quarks are from Ref. [139].

mu,d 5 MeV gq
σ 5.69

ms 93 MeV gq
ω 2.72

mc 1270 MeV gq
ρ 9.33

mb 4180 MeV B1/4
p 170 MeV

in Ref. [139]. Although the (current) quark mass values in effective models do not have direct
connections with those in QCD, we use the latest values quoted in Ref. [139] for Set II, where
one may see a model parameter dependence in the Set I and Set II results. Note that the current
quark mass values, except for the u and d quarks, do not influence the nuclear matter saturation
properties, thus the relevant quark–meson coupling constants, gq

σ , gq
ω, and gq

ρ , are the same in
Tables 1 and 2. In the past, including Ref. [21], use of the strange quark current mass value
of ms = 250 MeV was motivated by the success in reproducing the light hadron masses in the
MIT bag model with ms = 279 MeV [151]. In the present study we also use different values for
the strange and bottom quark current masses, respectively ms = 93 MeV and mb = 4180 MeV
(Set II) given in Ref. [139].

The corresponding coupling constant values at the nucleon level are g2
σ /4π = (gN

σ )2/4π =
5.39 (see Eq. (6) with SN(0) = 0.4827, where Ref. [21] mistakenly gave the value for finite nuclei),
g2

ω/4π = (gN
ω )2/4π = (3gq

ω )2/4π = 5.30, and g2
ρ/4π = (gN

ρ )2/4π = (gq
ρ )2/4π = 6.93.

The mass of a hadron h in symmetric nuclear matter, m∗
h (free mass is mh), is calculated,

together with the mass stability condition with respect to the in-medium bag radius at a given
density:

m∗
h =

∑
j=q,q̄,Q,Q̄

n j�
∗
j − zh

R∗
h

+ 4
3
πR∗3

h Bp,
dm∗

h

dR∗
h

= 0, (13)

where �∗
q = �∗

q̄ = [(x∗
q )2 + (R∗

hm∗
q )2]1/2(q = u, d), with m∗

q = mq−gq
σ σ = mq − V q

σ , �∗
Q = �∗

Q̄
=

[(x∗
Q)2 + (R∗

hmQ)2]1/2(Q = s, c, b), and x∗
q,Q are the lowest-mode bag eigenfrequencies. Bp is the

bag constant (assumed to be independent of density), nq,Q[nq̄,Q̄] are the lowest-mode valence
quark [antiquark] numbers of each quark flavor q = (u, d), Q = (s, c, b) in the hadron h, while
zh parametrizes the sum of the center-of-mass and gluon fluctuation effects, which is assumed
to be independent of density [33]. The bag constant Bp = (170 MeV)4 is determined by the
free nucleon mass mN = 939 MeV, free nucleon bag radius RN = 0.8 fm, and mq = 5 MeV,
which are considered to be the standard input values in the QMC model [64]. Recall that the
quark–meson coupling constants, gq

σ , gq
ω, and gq

ρ , have already been determined by the nuclear
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matter saturation properties; we can use the same coupling constants, which are empirically
constrained, for the light quarks in any hadrons.

The calculated effective baryon and meson scalar potentials [m∗
B − mB] and [m∗

M − mM ] are
shown in Figs. 1 and 2 respectively, simply denoted by [m∗ − m], for both Set I (left panel) and
Set II (right panel). One can notice that the “light quark number counting rule,” namely that
the Lorentz-scalar potential is proportional to the number of light quarks in the hadron, is
realized well for both the baryon and meson cases. (The η and η′ meson cases will be discussed
later.)

The ground state wave function of the quark q or Q in the hadron h immersed in the nuclear
medium satisfies the boundary condition at the bag surface,

j0(x∗
q,Q) = βh∗

q,Q j1
(
x∗

q,Q

)
, (14)

where j 0,1 are the spherical Bessel functions, and

βh∗
q =

√
�∗

q − m∗
qR∗

h

�∗
q + m∗

qR∗
h

, βh∗
Q =

√
�∗

Q − mQR∗
h

�∗
Q + mQR∗

h

. (15)

The ground state quark wave functions ψB ∗
q,Q(�r) in a baryon B in symmetric nuclear matter are

given by replacing h → B in the above,

ψB ∗
q,Q(�r) = NB ∗

q,Q

(
j0

(
x∗

q,Q r/R∗
B

)
i βB∗

q,Q �σ · r̂ j1
(
x∗

q,Q r/R∗
B

)
)

χs√
4π

, (16)

with (
NB ∗

q,Q

)−2 = 2
(
R∗

B

)3
j2
0

(
x∗

q,Q

) [
�∗

q,Q

(
�∗

q,Q − 1
) + m∗

q,QR∗
B/2

]
/x∗ 2

q,Q, (17)

where r = |�r|, r̂ = �r/r, m∗
Q = mQ as already mentioned, and χ s is the Pauli spinor.

2.2 Density-dependent parametrizations
In connection with the Lorentz-scalar potentials [m∗

B − mB] = −gB=N,Y
σ (σ )σ shown in Fig. 1 (or

equivalently the effective baryon masses m∗
B), it has been found that the function CB(σ )(B =

N, 
, �, �, �, �∗, �∗, 
c, �c, �c, 
b, �b, �b) appearing in the last line in Eq. (5) can be
parametrized as a linear form in the σ field, gN

σ σ = gN
σ (σ = 0)σ , as shown in Fig. 3, for practical

purposes [33,34,38],

CB(σ ) = 1 − aB × (
gN

σ σ
)
, (B = N, 
, �, �, �, �∗, �∗, 
c, �c, �c, 
b, �b, �b), (18)

where we compare with the σ -dependent coupling case, gN
σ (σ )σ , and without the dependent

case, gN
σ σ = gN

σ (σ = 0)σ , in the left panel of Fig. 3.
The values obtained for aB are listed in Tables 3 and 4 for Sets I and II respectively. Note that

for the antibaryon B, aB = aB, and also m∗
B

= m∗
B with nq → nq below. This parametrization

works very well up to about three times the normal nuclear matter density, 3ρ0. Then, the ef-
fective mass of baryon B in nuclear matter, where m∗

B − mB are shown in Fig. 1, is approximated
well by the following (the accuracy will be discussed in the last part of this subsection):

m∗
B � mB − nq

3
gN

σ

[
1 − aB

2

(
gN

σ σ
)]

σ = mB − nq

3

[(
gN

σ σ
) − aB

2

(
gN

σ σ
)2

]
(19)

(B = N, 
, �, �, �, �∗, �∗, 
c, �c, �c, 
b, �b, �b),

with nq being the valence light quark number in the baryon B, where gN
σ σ = gN

σ (σ = 0)σ
(in MeV) can be fitted (parametrized) well as a function of x for 0 ≤ x = ρB/ρ0 ≤ 3.0
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Fig. 1. Density dependence of the baryon scalar potentials, [m∗ − m], for the octet, decuplet, low-lying
charm, and low-lying bottom baryons, for Set I (left panel) and Set II (right panel).
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Fig. 2. Density dependence of the meson scalar potentials, [m∗ − m], for the light and strange mesons
(upper panel) and the charm and bottom mesons (lower panel), for Set I (left panel) and Set II (right
panel). Note that for the η and η′ mesons the pseudoscalar octet(8)–singlet(1) mixing angle of θP =
−11.3◦ from the linear mass formula [139] is used. This makes the effective mass of η (η′) lighter (heavier)
than that of η8 (η1), where the possible density dependence of the mixing angle for θP is ignored.

Fig. 3. Density dependence of −gN
σ (σ )σ and −gN

σ (σ = 0)σ = −gN
σ σ (left panel) and the fit result for

gN
σ (σ = 0)σ = gN

σ σ (right panel).
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Table 3. (Set I) Effective mass slope parameter aB [Eq. (19)] and the vector potential parameter bB

[Eq. (23)] for B = N, 
, �, �, �, �∗, �∗, 
c, �c, �c, 
b, �b, �b, and the effective mass slope pa-
rameter aM [Eq. (25)] for M = ω, ρ, K, K∗, η, η′, D, D∗, B, B∗. Note that the tiny differences in the
values of aB from those in Refs. [64,65] are due to the differences in the number of data points for calcu-
lating aB, but such differences give negligible effects. Concerning the � vector potential, the alternative
parametrization b̃� yields a total potential of [m∗

� − m� ] + V �
v � +30 MeV at ρ0.

aB × 10−4 MeV−1 aB × 10−4 MeV−1 aB × 10−4 MeV−1 aB × 10−4 MeV−1

aN 9.15 a� 10.08 – – – –
a
 9.35 – – a
c 9.90 a
b 10.78
a� 9.59 a�∗ 10.15 a�c 10.34 a�b 11.22
a� 9.52 a�∗ 10.15 a�c 9.99 a�b 10.83

bB MeV bB MeV bB MeV bB MeV
bN 125.30 b� 125.30 – – – –
b
 92.57 – – b
c 83.54 b
b 83.54
b� 100.12 b�∗ 83.54 b�c 83.54 b�b 83.54
b̃� 152.42
b� 46.29 b�∗ 41.77 b�c 41.77 b�b 41.77

aM × 10−4 MeV−1 aM × 10−4 MeV−1 aM × 10−4 MeV−1 aM × 10−4 MeV−1

aω 8.73 aK 6.66 aD 8.61 aB 9.92
aρ 8.70 aK∗ 8.60 aD∗ 9.09 aB∗ 10.04

– – aη(nη
q → 1) 7.03 – – – –

– – aη′ (nη′
q → 1) 8.81 – – – –

Table 4. (Set II) As Table 3, but for the parameters in Set II.

aB × 10−4 MeV−1 aB × 10−4 MeV−1 aB × 10−4 MeV−1 aB × 10−4 MeV−1

aN 9.15 a� 10.08 – – – –
a
 9.68 – – a
c 9.90 a
b 10.82
a� 9.91 a�∗ 10.44 a�c 10.34 a�b 11.27
a� 10.15 a�∗ 10.71 a�c 10.28 a�b 11.13

bB MeV bB MeV bB MeV bB MeV
bN 125.30 b� 125.30 – – – –
b
 92.57 – – b
c 83.54 b
b 83.54
b� 100.12 b�∗ 83.54 b�c 83.54 b�b 83.54
b̃� 152.00
b� 46.29 b�∗ 41.77 b�c 41.77 b�b 41.77

aM × 10−4 MeV−1 aM × 10−4 MeV−1 aM × 10−4 MeV−1 aM × 10−4 MeV−1

aω 8.73 aK 7.24 aD 8.61 aB 9.97
aρ 8.70 aK∗ 8.99 aD∗ 9.09 aB∗ 10.10

– – aη(nη
q → 1) 7.54 – – – –

– – aη′ (nη′
q → 1) 9.20 – – – –

(ρ0 = 0.15 fm−3) as

(gN
σ σ )(x) =

⎧⎪⎨
⎪⎩

1.60828 − 23.9107
√

x + 350.631x
−144.309x

√
x + 19.4750x2 (x > 0),

0 (x = 0),
(20)
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with χ2/d.o.f. = 0.06653/301, where 0.01 ≤ x in practice, and the fitted result is shown in the
right panel of Fig. 3. Then, using Eq. (19) and the aB values given in Tables 3 and 4, one can
obtain the corresponding effective mass values m∗

B for a given baryon density ρB (fm−3); in
particular, that for N, m∗

N with aN = 9.15 × 10−4 MeV−1 and nq = 3 may be useful.
Furthermore, the Lorentz-vector-isoscalar ω mean field potential V B

ω [V h
v ] (in MeV) for a

baryon B [hadron h], and the ω potential for the light quarks (q = u, d) V q
ω (MeV) can also be

parametrized using x = ρB/ρ0 (ρ0 = 0.15 fm−3) as

V B
ω (x) = bBx, (21)

V q
ω (x) = 41.77x, (22)

V h
v (x) = V h

ω = (nq − nq)V q
ω = (nq − nq) × 41.77x (except for the baryon octet), (23)

where the values of bB are the same for both Sets I and II, and are given in Tables 3 and 4,
respectively. Note that for 
, �, and � hyperons, phenomenologically introduced quark-
based “Pauli potentials” [38] are included in bB, assuming the same for both Sets I and II.
As for the � total potential in a nonrelativistic sense to apply for the upper component of the
Dirac spinor, [m∗

� − m�] + V �
v at ρ0, the above parametrizations give an attractive potential of

∼−22 MeV for both Sets I and II. If we want to agree with the “no experimental observation of
the � hypernuclei,” we need to introduce the alternative, phenomenological parametrizations
to yield, e.g., [m∗

� − m�] + V �
v � +30 MeV at ρ0, and we give the results in Tables 3 and 4 for

this case denoted by b̃�.
For completeness, we also give the Lorentz-vector-isovector mean field potential (in MeV) as

a function of y ≡ ρ3/ρ0 = (ρp − ρn)/ρ0 with the isospin-third component of the hadron h, Ih
3 ,

Ih
3V h

ρ (y) = Ih
3 × 84.61y, (24)

where the expression given in Ref. [64] wrongly contained a factor of 1/2.
Similarly, by defining nM

q ≡ (nq + nq), and using aM = aM , the effective masses of the low-
lying mesons m∗

M (M = ω, ρ, K, K∗, η, η′, D, D∗, B, B∗) are given below, except for the pion,
which is the (nearly) Goldstone boson and difficult to describe consistently in naive indepen-
dent/additive quark models (the pion mass is not expected to be modified up to about normal
nuclear matter density [140–142]):

m∗
M � mM − nM

q

3
gN

σ

[
1 − aM

2

(
gN

σ σ
)]

σ = mM − nM
q

3

[(
gN

σ σ
) − aM

2

(
gN

σ σ
)2

]
(M = ω, ρ, K, K∗, η, η′, D, D∗, B, B∗, with nM

q → 1 for η and η′). (25)

In the above, nM
q = nη,η′

q → 1 for the η and η′ mesons may be verified from Fig. 2, where the
pseudoscalar octet(8)–singlet(1) mixing angle of θP = −11.3◦ from the linear mass formula
[139] is used. This makes the effective mass of η (η

′
) lighter (heavier) than that of η8 (η1), ne-

glecting the possible density dependence of the mixing angle θP, as also shown explicitly in Refs.
[45,46,64] by the effective mass ratios. nη,η′

q → 1 for η and η′ reflects the fact that the numerator
of the total energy for the η and η′ in Eq. (13) becomes nearly the sum, ∼(�∗

q + �∗
s ), when the

flavor octet and singlet wave functions are used with the mixing effect of θP = −11.3◦, which
is different from the φ–ω ideal-mixing case. Note that the ω and ρ mesons appearing above are
the those of the SU(6) quark model, and should not be confused with the ω and ρ (mean) fields
in the QMC model. The obtained slope parameters aM are listed in Tables 3 and 4 for Sets I
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and II respectively. Note that the ω mean field potential for the kaon (K) in the QMC model
must be modified as

V K
ω (x) � 1.96 × 41.77x (26)

to reproduce the empirically extracted repulsive K+ total potential [44] for both Sets I and II.
This gives the total K+ potential of ∼+ 19 MeV at ρ0 for both sets.

We comment briefly on the accuracy of the parametrizations given above. Since the vector
potentials are proportional to the baryon density ρB or ρ3 = ρp − ρn, the parametrizations are
simple and should be good. For the effective masses of the baryons and mesons, the quality of
the parametrizations with aB, aM, and (gN

σ σ )(x) of Eq. (20) are all well within 1.0% deviations
from the calculated results for 0.01 ≤ ρB/ρ0 ≤ 3.0, except that m∗

η has a maximum of 1.7% de-
viation (� 7 MeV) from the original result. Thus, for practical purposes, one can comfortably
use the given parametrizations for the effective masses (Lorentz-scalar-isoscalar potentials) of
the baryons and mesons for a given baryon density for 0.01 ≤ ρB/ρ0 ≤ 3.0, as well as for the
Lorentz-vector-isoscalar and Lorentz-vector-isovector mean field potentials. Recall that the η

and η
′
cases are subject to the mixing of the octet and the singlet states, and also nq → 1 is ap-

plied for them. However, the observed maximum deviation of 1.7% from their parametrizations
are surprisingly good.

3. Baryon magnetic moments in symmetric nuclear matter
In Ref. [21] we obtained the MIT bag model wave functions in symmetric nuclear matter for
the octet, low-lying charm, and low-lying bottom baryons with nonzero light quarks with the
Set I current quark mass values (Table 1). In this study we extend further to include the de-
cuplet baryons for Set I as well as for Set II, and calculate the wave functions of the octet,
decuplet, low-lying charm, and low-lying bottom baryons with nonzero light quarks also for
Set II (Table 2). Below, we calculate the magnetic moments of these baryons and some tran-
sition magnetic moments in symmetric nuclear matter using the MIT bag (QMC model) wave
functions in Set I (Table 1) and Set II (Table 2).

First, we discuss the magnetic moment of an octet baryon B, μB, in free space (vacuum). For
the octet baryons B(q1, q2, q3), specifying by this the quark order, the familiar SU(6) flavor–
spin wave functions are constructed based on the isospin, spin, and Pauli principle, and are
consistent with the “1–2 quark order” for the quarks q1 and q2, namely, the first two quarks q1

and q2 are the closest in mass [106]. Good examples may be the wave functions of the 
 and
�0 baryons. The first two quarks (q1, q2) = (u, d) are antisymmetric in the 
 but symmetric
in the �0. Similar arguments may not necessarily be applicable for the baryons with c and/or
b quarks with nonzero light quarks, in particular for the baryons such as B(q1, q2, q3)(q1 = q,
q2 = Q �= q3 = Q

′
), since isospin symmetry and the Pauli principle cannot help. As discussed in

Ref. [106], different assignments for the quarks q1, q2, and q3 in B(q1, q2, q3)(q1, 2, 3 = q, Q) are
possible in some cases without violating the Pauli principle, and the different assignments give
different results for the calculated magnetic moments. This applies to the �c, b baryons in the
present study. Although the first two quark pairs (u, s) or (d, s) are antisymmetric in the low-
lying �c,b baryons [132], these cases agree with the assumption of the “1–2 quark order” for
these heavy baryons—as a natural assumption, the same as that for the octet baryons. Despite
some discussions in Ref. [106] of the quark order, we take the quarks q1 and q2 as the closest
in mass in the wave functions. In these cases, the �c,b wave functions have a similar structure
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to those of the 
c,b baryons. Note that the “1–2 quark order” is supported in Ref. [106] as the
best quark ordering for flavor-degenerate baryons for the masses.

The magnetic moment μB of the baryon B(q1, q2, q3) in an impulse approximation (inde-
pendent quark picture) is expressed in terms of the jth quark magnetic moments μj(j = 1, 2,
3):

μB = 1
3

(2μ1 + 2μ2 − μ3) (B �= 
, 
c,b �= decuplet), (27)

μB = μ3 (B = 
, 
c,b, �c,b), (28)

μB = μ1 + μ2 + μ3 (B = decuplet), (29)

where we ignore any possible opposite parity state mixing, isospin mixing, and flavor mixing.
Note that in Eq. (28) the quark order q1 and q2 is implied in such a way that they are coupled
to an isospin-0 and spin-0 pair, and the notation B(q1, q2, q3) indicates this (in Tables 5 and 6).
We give explicit expressions for the baryon magnetic moments and the transition magnetic
moments in the second columns of Tables 5 and 6 for Sets I and II respectively.

Next, as an example, we discuss the magnetic moment of a light quark q in a baryon B in the
MIT bag model. For a heavy quark Q in B, one may replace q → Q with the corresponding
quantities. The free space magnetic moment of the light quark μq with charge eq in the baryon
B is given by

μq ≡ eqηq ≡ eq

[(
NB

q

)2
∫ RB

0
dr r2 2r

3
j0(xqr/RB) βB

q j1(xqr/RB)
]

, (30)

where RB is the bag radius of the baryon B. With the expressions given in the second columns
of Tables 5 and 6, it is straightforward to calculate the magnetic moments of those baryons in
free space as well as in symmetric nuclear matter.

For the transition magnetic moments in free space, B = (�0, �+
c , �0

b ) → B′ = (
, 
+
c , 
0

b),
denoted respectively by μBB′ = (μ�0
, μ�+

c 
+
c
, μ�b
b ), some discussions are in order. In a rig-

orous calculation in the MIT bag model [136], the bag radius difference for the initial and final
baryons arises. This means that the same flavor spectator quark wave functions in the initial and
final baryons are slightly different. Also, the integral upper limit is restricted to the common
bag radius shown in Eq. (32), and the defects for the spectator quark wave function overlaps
arise. However, we ignore these subtle points due to the MIT bag model, which are expected
to give negligible effects (as shown later), and approximate each spectator quark wave function
overlap to be unity. By these approximations, the moduli of the free space transition magnetic
moments (the signs are not known) may be calculated by

|μ�0
| = |μ�+
c 
+

c
| = |μ�b
b| = 1√

3
|μu − μd | ≡ 1√

3
|euη̃u − ed η̃d | , (31)

where η̃u,d in the last expression in Eq. (31) for B = (�0, �+
c , �0

b ) → B′ = (
, 
+
c , 
0

b) are de-
fined by

η̃q ≡ (
NB′

q NB
q

) ∫ min(RB′ ,RB )

0
dr r2 r

3

[
j0

(
x′

qr/RB′
)
βB

q j1(xqr/RB) + βB′
q j1

(
x′

qr/RB′
)

j0(xqr/RB)
]
.

(32)

The above expression may give rise to ambiguities due to the so-called MIT bag model ar-
tifact, similar to those discussed in the weak-interaction vector charge calculation: a naive
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Table 5. Magnetic moments and transition magnetic moments in free space and in symmetric nuclear
matter calculated with Set I (Table 1). The free space results are given in the third column in the nuclear
magneton, e/2mN (e the positron charge and mN the free nucleon mass, 939 MeV), with experimental data
from Ref. [139] where it exists (fourth column), while the in-medium to free space ratios, μ∗

B(ρB)/μB (μB

≡ μB(ρB = 0)) and |μ∗
BB′ (ρB)/μBB′ | (μBB′ ≡ μBB′ (ρB = 0)) for ρB = (ρ0, 2ρ0, 3ρ0) with ρ0 = 0.15 fm−3 are

given in the fifth, sixth, and seventh columns. The central values and errors for the free nucleon magnetic
moments are shown with rounding in the table, but the correct values are shown in the table footnotes.
The expressions in the second column are calculated using the flavor–spin wave functions with the “1–2
quark order” for the baryon B(q1, q2, q3), i.e. the quarks q1 and q2 are taken to be the closest in mass
[106], which applies to the �c,b baryons below.

B(q1, q2, q3) μB μB Experiment μ∗
B (ρ0 )
μB

μ∗
B (2ρ0 )
μB

μ∗
B (3ρ0 )
μB

p(uud) (4μu − μd)/3 1.535 2.793 ± 0.000a 1.077 1.103 1.111
n(ddu) (4μd − μu)/3 − 1.023 −1.913 ± 0.000b 1.077 1.103 1.111

(uds) μs − 0.429 −0.613 ± 0.004 0.997 0.991 0.985
�+(uus) (4μu − μs)/3 1.557 2.458 ± 0.010 1.086 1.133 1.162
�0(uds) (2μu + 2μd − μs)/3 0.499 1.067 1.102 1.123
�−(dds) (4μd − μs)/3 − 0.560 −1.160 ± 0.025 1.121 1.189 1.231
�0(ssu) (4μs − μu)/3 − 0.929 −1.250 ± 0.014 1.035 1.055 1.067
�−(ssd) (4μs − μd)/3 − 0.405 −0.6507 ± 0.0025 0.956 0.927 0.907
�++(uuu) 3μu 3.341 3.7–9.8 1.099 1.151 1.181
�+(uud) 2μu + μd 1.671 2.7+1.0 c

−1.3 1.099 1.151 1.181
�0(udd) 2μd + μu 0 (SU(2) symmetry) – – –
�−(ddd) 3μd − 1.671 1.099 1.151 1.181
�∗ +(uus) 2μu + μs 1.781 1.128 1.201 1.246
�∗0(uds) μu + μd + μs 0.102 1.571 1.906 2.120
�∗ −(dds) 2μd + μs − 1.577 1.071 1.110 1.133
�∗0(ssu) 2μs + μu 0.203 1.576 1.924 2.154
�∗ −(ssd) 2μs + μd − 1.473 1.038 1.060 1.073

+

c (udc) μc 0.423 0.999 0.998 0.996
�++

c (uuc) (4μu − μc)/3 1.378 1.115 1.179 1.219
�+

c (udc) (2μu + 2μd − μc)/3 0.238 1.166 1.261 1.319
�0

c (ddc) (4μd − μc)/3 − 0.903 1.087 1.136 1.167
�+

c (usc) μc 0.424 1.000 0.999 0.998
�0

c (dsc) μc 0.424 1.000 0.999 0.998

0

b(udb) μb − 0.073 1.000 1.000 1.000
�+

b (uub) (4μu − μb)/3 1.675 1.111 1.175 1.214
�0

b (udb) (2μu + 2μd − μb)/3 0.437 1.107 1.167 1.205
�−

b (ddb) (4μd − μb)/3 − 0.801 1.117 1.183 1.224
�0

b(usb) μb − 0.073 1.000 1.000 1.000
�−

b (dsb) μb − 0.073 1.000 1.000 1.000

Transition |μBB′ | |μBB′ | μ∗
BB′ (ρ0 )
μBB′

μ∗
BB′ (2ρ0 )
μBB′

μ∗
BB′ (3ρ0 )
μBB′

�0 → 
 |(μu − μd )/
√

3| 0.868 1.61 ± 0.08 1.085 1.129 1.154
�+

c → 
+
c |(μu − μd )/

√
3| 0.899 1.086 1.128 1.151

�0
b → 
0

b |(μu − μd )/
√

3| 0.983 1.095 1.143 1.169

Notes. aμ
Experiment
p = 2.7928473446 ± 0.0000000008,

bμ
Experiment
n = −1.9130427 ± 0.0000005.

c Theoretical uncertainties are not included [139].

integration over the common bag radius leads to a violation of the Ademoll–Gatto theorem
[143] as discussed in Ref. [144]. Some discussions on this issue will be given later.

In the third columns in Tables 5 and 6 we give the free space magnetic moments and transition
magnetic moments calculated with Set I (Table 1) and Set II (Table 2) respectively. The exper-
imental data are also given in the fourth columns, but the values and errors for the nucleons
are shown with rounding in the tables; the precise data are given in the footnotes of each table.
As already mentioned, the calculated magnitude of the octet baryon magnetic moments in free
space do not reproduce the data well. Our focus in this study is on their density dependence
relative to the free space ones, which can still give some relevant and useful information. To
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Table 6. As Table 5, but the results are calculated with the different current quark mass values for the
strange and bottom quarks of Set II (Table 2).

B(q1, q2, q3) μB μB Experiment μ∗
B (ρ0 )
μB

μ∗
B (2ρ0 )
μB

μ∗
B (3ρ0 )
μB

p(uud) (4μu − μd)/3 1.535 2.793 ± 0.000a 1.077 1.103 1.111
n(ddu) (4μd − μu)/3 − 1.023 −1.913 ± 0.000b 1.077 1.103 1.111

(uds) μs − 0.500 −0.613 ± 0.004 0.996 0.990 0.983
�+(uus) (4μu − μs)/3 1.628 2.458 ± 0.010 1.088 1.137 1.166
�0(uds) (2μu + 2μd − μs)/3 0.535 1.066 1.103 1.123
�−(dds) (4μd − μs)/3 − 0.559 −1.160 ± 0.025 1.113 1.204 1.250
�0(ssu) (4μs − μu)/3 − 1.068 −1.250 ± 0.014 1.035 1.054 1.066
�−(ssd) (4μs − μd)/3 − 0.509 −0.6507 ± 0.0025 0.960 0.934 0.915
�++(uuu) 3μu 3.341 3.7–9.8 1.099 1.151 1.181
�+(uud) 2μu + μd 1.671 2.7+1.0 c

−1.3 1.099 1.151 1.181
�0(udd) 2μd + μu 0 (SU(2) symmetry) – – –
�−(ddd) 3μd − 1.671 1.099 1.151 1.181
�∗ +(uus) 2μu + μs 1.767 1.137 1.216 1.265
�∗0(uds) μu + μd + μs 0.040 2.558 3.486 4.085
�∗ −(dds) 2μd + μs − 1.687 1.070 1.109 1.132
�∗0(ssu) 2μs + μu 0.083 2.566 3.515 4.139
�∗ −(ssd) 2μs + μd − 1.686 1.037 1.058 1.071

+

c (udc) μc 0.423 0.999 0.998 0.996
�++

c (uuc) (4μu − μc)/3 1.378 1.115 1.179 1.219
�+

c (udc) (2μu + 2μd − μc)/3 0.238 1.166 1.261 1.319
�0

c (ddc) (4μd − μc)/3 − 0.903 1.087 1.136 1.167
�+

c (usc) μc 0.426 1.000 0.999 0.998
�0

c (dsc) μc 0.426 1.000 0.999 0.998

0

b(udb) μb − 0.074 1.000 1.000 1.000
�+

b (uub) (4μu − μb)/3 1.681 1.112 1.175 1.215
�0

b (udb) (2μu + 2μd − μb)/3 0.439 1.107 1.168 1.206
�−

b (ddb) (4μd − μb)/3 − 0.804 1.117 1.184 1.225
�0

b(usb) μb − 0.074 1.000 1.000 1.000
�−

b (dsb) μb − 0.074 1.000 1.000 1.000

Transition |μBB′ | |μBB′ | μ∗
BB′ (ρ0 )
μBB′

μ∗
BB′ (2ρ0 )
μBB′

μ∗
BB′ (3ρ0 )
μBB′

�0 → 
 |(μu − μd )/
√

3| 0.901 1.61 ± 0.08 1.089 1.136 1.163
�+

c → 
+
c |(μu − μd )/

√
3| 0.899 1.086 1.128 1.151

�0
b → 
0

b |(μu − μd )/
√

3| 0.988 1.095 1.144 1.170

Notes. aμ
Experiment
p = 2.7928473446 ± 0.0000000008.

bμ
Experiment
n = −1.9130427 ± 0.0000005.

cTheoretical uncertainties are not included [139].

give some idea on the free-space baryon magnetic moments calculated in the present approach,
we compare in Table 7 the free-space baryon magnetic moments obtained by various models
and lattice QCD simulations.

Recall that the in-medium to free proton EMFF ratios predicted by the QMC model re-
produce well the extracted proton EMFF super ratio [Gp

E/Gp
M(4He)]/[Gp

E/Gp
M(1H)] from the

4He(�e, e′�p)3H reaction measured at Jefferson Laboratory [125–127]. The ratios of the in-
medium to free space magnetic moments are given for three baryon densities, ρ0, 2ρ0, and
3ρ0, in the fifth, sixth, and seventh columns in Tables 5 and 6 for Sets I and II respectively.

Here, we focus on the in-medium nucleon magnetic moments. As already mentioned, the
constraint for the allowed change (swelling) of the in-medium nucleon size, thus for the in-
medium nucleon bag radii and magnetic moments, is allowed to increase no more than 17.1%
at ρ0, if we properly take the y-scaling analysis results. The present QMC model results give a
7.7% enhancement of the nucleon magnetic moments at ρ0, well within the constraint.

One can notice that most of the ratios become larger as the baryon density increases, except
for 
, �−, 
+

c , 
b, �+,0
c , and �0,−

b . In particular, the large enhancement for the �∗0 and �∗0
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Table 7. Comparison of the free-space baryon magnetic moments (in the nuclear magneton) by various
models and lattice QCD simulations [145–147] that are different from the MIT bag model, focusing on
heavier baryons since the data for the octet baryons exist, where the model uncertainties (errors) are not
given below even when quoted in some references. For some experimental values, see Tables 5 and 6.

B(q1, q2, q3) Set I Set II [102,103] [111] [113] [114] [115] [116] [145,146] [147]

p(uud) 1.535 1.535 2.56 – – – 2.8732 2.886 2.3 3.04
n(ddu) − 1.023 − 1.023 − 1.93 – – – − 1.9154 − 1.924 − 1.3 − 1.84

(uds) − 0.429 − 0.500 − 0.55 – – – − 0.5512 − 0.580 − 0.40 − 0.70
�+(uus) 1.557 1.628 2.60 – – – 2.7377 2.758 1.9 2.87
�0(uds) 0.499 0.535 − 1.48 – – – 0.8222 0.834 0.54 0.76
�−(dds) − 0.560 − 0.559 − 1.26 – – – − 1.0932 − 1.089 − 0.87 − 1.48
�0(ssu) − 0.929 − 1.068 − 1.32 – – – − 1.3734 − 1.414 − 0.95 − 1.37
�−(ssd) − 0.405 − 0.509 − 0.57 – – – − 0.4157 − 0.452 − 0.41 − 0.82
�++(uuu) 3.341 3.341 5.267 – – – – – 4.91 5.24
�+(uud) 1.671 1.671 2.430 – – – – – 2.46 0.97
�0(udd) 0 0 − 0.408 – – – – – 0.00 − 0.035
�−(ddd) − 1.671 − 1.671 − 3.245 – – – – – − 2.46 − 2.98
�∗ +(uus) 1.781 1.767 3.208 – – – – – 2.55 1.27
�∗0(uds) 0.102 0.040 0.188 – – – – – 0.27 0.33
�∗ −(dds) − 1.577 − 1.687 − 2.105 – – – – – − 2.02 − 1.88
�∗0(ssu) 0.203 0.083 0.508 – – – – – 0.46 0.16
�∗ −(ssd) − 1.473 − 1.686 − 1.805 – – – – – − 1.68 − 0.62

+

c (udc) 0.423 0.423 – – 0.42 0.385 0.341 0.352 – –
�++

c (uuc) 1.378 1.378 – 2.4 1.76 2.279 2.44 2.448 – –
�+

c (udc) 0.238 0.238 – 0.5 0.36 0.501 0.525 0.524 – –
�0

c (ddc) − 0.903 − 0.903 – − 1.5 − 1.04 − 1.015 − 1.391 − 1.400 – –
�+

c (usc) 0.424 0.426 – 0.8 0.41 0.711 0.796 0.779 – –
�0

c (dsc) 0.424 0.426 – − 1.2 0.39 − 0.966 − 1.12 − 1.145 – –

0

b(udb) − 0.073 − 0.074 – – − 0.06 − 0.064 – – – –
�+

b (uub) 1.675 1.681 – 2.4 2.07 2.229 2.575 2.586 – –
�0

b (udb) 0.437 0.439 – 0.6 0.53 0.592 0.659 0.662 – –
�−

b (ddb) − 0.801 − 0.804 – − 1.3 − 1.01 − 1.047 − 1.256 − 1.261 – –
�0

b(usb) − 0.073 − 0.074 – 0.7 − 0.06 0.766 0.93 0.917 – –
�−

b (dsb) − 0.073 − 0.074 – − 1.2 − 0.06 − 0.902 − 0.985 − 1.006 – –

may be noted in both Sets I and II. This enhancement is due to the small magnitudes of these
magnetic moments in free space, as can been seen in Tables 5 and 6. Between the corresponding
results given in Tables 5 and 6, one can also see the effect of the different strange quark mass
values, respectively ms = 250 MeV and ms = 93 MeV. The absolute value of the strange quark
magnetic moment |μs| becomes smaller, 0.429 → 0.275, as the ms value changes 250 → 93 MeV.
Then, all changes involving the strange quark magnetic moment can be understood in Table 6
as follows. Namely, the corresponding magnetic moments in Table 6 are less influenced by the
strange quark magnetic moment μs < 0 than those in Table 5. On the other hand, the use of
mb = 4200 MeV or mb = 4180 MeV gives negligible difference.

The tiny decreases (or no changes up to the digits shown) observed for the magnetic moments
of 
, �−, 
+

c , 
b, �+,0
c , and �0,−

b as the baryon density increases can be understood as follows.
Their total magnetic moments are μs, μc, or μb for the 
 and the corresponding 
-like baryons,
or (4μs − μu,d)/3 for �0,−. In the QMC model, the s, c, and b quarks do not couple the mean
fields σ or ω. Thus, their wave functions are not directly modified as the first-order interac-
tions of σ and ω mean fields. However, the mean fields, in particular the σ field, couple to the
light quarks u and d in these baryons, and the effective masses of these baryons decrease (or
they get the attractive Lorentz scalar potentials) as the baryon density increases. Accordingly,
the bag radii of these baryons decrease very slightly as the baryon density increases [21] as a
consequence of the simultaneous mass stability condition, Eq. (13). Since the baryon (quark)
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Fig. 4. Density dependence of the octet baryon magnetic moment ratios, the in-medium to free space
(left panel), and the bare �− magnetic moment, which has the largest medium modification in the left
panel, and the corresponding d and s quark magnetic moments (right panel), respectively calculated for
Set I (upper panel) and Set II (lower panel).

magnetic moment is roughly proportional to the bag radius, and the wave functions of the s,
c, and b quarks are not modified as the first order, the s, c, and b quark magnetic moments are
slightly modified as a second-order effect of the bag radius change, and thus the in-medium
quark magnetic moments μ∗

s,c,b decrease very slightly due to the bag radius decrease. The �0,−

cases are similar, because μ∗
s dominates. Thus, the magnetic moments of 
, �−, 
+

c , 
b, �+,0
c ,

and �0,−
b decrease very slightly as the baryon density increases.

To see this more easily, we show the density dependence of the magnetic moments of the octet
baryons in Fig. 4, decuplet baryons in Fig. 5, low-lying charmed baryons in Fig. 6, low-lying
bottom baryons in Fig. 7, and the transition magnetic moments in Fig. 8, calculated for Sets I
and II. In each figure the ratios of the in-medium to free space are shown in the left panel for
both Set I (upper left) and Set II (lower left), while in the right panel the bare density dependence
is shown for the magnetic moment that has the largest medium modification among all in the
left panel, as well as the corresponding quark contributions for Set I (upper right) and Set II
(lower right).

First, we discuss the magnetic moments of the octet baryons shown in Fig. 4. As is known, the
MIT bag model underestimates the octet baryon magnetic moments in free space [151,152], and
the analytic expression for the magnetic moment is roughly proportional to the bag radius. (For
example, see Ref. [153, Table 7.1] for the bag radius dependence on the numerically obtained
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Fig. 5. Density dependence of the decuplet baryon magnetic moment ratios, the in-medium to free space
(left panel), and the bare �∗0 magnetic moment, which has the largest medium modification in the left
panel, and the corresponding u and s quark magnetic moments (right panel), respectively calculated for
Set I (upper panel) and Set II (lower panel).

octet baryon magnetic moments.) Thus, we estimate the medium modifications of magnetic
moments by taking the ratios of the in-medium to free space magnetic moments. The calculated
density dependence of the ratios (left panel) is quite different from that of the MQMC model
shown in Ref. [100]. It is desirable to properly take into account the constraint for the allowed
maximum change derived from the y-scaling data analysis.

In the right panel we show the �− magnetic moment, which has the largest medium modifi-
cation among all in the left panel, as well as the corresponding quark contributions. One can
see that the s quark magnetic moment is only slightly modified in medium, showing a small lin-
ear increase as the density increases. This very small density dependence is expected, since the
s quark does not couple to any meson fields in the present model, and the modification comes
from the change in the bag radius R∗

�.
Next, we show the decuplet baryon magnetic moments in Fig. 5. The �∗0 and �∗0 magnetic

moments have large enhancements as the baryon density increases for both Sets I and II. This
enhancement, as already mentioned, is due to their small magnitudes in free space.

As for the charm sector baryon magnetic moments shown in Fig. 6, one can easily notice that
the medium modification of the �+

c magnetic moment is the largest in the left panel, while those
of 
+

c and �+,0
c are negligibly modified (tiny decrease). The �+

c magnetic moment is enhanced
in the ratio by the small magnitude of the free space magnetic moment as shown in Tables 5
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Fig. 6. Density dependence of the charm baryon magnetic moment ratios, the in-medium to free space
(left panel), and the bare �+

c magnetic moment, which has the largest medium modification in the left
panel, and the corresponding u, s, and c quark magnetic moments (right panel), respectively calculated
for Set I (upper panel) and Set II (lower panel).

and 6. As can be confirmed for the �+
c in the right panel, the increase of the u quark magnetic

moment enhances the ratio.
For the bottom baryon magnetic moments shown in Fig. 7, the �±,0

b magnetic moments show
large medium modifications in the left panel. Differently from the case of �++,+,0

c , the magni-
tudes of the free space magnetic moments do not reflect the enhancement of the ratio of the
�±,0

b magnetic moments. Similar to the charm sector, the 
b and �+,0
b are negligibly modified

(tiny decrease) as expected.
Finally, we show in Fig. 8 the transition magnetic moments for B = (�0, �+

c , �0
b ) → B′ =

(
, 
+
c , 
0

b), calculated for Set I (upper panel) and Set II (lower panel). The density dependence
of the in-medium to free space ratios is shown in the left panel, while the moduli of the bare
values are shown in the right panel. The density dependence seems to be similar for all three
cases in the left panel, but the �0

b → 
b case shows a larger enhancement for both Set I and
Set II. The larger medium modification of |μ�0

b
0
b
|, which can be seen in the left panel, may be

attributed to the larger bag radii for the (�0
b → 
0

b), or the larger integral upper limit (common
bag radius) R∗


b
than those of R∗


 for (�0 → 
) and R∗

+

c
for (�+

c → 
+
c ). In addition, the

effect due to the different ms values can be seen in the enhancement of the �0 → 
 transition
magnetic moment in the bottom right. In this case, the results show that the ms = 93 MeV
(Set II) yields larger bag radii for the � and 
 than those corresponding to ms = 250 MeV
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Fig. 7. Density dependence of the bottom baryon magnetic moment ratios, the in-medium to free space
(left panel), and the bare �−

b magnetic moment, which has the largest medium modification in the left
panel, and the corresponding u, s, and b quark magnetic moments (right panel), respectively calculated
for Set I (upper panel) and Set II (lower panel).

(Set I), giving the larger transition magnetic moment, since the transition magnetic moments
are also roughly proportional to the bag radii of the initial and final baryons, or common bag
radius. Since this feature may be associated with the MIT bag model artifact, we should focus
on the ratios, the in-medium to free space shown in the left panel, as will be discussed next. As
already mentioned, ratios are also used to extract the useful and meaningful experimental data
to reduce ambiguities.

Let us discuss here some aspects of partial restoration of dynamical chiral symmetry
(PRDCS) on the in-medium magnetic moments obtained. As already mentioned, dynamical
chiral symmetry (DCS) and its partial restoration concern the light quarks—the faster reduc-
tions of light quark condensates. The reductions result in a decrease of the (effective) masses
of baryons (hadrons) which contain light quarks. Thus, the largest effect is expected to appear
in the nucleon magnetic moments, likewise the mass reductions of the nucleons are the largest
among the baryons treated in this study, since nucleons are composed of purely light quarks. Or,
the magnitude of mass reduction (attractive Lorentz scalar potential) appears in proportion to
the number of light quarks in the baryon, namely from the larger to smaller order, N, 
s,c,b �
�s,c,b, and �s,c,b (
s ≡ 
). For the case of the baryon magnetic moments, though, the story is a
bit different, since the 
s,c,b magnetic moments are respectively equal to μs,c,b without the light
quark contributions. Note that, the effects of PRDCS are for the “net” modifications of the
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Fig. 8. Density dependence of the transition magnetic moment ratios, the in-medium to free space (left
panel), and the moduli of the bare values in medium (right panel), respectively calculated for Set I (upper
panel) and Set II (lower panel).

light quark magnetic moments μu and μd. For the transition magnetic moments, since all three
transitions treated in this study are proportional to |(μu − μd )/

√
3|, the transition magnetic

moments reflect directly the PRDCS. In the ratios shown in Figs. 4–8, the modifications of the
μu and μd are modulated by the other contributions from s, c, and b quark magnetic moments,
respectively μs,c,b, for the sum for each baryon magnetic moment except for those of 
s,c,b. In
addition, a small but non-negligible modification of the in-medium bag radius of each baryon
influences the in-medium magnetic moment by a small amount. (In the MIT bag model the
magnetic moment of a baryon is roughly proportional to the bag radius.) Although the results
shown in Figs. 4–8 contain these mixed effects in the ratios, the clear conclusion is that the light
quark in-medium to free magnetic moment ratios become enhanced to be |μ∗

u,d/μu,d | > 1, and
these inequalities are valid for all the relevant baryons in medium, although for 
s,c,b and �c,b

they do not explicitly contribute and affect the results. The magnetic moments of μs,c,b are not
modified in the first-order effects of PRDCS in the QMC model. These features can be clearly
seen from the right panels in Figs. 4–8.

Next, we discuss the ratios of the in-medium to free space transition magnetic moments, since
the ratios are expected to reduce the possible ambiguities originating from the MIT bag model
artifact as follows. Let us denote the true values in medium as μ∗true

BB′ (ρB) and in free space as
μtrue

BB′ (0), respectively, and the corresponding errors by ε∗(ρB) and ε(0). Then, the ratio of the
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in-medium to free space can be estimated by

μ∗
BB′ (ρB)

μBB′ (0)
= μ∗true

BB′ (ρB)(1 ± ε∗(ρB))
μtrue

BB′ (0)(1 ± ε(0))

� μ∗true
BB′ (ρB)
μtrue

BB′ (0)
(1 ± ε∗(ρB) ∓ ε(0)) = μ∗true

BB′ (ρB)
μtrue

BB′ (0)
[1 ± (ε∗(ρB) − ε(0))], (33)

where 0 < ε∗(ρB), ε(0) � 1 are assumed. The signs in front of them in the first line in Eq. (33)
are expected to be the same, since ε∗(ρB) varies smoothly as ρB → 0, and ε∗(ρB) → ε(0) to make
the ratio unity. Then, |(ε∗(ρB) − ε(0))| becomes smaller in Eq. (33).

To get a better idea of the bag radius difference, we estimate the differences in free space and
at ρ0 [21] with the Set I and Set II results, and obtain(

RB(0) − RB′ (0)
RB′ (0)

,
R∗

B(ρ0) − R∗
B′ (ρ0)

R∗
B′ (ρ0)

)
< (0.045, 0.045), (34)

where the inequality holds for all three cases, B = (�0, �+
c , �0

b ) → B′ = (
, 
+
c , 
0

b) with
RB(0) − RB′ (0) > 0 and R∗

B(ρ0) − R∗
B′ (ρ0) > 0, for both sets (Tables 1 and 2). Furthermore,

since the bag model result for the diagonal magnetic moment μB (μ∗
B) is roughly proportional

to the bag radius RB (and R∗
B) [151], we can expect the size of the ambiguity to be of the same

order as in Eq. (34).
In fact, the octet baryon magnetic moments and transition magnetic moments were studied in

the U(3) symmetry model [148] (equivalent to the SU(3) symmetry model of Refs. [149,150] for
this case), by including up to the first order of mass splitting interaction. Then, the following
relations were obtained:

μ�0 = 1
2

[μ�+ + μ�− ] , (35)

μ�0
 = μ
�0 = 1

2
√

3
[μ�0 + 3μ
 − 2μ�0 − 2μn] . (36)

We examine the above relations in the present results of the MIT bag model in free space. For
Eq. (35), we get the left-hand side (LHS) and right-hand side (RHS) values of (LHS, RHS) =
(0.499, 0.499) [(0.457,0.457)] using the values in Table 5 (Set I) [Table 6 (Set II)], while for
Eq. (36) we get (LHS, RHS) = (0.868, 0.900) [(0.901,0.914)]. For the latter, the deviation may be
estimated as (0.900 − 0.868)/0.868 = 0.037 [(0.914 − 0.901)/0.901 = 0.014]. On the other hand,
using the experimental data for the octet baryon magnetic moments and |μExpt.

�0→

| = 1.61 [139]

with μ�0 ≡ (1/2)[μExperiment
�+ + μ

Experiment
�− ], we get (LHS, RHS) = (1.61, 1.483) for Eq. (36). The

deviation is estimated by (1.61 − 1.483)/1.483 = 0.086. Thus, including the SU(3) symmetry-
breaking mass splitting interaction up to the first order, the deviation from the relation is larger
when we use the experimental results than using the MIT bag model results for both Sets I
and II. Based on these estimates, the ambiguities arising from the possible MIT bag model ar-
tifact, such as the bag radius difference, are not expected to affect the estimated ratios for the
transition magnetic moments within the present status of the experimental precision.

To make the analysis complete, we also study the Coleman–Glashow relations [154] that were
derived in a unitary symmetry scheme by defining the ratios Ri (i = 1, …, 8):

μ�+ = μp → R1 ≡
∣∣∣∣μ�+ − μp

μp

∣∣∣∣ , (37)

μ
 = 1
2
μn → R2 ≡

∣∣∣∣∣μ
 − 1
2μn

1
2μn

∣∣∣∣∣ , (38)
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Table 8. The ratios Ri (i = 1, …, 8) from Eqs. (37)–(44) calculated with Set I, Set II, and experi-
mental data, corresponding to the Coleman–Glashow relations [154], and the ratios for experimental
data, μB/μB(Experiment), where μ�0 (Experiment) = 1

2 [μ�+ (Experiment) + μ�− (Experiment)] = 0.649
is used.

Ratio Set I Set II Experiment

R1 0.014 0.061 0.120
R2 0.163 0.022 0.359
R3 0.092 0.044 0.347
R4 0.094 0.092 0.318
R5 0.209 0.006 0.207
R6 0.277 0.089 0.439
R7 0.024 0.046 0.322
R8 0.020 0.017 0.028
μp/μp(Experiment) 0.550 0.550 1
μn/μn(Experiment) 0.535 0.535 1
μ
/μ
(Experiment) 0.700 0.816 1
μ�+/μ�+ (Experiment) 0.633 0.662 1
μ�0/μ�0 (Experiment) 0.769 0.828 1
μ�−/μ�− (Experiment) 0.483 0.481 1
μ�0/μ�0 (Experiment) 0.743 0.854 1
μ�−/μ�− (Experiment) 0.622 0.782 1

μ�0 = μn → R3 ≡
∣∣∣∣μ�0 − μn

μn

∣∣∣∣ , (39)

μ�− = − [
μp + μn

] → R4 ≡
∣∣∣∣∣μ�− + [

μp + μn
]

− [
μp + μn

]
∣∣∣∣∣ , (40)

μ�− = − [
μp + μn

] → R5 ≡
∣∣∣∣∣μ�− + [

μp + μn
]

− [
μp + μn

]
∣∣∣∣∣ , (41)

μ�− = μ�− → R6 ≡
∣∣∣∣μ�− − μ�−

μ�−

∣∣∣∣ , (42)

μ�0 = −1
2
μn → R7 ≡

∣∣∣∣∣μ�0 + 1
2μn

− 1
2μn

∣∣∣∣∣ , (43)

|μ�0
| =
∣∣∣∣1
2

√
3μn

∣∣∣∣ → R8 ≡
∣∣∣∣∣∣
|μ�0
| −

∣∣∣ 1
2

√
3μn

∣∣∣
1
2

√
3μn

∣∣∣∣∣∣ . (44)

In the above, Ri (i = 1, …, 8) will be evaluated with the experimental data and the re-
sults from Sets I and II, where we have already analyzed the relation μ�0 (Experiment) =
1
2 [μ�+ (Experiment) + μ�− (Experiment)] = 0.649 by Eq. (35), which is independent of the uni-
tary symmetry scheme, and we will use this value as μ�0 (Experiment) in this analysis. We also
take into account the unknown sign in the experiment of |μ�0
|. The obtained ratios Ri (i =
1, …, 8) for Sets I and II and Experiment are given in Table 8. In addition, we give the ratios
μB/μB(Experiment) for convenience.

The results for Ri (i = 1, …, 8) given in Table 8 show that the Coleman–Glashow relations
[154] are broken by up to about 45% in the data, and up to about 30% (70%) in the Set I
(Set II) results. The Coleman–Glashow relations are not realized well in nature, as well as in
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the MIT bag model results obtained for Sets I and II. In particular, the values for R8 in Eq. (44)
associated with μ�0
 are respectively obtained as (Set I, Set II, Experiment) = (0.020, 0.017,
0.028), and the experimental data give a larger deviation from the Coleman–Glashow relation.
Thus, the ambiguity due to the possible MIT bag model artifact (the bag radii difference, etc.)
is not expected to significantly affect the conclusions for the transition magnetic moments in
medium.

The estimated medium modifications of the magnetic moments and the transition magnetic
moments at the nuclear matter saturation density (ρ0) may not be directly reflected in the ex-
perimental results. In future experiments, although it is expected to be very difficult, if the
charmed/bottom hypernuclei can be formed, for example, it might not be impossible to mea-
sure the magnetic moments of the bound charmed/bottom baryons for those treated in this
study. For example, similarly to the proton knockout reaction used for extracting the bound
proton electromagnetic form factor double ratios by a polarization transfer measurement, it
might be possible to extract the charged charm/bottom baryon electromagnetic form factor
double ratios at very small momentum transfer, where the charge form factor at zero momen-
tum transfer gives the charge, and the information on the in-medium magnetic moment can be
extracted. But, such possibilities are, at present, very remote and speculative.

However, the modifications in the higher-density region near 3ρ0 may affect some studies
of heavy ion collisions, and the structure and reactions occuring in the inner cores of magne-
tars, neutron stars, and compact stars. In the cores of such high-density compact objects, in
particular very high-density compact stars, one may expect the appearance of charm and bot-
tom baryons, although no charm quark-matter star is expected to be stable [18–20], using the
flat space-time equations of state (EOS). However, it has been discussed that the use of EOS
computed in the curved space-time of neutron stars may yield higher central energy densities
and masses—about 16.9% for an idealistic neutron star case—than when calculated using the
flat-space EOS [155]. The authors state that the result favors resolving the “hyperon puzzle” of
the neutron star. We would like to comment that, within the QMC model treatment, the pos-
sibility of resolving the “hyperon puzzle” due to the quark structure of nucleons and hyperons
has been reported in Refs. [59–63]. It might be interesting to study the possibility of a charm
quark-matter star as well as very high-density compact stars using the curved space-time EOS
including the charm and bottom baryons to study whether or not such heavy baryons can in-
deed influence the structure. In addition, dominant charm hadron contributions to neutrino
fluence in ultra high-energy neutrino production by newborn magnetars have been suggested
[156].

4. Summary and conclusion
We have studied the medium modifications of magnetic moments and transition magnetic mo-
ments of the octet, decuplet, low-lying charm, and low-lying bottom baryons with nonzero
light quarks in symmetric nuclear matter using the quark–meson coupling model, which satis-
fies the constraint for the allowed maximum change (swelling) of the nucleon size in medium,
derived from the y-scaling data analysis—and thus satisfies the allowed maximum enhance-
ment of the nucleon magnetic moment at the nuclear matter saturation density. The model
has been extended to treat the decuplet baryons. This is the first study to estimate the in-
medium magnetic moments and transition magnetic moments of the low-lying charm and
low-lying bottom baryons with nonzero light quarks. In the estimates we have assumed the
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“1–2 quark order” for the charm and bottom baryon flavor–spin wave functions as practised
for the octet baryon SU(6) wave functions, namely, quarks 1 and 2 are the closest in mass. The
issue of a different quark order is a concern for the �c,b baryons in the present study. The “1–
2 quark order” is supported as the best quark ordering for flavor-degenerate baryons for the
masses.

In addition, we have estimated using two sets of current quark mass values, Set I (Table 1)
and Set II (Table 2). The features obtained for the medium modifications are generally similar
for the two sets.

The estimates of the medium modification are made by calculating the in-medium to free
space baryon magnetic moment ratios, to compensate for the known MIT bag deficiency in
obtaining the magnitude of the free space octet baryon magnetic moments. In connection
with this, we have given examples where many experiments directly measure ratios to extract
meaningful physics quantities, such as the electromagnetic form factors of the free and bound
proton—experimental data extracted at Jefferson Laboratory support the in-medium to free
ratios predicted by the quark–meson coupling model, and the European Muon Collaboration
effect. The observed maximum modifications for the (octet, decuplet, charm, bottom) baryon
sectors are, for the (�−, �∗0, �+

c , �0
b ) baryons respectively and the corresponding modifica-

tions, about (12%, 158%, 17%, 12%) [(11%, 257%, 17%, 12%)] at normal nuclear matter den-
sity (ρ0 = 0.15 fm−3), and about (23%, 215%, 32%, 24%) [(25%, 414%, 32%, 23%)] at 3ρ0 for
Set I [Set II], where the large enhancement of the �∗0 is due to the very small magnitude in free
space in Set I [Set II].

As for the medium modifications of the transition magnetic moments μBB′ with
B = (�0, �+

c , �0
b ) → B′ = (
, 
+

c , 
0
b), the modifications at ρ0 are about (9%, 9%, 10%)

[(9%, 9%, 10%)], while at 3ρ0 they are about (15%, 15%, 17%) [(16%, 15%, 17%)] for Set I
[Set II]. Concerning the possible ambiguities arising from the MIT bag model artifact, we have
discussed the difference of the initial and final baryon bag radii in free space as well as in sym-
metric nuclear matter, based on the evidence observed for the violation of the Ademollo–Gato
theorem in the weak-interaction vector charge calculation. Furthermore, we have studied the
possible impact of the ambiguities on the estimated results based on the SU(3) (U(3)) sym-
metry relations as well as the Coleman–Glashow relations using the calculated results and the
experimental data. It turned out that such ambiguities are not expected to affect the estimated
ratios of this study, within the present status of the experimental precision.

The medium modifications of baryon magnetic moments that have been estimated by the
ratios in this study may serve as new realistic inputs for studies of magnetar and neutron star
structure, in particular for systems with high baryon density with nearly zero temperature and
extremely strong magnetic fields.

For practical use, we have given the explicit density-dependent parametrizations for the vector
potentials of the baryons and light-(u, d) quarks, as well as for the effective masses of the low-
lying baryons treated in this study, and of the ω, ρ, K, K∗, η, η′, D, D∗, B, and B∗ mesons. The
parametrizations given in this study may open wider applications and studies for the properties
of the corresponding baryons and mesons in medium.

As extensions, we plan to include the meson cloud effects in medium, and also study the
medium modifications of the weak-interaction axial charges of the octet, decuplet, low-lying
charm, and low-lying bottom baryons with nonzero light quarks.
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