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Abstract In this work, we investigate the non-minimally
coupled scenario in the context of warm inflation with
quantum-corrected self-interacting potential. We transform
the potential in the Jordan frame to the Einstein frame and
consider a dissipation parameter of the form � = CT T
with CT being a coupling parameter. We focus on the strong
regime of which the interaction between inflaton and radia-
tion fluid has been taken into account. We compute inflation-
ary observables and constrain the parameters of our model
using current Planck 2018 data. With the sizeable number of
e-folds and proper choices of parameters, we discover that
allowed values ofCT lie in the range 0.014 � CT � 0.020 in
which the predictions are in good agreement with the latest
Planck 2018 results at the 2 σ confident level.

1 Introduction

Warm inflation scenario has been received attentions as an
alternative approach of the reheating phase of the universe
in order to generate the thermal bath in the standard cosmol-
ogy. The warm inflation was originally proposed to resolve
some problems in the standard cold inflation picture [1,2], for
instances, providing sufficiently hot thermal bath after infla-
ton decaying to other matter fields in the reheating epoch
[3,4] the large quantum correction of the inflaton field might
spoiling the flatness of the observed universe or a so-called
eta problem [5,6], fine tuning of the initial values of the infla-
tion models motivated by beyond standard model physics [7–
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9] and other salient features see [10–12] for reviews. In the
warm inflation stage, the inflaton decays into radiation mat-
ter during the slow-roll period. In the meantime, the quan-
tum fluctuations of the density perturbation amplitudes are
generated by the friction of the inflaton propagating in the
thermal bath. At the end of inflation, the universe is auto-
matically heated up with out requiring the preheating and
reheating phases before radiation dominated era. Moreover,
the energy density of the radiation is smoothly joined with
the energy density of the inflaton field. The dissipative coeffi-
cient, � plays a crucial role in the warm inflationary universe
for describing the dynamics of warm inflation. All informa-
tion of the microscopic dynamical processes during warm
inflationary universe is contained in the dissipative coeffi-
cient and it has been constructed and calculated by using the
supersymmetric models with finite temperature field analy-
sis in various aspects see Refs. [13–22] for more details and
references therein.

The self-interacting inflaton potential (V ∼ φ4) has been
largely used to study of the standard (cold) inflation dynamics
in numerous perspectives see [23–25] for reviews. Accord-
ing to the requirements of the standard quantum field the-
ory, the self-interacting potential is renormalizable theory
and it is naturally received the quantum-corrected effect.
The quantum correction of the perturbative loop expan-
sion known as Coleman-Weinberg potential [26] is one of
the famous approach. In addition, the phenomenological
quantum-corrected self-interacting potential is proposed and
employed to study the quantum-corrected effect due to the
non-vanishing primordial tensor modes by Ref. [27]. On the
other hand, there are a number of investigations that also
used the self-interacting potential to study warm inflationary
universe in both minimal and non-minimal coupling to grav-
ity, for examples see Refs. [28–34]. Additionally, a possible
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realization of warm inflation owing to a inflaton field self-
interaction was proposed in Refs. [35,36]. However, there
is no previous work in a study of non-minimally coupled
warm inflation with the quantum-corrected self-interacting
potential according to the literature.

Therefore, in this work, we will investigate the quantum-
correction of the self-interacting potential due to the thermal
effect inflation with � ∝ T , where T is a temperature. Our
study might shed some light on the the quantum-correction
of the inflaton due to the finite temperature reaction which
plays significant role in warm inflationary universe. In par-
ticular, the results in this work might reveal to what extend
the model’s parameters deviate from cold inflation when the
thermal effect is taken into account. Moreover, we will con-
strain our theoretical results with Planck 2018 via the COBE
normalization and the prediction in this work will be com-
pared to the latest observational data.

The paper is organized as follows: all relevant dynamical
equations in the non-minimal coupling warm inflation under
the slow-roll approximation are determined in Sect. 2. Next,
in Sect. 3, we will compare the results in this work with the
observational data. Finally, we close this paper by providing
discussions and conclusions in Sect. 4.

2 Formalism

2.1 Non-minimal coupling gravitational action and
conformal transformation

We start with a gravitational action of the non-minimal cou-
pling of the scalar field to Ricci scalar (gravity) with a general
form of the effective potential V (φ), one finds,

SJ =
∫ √−g

[
−1

2

(
M2

p + ξ φ2
)
R + gμν∂μφ∂νφ − V (φ)

]

(1)

where the action SJ stands for the gravitational action in the
Jordan frame. While M2

p ≡ 1/8πG and ξ are reduced Plank
mass and the non-minimal coupling constant, respectively. It
is more convenient to study the inflation dynamics of the non-
minimal coupling in the Einstein frame, i.e., the gravitational
sector of the action written in the Einstein-Hilbert form only.
The Einstein frame can be achieved by using the conformal
transformation via a re-defining metric tensor as,

g̃μν = 	(φ)2 gμν, 	(φ) = 1 + ξ φ2

M2
p

. (2)

Here all variables with tilde symbol represent the quantities
in the Einstein frame. Applying the conformal transformation
to the action (1), the action in Einstein frame is given by,

SE =
∫ √−g̃

[
−1

2
M2

p g̃
μν R̃μν + g̃μν∂μχ∂νχ −U (χ)

]
.

(3)

We have used the re-definition of new scalar field, χ in the
Einstein frame to obtain the canonical form of the kinetic
term of the scalar field, χ as

1

2

(
dχ

dφ

)2

= 1 + 3 M2
p 	2

φ

	2 , (4)

where 	φ ≡ d	/dφ and the new effective potential in the
Einstein frame, U (χ) is also given by,

U (χ) = 	−4 V (φ(χ)) . (5)

In this work, we will consider the self-interacting poten-
tial with phenomenological quantum correction in the warm
inflation scenario. This potential has been proposed by Ref.
[27] in order to analyze the characters of the quantum correc-
tion in the self-interacting scalar field phenomenologically.
The potential in the Jordan frame is written in the following
form

V (φ) = λφ4
(

φ

�

)4γ

. (6)

It is worth mentioning that in what sense the added term, i.e.,
the 4γ power, represents a quantum correction? On general
grounds, any renormalizable field theory enables us to com-
pute higher-order corrections and hence the potential will be
received quantum (loop) corrections. As a simple example
of these type of corrections, the state-of-the-art perturbative
quantum corrections to the classical scalar potential was so
far proposed by Weinberg and Coleman [26,47]. Therefore,
it is possible to provide useful information on a large class
of models corresponding to different values of γ using the
above approach suggested by Ref. [27]. For instance, the
authors of Ref. [27] have analyzed the cases in which φ

couples both minimally and non-minimally to gravity and
phenomenologically characterized the corrections to the φ4

theory by introducing a real parameter γ . In this work, we
followed an approach proposed in Ref. [27] that the quan-
tum correction (real) parameter γ is used to characterize the
quantum behavior of the self-interacting potential and the �

parameter is the cut-off at a given energy scale. It was shown
that the range of the γ should be O(γ ) ∼ 0.1 according to
the constraint from observational data [27]. In the latter, we
will construct the slow-roll dynamics in warm inflation in the
Einstein frame with the potential in Eq. (6).

2.2 Slow-roll dynamics in warm inflation

We would stress here that in the following we do assume
the model present in Ref. [37] for the interactions. Hence
after the conformal transformation, we will directly couple
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the fermions in the Einstein frame Lagrangian (3). In this
subsection, we collect all relevant cosmological equations
of the slow-roll paradigm in warm inflation. Recalling the
Friedmann equation from the gravitational action in Einstein
frame with the flat FRW background in the warm inflation
scenario, it reads,

H2 = 1

3 M2
p

(
1

2
χ̇2 +U (χ) + ρR

)
, (7)

where χ̇ ≡ dχ/dt and ρR is energy density of the radiation
fluid with the equation of state wR = 1/3. The Klein-Gordon
equation of motion for the scalar field, χ in Einstein frame
with the dissipative coefficient, � is given by

χ̈ + 3H χ̇ +Uχ = −� χ̇, (8)

with Uφ ≡ dU/dχ . The conservation of the energy-
momentum tensor of the radiation fluid leads to the continued
equation as

ρ̇R + 4H ρR = � χ̇2. (9)

Based on the finite temperature field theory approaching to
the supersymmetry models, the generic form of the dissipa-
tive coefficient, � for several warm inflation models can be
written in terms of the coupling between temperature (T ),
scalar (inflaton) field (χ) and the mass of the some heavy
field during warm inflation (MX ) with MX > T as the fol-
lowing form [14–17,38]

� = C(m)

Tm χn

Ml
X

, m + n − l = 1. (10)

The dissipative coefficient, � represents the energy transfer
from the inflaton field to the thermal bath in the warm infla-
tionary universe. The parameterCm encodes the microscopic
dynamics of the inflaton interacting with other particles and
the m, n and l are the integer number. Particularly for the
m = 1 case, this corresponds to the high temperature super-
symmetric model [16] or considering inflaton as a pseudo
Goldstone boson that can be coupled to other fields in the
thermal bath such as warm natural inflation [39] and warm
little inflation in analogy to the little Higgs model [37]. In
the following, we will consider the slow-roll approximation
framework with the dissipative coefficients � for m = 1 and
at the strong regime.

In the standard slow-roll approximation, we can re-write
the Friedmann equation as well as the equations of motion
for the inflaton and the radiation matter as

H2 ≈ 1

3M2
p
U (χ), (11)

χ̇ ≈ − Uχ

3H(1 + Q)
, Q ≡ �

3H
, (12)

ρR ≈ � χ̇

4H
, ρR = CR T 4, (13)

where the Q is called dimensionless parameter that use to
identify the regime of the dissipative effects in the latter and
CR = gR π2/30. In addition, the minimal supersymmetric
standard model gives the number of relativistic degrees of
freedom, gR = 228.76 and leads to CR � 70 [4]. We have
been used the following approximations for the slow-roll sce-
nario,

ρR � ρχ , ρχ = 1

2
χ̇2 +U, (14)

χ̇2 � U (χ), (15)

χ̈ � 3H (1 + Q) χ̇ , (16)

ρ̇R � 4H ρR, (17)

As mentioned earlier, it is more convenient to separate warm
inflation into two regimes by using the dimensionless Q as

Q 	 1, strong regime, (18)

Q � 1, weak regime. (19)

In addition, we can express the temperature as a function of
the inflaton field, χ by using the Eqs. (10, 11, 12,13) for the
general m integer values. It reads,

T =
(

U 2
χ χm−1

4H C(m) CR

) 1
4+m

, for Q 	 1, (20)

T =
(
C(m) U 2

χ χ1−m

36H3 CR

) 1
4−m

, for Q � 1. (21)

In the following, we will concentrate and investigate warm
inflation in the strong dissipative regime only since this
regime might show better thermal effect in the inflationary
universe.

Before calculating the slow-roll parameters, we would like
to express the form of the effective potential in the Einstein in
Eq. (5) under the large field assumption during the inflation
i.e., φ 	 Mp/

√
ξ . One finds,

χ � κ Mp ln
(√

ξ φ

Mp

)
, κ ≡

√
2

ξ
+ 6 (22)

Then the Einstein frame potential then takes the following
form

U (χ) = 	−4V (φ(χ)) = M4
p(

M2
p + ξφ2

)2 λφ4
(

φ

�

)4γ

= λM4
p

ξ2

(
exp

[−2χ

κMp

]
+ 1

)−2

×
(

Mp√
ξ�

)4γ

exp

[
4γχ

κMp

]
(23)
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Next, we provide the slow-roll parameters in warm inflation
for general m and they read,

ε = M2
p

2

(
Uχ

U

)2

, η = M2
p
Uχχ

U
, β = M2

p

(
Uχ �χ

U �

)
.

(24)

The inflationary phase of the universe occurs under the fol-
lowing conditions

ε � 1 + Q, η � 1 + Q, β � 1 + Q. (25)

We firstly calculate the slow-roll parameters, ε and η with
the potential in Eq. (5) and they are given by

ε ≈ 8

κ2

(
M2

p

ξ φ2

)2 (
1 + γ

ξ φ2

M2
p

)2

(26)

η ≈ 16

κ2

M4
p

ξ2 φ4

(
1 +

(
2γ − 1

2

)
ξ φ2

M2
p

)
, (27)

where we have presented χ of the Einstein frame in terms
of φ of the Jordan frame with φ = Mp exp

(
χ/κ Mp

)
/
√

ξ .
The β parameter depends on the dissipative coefficient, �

and we can calculate the β parameter after introducing the
explicit form of the �.

Next we start with the dissipative coefficient investigated
in warm inflation, and the dissipative coefficient for m = 1
is read

� = CT T . (28)

Basically, the dissipative coefficient, �, represents the energy
transfer from the inflaton field to the thermal bath in the warm
inflationary universe. A generic form of the dissipative coef-
ficient given in Eq. (10) can be in general employed to the
several warm inflation models. In a specific case for which
m = 1, the dissipative coefficient in this form can be achieved
from high temperature approximation of the thermal super-
symmetric model [13]. More concretely, the authors of Ref.
[37] have assumed additional Yukawa interactions involving
a scalar singlet and chiral fermions. Here the interactions
in the original Lagrangian density are given in the Jordan
frame, see Eq. (11) of Ref. [37], while in our analysis, we
considered the interactions in the Einstein frame so that we
have the same form of interactions. To compute the dissipa-
tion coefficient � = �(φ, T ), we just need standard thermal
field theory techniques. In this work, we have coupled the
fermions after the conformal transformation and then con-
sidered the dynamics in the Einstein frame. Therefore, we
can deduce the form of the (additional Yukawa) interaction
in the Einstein one, and it reads

LE
ψχ̂

= h ψ
∑
i=1,2

[ ¯̂χi L χ̂ψR + ¯̂χψL χ̂i R
]
, (29)

where “ˆ” denotes quantities in the Einstein frame, h is the
Yukawa coupling, and ψ is the canonically normalized scalar
field. Detailed calculations of the dissipative coefficient have
been given in Ref. [48]. We do not intend to repeat it here.
Hence the dissipative coefficient in (28) is realized within the
model considered in this work. On view of warm little infla-
tion [37], the dissipative coefficient in (28) can be computed
where the inflaton in this scenario is considered as a pseudo
Nambu–Goldstone boson of a broken gauge symmetry in the
warm little inflation similar to “Little Higgs” model for elec-
troweak symmetry breaking. Moreover, warm inflation can
naturally occur for T > H . The coupling CT in Eq. (28) is
given by

CT � 3 g2

h2
(
1 − 0.34 log(h)

) , (30)

where g is the Yukawa coupling of the inflaton (super scalar
field) and heavy fermions in the warm little inflation scenario
while h is Yukawa coupling of the heavy fermions and light
singlet scalar and fermion fields [37].

By using the dissipative coefficient in Eq. (28), this leads to
the expression of the temperature as a function of the inflaton
field by using Eq. (20) as

T =
(

U 2
χ

4H CT CR

) 1
5

. (31)

Having use the results in Eqs. (23), (28) and (31), the slow-
roll parameter β up to the first order of the γ correction at
the large field approximation is given by

β ≈ 24 M4
p

5 κ2 ξ2 φ4 − 16 M2
p

5 κ2 ξ φ2 + 8 M4
p

κ2 ξ φ2 γ, (32)

where the relation φ = Mp exp
(
χ/κ Mp

)
/
√

ξ is implied.
In addition, the dimensionless parameter Q for � = CT T
can be written by

Q =
⎡
⎣

(
2

3

)2

K M4
p

φ4

(
�

φ

)4 γ
(

1 + γ
ξφ2

M2
p

)2
⎤
⎦

1
5

,

K ≡ C4
T

CR κ2 λ
. (33)

At the end of inflation requiring εend = Q, one finds

8

κ2

⎡
⎣ M4

p

ξ2 φ4
end

(
1 + γ

ξφ2
end

M2
p

)2
⎤
⎦

4
5

=
[(

2

3

)2

K ξ2
(

�

φend

)4 γ
] 1

5

(
1 + γ

ξφ2
end

M2
p

)
= K̃ �2 ξ

M2
p

(
φend

�

)2− γ
2

,

(34)
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where the K̃ parameter is defined by

K̃ ≡
[(

κ2

8

)5 (
2

3

)2

K ξ2

] 1
8

. (35)

Applying the assumption that the given order of the γ

parameter, O(γ ) � 0.1 as mentioned earlier and leading
to 2−γ /2 ≈ 2, the inflaton field at the end of warm inflation
is read

φend = 1√
K̃ − γ

Mp√
ξ

(36)

Therefore, the universal bound of the quantum correction for
the self-interacting inflaton field due to the modification of
warm inflation is given by

γ < K̃ . (37)

The bound in Eq. (37) represents the thermal effects on the
quantum-corrected parameter, γ in warm inflation. It is worth
noting that the universal bound in warm inflation is differ-
ent from the standard (cold) inflation given by Ref. [27] as
γ <

√
3/2 which is equivalent to the weak regime of warm

inflation, i.e., ε(φend) = 1. For given values CT = 0.02,
CR = 70, ξ = 104 and λ = 0.5 × 10−4, we find K̃ = 1.106.
This means the inflaton value at the end of warm inflation is
smaller than that of the inflaton in cold inflation.

Moreover, the e-folding number, N in the strong regime
Q 	 1 is given by

N = 1

M2
p

∫ χN

χend

QU

Uχ

dχ

=
∫ φN

φend

Q(φ)√
2 ε(φ)

1

φ
dφ

≈ 5 κ ξ

24

⎡
⎣ K

9
√

2

(
�

Mp

)6 (
φ

�

)6
(

1− 2
3 γ

) ⎤
⎦

1
5 ∣∣∣∣

φN

φend

, (38)

where we have expanded the γ parameter up to the first order.
Having used the φN 	 φend and O(γ ) ∼ 0.1 approxima-
tions, the inflaton field at the Hubble horizon crossing in
terms of the e-folding number, N , is written by

φN ≈
[

2187

3125
· 32768

√
2

] 1
6−4γ

[(
N

κ ξ

)5
(

M6
p

K�4γ

)] 1
6−4γ

= 12 · 2
7

12 3
1
6

5
5
6

(
N

κ ξ

) 5
6
(
Mp

K 1
6

)

×
[

1 + γ

18

(
ln

[
231 · 314

510

]

+2 ln

[(
N

κ ξ

)5
(

M6
p

K�6

)])
+ O

(
γ 2

) ]

� 5.647

[
N 5

κ5 ξ2 K

] 1
6

×
[

1 + γ

9

(
10.387 + ln

[(
N

κ ξ

)5
(

M6
p

K�6

)]) ]
Mp√

ξ
,

(39)

where we have considered the quantum-corrected character
of the self-interacting potential in warm inflation up to the
leading order of the γ parameter only. In addition, one might
re-write the dimensionless parameter Q in Eq. (33) in terms
of the e-folding number, N by using Eq. (39) as

Q(N ) ≈
[(

2

3

)2 KM4
p

φ4
N

(
ξ2 �4

M4
p

)γ ] 1
5

�
[(

2

3

)2 KM4
p

φ4
N

(
1 + 2 γ ln

[
ξ �2

M2
p

])] 1
5

=

⎡
⎢⎢⎢⎣

(
2
3

)2 K
5
3 ξ2

5.6474

(
1 + 2 γ ln

[
ξ �2

M2
p

])

[
N5

κ5 ξ2

] 2
3

[
1 + γ

9

(
10.387 + ln

[(
N
κ ξ

)5
(

M6
p

K�6

)])]4

⎤
⎥⎥⎥⎦

1
5

(40)

Taking the back reaction of the inflaton fluctuation in the
thermal heat bath into account, in addition, the power spec-
trum is given by [4,11,17,34,38,40–42],

�R = U
(
1 + QN

)2

24 π2 M4
p ε

(
1 + 2 nN +

(
TN
HN

)
2
√

3 π QN√
3 + 4π QN

)
G(QN ),

� 5C3
T

12 π4 gR Q2
N

(
1 +

√
3 π QN√

3 + 4π QN

)
G(QN ) (41)

where the subscript “N ′′ is labeled for the values of all quan-
tities in warm inflation at the Hubble horizon crossing and
n = 1/

(
exp H/T − 1

)
is the Bose-Einstein statistical func-

tion. In addition, the power spectrum in Eq. (41) can be con-
strained by observational data and yields the upper bound of
the CT parameter as CT � 0.02 [34]. Moreover, the infor-
mation of the coupling between the inflaton and the radiation
in the heat bath leading to a growing mode is contained in
the function G(QN ) and it reads [29]

G(Q) = 1 + 0.335 Q1.364 + 0.0185 Q2.315. (42)

In addition, we have used the relation ρr/V (φ) = ε Q/2(1+
Q)2 and the approximation of the thermalized inflaton fluc-
tuation, 1 + 2 nN � 2 TN/HN and TN/HN = 3 QN/CT in
order to get the last line in Eq. (41) as Ref. [34]. By using
Eqs. (41, 42), furthermore, the scalar spectral index is deter-
mined as

ns = 1 + d ln �R
dN

= 1 + QN

3 + 5 QN

(
6 ε − 2 η

)
�R

d�R
dQN

,
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d�R
dQN

= 5C3
T

12 π4 gR

[(
1 +

√
3 π QN√

3 + 4π QN

)

×
(
0.457 Q0.364 + 0.0428 Q1.315

)
Q2

N

−
(

2 +
√

3 π QN√
3 + 4π QN

+ 2
√

3 π2 Q2
N

(3 + 4 π QN )
3
2

)

×
(
1 + 0.335 Q1.364 + 0.0185 Q2.315

)
Q3

N

]
. (43)

While the tensor-to-scalar perturbation ratio, r is obtained by
the following formula

r = �T

�R
= 16 ε

[
6 Q3

N

CT

(
1 +

√
3 π QN√

3 + 4π QN

)
G(QN )

]−1

(44)

where �T is the power spectrum of the tensor perturbation
and we have used �T = 2H2/π2M2

p = 2U (χ)/3π2M4
p

which is the same form as in the standard (cold) inflation
result for the primordial gravitational waves.

3 Confrontation with the data

In this section, we will constrain the inflation potential with
the COBE normalization condition [43] to fix the param-
eters in the non-minimal warm inflation with the quantum
corrected self-interacting potential. According to the Planck
2018 data, the inflaton potential must be normalized by the
slow-roll parameter, ε and satisfied the following relation
at the horizon crossing φ = φN in order to generate the
observed amplitude of the cosmological density perturbation

Fig. 1 We display λ as a function of γ obtained from Eq. (46) for
Mp = 10�, ξ = 104,CR = 70, κ ≈ √

6 and N = 60. As γ increases,
the magnitude of λ needed to produce the correct amount of scalar
perturbations also increases

(As):

U (φN )

ε(φN )
� (0.0276 Mp)

4. (45)

Having used the potential in Eq. (23) and the slow-roll ε

parameter in Eq. (26), we find

(
Mp

�

)2
(

1 + γ
ξ φ2

N

M2
p

)
=

√
3 λ

2 (0.0276)2

(
φN

�

)2(1+γ )

.

(46)

The resulting constraint is plotted in Fig. 1 by using the def-
inition of φN in Eq. (40). The magnitude of λ needed to pro-
duce the observed amplitude of scalar perturbations increases
linearly for increasing γ . For reference, we consider vari-
ous values of CT and figure out a pair of (λ, γ ) in which
their values produce the observed amplitude of scalar per-
turbations. More interestingly, the numerical values of the
self-interacting coupling, λ, shown in Fig. 1 are consistent
with the results of the running coupling λ up to two-loop
corrections in the standard model of particle physics that is
very close to zero at the GUT scale which would be a typ-
ical scale of inflation [44]. In addition, the values of the λ

coupling are in order of λ ∼ 10−5 and still are much bigger
than the unnaturally small of λ ∼ 10−13 for the minimal
coupling cold inflation [45,46]. It is worth mentioning here
that slightly earlier than [45] the quantitatively correct result
for the power spectrum of scalar perturbations generated in
the cold new inflationary model was independently obtained
in [49].

We present the COBE constrained results for relations
between the λ and γ parameters with varying values of the

Table 1 We show a set of parameters (CT , γ, λ) obtained from
Eq. (46) in which their values are constrained by the COBE normaliza-
tion condition given in Eq. (45). Here we have used various values of
CT in order to obtain viable values of γ, λ and applied Mp = 10�,
ξ = 104, CR = 70, κ ≈ √

6 and N = 60

CT γ × 10−2 λ × 10−5

0.014 7.00 2.80

8.50 3.74

10.00 4.68

11.50 5.60

0.015 7.00 2.41

8.50 3.80

10.00 4.78

11.50 5.73

0.020 7.00 3.04

8.50 4.09

10.00 5.19

11.50 6.28
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CT in Table 1 and then compare the predictions in the (r−ns)
plane of the latest Planck 2018 data by using the expressions
of the ns and r in Eqs. (43) and (44), respectively with the
growing mode in (42).

From Fig. 2, we present the confidence contours in the
(ns, r) plane. The value of CT is varied for each trajectory.
The curves in this figure are related to CT as: 0.014 (black),
0.015 (orange) and 0.020 (purple) from the bottom curve to
the top one. With a set of input parameters whenCT decreases
the curve is shifted upward. The proper set of the parameters
CR = 70, ξ = 104, N = 60 and Mp = 10� is used.
With these values of the parameters, we find that in order to
fit inside the 2 σ confidence level of the Planck 2018 data,
the range of CT is in 0.014 � CT � 0.02 and it dose not
exceed the upper bound 0.020 from the constraint of the

Fig. 2 We compare the theoretical predictions of the strong limit
Q > 1 including the growing mode effects Eqs. (43) and (44) for
CT = 0.020 (purple), CT = 0.015 (orange) and CT = 0.014 (black)
in the (r − ns) plane for various values of γ and λ given in Table (1)
constrained by the COBE renormalization condition by usingCR = 70,
ξ = 104, N = 60 and Mp = 10� with Planck’18 results for TT, TE,
EE, +lowE+lensing+BK15+BAO

Fig. 3 The allowed region (shaded area) of the possible values of the
g and h from Eq. (30) due to the range of CT for 0.014 � CT � 0.02
where g and h are the Yukawa couplings of the inflaton-heavy fermions
and the heavy fermions-light singlet scalar and fermion fields, in the
supersymmetric model respectively

power spectrum [34]. More importantly, the given range of
the parameter CT , 0.014 � CT � 0.02 can consequently
provide the possible values of the couplings g and h that are
encoded in the CT as shown in Eq. (30). The allowed region
in the parameter space of the g and h is depicted in Fig. 3.
To make consistent results between theory and observation,
in addition, this requires that the cut-off, � of the inflaton
field should be less than the Planck mass around one order of
magnitude in contrast to cold inflation that usually imposes
� ∼ Mp.

4 Conclusion

In this work, we presented the theoretical study of the non-
minimal coupling warm inflation with the quantum-corrected
self-interacting inflaton potential. The slow-roll dynamics of
warm inflation in the Einstein frame is analyzed by using the
dissipative coefficient as linear function of temperature. At
the large field approximation in warm inflation, the universal
bound for the quantum-corrected parameter, γ is modified by
the dissipative coefficient. With the proper set of the param-
eters, the universal bound of warm inflation is bigger than
that of cold inflation. This indicates that the inflaton field
in warm inflation is smaller that of the cold one at the end
of inflation. Having used the COBE normalization of the
observed amplitude, we found that the relationship between
the self-interacting coupling, λ and the quantum-corrected
parameter, γ is linear and the value of the λ is of the order
of O(λ) ∼ 10−5 for 0.06 < γ < 0.1. The constraint of the
λ coupling from COBE is consistent with the renormaliza-
tion group result at the GUT scale. It has been found that
the warm inflationary scenario inspired with quartic form of
potential V (φ) = λφ4/4 and the well-known form of dissi-
pative coefficient � ∝ T with chaplygin gas [50] and without
chaplygin gas [28] have been investigated. Having compared
to our work, however, the constraint on λ is determined by
10−15 < λ < 10−13 [28] and λ ∼ 10−10 [50], while in our
work, we have found that λ ∼ O(10−5) which are much
larger than those present in Refs. [28,50]. We continuously
compared the tensor to scalar ratio (r ) and spectral index
(ns) from the theoretical results to the Planck 2018 data. As
results, the given sets of the model’s parameters provide good
agreement with the Planck 2018 observational data. To make
the theoretical results locating inside the 2σ confidence level,
it was found that the range of the parameter from the dissipa-
tive coefficient, CT is in range 0.014 � CT � 0.02 and the
lower bound of the CT parameter is constrained in this work.
Consequently, we have also used the range of CT to evaluate
the allowed region in the parameter space g and h in terms
of the supersymmetric model that are used to calculate the
dissipative coefficient. In addition, the self-interacting cou-
pling, λ should be very small and this is consistent with the
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constraint from COBE. More importantly, in contrast to the
cold inflation scenario, the cut-off scale of the inflaton, � is
smaller than that of the Planck scale of one order of magni-
tude to obtain the results compatible with the data. Further-
more, higher order quantum-correction and other forms of
the inflaton potential are worth for extensively study. More
information and accurate observational data might provide
more details about the quantum-correction of the inflaton
and validity of the warm inflationary universe, especially the
observation data of the primordial tensor modes.
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