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In this work we perform a perturbative study of the Noether supercurrent operator in the context of
supersymmetric N' = 1 Yang-Mills theory on the lattice. The supercurrent mixes with several other
operators, some of which are not gauge invariant, having the same quantum numbers. We determine, to
one-loop order, the renormalization and all corresponding mixing coefficients by computing the relevant
Green’s functions of each one of the mixing operators with external elementary fields. Our calculations are

performed both in dimensional and lattice regularization. From the first regularization we obtain the MS-
renormalized Green'’s functions; comparison of the latter with the corresponding Green’s functions in the
lattice regularization leads to the extraction of the lattice renormalization factors and mixing coefficients in

the MS scheme. The lattice calculations are performed to lowest order in the lattice spacing, using Wilson
gluons and clover improved gluinos. The lattice results can be used in nonperturbative studies of

supersymmetric Ward identities.
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I. INTRODUCTION

Supersymmetry (SUSY) has a variety of applications in
modern quantum field theory. The most well known are
possible extensions of the standard model of particle
physics and theoretical considerations like the gauge/
gravity duality. In supersymmetric extensions of the
standard model SUSY is expected to emerge at very
high energies and it provides dark matter candidates,
arising from the lightest supersymmetric particles. Super-
symmetric extensions of the standard model would also
resolve the hierarchy problem. In theoretical considera-
tions, the symmetry constrains the strongly interacting state
of gauge theories such that analytical predictions and
conjectures are possible. These theories are typically
models with extended supersymmetry such as N =4
supersymmetric Yang-Mills (SYM) theory.
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In order to check and extend theoretical predictions for
strongly coupled supersymmetric gauge theories, numerical
investigations of lattice gauge theory would be desirable.
However, it is unavoidable to break supersymmetry in any
nontrivial theory on the lattice. SUSY is recovered in the
continuum limit via fine-tuning of the lattice theory.
A signal for fine-tuning is provided by supersymmetric
Ward identities. However, the SUSY Ward identities usually
involve a substantial mixing with different operators. It is
our aim to investigate the extent to which perturbative
estimates can provide some insights for this operator mixing.
Our long term aim is to find strategies that might be used for
theories with scalar fields like supersymmetric QCD. In
these theories a large number of mixing terms appear and
additional insights about mixing coefficients are essential.
We will start, however, with a simpler case, where the mixing
terms can be evaluated nonperturbatively. This allows one to
check the relevance of perturbative estimates.

In this work, we consider the N' =1 supersymmetric
Yang-Mills theory with gauge group SU(N,.), which
describes the strong interactions between gluons and
gluinos, the superpartners of the gluons. SYM shares some
of the fundamental properties of supersymmetric theories
containing quarks and squarks, while at the same time it is
amenable to high-accuracy nonperturbative investigations;
it is thus an ideal forerunner to the future study of theories
containing more superfields.

Published by the American Physical Society
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In any SUSY theory there exists a conserved current for
each generator of the SUSY algebra. The current associated
with this algebra is called supercurrent. On the lattice, the
supercurrent divergence is proportional to the gluino mass,
and Ward identities involving the supercurrent operator are
used to renormalize it nonperturbatively [1]. Furthermore,
other operators sharing the same quantum numbers emerge
beyond the classical level.

In this work, we use clover improved fermions and
Wilson gluons to study the supercurrent operator. Its
renormalization and its mixing patterns with gauge invari-
ant and noninvariant operators will be extracted from the
computation of its one-loop Green’s functions with external
elementary fields. Such Green’s functions are not gauge
independent and will be evaluated for arbitrary covariant
gauge. The lattice action is chosen similar to the one used in
large scale simulations [2,3].

After presenting the basics of the computational setup
(Sec. II), we calculate the renormalization of the super-
current (Sec. IIT) both in dimensional (Sec. III A) and lattice
(Sec. III B) regularizations, using the MS renormalization
scheme. Finally, in Sec. IV we provide a short outlook.

II. COMPUTATIONAL SETUP FOR THE
RENORMALIZATION OF THE SUPERCURRENT
OPERATOR

The supercurrent stems from the application of Noether’s
theorem to supersymmetric transformations [4] of the SYM
Lagrangian:

Lsym = Lsym + 6:Lsyms (1)

0:Lgym = EaﬂY” and the parameter ¢ is a Grassmann
spinor; the definition of the supercurrent is given by

- - L
&S = 5<2i6§¢i aa( 5b) Yﬂ), 2)
uri

where the index i runs over all degrees of freedom (¢;) in
Lsym. Our studies have been performed in the Wess-
Zumino (WZ) gauge. In this gauge, the SYM Lagrangian
contains the gluon (u,) and gluino (1) fields, as well as an
auxiliary field; the latter is eliminated, either by applying its
equation of motion (classical case), or by functionally
integrating over it (quantum case). Thus, the Lagrangian of
SYM, in Minkowski space, becomes

1 i-
‘CSYM = —ZMZUMZU +§/1a}/”Dﬂ/1a,
Uy, = Oy — Oy +iglu, ), D,A=0,A+ig[u,.A.
(3)

This definition includes the coupling constant ¢ and the
field strength tensor u,, = uy, T* as well as the gluino field

A = A°T“ that are represented with generators of the SU(N..)
algebra 7% normalized such that tr (7°T7) = 15%.

Lgym 18 invariant, up to a total derivative, under the
following supersymmetric transformation:

Bguy = —ify"2c,

1
55/1”’ = Z”Z’u [7” ) }’”]f- (4)
Given that the renormalized theory does not depend on the
choice of a gauge-fixing term, and given that many
regularizations, in particular the lattice regularization,
violate supersymmetry at intermediate steps, one may as
well choose the standard covariant gauge-fixing term,
proportional to (0”14”)2, rather than a supersymmetric
variant [5,6]. The total SYM action thus includes the
gauge-fixing term and the corresponding term involving
the ghost field ¢* which arises from the Faddeev-Popov
procedure. The total action is no longer gauge invariant, but
it is Becchi-Rouet-Stora-Tyutin (BRST) invariant. The
BRST transformation on all fields of the total action is
as follows:

Ul — ul + (9,¢* + gf P clul)n,
A% 5 )@ — gf”ﬂycﬂl”n,

¥ - ¥ — gf“ﬂ”cﬂcyn,
“a “a 1 a a 5
¢ — %+ p UG, (5)

where f®" are the structure constants of SU(N,), 1 is the
Grassmann parameter of the BRST transformation, and « in
the last line of Eq. (5) is the gauge parameter.

Using the transformations of Eq. (4) on Lgyy one
obtains:

v = ite (w7, 4) = 20 (W v 7). (6)

From this point on, we will switch to Euclidean space, as
required by the calculation of lattice Green’s functions. Use
of Egs. (2) and (6) leads to the supercurrent operator S, [7],
which in Euclidean space takes the form:

1
Sy = _Etrc(upa[y/n ya]yﬂl)‘ (7)

The y-trace anomaly of this operator [8] plays a significant
role in the spectrum of SYM and it has phenomenological
interest; S, is also involved in nonperturbative investiga-
tions of SYM on the lattice via the supersymmetric Ward
identity. A proper study of S, must address the fact that it
mixes with a number of other operators upon renormaliza-
tion. These operators must have the same transformation
properties under global symmetries [e.g., Lorentz, or
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hypercubic on the lattice, global SU(N.) transformations,
ghost number, etc.] and their dimension must be lower than
or equal to that of §,. There are altogether four classes of
such operators, as follows [9]:

(1) Class G: Gauge invariant operators.

(2) Class A: BRST variation of operators.

(3) Class B: Operators which vanish by the equations of
motion.

(4) Class C: Any other operators which respect the same
global symmetries, but do not belong to the above
classes. These can at most have finite mixing with S,
[9]; thus, in a renormalization scheme which employs
minimal subtraction, such operators do not mix.

In particular, class G contains another dimension 7/2

gauge invariant operator (see Ref. [1] and references
therein). In the literature, it is denoted as

T, = 2tr.(uu,y,4). (8)

Exploiting the nilpotency of the BRST transformations, we
determine the operators of class A. By Eq. (5), the operators
must necessarily have the same index structure as S, i.e.,
one free spinor index, one Lorentz index, no free color, and
zero ghost number; in addition, their dimensionality must
not exceed 7/2. This requirement leaves only one candi-
date, O,,, for the class A operators:

SprsT(C77,A") = — (0,uf)r, A" + gf Precly, . (9)

o
The operator O, is BRST invariant modulo equations of
motion. In general, class A operators have vanishing matrix
elements in physical external states with transverse polari-
zation. However, they must be correctly taken into account
for the renormalization of S,. Similar comments apply to
classes B and C.

For class B operators we check the equations of motion
for the gluino and gluon fields. Taking into account that
operators must have zero ghost number and that the gluon
equation of motion has already dimension 3, we conclude
that only the gluino equation of motion may contribute; we
must also multiply it by a factor of u, or y#y,, and take the
trace over color indices, in order to render it colorless [i.e.,
invariant under global SU(N..) transformations]. This leads
to two class B operators. Note that we could neglect such
operators by studying exclusively on-shell Green’s func-
tions, as is done, e.g., in Ref. [10]; however, for the sake of
a more thorough elucidation of the mixing pattern, we have
chosen to study more general Green’s functions.

We present all candidate gauge noninvariant operators
which can mix with S, and belong to classes A, B, ch:

'Operators O 5 and Oy, taken together with O, are linearly
dependent; however, keeping both of them in the list affords us
with additional consistency checks.

OA] = étrc((auuu)yﬂi) - igtrc([c7 E]yul)’ (10)

Opy = tro(u, PA). (11)
Opy = tr. (4, PA). (12)
Oci = tre(u,4). (13)
Ocy = tr(y,4). (14)
Ocy = tr.(#0,4), (15)
Ocy = tr((9,4)4), (16)
Ocs = tre((0,u,)7,,4). (17)
Oce = tre(1,7,9,4). (18)
Ocy = igtre([uy. ][y v5]7,h). (19)
Ocs = igtre([u,. u,]r,4). (20)
Oco = igtrc([c. €]y d). (21)

The same gauge noninvariant operators may mix with 7,
given that they share the same quantum numbers; we
will also compute the renormalization factor and the
mixing coefficients for 7,. The operators O¢y, O, are
of lower dimension and thus they do not mix with §, in
dimensional regularization; they may however show up on
the lattice. Note that class C operators cannot contribute in
the continuum for the purpose of MS renormalization.
However, they may give finite mixing coefficients on the
lattice. In producing the minimal list of mixing operators
[Egs. (10)—(21)], we have also exploited the fact that charge
conjugation C is a symmetry of the action, valid both in the
continuum and lattice formulations of the theory:

2%(x)T* - =2%(x)(T*)*
o @ =~y
] )T = =2 (x)(T%)*

ugy (x)T* = —ug (x)(T*)",

9

(22)

al

©=0,1,23.

The mixing matrix is a 14 x 14 square block upper
triangular matrix.” The renormalized supercurrent can be
written as a linear combination of these operators:

*This is due to the fact that [9] class G/A/B/C operators can
mix with class (G,A,B,C)/(A,B,C)/(B,C)/(C) operators.
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FIG. 1. One-loop Feynman diagrams contributing to the two-
point Green’s functions (u,S,4) and (u,T,4). A wavy (dashed)
line represents gluons (gluinos). A cross denotes the insertion of
S,(T,). Diagrams 2, 4 do not appear in dimensional regulariza-
tion; they do however show up in the lattice formulation.

Sﬁ = ZSSS/ll; + ZSTT/IE + ZSAIOEI

2 9
+ Z ZspiOp; + Z Z5ci0¢;. (23)
p

i=1

Equation (23) defines the first row of the mixing matrix.
We are also interested in deriving the second row of this
matrix:

Tﬁ - ZTSSE + ZTTTﬁ + ZTAIOEI

2 9
+ Z ZrpiOf; + Z ZriOg;, (24)

i=1 i=1

where the renormalization factors are the diagonal matrix
elements Z; = 1 + O(g?) and the mixing coefficients are
the off-diagonal (i # j) elements Z;; = O(¢*). Bach Z
should more properly be denoted as Z?® where B is the
regularization (B = LR: lattice, DR: dimensional regulari-
zation, etc.) and R the renormalization scheme (MS, etc.).

In order to calculate the one-loop renormalization factors
and the mixing coefficients in Egs. (23) and (24), we
compute the two-point Green’s functions of S, and T, with
one external gluino and one external gluon fields (Fig. 1),
as well as three-point Green’s functions with external
gluino/gluon/gluon fields (Fig. 2) and with external
gluino/ghost/antighost fields (Fig. 3).

In a gauge invariant renormalization scheme (GIRS)
[11,12], only gauge invariant Green’s functions are
involved. Since the mixing of gauge noninvariant operators
leads to vanishing contributions in such Green’s functions,
the mixing matrix becomes effectively a 2 x 2 matrix
which involves only Zgg, Zyr, Zgr, Zys. Preliminary results
for this scheme are shown in Ref. [13]; further perturbative
and nonperturbative results in the GIRS and for a different
discretization will be published in a follow-up paper [14].

The renormalization conditions involve the renormaliza-
tion factors of the gluon, gluino, ghost, and coupling
constant. For completeness, we present the definitions of
these factors:

uk = \/Z,ub (25)
=\Z, (26)
= VZ.", (27)
g =Zpug", (28)

where p is an arbitrary scale with dimensions of inverse
length. For one-loop calculations, the distinction between
g® and u=¢¢P is inessential in many cases; we will
simply use g in those cases. Our results are presented as
functions of the MS scale i which is related to u
through® y = ji /et /4.

In perturbation theory, the external fields in the Green’s
functions are the Fourier transformed fields and the oper-
ators are defined in position space. As is shown in Table I the
tree-level Green’s function with the same external fields give
contributions which may depend on more than one external
momentum ¢;; this is a consequence of the absence of
momentum conservation since there is no summation/
integration over the position of the operators. Although this
seems to complicate things it is a way to disentangle the
mixing patterns. The one-loop Feynman diagrams contrib-
uting to the two-point Green’s function of S, (u,S,4), are
shown in Fig. 1. In Figs. 2 and 3, we present the one-loop
Feynman diagrams contributing to the three-point Green’s
functions (u,u,S,4) and (cS,¢ 1), respectively. An analo-
gous computation is also carried out for the corresponding
Green’s functions of operator 7). Since T, is gauge
invariant, it will be involved in the GIRS; the results
presented here can then be checked for consistency with
the ones calculated using the GIRS in Ref. [14].

Previous studies on the renormalization of the super-
current on the lattice exist in the literature [1,10,15-18]. In
Refs. [1,15,16], SUSY Ward identities involve the gluino
mass, which receives an additive renormalization (critical
mass) and the mixing with T, is taken into account.
Reference [10] investigates perturbatively the mixing
behavior of the supercurrent with the on-shell condition
for gluino momentum and mass using Wilson gluinos and
gluons. Further, in Ref. [19], the gradient flow technique is
used to study the renormalization of the supercurrent in the
N =1SYM.

III. RESULTS

An unambiguous extraction of all mixing coefficients
and renormalization constants of the operators S,
and T, entails a careful selection of the appropriate
Green’s functions and a choice of the external momenta.

In particular, we calculate two-point and three-point

3y is Euler’s constant: y; = 0.57721....
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FIG.2. One-loop Feynman diagrams contributing to the three-point Green’s functions (u,u,S ,,/T) and (u,u, T,Jl). A wavy (dashed) line
represents gluons (gluinos). Diagrams 1, 2, 3, 5, 6, 11, and 13 do not appear in dimensional regularization but they contribute in the
lattice regularization. A cross denotes the insertion of the operator. A mirror version (under exchange of the two external gluons) of

diagrams 3, 4, 5, 6, 8, 10, 14, 15 and 16 must also be included.

FIG. 3. One-loop Feynman diagrams contributing to the three-
point Green’s functions (cS,¢ 1) and (cT,¢ 1). A wavy (dashed)
line represents gluons (gluinos). A cross denotes the insertion of
the operator. The “double dashed” line is the ghost field.
Diagrams 1 and 2 do not appear in dimensional regularization;
they do however show up in the lattice formulation.

Green’s functions of S, and T, using both dimensional
regularization (continuum), where we regularize the theory
in D dimensions (D = 4 — 2¢) and lattice regularization.
The continuum Green’s functions will be used in order to
calculate the renormalized Green’s functions in the MS
scheme, which are necessary ingredients for the renorm-
alization conditions on the lattice.

Taking into account the potential IR divergences, we
calculate the corresponding diagrams by setting to zero
only one gluon or gluino external momentum. The differ-
ence between the MS-renormalized Green’s functions and
the corresponding Green’s functions regularized on the
lattice allows us to deduce the one-loop renormalizations
and mixing coefficients on the lattice.
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TABLE L
may mix with S,. <“gl(—CII)Oi(X)ZaZ(fh»g&e}) and ()" (—qy)uy’

The two-point and three-point tree-level Green’s functions of S, and T, as well as of gauge noninvariant operators which

tree

(=q2)O;(x)A% (93))amp are shown apart from an overall factor of

SN0 e(@ite) and  fr@seiv(@tata)  respectively. Similarly, the tree-level parts of the three-point Green’s functions
(¢ (g3)O;(x)2%(g,)A% (g, ), are shown apart from an overall factor of f&1%d ¢t (41=42+4s),

amp

Tree-level two-point Green’s function Tree-level three-point Green’s function Tree-level three-point Green’s function

Operators (external legs: u,1) (external legs: u,u,2) (external legs: ¢c 1)
Sy —i(d1vy — 917, 9lrv:7pl7u/2 0

T/J i(qw}/u - %lé/w) _9(5/41/}//) + 6/4/;%/) 0
OAI iqluyy/(za) 0 (g/z)}/ﬂ
OBI ié;qu/z _g(éw}/p + 5/1/471/)/2 0
Op vl /2 291,747 0
Oct Ou/2 0 0
OCZ yl/}//l/z 0 0
Ocs iy,q0,/2 0 0
Ocs iv,q1,/2 0 0
OCS i}’uqlu/z 0 0
Ocs iYMIzu/ 2 0 0
O¢r 0 =glrus ¥p)7u 0
OCS 0 _9(51/;4}//) + 6/);47/1/)/2 0
Oco 0 0 —(9/ 2)7;,

The novelty in our one-loop results is that we calculate
the complete mixing patterns of the supercurrent operator
perturbatively. More precisely, we use gauge variant
off-shell Green’s functions; we obtain analytic expressions
for the renormalization factors and mixing coefficients,
where the number of colors, N, the coupling constant g,
the gauge parameter, «, and the clover/Wilson parameters,
csw/r (on the lattice) are left unspecified.

A. Results for Green’s functions and for the mixing
matrix in dimensional regularization (DR)

In this subsection we present continuum results on bare
Green’s functions of the composite operators, S, and T,
with external elementary quantum fields in the momentum
space. We will use the MS renormalization scheme. The
divergent parts (1/¢) of the one-loop contributions are
expected to contain tensorial structures of the tree-level
Green’s functions of some of the mixing operators. For this
|

reason we present, in Table I, the expressions for the tree-
level two-point and three-point Green’s functions of the
operators S, and T, and of all gauge noninvariant operators
which could mix with them. Notice that in Table I, the
Green’s functions with external gluinos, gluons and ghosts,
(1 (=q1) 0i(x)A%(q2 ) )ams (' (= q1 )up’ (= q2) Oi(x)
A2(q3))amp> (€ (q3)O0i(x)2(92)A" (¢1) Jamp» are shown
apart from overall exponential and color factors, which are
understood.

We first present the continuum results of each one-loop
two-point Green’s function of S, and 7. Use of generic
values of the external momenta ¢; and ¢, lead to results
which are very lengthy expressions, involving polylogar-
ithms of the momenta; however, for the extraction of all Z
factors in Egs. (23) and (24) we need only consider specific
values of ¢; and ¢,. In particular, a sufficient set of values
consists of the following three choices: (g, = 0), (¢; = 0),
(¢2 = —q,)- For the choice g, = 0, we find

2

. o PN, 1 .
<u§'xl (_QI)S/J)“(XZ (q2)>amp|¢l])2R=0 = _lSGIaZquIX(quu - qll/)yﬂ + lg—g_éalazelqlx

X |:(J/1/7/4q1 + 7;tqlv)<

3(1-a)

167~ 2

23 > 3(l-a) i
T ) POt (el
+ 5 + 3 + > 0g<q%

— 791, <3(1—€—a)+ 15+ a® +3(1 —a)log <'Z—§>> —4<%+ 415,4”)} (29)
1

1
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The above Green’s function is not proportional to its tree-level value, but the pole parts (1/¢) are. In the MS scheme
renormalization factors depend only on pole parts; removing these parts from Eq. (29), we are left with the MS-
renormalized Green’s function. The latter will be utilized in the extraction of the lattice renormalization factors later. The
result of the two-point Green’s function for the same choice of external momentum and insertion of 7, is

2 —2
) [¢2 P Sy Lig1 X .9 N 1 Ay ,iqX 3
< ( QI)T ’1 2(q2)>amp|52R:O = —ig"1%e'h (q]ﬂYV - dléﬂv) +1i 5 1% et |:(yl/},ﬂ¢1 + yquu)( + 9 + 310g< >>

167° 1
3(1—a) 15 & 3(l-a) <ﬁ2>>
=14 < T tot log( =
s 2e 2 2 2 q
33+a) 17 a® 33+a) i 41@1 91
+ i m< = —5 tats y log( 7 (30)

From Eq. (30) we will calculate Z;7 and Z;¢ as well as the mixing with other operators of Egs. (10)—(21) at one-loop level.
For the choice ¢; = 0, we find

2 =2
a Ia -9 NL’ 1 A1y ,iqrX 1 1 H
(uy' (—=q1)S,4 2(q2)>amp IqD,R:o =1 1622 55 1@ el {hh%z(l T5e Elog ?

2

1 i
+ Va0 — 27092 — 420 (2 + - + log <—2>>] . (31)

q;3

Notice that the Green’s function of S, for the choice ¢; = 0 [Eq. (31)] is gauge independent. On the contrary, the same

Green’s function with the operator insertion 7, is not:
? +2+a+ 2t %lo r
a+= Ladl
2 2 E\g

a 2a g N A1y LGy X 2+
<uU (_QI)T//1 2(Q2)>amp f])lRO = _5 ! 26q2 |:7u7;442<
2 i -2+ 2a i
— 7042, +4+a+2log + #0, T—2+Za+(—2+2a)log 7 .

16 22
q% 2

(32)

For the choice ¢, = —¢q;, we find

" . ¢*N, 1 4-3a 11 o 4-3a  (ji?
<MV1<_QI)Sﬂ’1a2<q2)>ampqDZR:—q]__l(sa]az(ﬂl}/u QID)7y+l 5011% |:7/1/7/4d1< t>tat+—+ 10g<?>>

16722 2 2 2 2
3(—1 =2 =2
—H/,,ql,,(%—5—40{—(124—3(—1+a)10g(ﬂ—2>>—&—;jl W( —4- 2a+10g<’u ))
1 1
3(l—-a i y
—yyqlﬂ< 3029 54 gt o? 243(1- )1og(’;2>>+4a’mq";‘“], (33)
1 1

a - . ¢*N, 1 4 — 4—a i
<ul/1 (_QI)T/J’Wz(qz»amplng:—ql = oM™ (QI;ﬂ/v ﬂl /41/) +i 167 2 25a1a2 |:71/7;¢d1 ( + 4+ B IOg <_2>>

qi
3 i 1+3a 1 @ 1+3a i
+7ﬂqu<g+6+a+310g<q—%>>+}’D41”(T+§—(Z—?+ ) IOg q—%
—5-Ta 13 a? -5-Ta /_42 ﬂlql q1
5 —4— _dg+— log (& P 34
o "”( 2 2 T T Og<q%)>+a 7 } G4

In order to calculate all mixing coefficients, we also need to consider three-point Green’s functions. We begin with the
Green’s function with two external gluon fields and one gluino field. A single choice of external momenta is sufficient in
this case: (¢, =0, g3 = —q,). The result for S, is*

*Note the presence of Z,, which is required to one loop in this case.
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Computing the above three-point Green’s function for
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_ (g
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2

q2

2)

(35)

2

q1 1

1 2 ﬁ2
a3 - | -
e 30
1-2a 29 a & 1—2a10 I 5 19+3a
26 168 4 2 B\g)) o\ 3y
11 «a d1q, (21 130 a? d1q1, (9 «
4+2)+mﬂ 2 \16 8 )"z \33
11 « dlqi, (7T 3a dlqi, (5 Sa
5, e (2,20 5 A 9w (2, 2
<16+4> + q% 8+ 4 v q% 4+ 2
5 3a 91,91, (3 Oa a? 91091, (1 9 a?
<8 2) e \8Ta )T Bt
1 3a> 4191,91,9
+— |+ (143a)——E].
1 <4 2 CI1
T, to one loop, we find

o+ 0,702,

1
~T L fama [mpy,l (E

"

)’N
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Lastly, the gluino-ghost-antighost Green’s functions of the
operators S,, T, are shown in the following equations for a
specific choice of the external momenta and they
will allow us to check that the mixing coefficients Zgqg
and Z; ¢ vanish in continuum regularization and MS renorm-
alization scheme as expected. Our results for the Green’s
function with external gluino, antighost, and ghost fields are

<Ca3 (q3)S”Z‘“2 (qZ)’_lal (CII )>amp|5]R:q2.q3:0

3 ﬂl%y)

g NC o onas 1
1627 L

(37)

474 ,
J (36)

(c

41

“(q3)Te(@2)A% (01) ) amplr 4, 41=0

3
fa](xza;a(i ﬂ + ¢IQI;4

_ 9N

16727 2¢3 )"
Equations (37) and (38) are necessarily pole free, since Ocq
belongs to class C. Calculation of the same Green’s functions
on the lattice will determine whether a (finite) mixing
coefficient zéé\gs and z%’cl\gs will be necessary in order to
match Eq. (37) and Eq. (38), respectively.

The renormalization conditions involve the renormaliza-

tion factors of the external fields as well as of parameters

(38)
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that show up in the bare Green’s functions. In the MS scheme, the conditions amount to the requirement that renormalized

Green’s functions be finite functions of the renormalized parameters, and that all contributions to ZPRMS factors contain
only poles in e. Thus, applied to the gluino-gluon Green’s function of the operator S,, the condition reads to one loop,

<M§S52R>amp|l/e = 0’ where <u555/_1R>amp

+ ZST<u5TﬂBZB>g§I% + Zsai <u50§1'—13>2§fp +

= 2,22 P (uBSKIE = 23220 Zs5(uB SBIB)

amp

2

BB 7 B\tree

ZSBi<uv (I)Bi/1 >amp
i=1

6
+ Y Zsci(uf OF2%) s, + O(g?). (39)
i—1
Similarly for the operator T,:
5 5 —1/2 —1/2 5 5
<M§T;§/1R>amp|1/e = O’ where <M5T5’1R>amp = Z/l / ZM / ZTT<”§S/§/1B’>amp + ZTS<”§SﬂBlB>gr?p
- 2 -
+Zra <“50£113>g§% + Z ZTBi<“ngij’B>g§ﬁp
i=1
6 -
i=1
In order to determine all of the above mixing coeffi- JDRMS _ | _ FN. ] +a (43)
cients, we also need to impose a set of renormalization ! N 1627 2¢ ’
conditions on three-point Green’s functions. We will study
two such Green’s functions for each operator. The first one ZDRMS _ | | &N, a (44)
involves two external gluons and one gluino, 4 1672 €’
= .. DRMS __ 92Nc3—6¥
(ufuf SEAR) ampl1/e = 0, similarly for 7. (41) Ze =1- 1622 de (45)
. . DRMS N, 3
The second one involves external gluon, antighost, and Zy =1+ 162 26 (46)
- 2€

ghost fields:

(cRSRERIR) mpl1 /e = O, similarly for 7. (42)

Given that, in these cases, a power of g” appears already at
tree level, the one-loop expression for Z, must be used in
renormalizing g; this is shown explicitly in Egs. (35) and
(36). Strictly speaking, in the two-point Green’s functions
of Eqgs. (39) and (40) as well as the three-point Green’s
functions of Egs. (41) and (42), one must take the regulator
to its limit value (i.e., € — 0 in dimensional regularization
or a — 0 on the lattice). This limit is convergent, provided
all renormalization factors and mixing coefficients, Z, have
been appropriately chosen.

Results for the renormalization of the external fields and
of the coupling constant have been already calculated in
Ref. [20] and for the sake of completeness are shown for
DR in Eqgs. (43)-(46).

Imposing the renormalization condition, Eq. (39), on
the two-point functions is sufficient in order to obtain
the renormalization of the supercurrent Zgg. Notice that the
pole parts in Eq. (29) are proportional to the tree-level
Green’s function of S, and thus there is no mixing with
Ty, Oui, Ocs, Ocs: Zsr = Zspy = Zgcs = Zscs = 0.
Operators O¢; and O, are of lower dimensionality and
they will not mix in the continuum regularization:
Zsc1 = Zsc» = 0. By imposing the renormalization con-
dition of Eq. (39) and demanding the left-hand side to be
finite, Zgg is determined to be

Zgg ™ =1+ 0(g"). (47)
From the conceptual point of view, the case of the super-
current is quite similar to any nonanomalous conserved
current since it receives no quantum corrections in the
continuum.
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ZDR,MS _ O,
DRMS
ZSAI - 0’

1
7DR. MS _ 9 N

SB1 6
DRMS 9 1
Lsm T qegge e

DR.MS .
ZPRMS 0 i=1,2,..

- 2 3
ZDRMS _ | _ 9 N

16% €
DRMS __ g i
s 1622 2¢
DRMS
Zrai - =0,
DRMS _ 9 %
P terte

.9,

From Egs. (29)—(38) and the renormalization conditions
Egs. (39)—(42) we determine to one loop:

(48)

(49)

DRMS __ _ g L 57)
B2 er?2e (
ZPRMS 0 i=1.2,....9. (58)

As was expected, in the continuum there is no mixing
with class C operators. We also see that operators S, and T,
do not mix with the class A operator; however, they both
mix with the class B operators. Note that 7, mixes [21]
with §,, but not vice versa; its mixing coefficient Zzg is

gauge independent in the MS scheme as should be for any
gauge invariant operator.

The pole-free parts of the Green’s functions in Egs. (29)—
(38) are the MS-renormalized Green’s functions which are
essential ingredients in order to extract the lattice renorm-
alization factors and mixing coefficients.

B. Results for Green’s functions and for the mixing
matrix in the lattice regularization

In this subsection, we present our results for the
renormalization factors and the mixing coefficients in the
lattice regularization (LR) and in the MS scheme, as
defined in the previous subsection. We make use of
the Wilson formulation on the lattice, with the addition
of the clover (SW) term for gluino fields. In this discre-
tization, the Euclidean action Sky, on the lattice becomes

N, 1 3 3 Tos B 1
Sk =a*y [—22 (1 -5 TrUW) +> (Tr(/lyﬂDﬂ/l) - %Tr(ﬂD%)) -> (Cszva AaaﬂyFﬂfﬂﬂ> + moTr(M)]

X g Y787 C Y y7R%
(59)
where (setting a to 1 from this point on)
U/w(x) = Ux,x+/4 Ux+ﬂ,x+/4+va+/4+v,x+uUx+z/,x and Ux+ﬂ.x = Ui,xﬂr (60)
f’;f is defined in the adjoint representation as
2 (l/}
=3 ( oy - O) (61)
Zg = 2trc (Ta Ux,eru Ux+,u.x+;4+1/ Ux+y+u,x+u Ux+y,x Tﬂ Ux.x+y Ux+u,x+;4+y Ux+;4+y,x+u Ux+ﬂ.x
+ ™ Ux,x+l/ Ux+y,x+y—u Ux+1/—/,t.x—u Ux—ﬂ,x Tﬂ Ux,x—u Ux—/,t.x—/lJrz/ Ux—,u+1/.x+p Ux+y,x
+ r* Ux,x—ﬂ Ux—/l,x—y—zz Ux—,u—u,x—p Ux—u,x Tﬂ Ux,x—b Ux—v,x—/,t—y Ux—;t—v,x—;t Ux—y,x
+ ™ Ux,x—u UX—D,X—I/+M Ux—u+;4,x+u Ux+/4.x Tﬂ Ux,x+/4 Ux+/4 X+pu—v Ux+/4—zz,x—/4 Ux—y.x) . (62)
The definitions of the covariant derivatives are as follows:
1
Du/l(x) = E [Ux.x+/4/1(x + /") Ux+/4,x - Ux,x—ﬂﬂ'(x - ﬂ) Ux—y.x)]’ (63)
D(x) = D [Userh(x + 1)Uy = 24(x) + Uy o Ax = ) Us - (64)

u
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The “Lagrangian mass” my, is a free parameter in principle
and is related to the bare gluino mass. This term breaks
supersymmetry softly. All renormalization factors which
we will be calculating must be evaluated at vanishing
renormalized mass, that is, when my is set equal to the
critical value which ensures a massless gluino in the
continuum limit. However, since our calculations are at
one-loop order, this critical value is irrelevant, being
already of order ¢*. Note also that as in the continnum,
a gauge-fixing term, together with the compensating ghost
field term, must be added to the action, in order to avoid
divergences from the integration over gauge orbits; these
terms, as well as the standard “measure” part of the lattice
action are the same as in the nonsupersymmetric case [22].
The lattice analog of the BRST transformations of the
continuum action is shown in Refs. [15,22]. Further details
of the lattice action can be found in Ref. [23].

Equation (59) is invariant under the local gauge trans-
formations

Uﬁc,er[l = G_l (X) Ux.x+;4G(x + :u)’
2(x) = G (x)A(x)G(x), (65)

where G(x) is an element of the SU(N,.) gauge group in the
fundamental representation. These gauge transformations
commute with the lattice supersymmetry transformations
(cf. [15])

55 Ux,x+/4 = gg}/ﬂ/1<x) Ux,x-&-;u

1 .
OeA(x) = 7 [1 10w (x)¢/ (i9)- (66)

The lattice discretization of operators §,, T, is not
unique, and alternative variants have been considered in
the literature, e.g., [10,16]. A standard definition which we
adopt in this work is

1 R A
Sﬂ = —Etrc( /m-[}//n }/o’]yﬂl)’ Tﬂ = ZtrC(F/wyl’/l)’ (67)

a1
" 8ig
Q/w:

(Q/w - Ql/ﬂ)’

X, X+p Ux+/4,x+/4+v Ux+/4+t/,x+u Ux+l/.x

+ Ux.eru Ux+u,x+u—,u UerL/—ﬂ,x—,u Ux—ﬂ,x
+ Ux,x—;t Ux—u.x—y—u UX—M—U.X—D Ux—v.x
+ Ux,x—u Ux—u,x—wrﬂ Ux—u+;4,x+/4 Uer;t,x . (68)

Both MS-renormalized and bare Green’s functions have
the same tensorial structures. As is expected by renorma-
lizability, the difference between the one-loop MS-renor-
malized Green’s functions [Eqgs. (29)—(38), with 1/¢ — 0]
and the corresponding bare lattice Green’s functions must
be polynomial in the external momenta. The resulting
expressions for the difference between the two-point MS-
renormalized and lattice bare Green’s functions of §, are
given below in Egs. (69)—(71).

In these expressions, we have included only terms which
do not vanish in the limit @ — 0. Higher order terms in a are
also of interest to practitioners, since they help eliminate
lattice artifacts from the corresponding nonperturbative
Green’s functions; a procedure to this effect has been
employed in different contexts, by us and by other groups
(see, e.g., Refs. [24-27]). Ideally, the elimination of
artifacts would circumvent the need to carry out a con-
tinuum extrapolation; however, this is not attainable since,
in the absence of such an extrapolation, terms of O(¢"a"),
(m > 2,n > 0), which are beyond computational feasibil-
ity, would begin to dominate. In any case, the calculation of
higher order contributions’ would be the subject of further
investigation, beyond the scope of the present work.

In order to perform the lattice integrals f d*p over loop
4-momenta p, (-z < p, < x), we first approximate them
by a sum over a hypercubic mesh of L* points with varying
L (4 <L £128), omitting points corresponding to the
(integrable) poles, and then extrapolate to the limit L — oo.
The systematic errors, coming from this extrapolation, are
smaller than the last digit we present in all the results which
follow.

<ugl (_QI)SﬂZaZ(QZ»amp'ZS:O - <MZI (_ql)Sﬂzaz(‘h»amp'is:O

2

"Ter22

N.1 ‘ 1
= T g gianr 5 [yy}/ﬂﬂz <0.80802 ~ 3 log (a2ﬁ2)> — £>6,,(0.38395 + log (a’i%)) |, (69)

*Note that such contributions cannot be extracted analytically as functions of the external momentum g; rather, they must be

computed numerically for every relevant value of g.
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<uzl (_QI )Sﬂzaz (QZ»ampH}gS—O <ug] <_q1 )Sﬂzaz <q2)>amp|22R:O

g2 1 39.47842 78.95683
— 5(1](12 elq 11X

16 2 2 N (yl/y[.tql + 7’,4411,) - Tyqu + Nc <_599999416m/ + yuqm599722

3
+ (ru¥udh + 72910 = 21001,) <—3o.57429 +5.17830a ~ 4.55519c3y, +5.377legyr +3 (1 - a)log (ﬁﬂ))ﬂ . (70)

<u31 (_QI)Sﬂzaz(q2)>amp g/is:—q] - <u10/(1 <_CI1)S//_1 <Q2)>amp Gr=—q,
LR P {39.47842 78.95683

1 _
1671'2 2 N (yuyudl + yquy) - Tyuqm + Nc (Ogogozyﬂqu + 438396]/11611/4 + 5%/%4%1 IOg (aZHZ)

3
+ (rurudh +7ﬂq1y—2yyqlﬂ)<—31.38231 +5.17830a — 4.55519¢y, + 5.37708cswr + 2 log (a”ji? )—Ealog( a*ji 2))

+ ¢16,,(~5.61605 —l—log(azﬁz)))]. (71)

Similarly, the expressions for the Green’s functions with an external gluon and gluino fields and operator insertion of T
are as follows:

(' (g1 >Tu;1“2(612)>mp\¥szo — (' (—q )Tuzaz(CI2)>amp|glR:0

’N, 1 1
= i neeie [nmz (o 19198 + - log (% )) + 28,,(0.23200 — 2log (%)) (72)
<ule (_QI)Tﬂzaz(QZ»amp@gS:O - <l"le <_Q1)Ty/_1a2 (q2)>amp|1(;f:0
2
Pl [39.47842
- 167[255 1%t |: N (yv}/ﬂﬁl + 7/4q11/) + Nc _4173349¢16ﬂy + (71,7”%1 + 7ﬂqu)(407960 - 457771C§W

+ 5.73984cgyr + 3log (a2i2)) + 7,41, (407960 — 4.5777 12y — 3.73984csw r + 3 log (a27%))

3
+ 7,41, (33.57429 +5.17830a + 4.55519¢%y ~ 5.37708¢syr — = (1 +a) log (a2p2)> ﬂ , (73)

(U (=q1) T2 (02) Y amp NS g, = (5 (=01 T, 2% (62) ) amp|E2 .

2
F 1 [3947842 5 .
250" [T (18 + 1041,) + N 7ur,sh | 3.88762 = 4.57771c3y, — 3.73984cqyr + - log (a2R?)

3 1
- Ealog (azﬂz)) + 416, <—41.96558 +5.17830a + 4.60023c3y, + 12.8567Tcswr — 5 (54 3a)log (a2ﬂ2)>

+ 7,41,(4.07960 — 4.57771 ¢y, + 3.73984cswr + 3 log (a’ii?))

3
791 (33.57429 ~ 5.17830a +9.11039¢%y, — 3 (1~ a) log (a2ﬂ2)> ﬂ . (74)

The absence of g-independent terms in Eqs. (69)—(74) signal that the lower-dimensional operators O¢; and O, do not
mix with either S, or T,

The quantities ZLRMS ZLR S ZLR s ,and ZE® MS , appearing in the renormalization conditions on the lattice, have been

calculated in previous Works [20, 23] at one-loop level. The first three renormalization factors are computed in Ref. [20]; for
a self-contained presentation, they are shown below:

C

S N, 3
ZLRMS _ +?26 < 1o. 7392— — 18.5638 + 1.3863a + 18.8508c2, — 1.5939¢swr + ( 5 %) log(azﬁz)} . (75)
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S 2N
ZLRNS _ | _ ? 5 (128524 +3.7920(1 - ) = 5.5891 c&y, — 4497 ey + alog(a?f)), (76)
J— 2 1 3
ZERNS _q % ~9.8696~+ N <12.8904 +0.7969¢ gy — 9.4254¢%,, — 2log(a2ﬁ2))] : (77)
T C

In Ref. [23] we calculate Z%'MS, using Wilson gluinos
without clover term. Since the ghost propagator does not
involve gluino fields at one loop, the clover term will not
affect this one-loop renormalization factor:

ZLRMS _ FN. 3.6086—1.2029 13 log (a%ii?
c =1-713 —1. a—Z( —a)log(a*i)|.

(78)

Starting from the two-point Green’s function with the
choice g, = 0, we obtain the following one-loop results:

- 2 /-9.86960
ZLRMS _ 9 (TFO0OV L 5 3170
Lk T N +N(
+ 14.49751c2y, — 1.23662cswr)>, (79)
LRMS g
Z B = —3N . 80
ST 16722~ ¢ (80)
2SS = 2 = 2 =0 )
2
S 7 [—9.86960
ZLRNS _ 1 | T <T+NC(3.26262+9.91980c§w
—4.97646¢qyr+3log (az/_tz))> , (82)
S g2
ZLRMS _ 16N <—2.03980 + 2.28886¢3y
T
3
+1.86992c5wr - log (a2ﬁ2)> , (83)
S = S = S =0 s

|
An important feature of the supercurrent operator is that its
renormalization is finite: this is in line with its classical
conservation. The mixing with 7, on the lattice is in
agreement with Ref. [10], where it is mentioned that Z gy is
related to the y-trace anomaly [28] corresponding to
superconformal symmetry breaking and is identical to
the one loop level f# function.

Since for the choice g, =0 the tree-level two-point
Green’s functions of Og, O, O3, O¢g vanish, we evalu-
ate the two-point Green’s functions at ¢, = 0, leading to

— 2
ZégiMs = g—NC(—0.38395 —log (a2ﬁ2))’

85
1672 (%)
ZLRNS _ 9~ (080802 1log (@@*) ), (86)
SB 1671'2 < 2
ZE = 25 =, (®7)
_ 2
ZLEVS _ %Nc(0-23209 —2log (a*i?)), (88)
JT
265 _ 5w (019197 + llog (@) ). (89)
TB2 1672 ¢ 2
24855 = 2 <0 ©0)

All of the above are consistent with the continuum by
checking the pole parts and the logarithmic divergences in
the lattice spacing. At this point, we check the Green’s
functions for the choice ¢, = —¢,; we find agreement with
the above results.

The three-point Green’s functions determine the mixing
with O¢7, Ocg, and Ocg. Their results are shown below:

<ugl (—611)”/72(_% S//_WS (QS)>amp ngzo,q3:—ql - <u31 (_QI)M%Z(_Q2)Sﬂ/—1a3 (q3)>amp|lc;zR:0,q3:—q|
13

)
3
gNC ajaa
= oo

1 -2a i
+ 3 log <q_%)> = 26,7, + 25”pr] .

19.73920
+( vl u — Vyypyﬂ) A2

N 12.48660 + 3.28231a — 2.27761 ¢y, + 2.68854cgwr
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(' (=q1)up* (=a2) T2 (43))amp o0, gy=—q, — " (=41) 15 (=02) T, 2% (43) ) amp 1 -0.g,—g,

_ N,
1672

fama [(yymﬂ —5,,7,)(—1.84782 4 2.28886¢2y, + 1.86992cgyr — log (a%ji?))

19.7392 3
+ (8,7 — 8up7s) (T — 17.1822 + 3.2823a + 2.30011¢2, + 6.42838cwr — (E + a> log (azﬁz))] . (92)

c

Following the same procedure for extracting the mixing of
S, and T, with O¢7, Ocg, we use Eq. (91) and Eq. (92),
respectively. We find that there is no mixing with these
operators to one loop:

MS S
Zse" = Zsci - =0, (93)
Ziey" =Zicy =0 (94)

In contrast, the lattice Green’s functions containing
gluino-ghost-antighost external fields are identical to the
continuum ones in Eqs. (37)—(38) at one-loop order; thus,
there is also no mixing either S, or 7, with Ocy.

Thus, to one-loop order on the lattice, S, and T, do not
mix with class A and class C operators. However, they do
mix with the gauge variant operators of class B,
cf. Egs. (85)—(89).

IV. SUMMARY AND FUTURE PLANS

In this paper we address the mixing which occurs among
the supercurrent operator, S, and the mixing operator, 7',
beyond tree level with a number of gauge noninvariant
operators, using lattice perturbation theory. We employ the
Wilson plaquette action for the gluon fields and the Wilson
fermion action with the clover improvement for the gluino
fields.

Extensions of the present work include the application to
other actions currently used in numerical simulations,
including fermion actions with stout smearing and
improved gluon actions [2,3]. In these cases, additional
contributions to the renormalization factors are more
convergent, and thus their perturbative treatment is con-
ceptually more straightforward; nevertheless, the sheer size
of the vertices renders the computation quite cumbersome.

The results are a first starting point for a nonperturbative
calculation of supersymmetric Ward identities and a tuning
of the lattice action towards the supersymmetric limit.
Depending on the method one wishes to employ for
computing Green’s functions of the supercurrent operator
nonperturbatively, a renormalization scheme other than MS
may be more appropriate. In particular, one may employ an
extension of the X-space scheme, the gauge invariant
renormalization scheme, in which conditions need to be
imposed on two-point and three-point Green’s functions.
And in doing so, the new renormalizations and mixing
coefficients in GIRS, Z§‘SGIRS, Z’;TG IRS, and Zé‘TGIRS, Z%SG IRS

will be related to Z5MS, ZEMS and ZEMS | ZEMS viaa2 x 2
regularization-independent conversion matrix, whose ele-
ments are finite functions of the renormalized coupling. In
fact, these relevant matrix elements are directly obtainable
from continuum calculation. In Ref. [14], we aim to present
the nonperturbative results in the GIRS along with con-
version factors taking us from GIRS to MS.
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