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1 Introduction

The AdS/CFT correspondence provides a powerful method to study the non-perturbative
gauge theory [1]. Especially, the integrable features in the four dimension maximally super-
symmetric Yang-Mills theory have led to many novel results in the past decades [2]. One of
the most significant achievements is the scattering amplitude/Wilson loop duality [3]. On
the AdS side, the gluon scattering amplitude is mapped to a worldsheet amplitude ending
on an IR D3 brane near the AdS horizon. Performing T-duality transformations and re-
defining the radial coordinate, one obtains a worldsheet ending on a light-like Wilson loop
in the T-dual AdS boundary [3], whose minimal area provides the amplitude at the strong
coupling [4, 5]. The equations of motion and the Virasoro constraints, which determine
the minimal area surface in AdS3 (resp. AdS5), are reduced to the classically integrable
equations [6] or equivalently to the SU(2) (resp. SU(4)) Hitchin system [7–10].1

1We will denote it by linear problem instead of Hitchin system in the main text.
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The Stokes data of the SU(2) Hitchin system has been well studied in a very different
context, i.e. the wall-crossing of the BPS spectrum in N = 2 Super Yang-Mill theory [11,
12], where a connection between the Hitchin system and the thermodynamic Bethe ansatz
(TBA) equations has been found.2 To study the minimal surface with a light-like polygonal
boundary condition, an irregular singularity should be imposed in the linear problem, whose
Stokes data was used to construct the boundary. Inspired by the connection between the
Hitchin system/linear problem and TBA equations, one finds that the non-trivial part of
the minimal area can be expressed by the free energy of the TBA equations and the Y-
system [16–18].3 See also [22] from the approach of the QQ-system and the non-linear
integral equations (NLIEs).

The scattering amplitude has been generalized to the form factor [23], whose operator
corresponds to a closed string extending from the original AdS boundary and inserted on
the scattering worldsheet. After the T-duality transformations, the boundary becomes
a periodic light-like Wilson line, whose period is determined by the momentum of the
operator. The worldsheet is furthermore extended to the T-dual AdS horizon. The problem
of the form factor reduces to the one of computing the minimal area ending on one period,
which is also encoded in the free energy of the TBA system [24, 25].

The non-planar scattering amplitude in the context of AdS/CFT correspondence was
not well explored for a long time. The main difficulty is due to the higher genus of the
Riemann surface of the non-planar case. One beautiful idea to overcome this difficulty is
to cut the higher genus Riemann surface into disks, where the planar techniques can be
applied, and then glue them together. Based on this idea the first non-planar correction of
the scattering amplitudes/Wilson loop duality was first proposed by Ben-Israel, Tumanov
and Sever in [26].

Let us consider the 1/N correction of scattering amplitude, i.e. a double trace ampli-
tude, where n̂ gluons in one trace and m̂ gluons in the other, which we will denote by An̂,m̂.
The string dual of An̂,m̂ has a topology of cylinder, whose two boundaries end on the IR
D3 brane. The two traces correspond to two boundaries of the cylinder. On one bound-
ary, n̂ vertex operators are inserted, whose momentum are denoted by (k1, k2, · · · , kn̂).
The other m̂ vertex operators with momentum (kn̂+1, kn̂+2, · · · , kn̂+m̂) are inserted on the
other boundary. The total momentum of each boundary is given by

q =
n̂∑
i=1

ki = −
m̂∑
j=1

kn̂+j . (1.1)

To apply the planar techniques, one cuts the cylinder into a disk [26]. The cut (curve γ)
starts from one boundary of the cylinder and ends at the other boundary. The curve γ
on the diagram crosses a certain number of propagators. Set Pγ(j) as the momentum that
crosses the cut in the direction coinciding with the external particle ordering (1, 2, · · · , n̂).
l =

∑
j Pγ(j) is interpreted as the momentum flow around the cylinder. Then the full

2This connection is now known as the ODE/IM correspondence [13–15].
3Based on the similarity of the Riemann-Hilbert problem, the ODE/IM correspondence for the

Schrödinger equation with arbitrary polynomial potentials has been studied in [19–21].
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amplitude An̂,m̂ is given by integration of cut amplitude with respect to l:

An̂,m̂ = λ

N

∫
d4lAγn̂,m̂(l). (1.2)

One could start with a curve γ′ winding around the cylinder once than γ, then the mo-
mentum l is shifted by the total momentum q: Aγ

′

n̂,m̂(l) = Aγn̂,m̂(l + q). Then l is only well
defined modulo a shift by the total momentum q: l ' l+q. To construct an unambiguously
defined quantity, one has to sum over all possible shifts of l by the integer number of q, i.e.

An̂,m̂(l) =
∑
a

Aγn̂,m̂(l + aq), An̂,m̂ = λ

N

∫
l'l+q

An̂,m̂(l). (1.3)

Performing the T-dual transformation on the four directions of the IR D3 brane and
redefining the radial coordinate, one obtains an AdS5 × S5 spacetime again. Under the
T-dual transformation, the worldsheet action of the amplitude becomes a Polyakov action
of T-dual y coordinates with the periodic condition

y(τ, σ = γ(τ) + 2π) = y(τ, σ = γ(τ)) + q (1.4)

and condition the AdS boundary:

y(τ = 0, σi < σ < σi+1) = −
∑
p≤i

kp − c

y(τ = L, σj < σ < σj+1) =
∑
p≤j

kn̂+p − c+ l,
(1.5)

where τ ∈ [0, L] and σ ∈ S1 are the worldsheet coordinates. σi is the insertion point of
the vertex operator. c is an arbitrary constant. One thus obtains two Wilson lines with m̂
and n̂ segments, respectively. Since the gluons are massless, these segments are light-like.
This boundary condition implies that the worldsheet after T-dual transforms ends on two
periodic light-like Wilson lines on the T-dual AdS boundary. This thus generalizes the
scattering amplitude/Wilson loop duality to the non-planar case [26]:

Double trace scattering amplitude/Periodic Wilson lines: the cut double trace
scattering amplitude An̂,m̂(l) is dual to the correlation function of two periodic light-
like polygonal Wilson lines.

The duality was also tested perturbatively at one-loop in the SYM side in [26]. At the
strong coupling, the amplitude An̂,m̂(l) can be computed from the minimal area of the
worldsheet ending on the Wilson lines. However, the minimal area is not studied in a long
time, because of the complicated boundary condition of the worldsheet. In this paper, we
propose a boundary condition of the linear problem to produce the two light-like polygonal
Wilson lines at the boundary. We then present a method to exactly compute the minimal
area of the worldsheet ending on the Wilson lines with fixed q and l.4 For simplicity, we

4Our approach to compute minimal area is inspired by [27–29], which compute the correlation function
of heavy operators in the AdS part. In their case, the worldsheet is a sphere with punctures, whereas in
our case the worldsheet has the topology of cylinder/disk.
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will focus on the AdS3 spacetime, where only the Wilson lines with even segments are
possible, say A2n,2m(l).

This paper is organized as follows. In section 2, we first recall the Pohlmeyer reduction
of the equation of motion and the calculation of the minimal area in the AdS3 spacetime.
We then propose the boundary condition of the linear problem, which produces the minimal
surface ending on the light-like Wilson lines at the AdS3 boundary. In section 3, we study
the WKB approximation of the linear problem to extract the data that is needed in the
calculation of the minimal area. We introduce the Fock-Goncharov coordinates associated
with the linear problem, which correspond to the cross ratios of the Wilson lines. By
using the TBA-like equations satisfied by the Fock-Goncharov coordinates, we express the
minimal area in an analytic form. In section 4, we compute the minimal area from TBA-like
equations with the physical cross ratios. We also test our method by comparing it with the
numerical integration of the area. The section 5 is devoted to conclusions and discussion.
In appendix A, we present simplified functional relations and TBA equations for the case
m = n, where the connection with the N = 2 super Yang-Mills theory is also mentioned.

2 Classical string in AdS3 and minimal area

In this section, we first recall the Pohlmeyer reduction of the equation of motion and the
Virasoro constraints of the classical strings in the AdS3 spacetime, and then propose a
boundary condition of the linear problem, which leads to the minimal surface ending on
two light-like Wilson lines at the AdS3 boundary. Based on the boundary condition of the
linear problem, we introduce small solutions of the linear problem, whose combination is
used to express the cross ratios of the Wilson lines. We finally show the calculation of the
minimal area from the solutions of the generalized sinh-Gordon equation.

2.1 Pohlmeyer reduction and the linear problem

The AdS3 spacetime can be written as a surface embedding in R2,2 with the constraint

~Y · ~Y = −Y 2
−1 − Y 2

0 + Y 2
1 + Y 2

4 = −1. (2.1)

Classical strings in AdS3 are described by the equation of motion and the Virasoro con-
straints

∂∂̄~Y − (∂~Y · ∂̄ ~Y )~Y = 0, ∂~Y · ∂~Y = 0 = ∂̄ ~Y · ∂̄ ~Y , (2.2)

which are equivalent to the generalized sinh-Gordon equation

∂z∂z̄α− e2α + p(z)p̄(z̄)e−2α = 0 (2.3)

according to the Pohlmeyer reduction [6, 7]. Here α and p are SO(2, 2) invariant function:

e2α = 1
2∂
~Y · ∂̄ ~Y , Na = 1

2e
−2αεabcdY

b∂Y c∂̄Y d,

p(z) = −
~N

2 · ∂
2~Y , p̄(z̄) =

~N

2 · ∂̄
2~Y .

(2.4)
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The equation of motion and Virasoro constraints (2.2) are equivalent to the linear problem

∂zψ +Bzψ = 0, ∂z̄ψ +Bz̄ψ = 0 (2.5)

with the connections:5

Bz =

 1
2∂zα −1

ζ e
α

−1
ζ e
−αp(z) −1

2∂zα

 =: Az + Φz,

Bz̄ =

−1
2∂z̄α −ζe

−αp̄(z̄)
−ζeα 1

2∂z̄α

 =: Az̄ + Φz̄,

(2.6)

where ζ is a complex value called the spectral parameter. The flatness condition of the
connections with any complex value ζ leads to the generalized sinh-Gordon equation (2.3).
Solving the linear problem at ζ = 1 and ζ = i, one can construct the AdS3 coordinates [7]: Y−1 + Y4 Y1 − Y0

Y1 + Y0 Y−1 − Y4


a,ȧ

= ψLα,aMαβ̇ψ
R
β̇,ȧ
, (2.7)

where M is a matrix depending on the gauge. ψLα,a and ψRα,a are the solutions of the linear
problem with ζ = 1 and ζ = i, respectively.

2.2 Boundary condition of the linear problem

To study the minimal surface with a polygonal-type boundary, it is convenient to take
advantage of the linear problem. The minimal surface associated with the scattering
amplitude/light-like polygon Wilson loop are characterized by a polynomial p(z) and
boundary condition of α, e2α ∼

√
pp̄ at z → ∞. The linear problem in this case has

an irregular singular point at z →∞, whose Stokes phenomena leads to the null polygonal
boundary condition at AdS boundary [7].

To produce two light-like polygonal Wilson lines at AdS boundary, we impose two
irregular singular points in p(z) with boundary conditions: α̂ = α− 1

4 log(pp̄) vanish at the
irregular singular point and is regular anywhere on the worldsheet.6 A natural choice of p(z)
describing the two light-like polygonal Wilson lines with 2m and 2n segments respectively is

p(z) = zn−2 + · · ·+ 1
zm+2 , (2.8)

where the irregular singular points are located at z = 0,∞.
Since the growing solution of the linear problem at z → 0,∞ will lead to some divergent

components in the string coordinates (2.7), one thus expects the worldsheet attaches the
AdS boundary when z → 0,∞. There thus will be two Wilson lines, say (i) = (0), (∞),

5The flatness condition of this linear problem can be rephrased as Dz̄Φz = DzΦz̄ = 0 and Fzz̄+[Φz,Φz̄],
which are the Hitchin system [30]. A and Φ have the interpretation of the gauge connection and Higgs field,
respectively, in two dimensions.

6As shown in section 4, we will relax this condition at the zeros of p(z) when the cross ratios X (ζ = 1, i)
are negative.
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at AdS boundary. The solution ψ can be expressed by using the “big solution” b and the
“small solution” s of each sector:

ψa = cbab+ csas, (2.9)

where only the big solution dominants in the calculation of string coordinates. To extract
the information of the big solution, i.e. the coefficient cba, we take the product of ψa and
small solution s. One thus can express the AdS coordinates by

Yaȧ = (ψLa ∧ sL)(ψRȧ ∧ sR)(bLαMαβ̇bR
β̇

), (2.10)

which implies ~Y 2 = 0, i.e. the AdS boundary. It is useful to introduce the light-cone
coordinates

(y(i)
k )± =

(
Y1 ± Y0
Y−1 + Y4

)(i)

k

= ψL,R2 ∧ (s(i)
k )L,R

ψL,R1 ∧ (s(i)
k )L,R

, (2.11)

where k is the label of the cusp along the (i)-Wilson line. We are then able to compute
the distance (y(i1,i2)

k1k2
)± = (y(i1)

k1
)± − (y(i2)

k2
)±

(y(i1,i2)
k1k2

)± = −
ψL,R1 ∧ ψL,R2 (s(i1)

k1
)L,R ∧ (s(i2)

k2
)L,R

ψL,R1 ∧ (s(i1)
k1

)L,RψL,R1 ∧ (s(i2)
k2

)L,R
, (2.12)

from which we obtain the cross ration χ(i1,i2,i3,i4)±
k1k2k3k4

:

χ
(i1,i2,i3,i4)±
k1k2k3k4

:=
(y(i1,i2)
k1k2

)±(y(i3,i4)
k3k4

)±

(y(i1,i3)
k1k3

)±(y(i2,i4)
k2k4

)±
=

(s(i1)
k1

)L,R ∧ (s(i2)
k2

)L,R(s(i3)
k3

)L,R ∧ (s(i4)
k4

)L,R

(s(i1)
k1

)L,R ∧ (s(i3)
k3

)L,R(s(i2)
k2

)L,R ∧ (s(i4)
k4

)L,R
. (2.13)

Therefore, the small solutions of the linear problem are important to write down the cross
ratios, which will be our main task in the next subsection.

2.3 Small solution

At z = 0,∞, we are able to diagonalize Φ(z) and Ψz̄ in the connections, from which we
determine the basis of the solutions of the linear problem:

ψa ∼ exp
(

(−1)a 1
ζ

∫ z√
p(z′)dz′ + (−1)aζ

∫ z̄√
p̄(z̄′)dz̄′

)
, (2.14)

for z → 0,∞. Since z = 0,∞ are irregular singular points of the linear problem, the
complex plane around each sector divides into several sectors, i.e. Stokes sectors, due to
the Stokes phenomena. It is convenient to introduce a new coordinate w by

dw = √pdz. (2.15)

Then at large w, the solution to the linear problem is approximated by7

ψ ∼ c1e
1
ζ
w+ζw̄

 1
0

+ c2e
− 1
ζ
w−ζw̄

 0
1

 . (2.16)

7Here we have chosen the gauge to simplify the problem, which does not affect the discussion about the
Stokes sectors.
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The stokes sector Ŝ(ζ) on the w-plane is given by

Ŝj(ζ) :
(
j − 1

2

)
π + arg(ζ) < arg(w) <

(
j + 1

2

)
π + arg(ζ). (2.17)

At z →∞, the sectors become

S(∞)
j (ζ) :

(
j − 1

2

) 2
n
π + 2

n
arg(ζ) < arg(z) <

(
j + 1

2

) 2
n
π + 2

n
arg(ζ). (2.18)

Therefore, there are n sectors at z →∞. At z → 0, one finds

S(0)
j (ζ) :

(
−j − 1

2

) 2
m
π − 2

m
arg(ζ) < arg(z) <

(
−j + 1

2

) 2
m
π − 2

m
arg(ζ), (2.19)

which leads to m sectors. In each sector, only the decaying solution is uniquely defined.
We call these decaying solutions as small solutions. Let us denote the small solution in
sector S(i)

k by s(i)
k , where (i) = (0), (∞).

The connection is invariant under the Z2 projection

σ3Bz,z̄(ζ)σ3 = Bz,z̄(eiπζ), (2.20)

which enables us to generate the solution of the linear problem by

s
(i)
k+1 = (iσ3)ks(i)

1 (ekiπζ). (2.21)

We normalize the small solutions such that

s
(i)
k ∧ s

(i)
k+1 = 1, (2.22)

where the product is defined by sa ∧ sb = det(sa, sb).

2.4 Minimal area

At the end of this section, let us show how to compute the minimal area from the solutions
of the generalized sinh-Gordon equation (2.3). The minimal area ending on the Wilson
lines at strong coupling is computed by

A = 2
∫
d2z∂~Y · ∂̄ ~Y = 4

∫
d2ze2α, (2.23)

where α satisfies the generalized sinh-Gordon equation with the given boundary condition.
Since e2α ∼

√
pp̄ at |z| → 0,∞, which is divergent, we separate the area by

A = 4
∫
d2z(e2α −

√
pp̄) + 4

∫
d2z

√
pp̄, (2.24)

and denote the finite part and the divergent part by

Afin = 4
∫
d2z(e2α −

√
pp̄), Adiv = 4

∫
d2z

√
pp̄. (2.25)

– 7 –
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The divergent part Adiv can be regularized by introducing two cutoffs in the radial
direction of AdS spacetime:

Adiv = Aperiod +Acutoff ,

Aperiod = 4
∫
d2z

√
pp̄− 4

∫
Σ
d2z

√
pp̄,

Acutoff = 4
∫

Σ0,r<ε0,r<ε∞
d2z

√
pp̄ = Acutoff,ε0 +Acutoff,ε∞ ,

(2.26)

where Σ is a reference surface and r is the radial coordinate with the metric ds2 =
(dy+dy− + dr2)/r2. Aperiod depends on the branch cuts and can be evaluated by using
the Riemann bilinear identity. Acutoff involves the large |z| and small |z| regions of the Rie-
mann surface, which depends on the cutoff ε0 and ε∞. Here we suppose the physical cutoff,
i.e. the cutoff on the r-direction, ε0 and ε∞ are small, while the corresponding worldsheet
coordinates 1/|z(ε0)| and |z(ε∞)| are large.

Since our p(z) and the boundary condition of worldsheet have the same forms as the
ones in scattering amplitude case at large/small |z|, Acutoff,ε0 and Acutoff,ε∞ have the same
forms as the ones studied in [8]

Acutoff,ε0 = 1
8
∑
i

(
log(ε20d

(0)
i,i+2)

)2
+A

(0)
BDS−like, (2.27)

and
Acutoff,ε∞ = 1

8
∑
i

(
log(ε2∞d

(∞)
i,i+2)

)2
+A

(∞)
BDS−like, (2.28)

where the first term is the usual divergent term, the second term is finite whose detail form
can be found in [7, 8, 16].

Using the equation of motion (2.3), one can rewrite Afin by

Afin = 2
∫
d2z

(
e2α − 2

√
pp̄+ pp̄e−2α + ∂∂̄α

)
. (2.29)

The integral of ∂∂̄α contributes at boundaries at |z| → 0 and |z| → ∞. At |z| → 0, one
finds

2
∫
d2z∂∂̄α ∼ 1

42
∫
d2z∂∂̄ log pp̄ ∼


m+2

2
∫
d2z∂∂̄ log zz̄ = π

2 (m+ 2) |z| → 0
n−2

2
∫
d2z∂∂̄ log zz̄ = π

2 (n− 2) |z| → ∞
. (2.30)

Let us denote the first three terms in Afin by 2Areg:

Afin = 2Areg + π

2 (m+ n), (2.31)

Areg =
∫
d2z

(
e2α − 2

√
pp̄+ pp̄e−2α). (2.32)

The integrand of Areg can be written by√
pp̄e2α−log

√
pp̄ +

√
pp̄e−2α+log

√
pp̄ − 2

√
pp̄ = λu, (2.33)

– 8 –
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with
λ = √p, u = 2

√
p̄
(

cosh(2α̂)− 1
)
. (2.34)

To construct a closed form in the integral, we add vdz = 1√
p(∂α̂)2dz to one-form udz:

Areg = i

2

∫
λdz ∧ η, (2.35)

where η = (udz̄ + vdz). By using the Riemann bilinear identity, this integral reduces to
integrals over cycles on the double cover of the worldsheet. In the following of this paper,
we will provide a procedure to compute this Areg exactly.

3 WKB approximation and TBA-like equations

When ζ → 0,∞, we can solve the linear problem by using WKB approximation [12], where
the information needed in the calculation of minimal area, i.e. λ and η along certain paths,
are included. In this section, we first show the WKB approximation of the linear problem
by following the Gaiotto-Moore-Neitzke formalism [12, 29]. We then introduce the Fock-
Goncharov coordinates, which are the cross ratios of the small solutions, and derive their
functional relations and integral equations. These integral equations have the form of the
TBA equations and enable us to extract the data in the calculation of minimal area. We
finally test our method by comparing the area computed from the TBA equations with the
one obtained from the numerical integration of (2.32).

3.1 WKB curve and WKB triangulation

Let us consider the ζ → 0 case for instance. It is convenient to diagonalize Φz →
diag(√p,−√p), such that the solution of linear problem behaves as exp(±1

ζ

∫ z
z∗

√
p(z′)dz′).

It is thus natural to consider the problem on the following Riemann surface:

y2 = p(z). (3.1)

To make sure the precision of the WKB approximation, we follow the solutions along the
path of WKB curve:

Im
(1
ζ

√
p(z)dz

dt

)
= 0, (3.2)

which is parametrized by t. At a generic point on the complex z-plane, WKB curves do
not intersect. At the (simple) zeros of p(z), three WKB curves radiate, which separate the
plane into three regions. In figure 1 and figure 2, we plot the WKB curves for the Riemann
surface y2 = p(z) with (m,n) = (2, 2) and (m,n) = (3, 3) respectively.

In our case, z = 0 and z = ∞ are order m + 2 and n + 2 irregular singular points
respectively, say Q(i) with (i) = (0), (∞). The WKB curves emerging from Q(i) will divide
the surface into n(i) sectors, where n(∞) = n and n(0) = m. It is thus convenient to regard
this irregular singular point Q(i) as n(i) marked singular points Q(i)

k , k = 1, · · · , n(i). We
will locate Q(i)

k on the direction where the small solution s(i)
k decays the fastest, such that

– 9 –



J
H
E
P
0
5
(
2
0
2
2
)
0
9
9

Figure 1. The WKB curves (black lines) for p(z) = 1
z4 + 1. Here the spectral parameter is fixed

to be −π/10, 0 and π/10 (from left to right). The yellow crosses denote the zeros of p(z). “pop”
occurs at θ = 0, where the topology of the Stokes graph changes. See section 3.3 and appendix B
in [31] for related discussion.

Figure 2. The WKB curves (black lines) for p(z) = 1
z5 + z. Here the spectral parameter is fixed

to be −π/10, 0 and π/10 (from left to right). The yellow crosses denote the zeros of p(z).

the small solution is uniquely defined around each marked point.8 The complex plane will
be divided by these WKB curves into cells. In each cell, several homotopically equivalent
curves sweep. Choosing a representative curve from each family, we obtain the WKB
triangulation TWKB, which means a triangulation by the WKB curves with all vertices
Q at the regular singularities or the marked points of irregular points, and at least one
edge E ends on each vertex. Two triangles, which bound edge E, make up a quadrilateral
QE , where the small solution to be single-valued and smooth defined up to rescaling. In
figure 3, we show the WKB triangulation TWKB for the Riemann surface y2 = p(z) for
(m,n) = (2, 2) and (m,n) = (3, 3) with 0 < Im(θ) < π/2.

In figure 3, the black lines, connecting the marked points of the same irregular point,
are called boundary edges, whose Fock-Goncharov coordinates are set to be zero [12]. The
nontrivial Fock-Goncharov coordinates are the ones associated with the red lines in figure 3.

8More details can be found in section 8 of [12].
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Figure 3. The WKB triangulation for p(z) = 1
z4 + 1 and p(z) = 1

z5 + z with 0 < Im(θ) < π/2.

3.2 Fock-Goncharov coordinates and functional relation

3.2.1 m = n case

Let us consider the case of m = n at first. We consider p(z) = c(z−3 + z−1) as a typical
case and choose 0 < φ < π/2, so the WKB triangulation is given by figure 3 for n = 2, 3.
In general there are 2n non-trivial edges, E(Q(0)

−k, Q
(∞)
k ) and E(Q(0)

−k−1, Q
(∞)
k ) with k =

0, 1, . . . , n− 1. We introduce two types of Fock-Goncharov coordinates

X−k,k :=X
E(Q(0)

−k,Q
(∞)
k

)=−
(s(∞)
k−1∧s

(∞)
k )(s(0)

−k−1∧s
(0)
−k)

(s(0)
−k∧s

(∞)
k−1)(s(∞)

k ∧s(0)
−k−1)

= 1
(s(0)
−k∧s

(∞)
k−1)(s(0)

−k−1∧s
(∞)
k )

,

X−k−1,k :=X
E(Q(0)

−k−1,Q
(∞)
k

)=−
(s(0)
−k∧s

(∞)
k )(s(∞)

k+1∧s
(0)
−k−1)

(s(0)
−k−1∧s

(0)
−k)(s

(∞)
k ∧s(∞)

k+1)
=(s(0)

−k∧s
(∞)
k )(s(0)

−k−1∧s
(∞)
k+1), (3.3)

which are associated with the cross ratios (2.13):

X−k,k(ζ = 1, i)−1 = −χ(0,∞,0,∞)±
−k,k−1,−k−1,k, X−k−1,k(ζ = 1, i) = −χ(0,∞,0,∞)±

−k,k,−k−1,k+1. (3.4)

Different coordinates are related by X−k,k = X−k−n,k+n and X−k−1,k = X−k−1−n,k+n be-
cause s(0)

−k = Ms
(0)
−n−k and s

(∞)
k = Ms

(∞)
n+k, where M is the monodromy operator around

z = 0.
For any edge E(P,Q), it is convenient to introduce a function

APQ = −(sQ ∧ s̃P )(sP ∧ s̃Q)
(sP ∧ s̃P )(sQ ∧ s̃Q) , (3.5)

where ·̃ denote the Z2 shift of the solutions. For the small solution, s̃(i)
k = s

(i)
k+1. By using

the Plücker relation (Schouten relation) for any vectors v1, · · · , v4:

(v1 ∧ v2)(v3 ∧ v4) + (v3 ∧ v1)(v2 ∧ v4) + (v2 ∧ v3)(v1 ∧ v4) = 0, (3.6)
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one finds
1 +APQ = (sP ∧ sQ)(s̃P ∧ s̃Q)

(sP ∧ s̃P )(sQ ∧ s̃Q) . (3.7)

Since 1 +A
Q

(i)
k
Q

(i)
k+1

= 1, only Ak,j := A
Q

(0)
k
Q

(∞)
j

is non-trivial. It is then easy to find

X−k,kX̃−k,k = 1(
1+A−k,k−1

)(
1+A−k−1,k

) , X−k−1,kX̃−k−1,k =
(
1+A−k,k

)(
1+A−k−1,k+1

)
.

(3.8)
The right hand side can be expressed in terms of coordinates by noting

A−k,k = X−k,k(1 + X−k,k−1)(1 + X−k−1,k),
A−k,k−1 = X−k,k−1,

(3.9)

which are easily derived by using the Plücker relation. Together with the conditions X−i,i =
X−i−n,i+n and X−i−1,i = X−i−1−n,i+n, we obtain a closed system with 2n coordinates. In
the following, we show the case (m,n) = (1, 1), (2, 2) for instance:

Example: (m, n) = (1, 1).

X0,0X̃0,0 = 1(
1 + X−1,0

)2 ,
X−1,0X̃−1,0 =

(
1 + X0,0(1 + X−1,0)2)2. (3.10)

Example: (m, n) = (2, 2).

X0,0X̃0,0 = 1(
1 + X−2,1

)(
1 + X−1,0

) ,
X−1,0X̃−1,0 =

(
1 + X0,0(1 + X−2,1)(1 + X−1,0)

)(
1 + X−1,1(1 + X−1,0)(1 + X−2,1)

)
,

X−1,1X̃−1,1 = 1(
1 + X−1,0

)(
1 + X−2,1

) ,
X−2,1X̃−2,1 =

(
1 + X−1,1(1 + X−1,0)(1 + X−2,1)

)(
1 + X0,0(1 + X−2,1)(1 + X−1,0)

)
.

(3.11)

3.2.2 n > m case

We then consider the case n > m. It is convenient to partition the n Stokes sectors into
m groups corresponding to the WKB triangulation as shown in figure 4. The ith group
contains ni Stokes sectors S(∞)

i;k , k = 1, . . . , ni which connect to S(0)
−i through WKB curves.

In addition, S(∞)
i;ni and S(0)

−i−1 are also connected so we define S(∞)
i+1;0 = S(∞)

i;ni . We define the
Fock-Goncharov coordinates as

Xi;k := X
E(Q(0)

−i ,Q
(∞)
i;k ) = −

(s(∞)
i;k−1 ∧ s

(∞)
i;k )(s(∞)

i;k+1 ∧ s
(0)
−i )

(s(0)
−i ∧ s

(∞)
i;k−1)(s(∞)

i;k ∧ s
(∞)
i;k+1)

, k = 1, . . . , ni − 1,

Xi;ni := X
E(Q(0)

−i ,Q
(∞)
i;ni

) = −
(s(∞)
i;ni−1 ∧ s

(∞)
i;ni )(s(0)

−i−1 ∧ s
(0)
−i )

(s(0)
−i ∧ s

(∞)
i;ni−1)(s(∞)

i;ni ∧ s
(0)
−i−1)

,

Xi;0 := X
E(Q(0)

−i ,Q
(∞)
i−1;ni−1

) = −
(s(0)
−i+1 ∧ s

(∞)
i−1;ni−1

)(s(∞)
i;1 ∧ s

(0)
−i )

(s(0)
−i ∧ s

(0)
−i+1)(s(∞)

i−1;ni−1
∧ s(∞)

i;1 )
.

(3.12)
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Figure 4. The WKB triangulation for n > m.

The functional relations are

Xi;kX̃i;k = 1 +Ai;k+1
1 +Ai;k−1

, k = 1, . . . , ni − 1,

Xi;niX̃i;ni = 1
(1 +Ai;ni−1)(1 + Ai+1;0) ,

Xi;0X̃i;0 = (1 +Ai−1;ni−1)(1 + Ai;1),

(3.13)

where
Ai;k = Xi;k(1 + Xi;k−1(1 + . . .Xi;1(1 + Xi;0))), k = 1, . . . , ni − 1
Ai;ni = Xi;ni(1 + Xi;ni−1(1 + . . .Xi;1(1 + Xi;0)))(1 + Xi+1;0),
Ai;0 = X̃i;0.

(3.14)

As a simple example, the functional relations for (m,n) = (1, 2) are:

Example: (m, n) = (1, 2).

X0;0X̃0;0 =
(
1 + X0;2(1 + X0;1(1 + X0;0))(1 + X0;0)

)(
1 + X0;1(1 + X0;0)

)
,

X0;1X̃0;1 =
(
1 + X0;2(1 + X0;1(1 + X0;0))(1 + X0;0)

)(
1 + X0;0

) ,

X0;2X̃0;2 = 1(
1 + X0;1(1 + X0;0)

)(
1 + X0;0

) .
(3.15)

3.3 TBA-like equations

The standard WKB approximation shows

logX (0)
E = 1

ζ
ZE + ζZ̄E = 1

ζ

∮
γE

√
p(z)dz + ζ

∮
γE

√
p̄(z̄)dz̄, (3.16)

for ζ → 0,∞, where γE is the cycle encircling the two zeros in the quadrilateral QE [12].
The definition of γE is shown in figure 5. Let us denote the right hand side of the functional
relations by FEi , i.e.

XiX̃i =: Fi, (3.17)
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Figure 5. The cycle γE(A,C) associated with the Fock-Goncharov coordinates XE(A,C). Two cases
are distinguished according to the signs in front of the exponential parts of the small solutions.

where i is the label of the edge Ei. This relation can be inverted into TBA-like equations
by using the Fourier transformation

logXi(θ + iφ) = logX (0)
i (θ + iφ) +

∫
R

dθ′

2π
logFi(θ′ − πi

2 + iφ)
cosh(θ − θ′) , (3.18)

or equivalently

logXi
(
θ + iφ− πi

2

)
= logX (0)

i

(
θ + iφ− πi

2

)
−
∫
R

dθ′

2πi
logFi(θ′ − πi

2 + iφ)
sinh(θ − θ′ + iε) , (3.19)

where X (0)
i (θ) denotes the leading order of Xi(θ) which can be read from (3.16). ε is a small

positive number. Note that these formulas are valid when the leading order of coordinates,
X (0)
i (θ+ iφ) = exp

(
e−θ−iφZEi + eθ+iφZ̄Ei

)
, are convergent for θ → ±∞, which is the main

scope in this paper.

3.4 Area from the TBA-like equation

The area Areg can be reduced to one-dimensional integrals over cycles by applying the
Riemann bilinear identity:

Areg =
∫
dz2√pu = i

4

∫
Σ

√
pdz ∧ η = − i4

n+m∑
i=1

∮
Ci

√
pη − i

4

∮
γa

√
pdzIab

∮
γb

η. (3.20)

where Ci is a small contour encircling the zero point zi and {γa} is a complete basis of
cycles. The matrix Iab is the inverse of intersection matrix of the cycles. We denote by ∂a
the tangent vector of the cycle γa. For each pair of intersecting cycles γa and γb, we have
Iab = 1(−1) if det[{∂a, ∂b}] > 0(< 0) at the intersecting point.

Using the explicit expression

η = 2
√
p̄
(

cosh(2α̂)− 1
)
dz̄ + 1

√
p

(∂α̂)2dz, (3.21)
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Figure 6. The cycles for Riemann bilinear identity for odd n and m.

the contribution from a Ci can be computed as

− i

4

∫
Ci

√
pη = π

24 . (3.22)

When both n and m are odd integers, we choose the basis of cycles {γa} as shown in
figure 6. Depending on the signs in front of the exponential parts of the small solutions of
the Stokes sectors, some of the γa defined here are in the opposite direction of the γE used in
the asymptotics (3.16) of the X coordinates. In our convention, the signs are chosen to be:

s
(∞,0)
k ∼ exp

(
(−)k 1

ζ

∫ z

Q
(∞,0)
k

dz′
√
p+ . . .

)
, (3.23)

which is consistent with the Stokes sector defined in (2.18) and (2.19). For even (resp.
odd) k, γ

E(Q(0)
k
,∗) is in the same (resp. opposite) direction with respect to the associated

γa defined in figure 6.
The nonzero elements of the intersection matrix Iab are

In+m,n+m−1 = −In+m−1,n+m = In+m,1 = −I1,n+m = Ia,a+1 = −Ia+1,a = 1, (3.24)

where a = 1, . . . , n+m− 2. The integrals of η over the γ-cycles can be written as:∮
γa
η =

n+m∑
b=1

Iab

∫
βb

η, (3.25)

where βa is the path from 0 to ∞ that intersects γa. The area can be simplified as

Areg = π

24(n+m)− i

4

n+m∑
a=1

∫
βa
η

∮
γa

√
pdz. (3.26)

One can further show that (3.26) holds for general values of n and m.
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Let us denote the fastest decay solution of the linear problem at puncture Qi by si,
say the small solution. As shown in [28], the information of λ and udz̄ + vdz on the path
Qi → Qj can be extracted from the WKB approximation of log si ∧ sj . When there is
a WKB curve connecting Qi and Qj , the signs in front of the WKB expansion of the
exponential parts of si and sj must be opposite.9 To be concrete, if

si ∼ exp
(1
ζ

∫ z

Qi

dz′
√
p+ ζ

(1
2

∫ z

Qi

dz′
((∂α̂)2
√
p
− ∂

(
∂α̂
√
p

))
+
∫ z̄

Qi

dz̄′
√
p̄e−2α̂

))
,

sj ∼ exp
(
− 1
ζ

∫ z

Qj

dz′
√
p− ζ

(1
2

∫ z

Qj

dz′
((∂α̂)2
√
p
− ∂

(
∂α̂
√
p

))
−
∫ z̄

Qj

dz̄′
√
p̄e−2α̂

))
,

(3.27)

the WKB expansion of log si ∧ sj is

log si ∧ sj ∼
1
ζ

∫ Qj

Qi

dz
√
p+ ζ

(1
2

∫ Qj

Qi

dz

((∂α̂)2
√
p
− ∂

(
∂α̂
√
p

))
+
∫ Qj

Qi

dz̄
√
p̄e−2α̂

)
+ · · ·

∼ 1
ζ

∫ Qj

Qi

√
pdz + ζ

∫ Qj

Qi

dz̄
√
p̄+ ζ

2

∫ Qj

Qi

(udz̄ + vdz) + · · · .

(3.28)
We thus can extract the information of λ and udz̄ + vdz around certain cycles from the
WKB approximation of si ∧ sj .

We now show that ηi can be extracted from Ai. Using the normalization sQ ∧ s̃Q =
1 = sP ∧ s̃P , we have

log
(
sP ∧ sQ

)+ + log
(
sP ∧ sQ

)− = log(1 + A−PQ), (3.29)

which is the logarithm of (3.5). Performing the Fourier transforms at θ + iφ, we obtain

log
(
sP ∧ sQ

)
(θ + iφ) = `PQ(θ + iφ) +

∫
R

dθ′

2π
log

(
1 +A−PQ(θ′ + iφ)

)
cosh(θ − θ′) , (3.30)

where `PQ(θ) denotes the leading order of log(sP ∧ sQ)(θ) at large θ

`PQ = lim
(w,w̄)→Q
(z,z̄)→P

(1
2e
−θ−iφ

∫ w

z

√
p(z′)dz′ + 1

2e
θ+iφ

∫ w̄

z̄

√
p̄(z̄′)dz̄′ + . . .

)
. (3.31)

Expanding around θ → −∞ and comparing with (3.28) with ζ = eθ+iφ we find∫
Ei

η = 2
∫
R

dθ′

π
e−θ

′−iφlog
(
1 +A−i (θ′ + iφ)

)
. (3.32)

Taking into account the direction of the WKB lines, Areg thus can be expressed as

Areg = π

24(m+ n)− i

2

m+n∑
i=1

∫
R

dθ

π
ZEie

−θ−iφ log
(
1 +A−i (θ + iφ)

)
. (3.33)

9Qi and Qj can be the mark points of different irregular singular points.
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So far, we focused on the WKB expansion around ζ = 0. The WKB expansion around
ζ = ∞ can be done in a similar way. We average the results from ζ = 0 and ζ = ∞, and
obtain

Areg = π

24(m+ n)− i

2

m+n∑
i=1

∫
R

dθ

2π (ZEie−θ−iφ − Z̄Eieθ+iφ) log
(
1 +A−i (θ + iφ)

)
. (3.34)

Let φi denotes the phase of Zi and we thus find

Areg = π

24(m+n) + i

2

m+n∑
i=1

∫
R

dθ

π
|ZEi | sinh(θ+ iφ− iφi) log

(
1 +Ai

(
θ+ iφ− iπ2

))
. (3.35)

If the WKB triangulation of interest exists at Im θ = φi − π
2 for each i, we can choose

φ = φi − π
2 in each integral and get

Areg = π

24(m+ n) +
m+n∑
i=1

∫
R

dθ

2π |ZEi | cosh θ log
(
1 +Ai(θ + iφi − iπ)

)
, (3.36)

where the second term has the form of free energy of the TBA-like equations (3.18). It
is worth to note that the area does not depend on the value of ζ explicitly. One can
introduce the Fock-Goncharov coordinates for other values of ζ, which may have different
Stokes graph/WKB triangulation as shown in figure 1 and figure 2. This will provide the
same form of the area eventually. In appendix A, we will present a simplified functional
relations and TBA equations for the case m = n, where the connection with the N = 2
super Yang-Mills theory is also mentioned. Two important remarks are in order here.

First, so far we have considered the function p(z) as the input of the problem. It
appears that the TBA-like equations and the area Areg (3.36) do not depend explicitly on
the data of the Wilson lines configuration such as the period q, distance l, and the physical
cross ratios. It is useful to eliminate the central charge Zi in favor of cross ratios X (ζ =
1, i), which will depends on the physical data explicitly. Second, an arbitrary function
p(z) in general corresponds to two non-periodic Wilson lines. The cross ratios of the two
periodic Wilson lines can be expressed in terms of ratios (ki/l)±. Because of momentum
conservation, only 2(m+ n− 1) of such ratios are independent.10 But we have (m+ n) X -
functions (resp. 2(m+n) ratios). Therefore only special p-functions correspond to periodic
Wilson lines.11 We will postpone detailed discussion of these two points to the next section.

Even though the approach presented in this section does not directly solve the physical
problem, it is still important to relax the periodicity constraint momentarily and test the
correctness of TBA-like equations (3.19).

3.5 Numeric test

To test our TBA-like equations method, we compare Areg (3.36) with the area (2.32)
computed by solving the generalized sinh-Gordon equation numerically. Note that the

10This degree of freedom can also be obtained by counting the symmetries as 2(m+ n) + 2− 3− 1. Here
2(m+n) is the degrees of the Wilson lines. The 2 is the degrees of the momentum `. The 3 is the Poincare
symmetry. The 1 is the scaling symmetry.

11We are grateful to Gang Yang for pointing out this.
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p(z) TBA Numerics
(z−1 + z−3)/64 0.377385 0.3774

(z−1 + z−2 + z−3)/64 0.390659 0.3906
(z−1 + 3

2z
−2 + z−3)/64 0.402791 0.4028

(z−1 + 12
5 z
−2 + z−3)/256 0.466742 0.4667

(z−1 + 4z−2 + z−3)/256 0.472178 0.4722
(z−1 + 6z−2 + z−3)/512 0.419296 0.4193

(z−1 + 10z−2 + z−3)/1024 0.418505 0.4185

Table 1. Comparison of Areg computed by TBA method and the areas obtained by numerically
solving the generalized sinh-Gordon equation (2.3) and substituting the solution into (2.32) for
some cases with m = n = 1. To provide a nontrivial test, the coefficients in p(z) are chosen such
that the periods ZEi

are not too large and thus the integral terms in the TBA are not small.

numeric test in this subsection is implemented with a given p(z), which is not necessary to
correspond to a periodic Wilson lines configuration.

It is convenient to introduce suitable function to solve for:

α̂reg = α− 1
4 log

(
(z̄z)−m−2 + (z̄z)n−2). (3.37)

It satisfies the boundary condition α̂reg → 0 at |z| → 0,∞ and there are no singularities
at finite |z|. We thus can solve the generalized sinh-Gordon equation in terms of α̂reg,
and then numerically integrate (2.32), say numerics of Areg. To solve the sinh-Gordon
equation numerically, we use Mathematica Package NDSolve. Because p(z) is divergent at
z → 0,∞, we need to introduce cutoffs close to these singularities. We use the coordinates
x+ iy = log z with x ∈ [−Λ,Λ] and y ∈ [0, 2π]. The cutoff Λ is chosen such that the area
density near the cutoff is small enough. However, we find that numerical value of the area
does not converge but oscillates with a magnitude of order 10−4 as Λ becomes large. So
we cannot get highly accurate results in this approach.

We have tested the TBA equation numerically for the (m,n) = (1, 1) and (m,n) =
(1, 2) cases and the results are shown in table 1 and 2, respectively.

4 Area from the cross ratios

As mentioned in the previous section, the TBA-like equations do not depend on the Wilson
lines configuration in an explicit way. To resolve this problem, we eliminate the central
charge Zi in the TBA equations (3.18) by using the cross ratios

logχ+
i = Zi + Z̄i +

∫
R

dθ′

2π
logFi(θ′ − πi

2 + iφ)
cosh(−iφ− θ′) ,

logχ−i = −iZi + iZ̄i +
∫
R

dθ′

2π
logFi(θ′ − πi

2 + iφ)
cosh(−iφ+ πi

2 − θ′ − iε)
,

(4.1)

where the coordinates Xi at ζ = 1 and ζ = i as are denoted as χ+
i and χ−i respectively.
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p(z) TBA Numerics
(1 + z−3)/4 0.408174 0.4083
(1 + z−3)/16 0.503204 0.5031
(1 + z−3)/64 0.669739 0.6694

(1 + z−1 + z−3)/4 0.409190 0.4094
(1 + z−1 + z−3)/16 0.498584 0.4986
(1 + z−1 + z−3)/64 0.659836 0.6597

Table 2. Comparison of Areg computed by TBA method and the area obtained from numerical
integration for some cases with m = 1 and n = 2.

From the asymptotic (3.16) the cross ratios computed from (4.1) are positive at least
in the limit of large |ZE |. However, physical values of the cross ratios can be negative.
In appendix B, we show a physical configuration of Wilson line where all cross ratios are
negative. To allow negative cross ratios we expect the asymptotics of an X -coordinate
corresponding to a negative cross ratio are modified by

X (0)
E = − exp

(1
ζ
ZE + ζZ̄E

)
. (4.2)

However this asymptotics is not possible if α is analytic except at z = 0,∞. As discussed
in [29], if α ∼ 1

2 log pp̄ at a zero zi, the connection (2.6) will have a singularity and leads
to a monodromy -1 around the zero zi. Therefore the asymptotics (4.2) corresponds to the
case where α has a logarithmic singularity α ∼ 1

2 log pp̄ near one of the two zeros contained
in the quadrilateral QE and at another zero α is analytic. The left hand side of integral
equations (3.19) should be modified by replacing logXi → log(−Xi) if the asymptotics of
Xi is given by (4.2). Equation (2.31) should be modified as

Afin = 2Areg + π

2 (m+ n)− πns, (4.3)

where ns is the number of zeros where α takes the singular asymptotics. In [29] the
logarithmic singularities at zeros are introduce to have a non-singular world-sheet metric.
The physical interpretation of the singularity here is not clear to us at this point.

To test the correspondence between the asymptotics (4.2) and logarithmic singularity
at a zero we computed Areg in these two ways for p(z) = c( 1

z3 + 1
z ) and p(z) = c( 1

z3 + 1
z2 + 1

z )
with α ∼ 1

2 log pp̄ at z = i and z = −1
2 + i

√
3

2 respectively. The results are summarized in
table 3.

Solving equations (4.1) about the central charge Z±i and then substituting it to the
original TBA equations (3.19), we get

log
(
±X−i (θ + iφ)

)
= −i sinh(θ + iφ) log |χ+

i | − cosh(θ + iφ) log |χ−i | (4.4)

−
∫
R

dθ′

2πi
sinh(2θ + 2iφ)

sinh(θ − θ′ + iε) sinh(2θ′ + 2iφ) logFi
(
θ′ − πi

2 + iφ

)
.
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p(z) TBA Numerics
1/8(z−1 + z−3) 0.254021 0.2541
1/16(z−1 + z−3) 0.234482 0.2345
1/32(z−1 + z−3) 0.197911 0.1979
1/64(z−1 + z−3) 0.149841 0.1498

1/8(z−1 + z−2 + z−3) 0.225485 0.2255
1/16(z−1 + z−2 + z−3) 0.195409 0.1954
1/32(z−1 + z−2 + z−3) 0.157793 0.1578
1/64(z−1 + z−2 + z−3) 0.116639 0.1166

Table 3. Comparison of Areg computed by TBA method and the area obtained by numerical
integration for various p(z).

The choice of signs in the left hand side depend on the sign of the asymptotics of Xi. To
compute areas of worldsheet ending on two periodic Wilson lines, one solves the integral
equations (4.4) with the physical cross ratios as input. Then one can compute the central
charges Zi from (4.1) and the area Areg from (3.36). The WKB triangulation depends on
the coefficient in p(z) and the choice of φ. The original TBA equations (3.19) are derived
by assuming p(z) is not far away from c(z−3 + z−1) and 0 < φ < π/2. Therefore in the end
one need to compute p(z) form the central charges and verify whether p(z) and φ give the
desired WKB triangulation consistent with (4.4).

For example, when m = n = 1, the cross ratios are

χ±1 = − 1
(1 + l±/q±)2 , χ±2 = −(l±/q±)2. (4.5)

Because the cross ratios are negative, (4.4) takes the form:

log(−X−1 (θ+ iφ)) =−cosh(θ+ iφ) log
( 1

(1+ l−/q−)2

)
− isinh(θ+ iφ) log

( 1
(1+ l+/q+)2

)
−
∫
R

dθ′

2πi
sinh(2θ+2iφ)

sinh(θ−θ′+ iε)sinh(2θ′+2iφ) log
( 1

1+X−2 (θ′+ iφ)

)2
,

log(−X−2 (θ+ iφ)) =−cosh(θ+ iφ) log
((

l−

q−

)2)
− isinh(θ+ iφ) log

((
l+

q+

)2)
(4.6)

−
∫
R

dθ′

2πi
sinh(2θ+2iφ)

sinh(θ−θ′+ iε)sinh(2θ′+2iφ) log
(
1+X−1 (θ′+ iφ)

(
1+X−2 (θ′+ iφ)

)2)2
.

In order that the integrals in (4.6) converge, we require

tanφ log(l+/q+)2 < log(l−/q−)2, tanφ log(1 + l+/q+)2 < log(1 + l−/q−)2, (4.7)

such that Xi(θ + iφ) → 0 for θ → ±∞. For a given worlsheet, the cross ratios are not
uniquely defined because of the equivalence relation l ' l+ q. Using the freedom of choice
of l, one can always find a value of φ ∈ (0, π/2) such that the X -functions decay at large
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Figure 7. The periodic Wilson lines configuration in the case (m,n) = (1, 1).

θ. Then one can numerically solve the integral equations (4.6) and compute the central
charges Zi from (4.1) and the area Areg from (3.36).

In general, finding p(z) for given central charges is a difficult task. We consider a
special case when (l+/q+, l−/q−)→ (0,−1) and thus two Wilson lines almost coincide (see
figure 7). In this case some of the logarithms of the cross ratios diverges and the integrals
in (4.6) can be negligible. The solution of (4.6) can be approximated by its asymptotics
and we find:

Areg ≈
π

12 −
1√
8π

(
δ2
−

√
− log δ2

− + δ2
+

√
− log δ2

+

)
, (4.8)

Z1 ≈ −
1
2 i log δ2

−, Z2 ≈
1
2 log δ2

+, (4.9)

p(z) ≈
Γ
(

1
4

)4 (
log δ2

− + log δ2
+
) 2

4096π3

 1
z3 +

32π2 (log δ2
− − log δ2

+
)

z2Γ
(

1
4

)4 (
log δ2

− + log δ2
+
) + 1

z

 , (4.10)

where both δ+ = l+/p+ and δ− = l−/p− + 1 are small of the same order in this limit. For
finite values of δ±, one has to solve (4.6) numerically. The results for some cases when
δ+ = ±δ− are shown in table 4 and 5. In the case δ+ = −δ− where we separate the two
Wilson lines in the transverse direction, Areg first decreases and then increases after reach-
ing a minimum at |δ±| ≈ 0.6 as |δ±| increases. When two Wilson lines are separated in the
longitudinal direction δ− = δ+, we find Areg(δ± = δ) is equal to Areg(δ± = −1− δ), which
is consistent with the symmetry of exchanging two Wilson lines. More results are shown in
figure 8. We find the Areg minimizes at (δ+, δ−) = (0,−1) where Areg → 0. The configura-
tion is equivalent to set l→ 0 and the two Wilson lines in one period become a rectangular
Wilson loop, whose minimal area is completely fixed by the dual conformal symmetry.12

The area Areg reaches the maximum value π/12 when δ± = 0 and two Wilson lines coincide.

12The dual conformal symmetry completely fixes the 4,5-point scattering amplitudes/Wilson loops, whose
amplitudes/minimal area can be expressed by using the BDS conjecture [32] with a trivial Areg. For n ≥ 6,
the area starts to differ from the BDS conjecture [33, 34], namely the Areg will be non-trivial.
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δ+ = −δ− Z1,2 c, c1 TBA Numerics

0.3
−0.295669 + 1.18518i
−1.18518 + 0.295669i

0.030972
0.454030i

0.200458 0.2004

0.4
−0.385816 + 0.881248i
−0.881248 + 0.385816i

0.0175655
0.789943i

0.168922 0.1689

0.5
−0.465244 + 0.638576i
−0.638576 + 0.465244i

0.00980096
1.28713i

0.143341 0.1433

0.6
−0.530455 + 0.437494i
−0.437494 + 0.530455i

0.00527798
2.03765i

0.130700 0.1307

0.7
−0.581248 + 0.270192i
−0.270192 + 0.581248i

0.00274072
3.20468i

0.133519 0.1335

0.8
−0.620828 + 0.131943i
−0.131943 + 0.620828i

0.00138794
5.07530i

0.148697 0.1487

Table 4. We solve (4.6) numerically and compute Zi and Areg when δ+ = −δ−, say “TBA” in the
table. We choose φ = π/4. The number c and c1 are coefficients in p(z) = c(z−3 + c1z

−2 + z−1).
We find c is real and ci is imaginary when δ+ = −δ−. The results match the areas (2.32) obtained
by numerical integration, say “Numerics” in the table.

0

0.05

0.10

0.15

0.20

0.25

Figure 8. Areg as a function of δ± computed by solving (4.6) numerically.

It is not obvious the areas are the same for l and l+q from the integral equations (4.6).
As a consistency check, we compute the areas for some pairs of equivalent configurations
(δ+, δ−) and (δ+ + 2, δ− + 2). The results are shown in table 6.
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δ+ = δ− Z1,2 c TBA Numerics

−0.1
0.100703 + 2.30092i
−2.30092 + 0.100703i

0.115028 − 0.010088i 0.252587 0.2527

−0.2
0.20635 + 1.60181i
−1.60181 + 0.20635i

0.0549271− 0.0143906i 0.230416 0.2304

−0.3
0.324384 + 1.1854i
−1.1854 + 0.324384i

0.0282984− 0.0167413i 0.201106 0.2011

−0.4
0.466530 + 0.883201i
−0.883201 + 0.466530i

0.0122427− 0.0179392i 0.173421 0.1734

−0.5
0.648457 + 0.648457i
−0.648457 + 0.648457i

−0.0183074i 0.161262 0.1613

−0.6
0.883201 + 0.46653i
−0.46653 + 0.883201i

−0.0122427− 0.0179392i 0.173421 0.1734

−0.7
1.1854 + 0.324384i
−0.324384 + 1.1854i

−0.0282984− 0.0167413i 0.201106 0.2011

Table 5. We solve (4.6) numerically and compute Zi and Areg when δ+ = δ−. The number c is
defined as p(z) = c(z−3 + z−1). We find the coefficient of z−2 vanishes when δ+ = δ−. The results
match the areas (2.32) obtained by numerical integration.

δ+, δ− φ Z1,2 Areg

0.5, 1.5 0.49π
−0.638582− 0.465243i
−0.465251− 0.638577i

0.143342

−1.5,−0.5 0.01π
0.638576 + 0.465243i
0.465243 + 0.638574i

0.143342

0.6, 1.4 0.49π
−0.881253− 0.385815i
−0.385825− 0.881249i

0.168923

−1.4,−0.6 0.01π
0.881248 + 0.385815i
0.385816 + 0.881246i

0.168922

0.7, 1.3 0.49π
−0.270198− 0.581249i
−0.581254− 0.270193i

0.133519

−1.3,−0.7 0.01π
0.270191 + 0.581246i
0.581248 + 0.270192i

0.133518

Table 6. The areas and central charges for some equivalent pairs of configurations computed by
solving (4.6). In order that (4.7) is satisfied we need to choose different φ in each case.
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5 Conclusions and discussion

In this paper, we have computed the minimal area of the worldsheet ending on two periodic
light-like polygonal Wilson lines at the AdS boundary, which is dual to a cylindrically cut
double trace scattering amplitude in the four dimensional N = 4 super Yang-Mills theory.
We have presented a boundary condition of the linear problem, which is equivalent to the
equation of motion, to produce the two light-like polygonal Wilson lines at the boundary.
By using the connection between the linear problem and TBA equations, we have provided
an exact method to compute the minimal area ending on the Wilson lines with fixed period
q and distance l in the AdS3 subspace. Given the cross ratios as inputs, we have expressed
the non-trivial part of the minimal area in terms of the free energy of the TBA system,
which matches with the area calculated by using the numerical integration.

Clearly, there are many open questions raised by our work. Let us mention some of
them.

At the large l⊥ limit, we expect some of the moduli parameters of p(z) to be very
large, see for example c1 in table 4. In this case, the zeros of p(z) will be separated into
two regions far away from each other. Some zeros surround the origin and others are
at infinity, which corresponds to the two Wilson lines respectively. Moreover, from the
numerical integration of the area, we found the nontrivial contribution is almost coming
from the regions around the zeros in this case. One thus can expect the two Wilson lines
to decouple in this case, which thus becomes two copies of the form factor case [24]. It
would be interesting to see this decomposition analytically.

To allow negative cross ratios, we have modified the boundary condition of α at zeros
of polynomial p(z), it would be important to see whether this modification is useful in
the case scattering amplitude and provide a physical interpretation to this modification.
In this paper, we have focused on the AdS3 subspace for simplicity. It is important to
generalize our method to the Wilson lines at the AdS5 boundary to study more general
non-planar scattering amplitudes, where one needs to handle the linear problem with a
higher rank connection. Some hints on this directions can be found in [25, 35–37]. It
would be interesting to see what happens in various limits of the TBA equations in the
AdS5 case [38–40], which may shed light on developing the method for the finite coupling.
We hope to address this question in a future publication. Moreover, our method used to
compute the minimal area is quite general. It would be interesting to use it to study the
minimal area surface related to the higher order non-planar corrections of the scattering
amplitudes or (non-planar) form factor/Wilson lines dual at strong coupling.13

On the other hand, the non-perturbative integrability method turns out to be a very
powerful method to compute the planar scattering amplitude/Wilson loop even at the finite
coupling region [42–46], where the Wilson loop is decomposed into square and pentagons.
The strong coupling of this approach leads to the Y-system/TBA equations derived from
the minimal area surface [47]. Moreover, the scattering amplitude in the colinear limit at
strong coupling map into correlators of twist fields in the O(6) sigma model. A surprising
consequence of this identification is that an additional exponentially large term due to the

13See [41] for the recent development at the weak coupling.
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sphere S5 will contribute to the scattering amplitude [48, 49]. It would be interesting to see
this contribution in our case. More recently, this approach has been generalized to the form
factor case [50–52]. It would be interesting to explore the case of non-planar scattering
amplitudes.
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A More on the m = n case

In this appendix, we study the case of m = n in details. We will present a simplified
functional relations and TBA equations, whose relation with four dimensional N = 2 SYM
will also be mentioned.

From the functional relations of m = n case (3.9), one finds(
X [2]
−k,kX−k,k

)−1 =
(
1 +A−k,k−1

)(
1 +A−k−1,k

)
= (1 + X−k,k−1)(1 + X−k−1,k). (A.1)

Comparing with A−k,k, it is easy to find

A−k,k =
(
X [2]
−k,k

)−1
, (A.2)

which can also be checked by using the Plücker relation. Introducing

Y−k,k = 1/X−k,k, Y−k−1,k = X [−]
−k−1,k, (A.3)

we obtain the simplified functional relations for the m = n case:

Y [−]
−k,kY

[+]
−k,k =

(
1 + Y−k,k−1

)(
1 + Y−k−1,k),

Y [−]
−k−1,kY

[+]
−k−1,k =

(
1 + Y−k,k

)(
1 + Y−k−1,k+1

)
,

(A.4)

which is an analogy of the Y-system of the scattering amplitude in [16]. We thus can derive
the TBA equations by following the procedure in the case of scattering amplitude

logY−k,k(θ+ iφ−k,k) =−|Z−k,k|(e−θ+eθ)+
∫
R

dθ′

2π
log
(
1+Y−k,k−1(θ′+ iφ−k,k−1)

)
cosh(θ−θ′+ iφ−k,k− iφ−k,k−1)

+
∫
R

dθ′

2π
log
(
1+Y−k−1,k(θ′+ iφ−k−1,k)

)
cosh(θ−θ′+ iφ−k,k− iφ−k−1,k)

,

logY−k−1,k(θ+ iφ−k−1,k) =−|Z−k−1,k|(e−θ+eθ)+
∫
R

dθ′

2π
log
(
1+Y−k,k(θ′+ iφ−k,k)

)
cosh(θ−θ′+ iφ−k−1,k− iφ−k,k)

+
∫
R

dθ′

2π
log
(
1+Y−k−1,k+1(θ′+ iφ−k−1,k+1)

)
cosh(θ−θ′+ iφ−k−1,k− iφ−k−1,k+1) , (A.5)
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where φ is defined by

Z−k,ke
−iφ−k,k = |Z−k,k|, −iZ−k−1,ke

−iφ−k−1,k = |Z−k−1,k|. (A.6)

The non-trivial part of area can be written by

Areg = π

24(m+ n) +
∑

2k+1=1

∫
R

dθ

2π |Z−k,k| cosh θ log
(
1 + Y−k,k(θ + iφ−k,k)

)
+
∑

2k=2

∫
R

dθ

2π |Z−k−1,k| cosh θ log
(
1 + Y−k−1,k(θ + iφ−k−1,k)

)
,

(A.7)

which appears as the free energy of the TBA equations.
By using the new Y-functions, one can express the cross ratios by

Y−k,k(θ = 0) = 1/χ+
−k,k, Y−k,k

(
θ = πi

2

)
= 1/χ−−k,k,

Y−k−1,k

(
θ = πi

2

)
= χ+

−k−1,k, Y−k−1,k(θ = πi) = χ−−k−1,k.

(A.8)

We thus are able to rewrite the TBA equations

logY−k,k(θ+iφ−k,k)=−cosh(θ+iφ−k,k)logχ+
−k,k+isinh(θ+iφ−k,k)logχ−−k,k

−
∫
R

dθ′

2π
sinh

(
2(θ+iφ−k,k)

)
log
(
1+Y−k,k−1(θ′+iφ−k,k−1)

)
cosh(θ−θ′+iφ−k,k−iφ−k,k−1)sinh

(
2(θ′+iφ−k,k−1)

)
−
∫
R

dθ′

2π
sinh

(
2(θ+iφ−k,k)

)
log
(
1+Y−k−1,k(θ′+iφ−k−1,k)

)
sinh

(
2(θ′+iφ−k−1,k)

)
cosh

(
θ−θ′+−iφ−k−1,k+iφ−k,k

) ,
logY−k−1,k(θ+iφ−k−1,k)=−cosh(θ+iφ−k−1,k)logχ−−k−1,k−isinh(θ+iφ−k−1,k)logχ+

−k−1,k

−
∫
R

dθ′

2π
sinh

(
2(θ+iφ−k−1,k)

)
log
(
1+Y−k,k(θ′+iφ−k,k)

)
cosh(θ−θ′+iφ−k−1,k−iφ−k,k)sinh

(
2(θ′+iφ−k,k

)
−
∫
R

dθ′

2π
sinh

(
2(x+iφ−k−1,k)

)
log
(
1+Y−k−1,k+1(θ′+iφ−k−1,k+1)

)
sinh

(
2(θ′+iφ−k−1,k+1)

)
cosh(θ−θ′+iφ−k−1,k−iφ−k−1,k+1)

. (A.9)

It is worth to note that the TBA equations (A.5) with m = n = 1 coincide with the
ones of the N = 2 pure SU(2) SYM in [53, 54]. The reason is because, when m = n = 1,
the Riemann surface (3.1) appears as the Seiberg-Witten curve of the pure SU(2) SYM,
which is thus based on the similar mathematical structure. Keeping the relation with
Seiberg-Witten theory in mind, we find a hidden relations of the TBA equations (A.5).
Let us parametrize the curve of the m = n = 1 case by p(z) = 1

z3 + 2u
z2 + 1

z , whose central
charge Z1 and Z2 are given by

Z1(u) = i
(
ΠA(u) + ΠB(u)

)
, Z1(u) = −iΠB(u), (A.10)

where
ΠA(u) = 8

√
2 + 2uE

( 4
2 + 2u

)
,

ΠB(u) = 8i
√

2 + 2u
(

K
(2u− 2

2 + 2u

)
− E

(2u− 2
2 + 2u

))
,

(A.11)
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for 0 < u < 1. It is easy to find Z2(−u) = iZ1(u). The TBA equations for m = n = 1 case
thus can be written as

logY0,0

(
θ + i

π

2 , u
)

= |Z0,0(u)|(e−θ + eθ)−
∫
R

dθ′

π

log
(
1 + 1

Y−1,0(θ′+π
2 ,u)

)
cosh(θ − θ′) ,

logY−1,0

(
θ + i

π

2 , u
)

= |Z0,0(−u)|(e−θ + eθ)−
∫
R

dθ′

π

log
(
1 + 1

Y0,0(θ′+iπ2 ,u)
)

cosh(θ − θ′) .

(A.12)

We thus can find
Y−1,0

(
θ + i

π

2 ,−u
)

= Y0,0

(
θ + i

π

2 , u
)
. (A.13)

B A simple example of physical configuration

For them = n case, we consider the following configuration of coordinates on the boundary:

y
(∞)±
k = q±

n
k, y

(0)±
−k = q±

n
k + l±, (B.1)

where k = 1, 2, . . . , n. The cross ratios can be computed as

−

(
y

(∞)±
k−1 − y

(∞)±
k

) (
y

(0)±
−k−1 − y

(0)±
−k

)
(
y

(∞)±
k − y(0)±

−k−1

) (
y

(0)±
−k − y

(∞)±
k−1

) = − (q±)2

(q± + nl±)2 ,

−

(
y

(0)±
1−k − y

(∞)±
k−1

) (
y

(∞)±
k − y(0)±

−k

)
(
y

(∞)±
k−1 − y

(∞)±
k

) (
y

(0)±
−k − y

(0)±
1−k

) = −n
2(l±)2

(q±)2 .

(B.2)

Therefore the X -functions at ζ = 1, i are related to l and q as

X−k,k(ζ = 1, i) = − (q±)2

(q± + nl±)2 , X−k−1,k(ζ = 1, i) = −(nl±)2

(q±)2 . (B.3)

We expect the solution to the functional relations takes the form

X−k,k = X−0,0, X−k−1,k = X−1,0, (B.4)

for all k and thus reduce to the m = n = 1 case.
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