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1 Introduction

In the search for toy models able to capture the main features of the most salient black hole
conundrums, lower-dimensional theories [1–4] have always stood out.1 The seminal work
of Brown and Henneaux [8] has for the first time pointed at a connection between AdS
gravity and a CFT, and BTZ black holes [9, 10] have successfully been used in a variety of
contexts to explore properties of gravity beyond the classical regime. In recent years, the
principles of AdS/CFT have been applied to Kerr black holes with potential groundbreaking
applications in astronomy [11]. The status of the correspondence is however not settled as
several consistent and possibly related proposals exist [12–17].

A useful lower-dimensional toy model for Kerr black holes has emerged over the years
in the form of a deformed BTZ spacetime, the so-called Warped AdS3 (WAdS3) black
holes, [18–26]. WAdS3 black holes display features departing from AdS3 black holes and
closer quantitatively to Kerr. For instance, the near-horizon geometry of extremal black

1The literature, especially for 3-dimensional gravity, is vast. Some standard useful books and reviews
are [5–7].
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holes has SL(2, R) × U(1) isometry like the near horizon region of extremal Kerr black
holes (NHEK) [27]; actually, it is a section of constant polar angle of NHEK. Also, their
Penrose diagram resembles that of an asymptotically flat black hole [28]. The study
of the asymptotic symmetry group of WAdS3 black holes in the spirit of Brown and
Henneaux has revealed that they belong to a phase space with symmetries consisting in
the semi-direct product of a chiral Virasoro algebra with an affine u(1) current [24, 29–
31]. This suggested the existence of a new class of 2d field theories, Warped Conformal
Field Theories (WCFTs) [14], invariant under translations and chiral scaling but not
rotations [32], to which WAdS3 would be dual to. The symmetries of WCFT are, to
some extend, almost as powerful as a 2-dimensional CFT. For this reason, many of the
questions that can be explored and answered in a 2-dimensional CFT have also become a
subject of interest for WCFTs in the last few years: bootstrap techniques [33], the study of
partition functions [14, 34], and their entanglement entropy [35–37]. Interestingly, examples
of WCFTs have been found in chiral Liouville gravity [38], free Weyl fermions [39], and free
scalars [40].

States in a WCFT can be labelled by the zero modes of the algebra (2.4)–(2.6): L0
and P0. However, we are free to use another combination of generators to refer to them, for
instance, the zero modes of the algebra (2.28)–(2.30), L̃0 and P̃0. From these generators,
one can build two different density matrices, ρc = e−βP0+iθL0 corresponding to what we
refer to as canonical ensemble and ρq = e−βLP̃0−βRL̃0 corresponding to what we will call
quadratic ensemble. The entropy of a thermal state is independent of the ensemble. Now,
for ρc, which is the ensemble usually considered for WAdS3 black holes, we cannot use
a Cardy like formula to derive the black hole entropy, because the conditions to derive
this Cardy-like formula are not satisfied by the dual bulk spacetime, because the spectrum
of L0 is not bounded from below. For ρq instead, we do know how to proceed, and we
can compute the entropy. The charges (Ln, Pn) (called “canonical”) and (L̃n, P̃n) (dubbed
“quadratic”) are related to one another, and yield slightly different algebras (referred to as
canonical (2.4)–(2.6) and quadratic algebras (2.28)–(2.30)). This operation at the boundary
has a counterpart in the bulk: it is a non-local change of coordinates, which amounts to two
different choices of boundary conditions. Performing it on the regular WAdS3 black hole
solution (dual to ρc), one gets the black hole solution dual to ρq (Warped BTZ). The goal
of this paper is to write boundary conditions including these solutions, and to have a bulk
realization of the boundary relation between canonical and quadratic generators. For the
zero mode charges, and solutions, this is trivial and spelled out in [14]. We here extended
this to the whole phase space and asymptotic Killing vectors. The phase space obtained is
shown to have a symmetry algebra of WCFT expressed in quadratic charges, as expected.
The boundary conditions we obtain are a natural generalization of the Compère, Song, and
Strominger (CSS) boundary conditions [41] for AdS3 spaces (which in our terminology are in
quadratic ensemble, satisfying (2.28)–(2.30)), to allow for more leading metric components
as one approaches the boundary.2

2In that sense, the boundary conditions of [29] for µ` = ±3, i.e. in the AdS3 limit, are the CSS boundary
conditions in canonical ensemble described in appendix B of [41].
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The paper is organized as follows. In section 2, we review WAdS3 black holes and the
bulk change of coordinates to go to the WBTZ line element. We discuss how WAdS3 black
holes are dual to a WCFT in canonical ensemble while the WBTZ line element is dual to the
quadratic ensemble. We further show that the warped Cardy formula is well-defined only for
WCFTs dual to WBTZ coordinates. This serves as a motivation for introducing in section 3
new boundary conditions naturally encompassing WBTZ black holes. We further show in
this section two relevant limits of our new solution space: the null warped and CSS limit. A
discussion of the various regimes as a function of the TMG Chern-Simons coupling constant
is also presented. In section 4, we compute the surface charges in TMG, and find that they
are not integrable in general. We propose two ways to render them integrable: a restriction
of the solution space, giving rise to a solution dual to a thermal state in a WCFT in
quadratic ensemble; and a redefinition of the symmetry generators, giving rise to a solution
dual to a thermal state in a WCFT in canonical ensemble. We subsequently perform the
entropy analysis in section 5. We compute the bulk thermodynamic entropy and compare
it with the WCFT Cardy formula, showing that they match once the vacuum is correctly
identify. This is a delicate procedure because the standard enhancement of isometries
is not enough to single out the vacuum. This fact opens the door to interesting future
investigations, that we discuss in the conclusions, after summarizing the main achievements
of the paper. We exile to appendix A the study of new boundary conditions that include
pp waves.

2 From WAdS3 to warped BTZ and warped Cardy formula

We present in this section a self-contained review of the WAdS3 analysis, the bulk change
of coordinates to WBTZ black holes, and the warped Cardy formula which is counting the
degeneracy of states in the dual WCFT. We detail the conditions on the spectrum to ensure
the well-definiteness of this formula, and show that these conditions are met in holographic
setup in the quadratic ensemble, but not in the canonical ensemble.

The line element for Warped black holes is (see e.g. [21–24])

ds2 = dρ2

12j
µ + 1

9
ρ2

`2 (µ2`2 + 27)− 12mρ
+ `2dT2 − 4

3µ`ρ dT dψ

+
(
ρ2

3`2
(
µ2`2 − 3

)
+ 12mρ− 12j

µ

)
dψ2 (2.1)

with ρ ∈ [0,∞), T ∈ (−∞,∞), and ψ ∼ ψ+2π. This solves the 3-dimensional Topologically
Massive Gravity (TMG) [42] equations of motion

Rµν −
R

2 gµν + Λgµν + 1
µ
Cµν = 0. (2.2)

This theory depends on two parameters: the cosmological constant Λ and the Chern-Simons
coupling µ. While the equations of motion (2.2) have solutions for all values of µ, we can,
without loss of generality, assume µ > 0 in the following. This comes about because each
negative-µ solution can be rewritten with µ > 0 sending µ→ −µ, ψ → −ψ, and j → −j.
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Indeed, due to the conventions in the Cotton Hodge dual, defined below, eq. (2.2) are
invariant under this symmetry. The Cotton Hodge dual is defined as

Cµν = ηµ
ρσ∇ρ

(
Rσν −

1
4Rgσν

)
with ηµνρ =

√
|g|εµνρ, (2.3)

where ηµνρ and εµνρ are the Levi-Civita tensor and symbol, respectively, and Λ = − 1
`2 . It

is worth noting that the metric (2.1) becomes locally AdS3 at µ = 3
` (it is the BTZ black

hole line element [9, 10], albeit in unusual coordinates).
The metric (2.1) has been extensively studied in the literature, and boundary conditions

have been outlined in previous accounts on the topic, [25, 26, 29–31]. It belongs to a phase
space whose asymptotic symmetry algebra is given by that of a WCFT in canonical ensemble

[Ln, Lm] = (n−m)Ln+m + c

12n(n− 1)(n+ 1)δn+m, (2.4)

[Ln, Pm] = −mPm+n, (2.5)

[Pn, Pm] = k

2nδn+m, (2.6)

where the central extensions are given by [24, 29–31]3

c = 15`2µ2 + 81
G`2µ3 + 27Gµ, k = −`

2µ2 + 27
18Gµ . (2.7)

For black hole solutions, the zero modes of the charges are given by

L0 = Q∂ψ = − j

6Gµ2`2

(
27 + 5`2µ2

)
+ 9m2

2Gµ, (2.8)

P0 = Q∂T = `m

G
. (2.9)

Requiring the absence of naked singularities we find, in terms of the parameters m and j,
that

m2 ≥ j

`2µ
+ jµ

27 = −2Gkj
3`2 . (2.10)

This can be translated in terms of the zero mode charges as

L0 ≥
P 2

0
k
. (2.11)

For these boundary conditions, we get a WCFT in canonical ensemble. The warped
Cardy formula [14] is

S = −4πiP0P
vac
0

k
+ 4π

√√√√−(Lvac
0 − (P vac

0 )2

k

)(
L0 −

P 2
0
k

)
. (2.12)

The vacuum values of the charges were previously identified as

Lvac
0 = − c

24 + (P vac
0 )2

k
, (P vac

0 )2 = − `
2

36 . (2.13)

3In comparing with these references, we have different factors of ` because our time coordinate is dimen-
sionless.
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Notice that we have c > 0 and thus

Lvac
0 − (P vac

0 )2

k
= − c

24 < 0. (2.14)

Consequently, the first condition for the well-definiteness of (2.12) is

L0 −
P 2

0
k
> 0, (2.15)

which is automatically satisfied thanks to (2.11). The result (2.12) was shown to match
the Bekenstein-Hawking entropy of the corresponding dual black hole metrics in TMG.
However, another condition on the spectrum necessary to derive (2.12) is that L0 is bounded
from below, see [14]. Given (2.11), and the fact that j can attain any value, we are in a
setup where L0 is unbounded, which means that we are not in the regime of validity of
the warped Cardy formula. This makes the use of the canonical ensemble in holographic
instances questionable.

In [14], WAdS3 black holes were reinterpreted as a deformation of the BTZ metrics
— of the form (2.23). The resulting spaces, already mentioned in the introduction and
dubbed “Warped BTZ” (WBTZ) are related to (2.1) through a charge-dependent change of
coordinates. This change of coordinates induces a boundary change of coordinates between
the vacuum metric on the plane (the warped version of the Poincare metric) and the black
holes of Rindler type [14, 43], allowing an interpretation of the black holes as being dual
to a thermal density matrix in the spirit of [44]. This change of coordinates has the effect
of redefining the zero mode charges and suggests that the symmetry algebra differs from
that of a WCFT in canonical ensemble. From the bulk gravitational field space viewpoint,
this field-dependent change of coordinates leads to the same metric falloffs at the boundary
but different varying quantities, that is, different boundary conditions.4 In particular, the
level becomes charge-dependent (see also [33] for a discussion), and the new zero-mode
charges are related to the former ones by a quadratic redefinition (see section 4, eq. (55)
of [14]). A WCFT partition function involving these new charges is therefore said to be in
quadratic ensemble. In the latter, the conditions on the spectrum to ensure the validity of
the warped Cardy formula are satisfied, as we review below. Nonetheless, intrinsic boundary
conditions for the quadratic ensemble, containing these black hole solutions, have not been
derived so far. As stated in the introduction, the main goal of this paper is to derive the
aforementioned boundary conditions, such that the asymptotic symmetry algebra is that of
a WCFT in quadratic ensemble and the spectrum is in the regime of validity of the warped
Cardy formula, as just explained.

The change of coordinates aforementioned brings (2.1) to the so-called WBTZ metric.
Calling the new coordinates (t, r, φ), it is explicitly given by

T (t, r, φ) = 2
√

2G (1− 2H2) (2H2 + 3) (LM − J)√
3LL

t, (2.16)

4An equivalent way to formulate the problem is to say that we are looking for the field-dependent behavior
of the (ADM) lapse and shift for which the charges are integrable.
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ρ (t, r, φ) =
√

3LL
4
√

2G (2H2 + 3) (LM − J)
r2 −

√
3GLJL2√

2 (2H2 + 3) (LM − J)
, (2.17)

ψ (t, r, φ) =
√

2H2 + 3 (Lφ+ t)√
3L2 . (2.18)

The parameters M,J,H , and L just introduced are related to the WAdS3 parameters as

` =
√

3L√
3 + 2H2

, µ = 3
√

1− 2H2

L
, m =

√
2
√
GL (LM − J)

3(2H2 + 3) , j = −3G
√

1− 2H2JL2

2H2 + 3 .

(2.19)
The change of coordinates (2.16)–(2.18) is a non-local/charge dependent transformation.
Indeed, defining x± = t

L ± φ, we observe in particular that

T =
2
√

2
√
G
√√

1− 2H2 (2H2 + 3)
L3/2

√
P̃0 t, (2.20)

where we introduced
Q∂− ≡ P̃0 = 1

3
√

1− 2H2(LM − J). (2.21)

The time coordinate is therefore rescaled by the charge. As we will shortly see, this affects
the asymptotic symmetry algebra in a non-trivial way.

The resulting metric after the change of coordinates (2.16)–(2.18) is

ds2
WBTZ = L2r2

16G2J2L2−8GL2Mr2 +r4dr
2−2

(
H2− 1

2

)(
4GL2M−r2

)
dx+dx− (2.22)

− 8G2L2 (J2 +
(
2H2−1

)
L2M2)−8GH2L2Mr2 +H2r4

4GL(LM−J) dx+2

−2GL(2H2−1)(LM−J)dx−2.

This is the so-called WBTZ line element, which as advertised earlier can be obtained as a
deformation of the classic BTZ black hole spacetime [9, 10] of the form

ds2
WBTZ = ds2

BTZ − 2H2ξ ⊗ ξ, (2.23)

with

ds2
BTZ =

(
− r

2

L2 + 8MG

)
dt2 + r2L2dr2

r4 + 16L2J2G2 − 8MGL2r2 + 8JGdtdφ+ r2dφ2, (2.24)

the BTZ metric solving Einstein equations with Λ = − 1
L2 . The deformation ξ is the one

form dual under ds2
BTZ to the vector field

ξ = 1√
8GL(LM − J)

(−L∂t + ∂φ) = − 1√
2GL(LM − J)

∂−, (2.25)

where the prefactor is obtained requiring the norm of this vector being 1.

– 6 –
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The metric (2.23) solves the TMG equations of motion (2.2) for5

Λ = − 1
27L2

(
36− µ2L2), H2 = 9− µ2L2

18 , µ > 0. (2.26)

The metric has two globally defined Killing vectors ∂− and ∂+ with corresponding
conserved charges given by (2.21) and

Q∂+ ≡ L̃0 = 2(1−H2)
3
√

1− 2H2
(LM + J). (2.27)

The family of solutions (2.22) was conjectured in [14] to be dual to thermal states in a
WCFT in quadratic ensemble, that is a 2-dimensional field theory with symmetry algebra[

L̃n, L̃m
]

= (n−m)L̃n+m + c

12
(
n3 − n

)
δn+m, (2.28)[

L̃n, P̃m
]

= −mP̃m+n, (2.29)[
P̃n, P̃m

]
= −2nP̃0δm+n. (2.30)

The asymptotic degeneracy of states of field theories with algebras (2.28)–(2.30) has
been determined in [14] in a Cardy-like regime assuming certain conditions on the spectrum

S = 4π
√
−P̃ vac

0 P̃0 + 4π
√
−L̃vac

0 L̃0. (2.31)

Here, P̃ vac
0 and L̃vac

0 are the zero modes of the vacuum of the theory in the quadratic
ensemble. From the change of coordinates, the new zero modes are

L̃0 = L0 −
P 2

0
k
, P̃0 = −P

2
0
k
. (2.32)

The condition on the spectrum is that L̃0 must be bounded from below which, thanks
to (2.15), is now satisfied in this ensemble, because L̃0 ≥ 0. Hence, we are in the domain of
validity, as claimed above.

The goal of this manuscript is to determine a phase space in TMG with metrics falling
off at infinity like the WBTZ metrics, which exhibit a different fall-off from BTZ due to the
warping. Indeed, comparing (2.22) with the unwarped BTZ metric,

ds2
BTZ = L2r2

16G2J2L2 − 8GL2Mr2 + r4dr
2 + (4GL2M − r2)dx+dx− + 2GL(LM + J)dx+2

+ 2GL(LM − J)dx−2, (2.33)

we see that the warping is over-leading in the dx+ component. Eventually, this means that
we are looking for relaxed boundary conditions, in order to capture WBTZ metrics, of
the form

g++ = O
(
r4
)
, g+− = O

(
r2
)
, g−− = O (1) , grr = L2

r2 +O
(
r−4

)
, (2.34)

and show that its symmetries are given by (2.28)–(2.30).
5The signature here is (−1, 1, 1) and we choose εtrφ = 1√

−g . If one changes the convention on ε, i.e.,
changes the order of the coordinates, then one has to change the sign of µ accordingly.
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3 New boundary conditions

Guided by the motivations of the previous section, we derive here new boundary conditions
encompassing WBTZ black holes. We first outline the boundary conditions, then show how
the solution space is restricted to give WBTZ black holes, and finally study two limits in
which we retrieve familiar line elements.

3.1 Setup

A solution of (2.2) is given, trading Λ for L as

Λ = − 1
27L2

(
36− µ2L2), (3.1)

and using the Fefferman-Graham (FG) gauge, with coordinates xa = (x+, x−) such that
x± = t

L ± φ,
6

ds2 = gµνdxµdxν = L2

r2 dr
2 + gab(r, x)dxadxb, (3.2)

by the following metric components

g++ = r4j++ + r2h(x+) + f++(x+)

+ h(x+)
(
µ2L2 − 9

) (
4j++µ

2L2f++(x+)− h(x+)2 (µ2L2 − 9
))

8r2j2
++µ

2L2 (µ2L2 + 9)

+
(
µ2L2 − 9

)2 (4j++µ
2L2f++(x+) + h(x+)2 (9− µ2L2))2

64r4j3
++µ

4L4 (µ2L2 + 9)2 (3.3)

g+− = − 1
18µ

2L2r2 − h(x+)
(
µ2L2 − 9

)
36j++

−
(
µ2L2 − 9

) (
4j++µ

2L2f++(x+) + h(x+)2 (9− µ2L2))
144j2

++r
2 (µ2L2 + 9)

(3.4)

g−− = µ2L2 (µ2L2 − 9
)

324j++
. (3.5)

This metric solves (2.2), with the convention εr+− = −1, which is consistent with εtrφ = 1.
Note that the first term in (3.4) is the would-be boundary metric, which is thus flat. One
could generalize this ansatz including a Weyl factor, and reproduce in this context what
has been done in [46]. We will not do this enhancement here, leaving it for future work,
and this will consequently freeze the dilatation symmetry in the asymptotic vectors below.

The parameter L is from now on assumed to be positive, L > 0, which implies that
we have a solution of the equations of motion only in the range µ > 0. The solution space
is characterized by three quantities: a constant j++ and two chiral functions h(x+) and
f++(x+). Various comments are in order here. The first is that the parameter L becomes
the usual AdS radius ` only for µL = ±3. At these points indeed Λ = − 1

L2 . These values of
6One could have chosen any other length ` to normalize time. As long as we pick a quantity with

dimension length it is the same. Note that L becomes `, and so becomes the usual definition of x±, only at
µL = ±3. The conventions on x± are here the same as in [45] (see [109] there).

– 8 –
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µ are critical, and we will study shortly what happens there. In general, the L appearing
in the FG gauge is not the usual one, in contrast with what happens e.g. in [26, 31]. The
second remark is that the line element has been directly defined on-shell, whereas it would
have been more rigorous to find first appropriate boundary conditions off-shell. It can be
viewed as a counterpart of the Bañados metrics for AdS3.

It is important to note that the ansatz we made to solve the TMG equations of motion
involved only integer powers of r. This in turn leads to a family of metrics that is locally
equivalent to the Warped AdS3 black holes, as can be checked by inspecting curvature
invariants built out of the Ricci and Cotton tensors. Therefore, our analysis does not include
the massive graviton around global WAdS3. Including more general, non-diffeomorphic,
solutions capturing the massive mode would require to introduce mu-dependent fall-offs, in
the spirit of [26, 47] for AdS3 in TMG, and of [31] for WAdS3. We leave this for future work.

Our boundary conditions are interesting because they allow to navigate through the
various space-like, time-like, and null warped solutions. The WBTZ black holes in Fefferman-
Graham gauge are given by

ds2 = dr2L2

r2 + 2
9dx

−2Gµ2L3(LM − J)− dx−dx+µ2L2 (4G2L2(L2M2 − J2) + r4)
9r2

+
dx+2

(
µ2L2 (4G2L2(L2M2 − J2) + r4)2 − 9

(
r4 − 4G2L2(L2M2 − J2)

)2)
72GLr4(LM − J) . (3.6)

These solutions are included in our boundary conditions (3.3)–(3.5) for

j++ = µ2L2 − 9
72GL(LM − J) , (3.7)

h = 0, (3.8)

f++ = 1
9GL

(
µ2L2 + 9

)
(J + LM), (3.9)

∆ = µ2L2 − 9
144GLj++

= (LM − J)
2 . (3.10)

Here we introduced also the quantity ∆, which plays an important role in what follows.
Note that, given (3.1), if we want to keep the cosmological constant negative we have

to assume −6 < µL < 6, which is further restricted to 0 < µL < 6, since we assumed both
µ and L positive. The scalar curvature of (3.2) is given by

R = 2(µL+ 6)(µL− 6)
9L2 = 6Λ (3.11)

Consequently, it is negative as long as Λ is. Although extensions to asymptotically flat and
WdS spacetimes are part of our agenda (see e.g. [48]), from now on we will focus on these
values of the Chern-Simons coupling.

3.2 Limits

Our new line element has two interesting limits. The first one is the null warped (NW) limit
obtained setting µL = 3 while keeping j++ arbitrary. The cosmological constant becomes
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Λ = − 1
L2 = − 1

`2 and the line element collapses to

ds2 = `2

r2dr
2 + (r4j++ + r2h(x+) + f++(x+))(dx+)2 − r2dx+dx−. (3.12)

This metric is not an Einstein space, for the Cotton tensor has a non-vanishing component
C++ = 12j++r4

`3 . The line element (3.12) falls inside a bigger class of boundary condi-
tions, where the constant j++ is allowed to be chiral j++(x+) [49]. See appendix A for
further details.

The second limit is the CSS limit. This limit involves both µ and j++. It is performed
sending j++ to zero and µL→ 3 keeping their ratio constant, i.e. keeping g−− finite in the
limit. The quantity ∆ = µ2L2−9

144GLj++
introduced in (3.10) is particularly relevant for this limit.

Note that its sign depends on the sign of j++. Using Λ→ − 1
L2 = − 1

`2 , we obtain

ds2 = `2

r2dr
2 +

r2h
(
x+
)

+f++
(
x+
)
−

4∆G`h
(
x+)(4∆G`h

(
x+)2−f++

(
x+))

r2

(dx+
)2

+4∆G`
(
dx−

)2−
r2 +8∆G`h

(
x+
)
−

4∆G`
(
4∆G`h

(
x+)2−f++

(
x+))

r2

dx+dx−.

(3.13)

We call this the CSS limit because the metric falls into CSS boundary conditions [41],
embedded in TMG as in [45]. This metric has identically vanishing Cotton tensor, so it
is a solution of Einstein equations. The exact matching between (3.13) and the CSS line
element (eq. (1) in [45]) is made via the identification

h(x+) = ∂+P (x+), f++(x+) = 4G`(L̄(x+) + ∆(∂+P (x+))2). (3.14)

We have therefore introduced new boundary conditions that encompass previous results.
Furthermore, they are useful because the asymptotic symmetry algebra turns out to be
that of a WCFT in quadratic ensemble, as we now demonstrate.

We may also observe that the metric (3.6) becomes ill-defined when J = ML. However,
as we will see in the forthcoming sections and can already be seen on (2.21) and (2.27),
the charges themselves are well-defined at these values of the parameters, indicating a
mere coordinate singularity. The metric can be made regular and non-degenerate by a
rescaling r → (−J + LM)1/4r and x− → (−J + LM)−1/2x−, and still belonging to our
family of metrics.

4 Symmetries and charges

We begin this section with the analysis of residual symmetries and the most general variation
of solution space. We then show that surface charges are in general not integrable, and
discuss two possible consistent sets of boundary conditions: a restriction of the solution
space, or a field-dependent redefinition of the generators. In both cases, we study the charge
algebra and consider WBTZ black holes.
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4.1 Residual symmetries and variation of solution space

We denote by χ the solution space, χ = {j++, h(x+), f++(x+)}. We impose to preserve the
FG gauge

£ξgrr = 0 = £ξgra, (4.1)

where £ denotes the Lie derivative. As reviewed in [50, 51], the most general solution
is simply

ξr = rη(x+, x−), ξb = ξb0(x+, x−)− L2∂aη(x+, x−)
∫ r

∞
dr′ g

ab(x+, x−)
r′

, (4.2)

and depends on three arbitrary functions η(x+, x−) and ξb0(x+, x−). Given the discussion
above, it is natural to furthermore impose that residual symmetries leave the metric chiral:

ξr = rη(x+), ξb = ξb0(x+)− L2∂aη(x+)
∫ r

∞
dr′ g

ab(x+)
r′

. (4.3)

To avoid confusion, and because everything is chiral, we call ξ+
0 (x+) = ε and ξ−0 (x+) = σ in

the following. Given our line element, we obtain:

ξ = ξr∂r + ξ+∂+ + ξ−∂− (4.4)

= rη∂r +
(
ε−

2j++µ
2L4 (µ4L4 − 81

)
η′

9
(
−4j++µ2L2f++ (µ2L2 − 9) + h2 (µ2L2 − 9)2 + 8j2

++µ
2L2r4 (µ2L2 + 9)

)) ∂+

+
(
σ −

2j++L
2 (µ2L2 + 9

)
η′
(
h
(
µ2L2 − 9

)
+ 4j++µ

2L2r2)
−4j++µ2L2f++ (µ2L2 − 9) + h2 (µ2L2 − 9)2 + 8j2

++µ
2L2r4 (µ2L2 + 9)

)
∂−. (4.5)

We remark that, since the line element has a finite expansion in the coordinate r, these
vector fields are written in closed form in r.

We now proceed to compute the variation of the solution under residual symmetries
δξχ using as usual δξgµν = £ξgµν , expanded in powers of r. We first focus on the leading
term in the ++ component:

δξj++ = 2j++(2η(x+) + ε′(x+)). (4.6)

We then require j++ to remain constant, which implies

η = −1
2ε
′ + η0, (4.7)

with η0 a constant transforming j++:

δξj++ = 4j++η0. (4.8)

Although this is admissible for j++, if we compute the +− component we obtain

£ξg+− = −r2µ
2L2η0

9 +O(r0), (4.9)

which is not allowed, and thus we must impose η0 = 0. It would be interesting to enhance
this construction including an arbitrary boundary conformal factor as done in [46] for
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Einstein gravity, allowing us to make contact with the recent work [52]. Keeping η0 = 0
means that j++ is fixed along the residual orbits. We proceed and find the full residual
variation of χ, that we summarize here:

δξj++ = 0, (4.10)

δξh = εh′ + hε′ − 1
9µ

2L2σ′, (4.11)

δξf++ = εf ′++ + 2f++ε
′ − (µ2L2 − 9)hσ′

18j++
− (µ2L2 + 9)L2ε′′′

36 . (4.12)

The second expression suggests that h is a u(1) current with level related to the last term.
The last expression indicates that f++ is a Virasoro current, where the last term is the one
related to the central extension.

The most general residual symmetries are thus generated by the on-shell vectors:

ξ = ξr∂r + ξ+∂+ + ξ−∂−, (4.13)

= −r2ε
′∂r +

(
ε+

j++µ
2L4 (µ4L4 − 81

)
ε′′

9
(
−4j++µ2L2f++ (µ2L2 − 9) + h2 (µ2L2 − 9)2 + 8j2

++µ
2L2r4 (µ2L2 + 9)

)) ∂+

+
(
σ +

j++L
2 (µ2L2 + 9

)
ε′′
(
h
(
µ2L2 − 9

)
+ 4j++µ

2L2r2)
−4j++µ2L2f++ (µ2L2 − 9) + h2 (µ2L2 − 9)2 + 8j2

++µ
2L2r4 (µ2L2 + 9)

)
∂−, (4.14)

which depend on two arbitrary chiral functions ε(x+) and σ(x+). For the asymptotic
symmetry algebra, σ generates an abelian algebra

[σ1, σ2] = 0, with σi = σi(x+)∂−, (4.15)

while ε generates the usual Witt algebra, under the modified Lie brackets, see [53], due to
the field dependence of the vectors. The total asymptotic symmetry algebra is therefore a
semi-direct sum of a Witt and a u(1) algebra.

The notation we will adopt is

σ = σ
(
x+
)
∂−, (4.16)

ε = −r2ε
′∂r +

(
ε+

j++µ
2L4 (µ4L4 − 81

)
ε′′

9
(
−4j++µ2L2f++ (µ2L2 − 9) + h2 (µ2L2 − 9)2 + 8j2

++µ
2L2r4 (µ2L2 + 9)

)) ∂+

+
j++L

2 (µ2L2 + 9
)
ε′′
(
h
(
µ2L2 − 9

)
+ 4j++µ

2L2r2)
−4j++µ2L2f++ (µ2L2 − 9) + h2 (µ2L2 − 9)2 + 8j2

++µ
2L2r4 (µ2L2 + 9)

∂−. (4.17)

At this stage, we have found the variation of solution space and the residual symmetries, so
we have all the ingredients to compute surface charges.

4.2 Surface charges and algebra

We start with the u(1) sector and compute TMG surfaces charges. We obtain that the
Iyer-Wald [22, 25, 54, 55] charges read7

�δQσ[g, h] = − µ2L2 − 9
1296πGµL2j2

++

∫ 2π

0
dφ σ(x+)

(
δj++(µ2L2 + 9h(x+))− 18j++δh(x+)

)
.

(4.18)
7In this paper, charges are computed using the package [56].
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Here we have computed the surface charges first at (r, x−) fixed, then at (r, x+) fixed, added
them and sent r →∞. These charges are finite, conserved but integrable only if δj++ = 0.
However, as we will see one can find combination of residual vectors such that these charges
become integrable even when δj++ 6= 0. Although there they are integrable, we observe
some similarities with [45] and [46], where one needs to find specific orbits of the residual
symmetry vectors to obtain a direct sum algebra. Indeed, in cases where the charges are
not integrable, such redefinition makes them so, as discussed in [57–60].

Before proceeding, we report here also the Virasoro charges

�δQε[g, h] = 1
144πGL4µ3j2

++

×
∫ 2π

0
dφ
(
27(µ2L2 − 9)h2εδj++ + (µ2L2 − 9)hε(µ2L2δj++ − 54j++δh)

+ µ2L2j++
(
L2(µ2L2 − 9)δj++ε

′′ + 72j++εδf++
))
, (4.19)

where we used

ε = −r2ε
′∂r +

(
ε+

j++µ
2L4 (µ4L4 − 81

)
ε′′

9
(
−4j++µ2L2f++ (µ2L2 − 9) + h2 (µ2L2 − 9)2 + 8j2

++µ
2L2r4 (µ2L2 + 9)

)) ∂+

+
(

j++L
2 (µ2L2 + 9

)
ε′′
(
h
(
µ2L2 − 9

)
+ 4j++µ

2L2r2)
−4j++µ2L2f++ (µ2L2 − 9) + h2 (µ2L2 − 9)2 + 8j2

++µ
2L2r4 (µ2L2 + 9)

)
∂−. (4.20)

We would then like to compute the charge algebra. To do so, we need to find a set
of integrable charges. As we discussed, there exist two possibilities that do not further
constraint the residual vectors

1. Set δj++ = 0 on the solution space.

2. Perform a field dependent redefinition of the generators of residual symmetries σ
and ε.

Both possibilities have interesting consequences, so we study them in detail in the following
subsections.

4.2.1 The case δj++ = 0 (∆ fixed)

A simple situation is attained imposing δj++ = 0, which does not further reduce the residual
symmetries. The charges then read

�δQσ[g, h] = µ2L2 − 9
72πGµL2j++

∫ 2π

0
dφ σ(x+)δh(x+), (4.21)

�δQε[g, h] = 1
8πGL4µ3j++

∫ 2π

0
dφ ε(x+)

(
4µ2L2j++δf++ − 3(µ2L2 − 9)hδh

)
. (4.22)

These can now be integrated up to an arbitrary background value (integration constant).
We fix this by demanding that the zero mode of the charge Qσ[g] matches its zero mode
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when j++ is allowed to vary, as also done in [41]. This also ensures that we reproduce the
charges for the exact isometries of WBTZ black holes. We thus get

Qσ [g] = µ2L2 − 9
72πGµL2j++

∫ 2π

0
dφ σ

(
h+ µ2L2

18

)
, (4.23)

Qε [g] = 1
16πGL4µ3j++

∫ 2π

0
dφ ε

(
8µ2L2j++f++ − 3(µ2L2 − 9)h2

)
. (4.24)

We can therefore directly compute the charge algebra here. We start with the u(1)
sector and get

{
Qσ1 [g],Qσ2 [g]

}
= δσ2Qσ1 [g] = µ2L2−9

72πGµL2j++

∫ 2π

0
dφ σ1δσ2h=−µ(µ2L2−9)

648πGj++

∫ 2π

0
dφ σ1σ

′
2.

(4.25)
Since Q[σ1,σ2]M [g] = 0, (4.25) is the central extension for the u(1) sector. Using the mode
decomposition representation σ1 = eimx

+ and σ2 = einx
+ , and calling Qσ1 [g] = P̃m and

Qσ2 [g] = P̃n:

P̃m = µ2L2 − 9
72πGµL2j++

∫ 2π

0
dφ eimx+

(
h+ µ2L2

18

)
= 2∆
µLπ

∫ 2π

0
dφ eimx+

(
h+ µ2L2

18

)
,

(4.26)
we obtain8

i
{
P̃m, P̃n

}
= m

k̃

2 δm+n,0, k̃ = −µ
(
µ2L2 − 9

)
162Gj++

= −8µL
9 ∆. (4.27)

This is a centrally extended u(1) algebra with central extension k̃ — colloquially called
Kac-Moody level. We want to make connection with the quadratic algebra (2.28) and that
the zero modes of our metric represent WBTZ black holes. This requires that h(x+) doesn’t
have a zero mode (see (3.8)) which can be achieved by demanding that h(x+) = ∂+H(x+)
for some arbitrary periodic function H(x+). This is analogous to the discussion in [41], where
one of the arbitrary chiral function that appears in the metric is ∂+P (x+), ensuring that
the zero modes of the CSS metric coincides with those of the BTZ black hole (see (3.14)).9

Thus, the condition h(x+) = ∂+H(x+) with H(x+) periodic implies that

k̃ = −4P̃0. (4.28)

For the Virasoro sector we have:{
Qε1 [g], Qε2 [g]

}
= δε2Qε1 [g]

= 1
16πGL4µ3j++

∫ 2π

0
dφ
((
ε1ε
′
2 − ε2ε′1

)(
8µ2L2j++f++ − 3(µ2L2 − 9)h2

)
− (µ2L2 + 9)

72πGµ

∫ 2π

0
dφε′′′2 ε1. (4.29)

8Conventions:
∫ 2π

0 dφei(m+n)φ = 2πδm+n,0.
9Also, note that (2.4)-(2.6) of [33] is correct only if H(x+) is periodic.
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The first line in this expression is clearly Q[ε1,ε2]M [g], where one should use the modified Lie
bracket [

ε1, ε2
]
M

:=
[
ε1, ε2

]
− δε1ε2 + δε2ε

1, (4.30)

because the vectors are field dependent, while the second line is the central extension. Using
the mode decomposition representation ε1 = eimx

+ and ε2 = einx
+ , and calling Qε1 [g] = L̃m

and Qε2 [g] = L̃n:

L̃m = 1
16πGL4µ3j++

∫ 2π

0
dφ eimx+(8µ2L2j++f++ − 3(µ2L2 − 9)h2

)
, (4.31)

we obtain

i{L̃m, L̃n} = (m− n)L̃m+n + c

12m
3δm+n,0, c = µ2L2 + 9

3Gµ . (4.32)

Note that both central charges are sensitive to the sign of µ.
Finally the mixed sector, with the conventions established, reads

i
{
L̃m, P̃n

}
= −nP̃m+n, (4.33)

which is the expected semi-direct action of the Virasoro sector on the Abelian one.
To summarize, we have obtained the algebra

i
{
L̃m, L̃n

}
= (m− n) L̃m+n + c

12m
3δm+n,0, (4.34)

i
{
L̃m, P̃n

}
= −nP̃m+n, (4.35)

i
{
P̃m, P̃n

}
= m

k̃

2 δm+n,0, (4.36)

with central extensions

c = µ2L2 + 9
3Gµ , k̃ = −µ

(
µ2L2 − 9

)
162Gj++

= −8µL
9 ∆, (4.37)

where we recall ∆ = µ2L2−9
144GLj++

. This algebra is the one of the centrally extended group

V ir n U(1). (4.38)

While c is field independent, the U(1) central extension k̃ depends on j++. With (4.28), the
algebra precisely becomes (2.28)–(2.30), confirming the expectation that our phase space
has the same symmetries as that of a WCFT in quadratic ensemble. This is why we used
the tilde notation for the generators.

Let us study the Null Warped limit, reached simply taking µL→ 3. In this case the
u(1) level and charges vanish identically, and we are left with a Virasoro symmetry algebra
with central extension

c = 2`
G

at µL→ 3, (4.39)
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where again L → `, the AdS radius, in this limit. The disappearance of the u(1) is the
reason why we typically think of null warped solutions as extremal. This is also suggested
by the fact that the chiral function h disappears from the residual vectors in (4.4) and the
charges (4.21)–(4.22) in the limit, where therefore it is a pure gauge datum.

As we have seen, the CSS limit is reached setting µL→ 3 and j++ → 0 while keeping
µ2L2−9

144GLj++
= ∆ constant. The charges read

Qσ [g] = 2∆
3π

∫ 2π

0
dφ σ

(
h+ 1

2

)
, Qε[g] = 1

6πG`

∫ 2π

0
dφ ε

(
f++ − 6∆`Gh2

)
, (4.40)

while the central extensions become

k̃ = −8∆
3 , c = 2`

G
. (4.41)

Thus, this limit coincides with our findings in [45], where, for generic µ, the central extensions
were found to be

kCSS = −
(

1− 1
µ`

)
4∆, cCSS =

(
1 + 1

µ`

) 3`
2G. (4.42)

We remark that the CSS metrics, even when embedded in TMG, have vanishing Cotton, so
the equations of motion are invariant under chiral parity transformations. On the other
hand, our boundary conditions admit solutions with non-vanishing Cotton so they are
sensitive to chirality. This ultimately constraints the sign of µ (here assumed positive) as
we previously saw.

We now turn our attention to WBTZ black holes. These are reached restricting the
solution space to

j++ = µ2L2 − 9
72GL(LM − J) , h = 0,

f++ = 1
9GL

(
µ2L2 + 9

)
(J + LM), ∆ = µ2L2 − 9

144GLj++
= (LM − J)

2 .

(4.43)

Therefore, their charges in the quadratic ensemble take the form

P̃m = (LM − J)µL
9 δm,0, L̃m = (µ2L2 + 9)(LM + J)

9Lµ δm,0, (4.44)

with M and J the Einstein charges. The TMG mass and angular momentum of these
solutions are defined as

M̃ = Q∂t = 1
L

(
Q∂+ +Q∂−

)
, J̃ = Q∂φ = Q∂+ −Q∂− , (4.45)

and we also have
Q∂− = P̃0, Q∂+ = L̃0. (4.46)

Subsequently, we obtain the relationship between the TMG mass and angular momentum
and the zero modes of the charges

M̃ = 1
L

(
L̃0 + P̃0

)
= 2µLM

9 + LM + J

µL2 , J̃ = L̃0 − P̃0 = 2µLJ
9 + LM + J

µL
. (4.47)
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For BTZ, it has been found in [45] that10

Qσ[g] = 1
2πµ`

∫ 2π

0
dφ σ(µ`− 1)∆, Qε[g] = 1

2πµ`

∫ 2π

0
dφ ε(µ`+ 1)∆̄, (4.48)

with ∆ = 1
2(LM − J), ∆̄ = 1

2(LM + J), and f++ = 4GL∆̄. At µ` = 3, this consistently
coincides with the results above. In particular, the mass and angular momentum (4.47) in
the CSS limit at µL = 3 read

M̃ = M + J

3` , J̃ = J + `M

3 , (4.49)

which coincide exactly with (21) and (22) of [45] for µ` = 3, if we consistently change the
sign of J and J̃ , because there we used J̃ = Q−∂φ .

To summarize, we showed in this subsection that the bulk solution space has a symmetry
algebra identified with that of a WCFT in quadratic ensemble.

4.2.2 Varying ∆ and generators redefinition

Another set of boundary conditions that makes our charges integrable is achieved performing
a redefinition of the generators of residual symmetries following CSS [41]

σ → σσσ = 3σ
µL
√
|∆|

⇒ σσσ = 3σ
µL
√
|∆|

, ε→ εεε = ε− ε(x+)∂− ⇒ εεε = ε. (4.50)

Here we took the absolute value of ∆ because this constant can assume both positive and
negative values. So the two new chiral vector fields are εεε and σσσ, and depend on two arbitrary
chiral functions ε(x+) and σ(x+). We are allowed to do so because all the generators are
functions of x+, so the Fourier decomposition is the same. Furthermore, the redefinition of
εεε uses the fact that we subtract to the old one the u(1) generator, which eventually keeps
the algebra invariant.

The u(1) charges then become

�δQσσσ[g,h] =− µ2L2−9
1296πGµL2j2

++

∫ 2π

0
dφ σσσ(x+)

(
δj++(µ2L2 +9h(x+))−18j++δh(x+)

)
=− (µ2L2−9)

36π
√
GL5µ2|j++|

√
|j++|

√
|µ2L2−9|

∫ 2π

0
dφ σ(x+) (4.51)

×
(
δj++(µ2L2 +9h(x+))−18j++δh(x+)

)
,

which are easily integrated in solution space.

Qσσσ[g] = sg(j++) (µ2L2 − 9)
18π
√
GL5µ2

√
|µ2L2 − 9|

√
|j++|

∫ 2π

0
dφ σ(x+)

(
µ2L2 + 9h(x+)

)
= sg(∆) 2

√
|∆|

3πL2µ2

∫ 2π

0
dφ σ(x+)

(
µ2L2 + 9h(x+)

)
, (4.52)

10In comparing, we should change the sign of J and send the charge for ∂φ to the charge for −∂φ.
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where we use that sg(∆) = sg(j++)sg(µ2L2 − 9). Similarly, for the Virasoro sector the
charges become

�δQεεε[g, h] = 1
1296πGL4µ3j2

++

∫ 2π

0
dφ ε(x+)

×
(
(µ2L2 − 9)δj++(µ4L4 + 18µ2L2h(x+) + 243h(x+)2) (4.53)

+ 18j++
(
36µ2L2j++δf++(x+)− (µ2L2 − 9)(µ2L2 + 27h(x+))δh(x+)

))
,

where we have thrown away total derivatives. Also this can be integrated in solution space.
Trading j++ for ∆, which organizes the expressions better, the result is

Qεεε[g] = 1
18πGµ3L4 (4.54)

×
∫ 2π

0
dφ ε(x+)

(
− 2GL∆(µ4L4 + 18µ2L2h(x+) + 243h(x+)2) + 9µ2L2f++(x+)

)
.

The charge algebra, calling ξξξi = (εεεi,σσσi) and given the new gauge orbits, is given by{
Qξξξ1 [g] , Qξξξ2 [g]

}
= δξξξ2Qξξξ1 [g] = Q[ξξξ1,ξξξ2]M [g] +Kξξξ1,ξξξ2 , (4.55)

where Kξξξ1,ξξξ2 is the central extension. In this expression, since the generators are now field
dependent, one should use the modified bracket (4.30). However, since δξj++ = 0, in this
specific instance the modified bracket coincides with the ordinary Lie bracket. For the u(1)
sector we gather

{
Qσσσ1 [g], Qσσσ2 [g]

}
= δσσσ2Qσσσ1 [g] = −sg(∆) 2

πµL

∫ 2π

0
dφ σ1σ

′
2. (4.56)

Since Q[σσσ1,σσσ2]M [g] = 0, (4.56) is the central extension for the û(1) sector. Using the mode
decomposition representation σ1 = eimx

+ and σ2 = einx
+ , and calling Qσσσ1 [g] = Pm and

Qσσσ2 [g] = Pn:11

Pm = sg(∆) 2
√
|∆|

3πL2µ2

∫ 2π

0
dφ eimx+(

µ2L2 + 9h(x+)
)
, (4.57)

we obtain12

i{Pm, Pn} = m
k

2 δm+n,0, k = −sg(∆) 8
µL

. (4.58)

This is a centrally extended û(1) algebra with central extension (level) k. As anticipated,
this level coincides exactly with (2.7), except for the sg(∆) term, determining the sector
of the theory. We remark that such extension depends on the sign of j++, which is the

11Note that the new vector fields are written with respect to σσσ, but the field independent quantity is σ,
which can thus be expanded in modes.

12At µL = 3, this result is the analogue of (13) of [45] but for the canonical ensemble, namely, the level is
equal to

(
(1− 1

µ`
)CSS

)
|µ`→3, where CSS stands for the CSS level in Einstein gravity in canonical ensemble

(as in appendix B of [41]).
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warped equivalent of the result in [41] for TMG. For the other sector, generated by εεε, using
the mode decomposition representation εεε1 = eimx

+ and εεε2 = einx
+ , and calling Qεεε1 [g] = Lm

and Qεεε2 [g] = Ln:

Lm = 1
18πGµ3L4

∫ 2π

0
dφ eimx+

×
(
− 2GL∆(µ4L4 + 18µ2L2h(x+) + 243h(x+)2) + 9µ2L2f++(x+)

)
,

(4.59)

we obtain

i{Lm, Ln} = (m− n)Lm+n + c

12m
3δm+n,0, c = µ2L2 + 9

3Gµ . (4.60)

Note that both central charges are sensitive to the sign of µ. And finally the mixed sector,
given our conventions, gives the usual semi-direct action of Virasoro on the û(1) algebra

i{Lm, Pn} = −nPm+n. (4.61)

So, to summarize, the total symmetry group, also when j++ varies, is

Virn U(1). (4.62)

The total algebra is

i{Lm, Ln} = (m− n)Lm+n + c

12m
3δm+n,0, i{Lm, Pn} = −nPm+n,

i{Pm, Pn} = m
k

2 δm+n,0,
(4.63)

with central extensions

c = µ2L2 + 9
3Gµ , k = −sg(∆) 8

µL
. (4.64)

Notice that, once the sign of j++ given, both central extensions are field independent, in
contrast with the previous case. Therefore, this bulk in these coordinates is dual to thermal
states of a WCFT in the canonical ensemble. This is the reason why we denote the charges
mode decomposition without the tilde, in line with (2.4)–(2.6).

Finally, we can see how WBTZ black holes are described in this setup. Setting

j++ = µ2L2 − 9
72GL(LM − J) , h = 0,

f++ = 1
9GL

(
µ2L2 + 9

)
(J + LM), ∆ = µ2L2 − 9

144GLj++
= LM − J

2 ,

(4.65)

we observe that, since the absence of naked singularities requires LM ≥ |J |, the quantity ∆
is always positive, so that sg(∆) = 1 and |∆| = ∆. Therefore the charges in the canonical
ensemble take the form

Pm = 2
√

2 (LM − J)
3 δm,0, Lm =

(2JµL
9 + J

µL
+ M

µ

)
δm,0. (4.66)
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The TMG mass and angular momentum of these solutions are defined as

MMM = Q∂t = 1
L

(
Q∂+ +Q∂−

)
, JJJ = Q∂φ = Q∂+ −Q∂− . (4.67)

As a consequence of the boundary conditions used here, the relationship between P0 and
Q∂− is non-trivial. In particular, since we have performed a field-dependent redefinition
involving a multiplication rather than a linear shift, the charges are non-linearly related.
Since ∂− is an exact Killing, we can compute separately this charge for WBTZ backgrounds,
and then compare it with the results here. We find13

Q∂− = P0
µL
√
|∆|

6 , Q∂+ = L0 + P0
µL
√
|∆|

6 , (4.68)

which implies

MMM = 1
L

(
L0 + P0

2µL
√
|∆|

3

)
= 2µLM

9 + LM + J

µL2 , JJJ = L0 = 2µLJ
9 + LM + J

µL
.

(4.69)
While the expression for the TMG mass and angular momentum in terms of the zero modes
depends on the explicit realization of the algebra, their intrinsic value as charges is invariant.
Indeed, as non-trivial consistency check, we observe that MMM = M̃ and JJJ = J̃ , with M̃ and
J̃ given in (4.47).

Recalling that for WBTZ black holes we have that sg(∆) = 1, we obtain a relationship
between the zero modes here and those in the quadratic ensemble of the previous section
given by

L̃0 = L0 + µL

8 P 2
0 = L0 −

P 2
0
k
, P̃0 = µL

8 P 2
0 = −P

2
0
k
, (4.70)

which exactly reproduces (2.32).
To summarize, we have seen how two different restriction on the solution space leading

to different boundary conditions can be used to make the charges integrable, yielding
different realizations of the asymptotic symmetry algebra. With our new metric falloffs, the
two methods give a bulk that is dual to a WCFT in either canonical or quadratic ensemble.
We will focus in particular on the latter, whose modes are reported in (4.44), because, as
explained previously, the warped Cardy formula is well defined in this case. The novelty is
that we do not reach this ensemble from a bulk change of coordinates, instead we found
enhanced boundary conditions to automatically accommodate it.

5 Entropy matching

We turn in this section to the matching between thermodynamic bulk entropy in TMG and
boundary warped Cardy formula in quadratic ensemble. As is clear from (2.31), this will
require identifying the vacuum state on which the partition function projects in the Cardy

13This relationship has an important extra factor of 1
2 with respect to the naive linear rescaling. This

comes about because of the field dependent redefinition. Note that it is only for WBTZ black holes that we
can separately compute Q∂− , which is otherwise non integrable.
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regime. Although we will only indirectly identify the vacuum via intuition gathered with
limiting procedures, we discuss at the end of this section possible techniques to intrinsically
identify it. These techniques require a deep understanding of the global structure of these
solutions, which is currently under investigation and on which we will report later.

5.1 Bulk thermodynamics

To study the thermodynamics of WBTZ solutions, following [22, 61–64], we bring the line
element to the ADM form:

ds2 = −N(r)2dt2 + dr2

f(r)2 +R(r)2(Nφ(r)dt+ dφ)2. (5.1)

In the coordinates (t, r, φ), with εtrφ = 1, using x± = t
L ±φ, the WBTZ metric is given by14

grr = L2r2

16G2J2L2 − 8GL2Mr2 + r4 , (5.2)

gtt = −H
2 (4GL(J − 2LM) + r2)2

4GL3(LM − J) + 8GM − r2

L2 , (5.3)

gtφ = 4GJ − H2 (r2 − 4GJL
) (

4GL(J − 2LM) + r2)
4GL2(LM − J) , (5.4)

gφφ = r2 − H2 (r2 − 4GJL
)2

4GL(LM − J) , (5.5)

which is exactly (2.23). Therefore, the ADM data read

N(r)2 = − 4G
(
2H2 − 1

)
(J − LM)

(
16G2J2L2 − 8GL2Mr2 + r4)

L (16G2H2J2L2 − 4GLr2 ((2H2 − 1) J + LM) +H2r4) , (5.6)

f(r)2 = 16G2J2

r2 − 8GM + r2

L2 , (5.7)

R(r)2 = −16G2H2J2L2 − 4GLr2 (2H2J − J + LM
)

+H2r4

4GL(−J + LM) , (5.8)

Nφ(r) = −16G2JL2 ((H2 − 1
)
J +

(
1− 2H2)LM)

− 8GH2L2Mr2 +H2r4

L (16G2H2J2L2 − 4GLr2 ((2H2 − 1) J + LM) +H2r4) . (5.9)

Applying in particular the results of [22], the black hole entropy in TMG, given (5.1), is

STMG
± = π

2GR(r±)− π

2µG
R(r)2f(r)Nφ(r)′

2N(r)

∣∣∣
r=r±

, (5.10)

where µ is the Chern-Simons coupling and r± are the two positive roots, solutions of the
equation f(r) = 0 and are given by

r± = 2
√
GL

√
LM ±

√
L2M2 − J2, (5.11)

14In comparing with [43], one should set G = 1, L = 1.
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for all values of J . For WBTZ we thus gather the outer entropy

STMG
+ =

πL

((
3− 4H2)√√L2M2 − J2 + LM + sg(J)

√
LM −

√
L2M2 − J2

)
3
√
G (1− 2H2)L

, (5.12)

where sg is again the sign function. The presence of sg(J) is due to the fact that we are
dealing with a theory sensitive to parity, due to the presence of the Hodge-dual Cotton
tensor in the equations of motion.

The WBTZ mass M̃ = Q∂t = 1
L

(
L̃0 + P̃0

)
and angular momentum J̃ = Q∂φ = L̃0− P̃0

are given by (4.47), i.e.

M̃ = 2µLM
9 + LM + J

µL2 =
(
3− 4H2)LM + J

3
√

1− 2H2L
, (5.13)

J̃ = 2µLJ
9 + LM + J

µL
=
(
3− 4H2) J + LM

3
√

1− 2H2
. (5.14)

As expected, the entropy (5.12) satisfies the first law

dM̃ = TdSTMG
+ + ΩdJ̃ , (5.15)

with

T =
r2

+ − r2
−

2πr+L2 = 2
π

√√√√ G (L2M2 − J2)
L3
(√

L2M2 − J2 + LM
) , (5.16)

and
Ω = sg(J) r−

Lr+
= 1
LJ

√
2LM

(
LM −

√
L2M2 − J2

)
− J2. (5.17)

Finally, we note that in the CSS limit we find the BTZ entropy in TMG, as found e.g.
in [45]. This is the standard derivation of the black hole thermodynamic entropy, we now
turn our attention to the dual viewpoint.

5.2 WCFT Cardy formula and matching

In this section we would like to obtain the entropy from the counting of degeneracy of
states in the boundary field theory. The first important step is to define the vacuum of
the theory. The usual approach is to use as a guideline the enhancement of isometries.
We now compute the local Killing vectors preserving the WBTZ metric in the quadratic
ensemble (5.2)–(5.5). These are ∂t, ∂φ and χ± given by

χr± = e
±2
√

2
√

G(J+LM)
L ( tL+φ)

√
16G2J2L2 − 8GL2Mr2 + r4

2r , (5.18)

χt± = ∓e±2
√

2
√

G(J+LM)
L ( tL+φ) L

(
4GJL+ r2)

4
√

2
√

G(J+LM)(16G2J2L2−8GL2Mr2+r4)
L

, (5.19)

χφ± = ±e±2
√

2
√

G(J+LM)
L ( tL+φ)

(
4GL(J + 2LM)− r2)

4
√

2
√

G(J+LM)(16G2J2L2−8GL2Mr2+r4)
L

. (5.20)

These vectors, combined as { L

2
√

2
√
GL(J+LM)

(L∂t + ∂φ), χ±}, satisfy an SL(2,R) algebra.
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We observe that these local isometries are extended to hold globally if the exponential
is 2π periodic in φ. Thus, the WBTZ solution admits global isometries if and only if

2
√

2

√
G(J + LM)

L
= ±i. (5.21)

This equation therefore has solution M = − 1
8G−

J
L . The metric given by (5.2)–(5.5) with M

taking this value therefore represents a family of solutions with enhanced global symmetries.
A crucial observation is that the enhancement of symmetries does not single out the vacuum,
contrary to what happens for BTZ black holes. Indeed, for the latter, we impose to enhance
the symmetries to global SL(2,R)L × SL(2,R)R, which imposes more restrictions on the
metric parameters, allowing to immediately single out the unique vacuum.

We notice that inside the family of solutions with enhanced symmetry, one particular
solution deserves special attention, the one with J = 0. In this case we obtain M = − 1

8G ,
and the line element is explicitly written

ds2
vac =

(
L2 + r2

) (
2H2r2 + L2

(
−1 + 2H2

)) dt2

L4 + L2dr2

(L2 + r2) + 4H2r2
(
L2 + r2

) dtdφ
L3

+
(
r2 + 2H2r4

L2

)
dφ2. (5.22)

This metric differs from the AdS3 global vacuum, but reduces to it for H → 0 (i.e.
µ` = 3 with L = `). We take this external input on the analysis to be the feature singling
out the true vacuum of the theory. As already pointed out, we stress that this is not an
intrinsic definition of the vacuum, but rather comes from a limiting procedure. We will
return to this at the end of the section, where we present a more detailed discussion. For
this specific solution, the values of the TMG charges are

M̃ = −
(
3− 4H2)

24
√

1− 2H2G
, J̃ = − L

24
√

1− 2H2G
. (5.23)

We remark that the TMG angular moment J̃ is non-vanishing on the vacuum solution, even
though the metric parameter J , which corresponds to the Einstein angular momentum in
the Einstein limit, is vanishing.

We want now to evaluate the WBTZ entropy (5.12), which is reproduced by counting
the degeneracy of states in the dual WCFT. In the quadratic ensemble, the Warped Cardy
formula takes the form (2.31):

SWCFT = 4π
√
−P̃ vac

0 P̃0 + 4π
√
−L̃vac

0 L̃0. (5.24)

For the specific solution identified above, the zero modes (4.44) become

P̃ vac
0 = −

√
1− 2H2L

24G , L̃vac
0 =

(
H2 − 1

)
L

12G
√

1− 2H2
. (5.25)

Plugging this and (4.44) in (5.24), and using µL = 3
√

(1− 2H2), we find

SWCFT = 1
3
√

2π

√(2H2 − 1)L(J − LM)
G

+ 2

√
−(H2 − 1)2 L(J + LM)

G (2H2 − 1)

 . (5.26)
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After some non-trivial manipulations, this expression exactly matches the bulk thermody-
namic WBTZ entropy (5.12).

In conclusion, we return here to the discussion on the vacuum. To match the entropy,
we used the specific solution whose charges coincide with the AdS3 global vacuum in
the limit H → 0. We argue that this argument for singling out this vacuum must be
improved with a more intrinsic and fundamental argument, lacking at present. There
are two possible resolutions that we are currently exploring. First, it could be useful to
introduce supersymmetry, and require that the true vacuum inside the family of solutions
found is the one for which also all the supersymmetry generators are globally well-defined,
which could potentially give further constraints. Indeed, it is known that certain BTZ and
WAdS3 black holes in canonical ensemble exhibit supersymmetry [65, 66], and one could
expect the vacuum state to display maximal supersymmetry. Second, a thorough analysis of
the global structure of these solutions could give us a better understanding of the properties
of this family of solutions, such as geodesic completeness, chronological and/or conical
singularities, and the issue of closed time-like curves.

6 Conclusions and outlook

We have introduced a consistent set of metric falloffs allowing to extract the asymptotic
symmetry algebra directly in the quadratic ensemble. In this setup, asymptotic charges
are generically non integrable. Two possible boundary conditions arose, fixing part of the
solution space or performing a field redefinition of the symmetry generators. These two
procedures give an asymptotic symmetry algebra in quadratic and canonical ensemble,
respectively. Using the former, we tested that we are in the regime of validity of the Cardy
warped formula and show that the boundary counting of degeneracy of states correctly
reproduces the bulk thermodynamic entropy for WBTZ black holes. To do so, we had to
identify the vacuum of the theory. We showed that the enhancement of Killing isometries
to globally well-defined symmetries is not enough, and propose the identification of the
vacuum via a limiting procedure.

This project opens the door to both short-term and long-term investigations. The
most pressing and natural continuation of this project is to find an intrinsic definition
of the vacuum for the family of solutions with enhanced symmetry. As we discussed, we
plan to introduce supersymmetry, to see if it imposes further constraints on the solutions.
Another direction is to study in detail the global structure of these solutions. This might
shed light on their topological properties. We would like to find a complete Penrose-Carter
diagram of these solutions, and study their inextensibility. Another direction to pursue is
the question of integrability of charges. We confirmed here that it seems always possible
to render charges integrable by redefining the symmetry generators by introducing field/
state dependence, as has also been carried out in [60, 67–69]. Another mechanism to make
charges integrable, recently proposed in [70] (see also [71]), is to carefully treat embeddings.
It would be interesting to apply this new mechanism to our specific construction here.
Other questions stemming from the covariant phase-space formalism, when applied to TMG,
are also worth investigating, such as the classification of ambiguities. On the long term,
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there are some fascinating directions to pursue. First, we here restricted our analysis to
0 < µL < 6. At µL = 6, the cosmological constant vanishes, whereas for µL > 6 the metric
has positive cosmological constant. Our analysis of surface charges is not expected to break
down, allowing us to sail from negative to positive cosmological constants, an idea already
explored in [48]. Secondly, we saw that in our analysis we restricted the would-be boundary
metric to have non-varying conformal factor. This restriction could be lifted, in the spirit
of [46]. A similar construction appeared recently in [52]. Eventually, we expect to have some
more general boundary conditions arising at specific values of the Chern-Simons coupling.
We briefly touch upon this for µL = 3 in appendix A. In this setup, we expect to be able
to make contact with [26]. A far-reaching consequence could be to shed light on the still
elusive properties of logarithmic CFTs [47, 72–74], and study the possibility of constructing
their warped version.
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A New boundary conditions including pp waves

At µ = 3
L = 3

` , (where ` = 1√
|Λ|

), the solutions (3.3)–(3.5) can be generalized to allow j++

to be an arbitrary function j++(x+). The resulting class of metric reads

ds2 = (dx+)2
(
f++(x+) + r2h(x+) + j++(x+)r4

)
+ dx−dx+(2j+−(x+) + 1)r2 + dr2 `

2

r2 .

(A.1)
In fact, these solutions can be generalized for arbitrary values of positive TMG coupling,
µ > 0, as follows

ds2 = (dx+)2
(
f++(x+) + r2h(x+) + j++(x+)rµ`+1

)
+ dx−dx+(2j+−(x+) + 1)r2 + dr2 `

2

r2 ,

(A.2)
where j+−(x+) ≤ −1

2 . This class of solutions includes the pp-waves. The asymptotic
symmetry group is again Virn U(1).
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For µ` < 1, these boundary conditions generalize CSS boundary conditions [41] in TMG
in the same way [26] generalizes Brown-Hennaux boundary conditions [8] in TMG. For
µ` ≥ 3, these generalize the null warped and null z-warped boundary conditions of [49]. The
details about the charges and other features of these solutions will be presented elsewhere.
We also plan to explore their relationship with the boundary conditions involving non-integer
(µ-dependent) powers of r and log r introduced in [26] (see also [47, 72–74]).

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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