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1 Introduction

Three dimensional (3d) abelian gauge theories are interesting for a variety of reasons.
Among several other applications, the bosonic theory describes the effective physics of
ordinary superconductors near the phase transition [1], both the fermionic (QED3) and the
bosonic (sQED3) theories describe quantum phase transitions in certain anti-ferromagnetic
spin lattice systems [2, 3], and QED can play a role in the physics of high-Tc cuprate
superconductors [4]. From a theoretical point of view abelian 3d gauge theories have also
been shown to enjoy interesting duality relations [5, 6].

Being strongly coupled in the IR, a basic fundamental issue is to understand whether
the vacuum is gapped or gapless, and the nature of the low-energy fluctuations. Three
dimensional theories, however, suffer from severe IR divergences that hinder a direct quan-
titative investigation in three space-time dimensions. A reliable known way to tame IR
divergences is to take a large N limit, where N is the number of matter fields.1 In this limit
it has been shown that both QED3 [9–11] and sQED3 [12, 13] flow in the IR to a non-trivial
CFT. The fixed point is expected to persist at finite N up to some (yet to be determined)
critical value Nc. In addition to N , in sQED3 the nature of the phase transition could
depend on the so called Ginzburg parameter k = e2/λ, where e2 is the gauge coupling and
λ is the scalar quartic coupling. More precisely, there could be separatrix lines delimiting

1A precursor of this observation dates back to [7]. There it was argued that IR divergences in the
massless case for any N can be cured by non analytic terms in the coupling constant which arise when an
infinite class of diagrams is resummed using certain gap equations. Evidence for the correcteness of this
proposal has been recently provided in a certain d = 3 scalar theory on a lattice [8].
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different RG flows. Depending on the initial UV values of k, the theory could then either
flow to a fixed point, or to another one, or end up in a first-order phase transition. At
large N no separatrix lines appear, but they could be present at finite N .

Another way to get rid of IR divergences and directly access the critical theory is
obtained using the ε-expansion starting from d = 4−ε dimensions. A perturbative analysis
predicts for sQED3 a fixed point for N > Nε [14], where the value of Nε sensitively depends
on the loop order [15]. A similar conclusion has been reached more recently for QED3 in [16]
and, using also the F -theorem, in [17].

Large N and ε-expansion techniques are not sufficient to study the theory at small
N and at d = 3 which are in fact the cases of more physical interest (for instance the
superconductor physics corresponds to N = 1). This regime is however accessible by
numerical lattice simulations. They predict for N = 1 sQED3 a first-order phase transition
when the Ginzburg parameter k is sufficiently small and a second order one for large k (see
e.g. [18–20]). The presence of a second-order phase transition for sufficiently large k is in
fact guaranteed by particle-vortex duality [18, 21]. For QED3 the estimates of Nc under
which chiral symmetry breaking occurs was predicted to be Nc = 1 [22, 23] while recent
lattice simulations claim that Nc = 0 [24]. Another first principle approach is the conformal
bootstrap, which allows to put general bounds on the properties of the critical theory and
can rigorously rule out disallowed scenarios. See section V.E of [25] for an overview of the
results obtained in this way on 3d abelian gauge theories. Functional renormalization group
methods can also be used in order to understand the superconducting phase diagram, where
IR divergences are regularized by the introduction of an infrared cut-off. The qualitative
picture found is in line with the one found by lattice simulations and described above [26].

As we mentioned, IR divergences do not allow to study the theory perturbatively when
matter and gauge fields are massless in the UV. On the other hand, we could consider the
theory off-criticality by giving mass to matter fields. The situation is similar to that in
quartic scalar models, which can be studied at criticality using large N or ε-expansion, or
off-criticality at d = 3 by Borel resumming the perturbative series [27].2 The presence of a
massless photon in abelian gauge theories, however, does not guarantee that IR divergences
are all gone. As well-known, in 4d Lorentzian abelian gauge theories IR divergences cancel
in cross-sections where a sum over amplitudes with external soft photons is included [28].
As mentioned, 3d abelian gauge theories are strongly coupled in the IR and before worrying
about how IR divergences possibly cancel in a putative gapless phase, we should understand
which are the degrees of freedom and how they interact. In Euclidean space, however,
the observables are not cross-sections, but (among others) correlation functions of local
operators, and the question of IR finiteness can be posed. We simply have to require that
such correlation functions should be IR finite.

While typically correlation functions are IR regulated by the finite momenta of the
external operators, IR divergences can appear order by order in perturbation theory when
a partial sum of the external momenta sum up to zero. Such configurations are called
exceptional. A simple example is provided by the one-loop correction to the four-point

2Borel resummation is also needed in the ε-expansion if one wants to reliably reach d = 3.

– 2 –



J
H
E
P
0
2
(
2
0
2
2
)
1
2
3

Figure 1. Example of a one-loop IR divergent diagram in a four-fermion correlator in QED3. The
momenta are all incoming with q1 + q2 = 0 = −(q3 + q4).

matter correlator in both QED3 and sQED3, when the external momenta have exceptional
momenta. See figure 1 for an illustration in QED3. Such IR divergences can hinder a
perturbative study of these theories.3

The aim of this paper is to prove that to all orders in perturbation theory correlation
functions of gauge-invariant operators in Euclidean abelian gauge theories with massive
matter are IR finite. This result applies independently of whether the abelian gauge theory
is an effective description or a UV-complete fundamental theory.

We start in section 2 by showing our proof, based on simple generalizations of Ward-
Takahashi identities and the properties of certain effective vertices obtained when matter
is integrated out [30].4 In section 3 we give two examples of 2-point functions of gauge-
invariant operators up to some loop order and illustrate how the proof in section 2 works
in explicit cases. Gauge-invariance is actually not necessary to get IR finite results. We
focus in section 4 on a notable example of this sort, the two-point function of elementary
matter fields, and show that this non-gauge invariant correlator is IR finite to all orders
in perturbation theory. Our perturbative results are insensitive to the global structure of
the gauge group, while non-perturbative effects, related to monopole operators, depend on
that. In order to clarify in which regimes euclidean perturbative correlators are expected
to be not affected by monopole effects, we briefly review in section 5 the role of monopole
operators. We give an outlook of possible applications of our results in section 6.

2 IR finiteness of gauge invariant correlation functions

Consider a 3d Euclidean abelian gauge theory coupled to matter. The latter can be made
of scalars or fermions, or both. Chern-Simons terms play an important role in 3d gauge
theories, but from our point of view they are “trivial” since they provide a mass to the

3In sQED3, for example, IR divergences did not allow in [29] to fix the quartic scalar coupling without
introducing new parameters which cannot be fixed from first principles.

4We are surprised that, to our knowledge, a proof like ours did not appear before in the literature, given
its simplicity. On the other hand, the study of the IR properties of correlators in d < 4 field theories
at finite N and fixed dimension does not seem to have received much attention in the literature. One
exception is [31] where, following observations in [32, 33], it was shown that correlation functions of O(N)-
invariant observables in 2d non-linear O(N) sigma models are IR finite in the naive vacuum where O(N) is
spontaneously broken and Goldstone bosons appear (as well-known, this is not the actual quantum vacuum
of the theory, given that the breaking of continuous global symmetries is forbidden in d = 2 [34, 35]).
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photon and automatic IR finiteness. We then assume a parity symmetry and an even
number of fermions with parity invariant mass terms in the theory, so that no Chern-Simons
terms are allowed. We assume that all matter fields are massive and that the theory is
classically in a Coulomb phase with a massless photon. The gauge theory can be an effective
field theory description of some microscopic theory, such as a spin system on a lattice where
the gauge field is possibly emergent, or it can be a fundamental UV-complete theory. Let
us denote by S the total action, sum of the gauge, matter, and gauge fixing terms:

S = Sγ + SM + Sg.f. , (2.1)

where

Sγ(A) = −1
4

∫
ddxF 2

µν + . . . , Sg.f.(A) = 1
2ξ

∫
ddx (∂µAµ)2 , (2.2)

SM (Aµ, ψ, φ) =
2Nf∑
i=1

ψ̄i(i /D −mi)ψi +
Ns∑
j=1

(
|Dφj |2 +m2

j |φj |2
)

+ . . . . (2.3)

In (2.3), the ψi are two-component fermions and the fermion masses mi are such that
parity is preserved. The . . . in (2.2) and (2.3) denote possible higher dimensional opera-
tors in the effective field theory description. In (2.3) they include possible self-interactions
among the scalar fields φj , among scalars and fermions, Lagrange multipliers enforcing
constraints among the scalars, like in CPN models, etc. In fact, the matter action is quite
arbitrary, as long as matter fields are massive and U(1) is linearly realized. QED3 and
sQED3 correspond of course to Ns = 0 and Nf = 0 in (2.3), respectively.

We would like to show that arbitrary correlation functions of gauge-invariant operators
based on the action (2.1) are IR finite. Our main argument is based on manipulations very
similar to those used in [30] to prove that the Chern-Simons level in an abelian gauge theory
coupled to massive matter, beyond one-loop level, does not receive further corrections to
all orders in perturbation theory. We first define an effective action Seff(A) for the photon
field obtained by integrating out the massive matter degrees of freedom:

e−Seff(A) = e−Sγ(A)
∫
DΦ e−SM (Φ,A) . (2.4)

In (2.4) we collectively denote by Φ any (bosonic and fermionic) matter field in the theory.
Since Seff is gauge-invariant, under an infinitesimal U(1) transformation we get

∂µ
δSeff
δAµ

= 0 . (2.5)

Taking functional derivatives with respect to Aµ(xi) n − 1 times give us in momentum
space the relations

pµii γ
(n)
µ1...µn(p1, . . . , pn) = 0 , ∀i = 1, . . . , n , (2.6)

where γ(n) are the Fourier transforms5 of the 1PI n-point functions for non-dynamical
photons:

γ(n)
µ1...µn(yj) ≡

( n∏
j=1

δ

δAµj (yj)

)
Seff(A)

∣∣∣
A=0

. (2.7)

5Here and in what follows, with an abuse of language we will denote a function and its Fourier transform
with the same symbol.
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While γ(2) represents the tree-level photon propagator including matter corrections, γ(n)

with n > 2 represents effective vertices in the low energy photon effective field theory.
To all orders in perturbation theory, the 1PI m-photon amplitudes G(m)

γ are obtained by
gluing in all possible ways all the vertices γ(n), with n = 3, 4, . . . through effective photon
lines, constructing in this way all possible Feynman diagrams. Crucially, when matter is
massive, the functions γ(n) are analytic at the origin in momentum space individually for
each pi. In this case it is simple to show that the γ(n)’s have to vanish whenever any
momentum pi = 0. Let us consider i = 1 in (2.6) and take a derivative with respect to pν1 :

γ(n)
νµ2...µn(p1, . . . , pn) + pµ1

∂γ
(n)
µ1...µn(p1, . . . , pn)

∂pν1
= 0 . (2.8)

Since γ(n) are analytic functions of the momenta, the derivative ∂νγ(n) appearing in the
second term of (2.8) is finite. Hence, when pµ1 → 0, (2.8) implies that

γ(n)
µ1µ2...µn(0, p2, . . . , pn) = 0 . (2.9)

Analyticity implies also that for small p1, γ(n)
µ1µ2...µn = O(p1). The argument can be re-

peated for the other pk’s. Since we have n − 1 independent momenta we get γ(n)
µ1µ2...µn =

O(p1 . . . pn−1). Using Bose symmetry and Lorentz invariance the argument can be improved
to include pn [30]. In this way we finally get that for small pi’s

γ(n)
µ1...µn(p1, . . . , pn) = O(p1 . . . pn) . (2.10)

To all orders in perturbation theory, for small momentum p the effective photon propagator
goes like the tree-level one, ∝ 1/p2.6 Any internal photon line has to attach to a pair of
γ(n)’s or to the same γ(n). In both cases the vertices bring two powers of p, precisely
canceling the 1/p2 factor for each photon line. The IR finiteness of G(m)

γ is then proved.
Building on the above argument, we can prove the IR finiteness of arbitrary correla-

tion functions of gauge-invariant operators Oi made of matter and/or photon elementary
constituents. Let Ji be sources coupled to the operators Oi. We have for the connected
correlator7

〈O1(x1) . . .Ok(xk)〉 =
k∏
i=1

δ

δJi(xi)
W [Ji, Jµ]

∣∣∣
Jµ=Ji=0

, (2.11)

where
e−W [Ji,Jµ] =

∫
DΦDAe−S(Φ,A)+

∫
ddx (

∑k

i=1 JiOi+JµAµ) . (2.12)

As before, we can first define an effective action Seff for the photon field by integrating out
the massive matter degrees of freedom:

e−Seff(A,Ji) = e−Sγ(A)
∫
DΦ e−SM (Φ,A)+

∫
ddx

∑k

i=1 JiOi . (2.13)

6Beyond perturbation theory this is no longer true. For instance, at large N the photon propagator goes
like 1/p for small momenta.

7In writing (2.11) we are assuming that all operators Oi are distinct. If not, we obviously have less
sources and repeated functional derivatives in (2.11).
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Crucially, the effective action is now a non-trivial complicated functional of the external
currents Ji, since Oi can be made of matter fields. Yet, gauge invariance guarantees that

∂µ
δSeff(A, Ji)

δAµ
= 0 , (2.14)

generalization of (2.5) in presence of the external sources Ji. We can now define

γ(O1...Ok,n)
µ1...µn (xi, yj) ≡

( k∏
i=1

δ

δJi(xi)

)( n∏
j=1

δ

δAµj (yj)

)
Seff(A, Ji)

∣∣∣
A=Ji=0

. (2.15)

In momentum space, (2.14) implies that

p
µj
j γ

(O1...Ok,n)
µ1...µn (qi, pj) = 0 , ∀j = 1, . . . , n , (2.16)

where qi and pj are the momenta of the composite operators Oi and of the non-dynamical
photons, respectively. Since the matter is massive, the functions γ(O1...Ok,n) are analytic
for pj → 0 for arbitrary values of qi. In particular, we can repeat the considerations made
below (2.6) to get for small pj ’s8

γ(O1...Ok,n)
µ1...µn (qi, pj) = O(pµ1 . . . pµn) . (2.17)

The full conncected correlator (2.11) is obtained by gluing in all possible ways effective
vertices γ(O1...Ok,n) through photon lines, see figure 2 for an illustration. If the composite
operator carries non-vanishing momentum q, this will be carried by some photon leg in the
effective vertex. That photon leg would then be O(q) as the virtual momentum goes to zero,
but obviously the photon propagator attached would also be IR regulated by the same q. No
matter where photon lines are attached, the potentially dangerous 1/p2 factors coming from
propagators will either be compensated by similar factors coming from the effective vertices
or IR - regulated by external momenta. The IR finiteness is guaranteed for any value of
external momenta, in particular for any choice of exceptional configuration, including the
most IR dangerous configuration obtained when all external fields have vanishing momen-
tum. It should be emphasized that individual Feynman diagrams can be IR divergent and
it is only when summed together that such IR divergences are guaranteed to cancel.

2.1 Renormalization

We have so far neglected the effect of UV renormalization, but we now show that no
further IR divergences are induced by the renormalization process. This amounts to show
that to each order in perturbation theory diagrams with counterterm insertions are also IR
finite. In addition to the counterterms required to renormalize the action, we also get the
counterterms associated to the composite operators. Due to operator mixing, these are in
general matrix valued. In abelian gauge theories gauge invariant operators can only mix

8For n > 1 all momenta pj are independent and (2.17) follows straightforwardly from (2.5). This in
contrast to (2.10) where Bose symmetry and Lorentz invariance are required to extend O(p1 . . . pn−1) to
O(p1 . . . pn) [30].
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Figure 2. Example of diagram with four effective vertices contributing to the connected four-
point function 〈O1O1O2O3〉. When Oi are gauge-invariant operators, the vertices provide powers
of momenta which cancel the would-be IR singularities coming from the photon propagators.

among themselves. This is shown (see e.g. chap. 18 of [36]) by noting that the solution of the
generating functional equation of Ward-Takahashi identities for the 1PI effective action Γ is

Γ = ΓGI + 1
2ξ

∫
ddx(∂A)2 , (2.18)

where ΓGI is a gauge invariant functional made of Aµ, the matter fields, and the exter-
nal sources Ji associated to the composite operators Oi. In general the mixing will also
involve gauge-invariant redundant operators. As far as IR divergences are concerned, how-
ever, the latter do not introduce any complication and can be considered together with the
non-redundant gauge-invariant operators.9 As a consequence of this discussion the counter-
term action Sc.t. will not spoil the gauge invariance of the original action and so the Ward
identities (2.17) are still valid even for renormalized correlators. Diagrammatically the
functions γ(O1...Ok,n), defined considering also Sc.t. in (2.13), are now the ones in which also
counter-term insertions are considered and they can be used as building blocks in order to
construct connected renormalized correlators of gauge-invariant operators. Then, the same
arguments used for the bare correlators guarantee the IR finiteness of the renormalized ones.

We have so far tacitly assumed that the composite operators were Lorentz scalars, but
all our considerations are valid for arbitrary gauge-invariant tensor operators.

For further clarity and illustration, in the next section we will consider two examples
of correlators of gauge-invariant operators, show how the decomposition in terms of the
effective vertices (2.7), (2.15) work, and verify the validity of (2.17) in special cases.

9Note that gauge-invariant operators can instead mix with gauge-variant ones in non-abelian gauge
theories. Using BRST symmetry, it has been proven [37] (see [38] for a more modern perspective in terms
of cohomology in a wider context), that gauge-variant operators are always BRST exact and there exists a
basis where they decouple.
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3 Examples

We explicitly verify in this section some of the considerations made before in two specific
gauge invariant correlators. For concreteness we consider the UV complete sQED3 with
Ns = 1 and quartic scalar interactions. The first example is the two-point function of
the lowest dimensional scalar gauge invariant operator φ†φ, where we will show how the
decomposition in the building blocks γ and the cancellation of IR divergences take place
at the first orders in perturbation theory. The second example is the two-point function
of the tensor operator Fµνφ†φ. It enjoys two additional properties with respect to the
previous operator: it is a composite operator made of both photon and matter fields and
it carries a non trivial Lorentz structure. In this case we want to show that these two
additional properties do not spoil the arguments just explained. For simplicity of writing,
in both these examples, we will focus only on the 1PI diagrams since connected but non 1PI
ones do not bring any further complication regarding IR divergences. In dealing with one
composite operator O only, it is convenient to introduce a light notation for the building
blocks γ(O1...Ok,n) introduced in (2.15), and define

γ(k,n) ≡ γ(O . . .O
k

,n) , (3.1)

where O = φ†φ in subsection 3.1 and O = Fµνφ
†φ in subsection 3.2.

3.1 〈φ†φ(q)φ†φ(−q)〉

The leading free theory contribution arises at one-loop level and corresponds to γ(2,0)∣∣
1L:

〈φ†φ(q)φ†φ(−q)〉
∣∣
1L = = . (3.2)

Since no internal photons appear, IR finiteness is obvious.
At two loops the entire set of 1PI diagrams can be constructed using the effective

vertices γ(2,2)
µν (q1, q2, p1, p2)

∣∣
1L and γ(2,0)(q1, q2)

∣∣
2L. Graphically they read

= + +

(3.3)

and10

= + . (3.4)

10We have omitted to include in (3.4) and (3.5) the diagrams with the UV counter-terms for the tadpole
graphs. The latter are however not necessary in dimensional regularization, where such diagrams are UV
finite.

– 8 –



J
H
E
P
0
2
(
2
0
2
2
)
1
2
3

We have not reported the momenta flowing in the lines to avoid clutter. By gluing together
the external photon lines of γ(2,2)∣∣

1L and summing the two set of graphs, we get the two
loops 1PI two-point function:

〈φ†φ(q)φ†φ(−q)〉
∣∣
2L = +

= + +

+ + . (3.5)

Since we have at most one internal photon line in the graphs, IR finiteness is obvious.
However, we can check the Ward identity (2.17) for the effective vertex γ(2,2)

µν

∣∣
1L. In order

to prove that γ(2,2)
µν (q1, q2, p1, p2)

∣∣
1L = O(p1p2), due to the Bose symmetry in the exchange

of the two external photons (p1 ↔ p2), it is sufficient to check that γ(2,2)
µν

∣∣
1L vanishes when

one of the two photon momenta is zero, say p2 = 0. We write γ(2,2)
µν

∣∣
1L = l

(1)
µν + l

(2)
µν , relabel

p1 → p, q1 → q, and use momentum conservation q2 = −q − p. In this way we get11

l(1)
µν (q,−q − p, p, 0) = 2 ,

l(2)
µν (q,−q − p, p, 0) = 4 + 2 .

(3.6)

After standard manipulations it is straightforward to find that

l(2)
µν (q,−q − p, p, 0) = −2e2

∫
d3k

(2π)3
−2gµν

(k2 +m2)((k − p)2 +m2)((k − p− q)2 +m2)
= −l(1)

µν (q,−q − p, p, 0) ,
(3.7)

proving in this way that γ(2,2)
µν (q,−q − p, p, 0)

∣∣
1L = 0 for any value of p and q.

At three loops we get IR divergent diagrams which sum to a finite result. The vertices
entering at this order are γ(2,0)∣∣

3L, γ
(2,2)
µ1µ2

∣∣
2L, γ

(2,4)
µ1···µ4

∣∣
1L, γ

(1,2)
µν

∣∣
1L, γ

(2,2)
µν

∣∣
1L and γ(0,2)

µν

∣∣
1L. We

11The factors 2 and 4 in (3.6) represent the symmetry factors of the corresponding diagrams. These
factors have been omitted before and will also be systematically omitted in the following. They have been
reported here to emphasize their role in the cancellation.
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do not write all of them explicitly, but it is easy to check that they produce, when combined
together, the 1PI part of the correlator as follows:

〈φ†φ(q)φ†φ(−q)〉
∣∣
3L =

(a)

+

(b)

+

(c)

+

(d)

+

(e)

.

(3.8)

Let us briefly discuss the IR properties of these diagrams, without listing them one by
one. The groups (a) and (b) are composed by diagrams with 0 and 1 internal photon
propagators, respectively, and are hence trivially IR finite. The group (c) is composed by
three loop diagrams with 2 internal photon lines with independent virtual momenta, which
are then individually IR finite. The groups of diagrams (d) and (e) are the ones where IR
divergent Feynman diagrams appear. In group (d) they arise for every choice of the external
momentum q. The cancellation of IR divergences is evident from the IR behaviour of γ(2,2)

1L
just shown. Furthermore, γ(0,2)

1L coincides with the one-loop photon 2-point function:

= + ,

(3.9)
and two more powers of p arise from the transversality of the photon propagator. IR
divergences in single Feynman diagrams appear in group (e) when the external momentum
q vanishes. Their sum is guaranteed to vanish thanks to the powers of pi coming form the
two γ(1,2), as predicted by (2.17). We can check that relation by expanding γ(1,2)

µν (−p1 −
p2, p1, p2)

∣∣
1L for small p1 and p2 and see that the resulting function is O(p1p2). Indeed,

after standard manipulations, we get

γ(1,2)
µν (−p1−p2,p1,p2)

∣∣
1L = = +

=
∫

d3k

(2π)3
e2

(k2 +m2)((k−p1−p2)2 +m2)

((2k−p1)µ(2k−2p1−p2)ν +(µ↔ ν)
((k−p1)2 +m2) −2gµν

)

= e2

96πm3 (2gµνp1 ·p2−pµ1p
ν
2−pν1p

µ
2 )+O(p2

1p2,p1p
2
2) , (3.10)
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completing the explicit check of the cancellation of IR divergences up to three-loop order
for the correlator 〈φ†φ(q)φ†φ(−q)〉.

3.2 〈Fµνφ†φ(q)Fρσφ†φ(−q)〉

As a second example we consider a gauge-invariant tensor operator composed of both
elementary matter and gauge field operators. At each order in perturbation theory, all
the 1PI diagrams entering the correlator can be written as sum of effective vertices γ(k,n),
with k = 0, 1, 2, evaluated at the appropriate order. We will not show such decomposition,
which can be obtained by properly rearranging the Feynman diagrams. We instead focus
on a given subset γ(k,n) and explicitly show the validity of (2.17). It should now be clear
that potentially IR divergent graphs are obtained when two γ(k,n) are connected by at least
two photon lines. Consider for instance the diagrams obtained by gluing two vertices of
the kind γ(1,n) with n ≥ 2 photon lines. By Lorentz invariance and charge conjugation
symmetry γ(1,2) = 0 to all orders, so let us consider n = 3. The vertex γ(1,3) is non-trivial
starting from one-loop level, so we can restrict to this order.12 By gluing together a pair
of two vertices γ(1,3)

µνα1α2α3(q1, p1, p2, p3)
∣∣
1L we get diagrams of the form

. (3.11)

As before, the individual diagrams entering (3.11) are IR divergent, but their cancellation
is guaranteed if we verify (2.17) for γ(1,3). For simplicity let us set q1 = 0, which is the
worst case scenario as far as IR divergences are concerned. We then get

γ(1,3)
µνα1α2α3(0, p1, p2, p3 = −p1 − p2) = +

= (p1µgνα1 − p1νgµα1)γ(φ†φ,2)
α2α3 (−p2 − p3, p2, p3) + (p1 ↔ p2) + (p1 ↔ p3) ,

(3.12)

where γ(φ†φ,2)
α2α3 is precisely the effective vertex defined in (3.10).13 Since γ(1,3) is manifestly

O(p1) and we have already shown that γ(φ†φ,2)
α2α3 = O(p2p3), we conclude that

γ(1,3)
µνα1α2α3(q1 = 0, p1, p2, p3) = O(p1p2p3) , (3.13)

as expected. We can see how in this case one power of pi comes directly from the Feynman
rules of the composite operator vertex while the others emerge after the integration over
the virtual momentum.

12In general the operator Fµνφ†φ can mix with Fµν already at one-loop level, but such one-loop mixing
is absent in dimensional regularization.

13It is here denoted γ(φ†φ,2)
α2α3 to distinguish it from the vertex γ(1,2) discussed before (3.11), which in this

subsection corresponds to γ(Fµνφ
†φ,2)

µνα2α3 . The latter vertex identically vanishes, as mentioned before.
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4 Gauge-variant operators and IR divergences

We have proved in section 2 that correlation functions of gauge invariant operators are
IR finite. But the converse is not true, namely there exist correlation functions of gauge-
variant operators that are also IR finite. Indeed, we have already proved the IR finiteness
of the n-point photon correlators 〈Aµ1(p1) · · ·Aµn(pn)〉. In this case we can understand the
reason of this property: the quantum corrections of the photon n-point functions can be
related to the n-point functions of conserved currents Jµ which are indeed gauge invariant
and then IR finite.

Another set of gauge-variant correlators that we have implicitly proved to be IR fi-
nite during our discussion are 〈O1(q1) · · · Ok(qk)Aµ1(p1) · · ·Aµm(pm)〉 where Oi are gauge-
invariant operators. In this case the finiteness is a consequence of the relation (2.17) since,
as in the case of the connected correlator 〈O1 · · · Ok〉, also these correlators can be con-
structed using the γ(O1...Ok,k) defined in section 2 as building blocks. However these are
not the only gauge-variant correlation functions that happen to be IR finite. In this section
we will prove that another notable non-gauge invariant correlator is IR finite to all orders
in perturbation theory: the two-point function of elementary matter fields 〈Φ†(q)Φ(−q)〉.
In this case the IR finiteness is not a direct consequence of the equation (2.17) and so the
proof deserves a dedicated analysis.

4.1 IR finiteness of 〈Φ†(q)Φ(−q)〉

In what follows we use the notation of section 2 where with Φ we denote any elementary
matter field that can be a boson or a fermion.

In order to study this two-point function we can use the same idea introduced in
section 2 in which some building blocks are used in order to reconstruct the entire correlator.
We define an effective action as in (2.13) with O1 = Φ, O2 = Φ†, in terms of which the
connected correlation function with 2k external matter fields and n external non-dynamical
photons is

γ̃(2k,n)
µ1...µn(xi, yj) ≡

( k∏
i=1

δ

δJΦ(xi)

)( 2k∏
i=k+1

δ

δJΦ†(xi)

)( n∏
j=1

δ

δAµj (yj)

)
Seff

∣∣∣∣
A=JΦ=JΦ†=0

. (4.1)

As in the case of gauge-invariant correlation functions, the n-point functions of matter
fields are constructed by gluing together the external photon lines using the vertices γ̃(2k,n),
although crucially we now have

p
µj
j γ̃

(2k,n)
µ1...µn 6= 0 , for k > 0. (4.2)

For small momenta pj , we then have

γ̃(2k,n)
µ1...µn(qi, pj) 6= O(p1 . . . pn) , for k > 0 , (4.3)

while
γ̃(0,n)
µ1...µn(pj) ≡ γ(n)

µ1...µn(pj) = O(p1 . . . pn) . (4.4)
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(a) (b)

Figure 3. Example of a type A (left) and a type B (right) diagram contributing to the two-point
function 〈Φ†(q)Φ(−q)〉.

In what follows we will show that the missed powers of pi in (4.3) are not sufficient to
produce an IR divergence in the matter two-point function 〈Φ†(p)Φ(−p)〉. This is not the
case for higher gauge-variant correlators, as already shown in figure 1 for the matter 4-point
function.

The correlator 〈Φ†(q)Φ(−q)〉 is necessarily composed by one, and only one, γ̃(2,n) and
an arbitrary number of γ(m), where m ≥ 2 (m = 1 would correspond to an insertion of a
photonic tadpole which is zero by Lorentz invariance) as shown in figure 3. It is useful to
divide the set of all diagrams in two categories:

• We call of type A all the graphs obtained by the ones entering γ̃(2,2n), where the 2n
photon lines are connected between each other, for any n.

• We call of type B the graphs which are not of type A, namely the ones in which at
least one γ(m) is present.

Each type A diagram is individually IR finite. Indeed, for every graph G (both type
A and type B) contributing to 〈Φ†(q)Φ(−q)〉, simple graph topology considerations give

n ≤ L , (4.5)

where L represents the number of loops of G and n is the number of internal photon
lines.14 By definition a type A graph GA is n-photon particle irreducible. We can hence
assign independent integrated momenta to each internal photon line, and thanks to (4.5) we
always have sufficient independent momenta to do it. Then from a simple power counting
we get that for small integrated momenta

GA ∼
∫
d3p1 · · · d3pL
p2

1 · · · p2
n

F (p1, · · · , pL) (4.6)

where F is an analytic function in the origin of the momentum space since the matter is
massive. The integral (4.6) is then IR convergent due to (4.5) for any choice of GA, at any
loop order L.

14In particular L = n if we do not include matter self-interactions in the theory while L ≥ n if they are
present.
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Consider now the type B diagrams. In this case the external photon lines of γ̃(2,n) can
be attached to another photon line of the same vertex or to another vertex γ(m), see the
right panel in figure 3. In the former case, doing an analysis similar to the one performed
above for the type A diagrams, we conclude that no IR divergences can arise. The same
is not true for the latter case. Individual IR divergences can now appear but their total
contribution will be regulated by the powers of pi coming from γ(m), thanks to gauge
invariance that still ensures the validity of (2.10). For every block γ(m) we can assign
m−1 independent momenta p1 · · · pm−1 while the last one will be fixed by the conservation
of the total momentum. Then from a simple power counting consideration we get that at
small pi the contribution of the m photons connecting γ̃(2,n) to γ(m) is∫

d3p1 . . . d
3pm−1

p1 . . . pm
p2

1 . . . p
2
m

(4.7)

which is convergent for m ≥ 2. Then we conclude that also the type B diagrams are IR
finite at all orders in perturbation theory. The argument above generalizes to correlators
constructed using only one vertex γ̃(2k,n) and an arbitrary number of γ(n). This is the case
for instance of the (n+ 2)-point function 〈Φ†(q1)Φ(q2)Aµ1(p1) . . . Aµn(pn)〉, which will also
be IR finite to all orders in perturbation theory.

Matter n-point functions with n ≥ 4 are instead affected by uncancelled IR divergences.
A generic diagram can now be composed of more than one vertex γ̃(2k,n). By connecting
two (or more) photons coming from these γ̃’s, the poles 1/p2

i are no longer suppressed
by momentum factors and IR divergences can arise. For instance, we can interpret the
graph in figure 1 as the diagram composed of two (tree-level) vertices γ̃(2,2) connected
together. Then the pole 1/p4 generated from the photons at the exceptional incoming
total momentum Q = q1 + q2 = 0 is not regulated and an IR divergence is found.

5 The role of monopole operators

We have shown in this paper that correlation functions of gauge-invariant operators (and
some gauge-variant ones) in 3d euclidean abelian gauge theories are IR finite when matter
fields are massive. Our results are general and apply independently of the nature of the
theory: effective or fundamental. They are also insensitive to the global structure of the
gauge group, i.e. U(1) vs R. At the non-perturbative level, however, things might change.
In particular, the so called monopole operators can significantly affect the behaviour of
the theory at low energies. In this section we would like to briefly review what is known
about the role of monopole operators in order to put our results in a wider perspective
and understand in which situations we might expect non-perturbative corrections to the
euclidean correlation functions to be absent.

Abelian gauge theories in 3d can admit a trivially conserved topological U(1)T global
symmetry given by

JT
µ = 1

4πεµνρF
νρ . (5.1)

The states charged under U(1)T have magnetic charge and are denoted monopoles. The
local operators charged under U(1)T are denoted monopole operators [39]. In Euclidean
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space, monopoles are finite action configurations and should be regarded as instantons
(for instance, the reduction to 3d of ordinary 4d monopoles), while in Minkowski space-
time monopole operators create vortex configurations (for instance, the uplift to 3d of 2d
instanton vortex configurations). Using conventional terminology, we will denote them as
monopoles. Such states are quantum mechanically well defined only if the magnetic flux is
quantized, namely if the gauge symmetry is globally a compact U(1) and not R. Monopoles
can hence be present only for U(1) gauge theories.

The actual importance of monopoles for compact U(1) gauge theories depends on how
the U(1)T symmetry is realized in the theory. From an RG point of view, it is useful to
rephrase the impact of monopoles in terms of the scaling dimensions of the monopole opera-
tors seen as deformations in the UV theory, see e.g. [40]. If in the UV the U(1)T is preserved,
like in UV-complete 3d gauge theories in the continuum, monopole deformations can be
forbidden by simply demanding U(1)T conservation. In this case, however, monopole opera-
tors can still take a VEV and induce a spontaneous symmetry of U(1)T. Large N considera-
tions show that abelian gauge theories flow to an interacting CFT where U(1)T is unbroken.
For sufficiently low numbers of flavour a spontaneous “chiral” symmetry or a first-order
transition might occur in the fermion or boson cases respectively, where monopoles can
condense. The spontaneous symmetry of U(1)T would lead to a Goldstone-boson, which is
the dual photon. In this case the theory will flow in the IR to a Coulomb free phase.

The situation is quite different when U(1)T is explicitly broken in the UV and abelian
gauge theories are only approximate effective descriptions at some energy scale. Spin
systems on lattices and Polyakov’s SU(2) model [41] are notable examples in this class.
Monopole deformations are now allowed. Their impact on the IR physics depend on
whether they correspond to irrelevant or relevant deformations. At large N , monopole
deformations in QED3 scale as N and are irrelevant [39]. The same applies to scalar
CPN−1 models [42] (see also [43] for a more modern analysis in terms of monopole op-
erators), which are expected to describe the phase transition between the Neel and the
valence bond state solid phases of certain anti ferromagnetic spin lattice systems [3]. For
sufficiently low number of flavours, monopoles can be relevant.15 In the latter case they
have been shown to lead to a confining gapped phase in the IR [41, 44].16

6 Outlook

The main motivation of this paper was to investigate whether UV-complete, parity-
invariant, abelian gauge theories at finite N and at fixed dimension d = 3 could in principle
be studied in perturbation theory, like it has successfully been done with massive quartic
vector models in both d = 3 and d = 2 for decades (see e.g. [46] for a relatively recent
review). Our work provides a first positive answer, as long as gauge-invariant correlators
or specific gauge-variant correlators like the two-point function of elementary operators are

15They could also be relevant in the IR, but irrelevant in the UV, i.e. in high energy parlance they could
be dangerously irrelevant operators.

16The appearance of a trivially gapped phase can often be ruled out by ’t Hooft anomaly matching
arguments [45].
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used.17 As we mentioned, if Chern-Simons terms are included, IR finiteness is trivially
guaranteed. But of course this is not the end of the story. As discussed in section 5,
non-perturbative effects related to monopole operators are not expected to occur in UV-
complete theories with unbroken U(1)T. But being the theories strongly coupled in the IR,
a perturbative analysis would still be meaningless, unless a Borel resummation procedure
is implemented. In contrast to the quartic vector models in both d = 3 and d = 2, there
are no proofs about the Borel summability of the perturbative series in abelian 3d gauge
theories. We also do not have sharp predictions for the large order behaviour of the series,
see [48] for a review with references to early attempts in this respect. Despite that, the
prospects seem promising.

Instanton and renormalon singularities are so far the only known obstructions to the
Borel summability of perturbative series in QFT. Both QED3 and sQED3 (with no sextic
interaction) are super-renormalizable theories with no marginal couplings, for which no
renormalon singularities are expected to appear. In QED3 no instanton configurations can
arise and we are not aware of known instanton configurations in sQED3 on R3. Let us then
assume that perturbation theory can capture the long distance properties of these theories,
provided a sufficient number of perturbative coefficients are known, so that a sufficiently
accurate Borel function can be numerically reconstructed.18 We could then consider a
physical renormalization scheme and compute zeros of Borel resummed β-functions (for
sQED3 this would require to define the quartic scalar self-interaction by means of gauge
invariant correlators to avoid IR divergences) like it has been proposed long ago for quartic
models in [27]. Alternatively, we could for example compute two-point functions of gauge
invariant operators and see the evolution of the mass gap M/m as a function of e2/m

(for sQED3 at fixed Ginzburg parameter k), where m is a renormalized UV mass, as more
recently done for both 2d [49] and 3d scalar quartic models [50]. The last possibility seems
more feasible, because it only requires the computation of two-point functions.

We believe an analysis of this kind (with or without Chern-Simons terms) would be
useful to assess the existence of a critical behaviour in both sQED3 and QED3 at finite N ,
help us in finding the critical values Nc where these theories exit their conformal windows,
and possibly to provide concrete checks of 3d dualities between abelian gauge theories.

It would be interesting to investigate if gauge-invariant correlators in non-abelian eu-
clidean 3d gauge theories are also IR finite. In this case a simple use of Ward-Takahashi
identities is not available and one should probably undertake a more involved analysis using
BRST symmetry.
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17In sQED3 one could get rid of IR divergences by studying the theory in the classically Higgsed phase
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