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Thermal dark matter at the MeV mass scale has its abundance set during the highly nontrivial epochs of
neutrino decoupling and electron annihilation. The technical obstacles attached to solving Boltzmann
equations of multiple interacting sectors being both relativistic and nonrelativistic have to-date prevented
the full treatment of this problem. Here, for the first time, we calculate the freeze-out of light dark matter,
taking into account the energy transfer between the dark sector, neutrinos, and the electromagnetically
interacting plasma from annihilation and elastic scattering processes alike. We develop a numerically
feasible treatment that allows to track photon and neutrino temperatures across freeze-out and to arrive at a
precision prediction of Neff for arbitrary branching ratios of the dark matter annihilation channels.
In addition, our treatment resolves for the first time the dark matter temperature evolution across freeze-out
involving three sectors. It enters in the efficiency of velocity-dependent annihilation channels and for a
flavor-blind p-wave annihilation into electron- and neutrino-pairs of all generations, we find the present
Planck data exclude a complex scalar dark matter particle of mass of mϕ ≤ 7 MeV.
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I. INTRODUCTION

Electroweak-scale dark matter (DM), which undergoes
thermal freeze-out, enjoys a great advantage for the
practitioner: its abundance is set at a time when it typically
leaves no trace in the following observationally accessible
epochs of neutrino decoupling and big bang nucleosyn-
thesis (BBN). The story of the Universe is hence one that
evolves in sequence, where DM genesis is relegated into
the deeper radiation dominated phases. In contrast, when
considering MeV-scale thermal DM, it chemically decou-
ples right during those highly nontrivial later epochs. The
annihilation of DM then affects cosmological observables,
most notably the number of relativistic degrees of freedom
Neff . In fact, standard lore has it that a thermal dark state
with a mass at or just above MeV is excluded as its
annihilation heats the photon and neutrino baths unequally

and induces a change in their temperatures that pertains to
the well constrained epoch of recombination.
The calculation of Neff from Standard Model (SM)

physics alone has a long history [1], and the greatest of
efforts have been poured into making its prediction as
precise as possible [2,3]. Systematic treatments of light
MeV-scale DM decoupling and with it a joint determination
of Neff have a likewise rich history but are comparatively
less technical in their demand. In fact, most available works
assume instantaneous neutrino decoupling [4–8]; related
works that also consider the modifications of light element
abundances during primordial nucleosynthesis are [9–18].
Only recently were dedicated efforts towards a systematic
treatment of MeV-scale thermal DM decoupling with a
precision determination of Neff made in [19] as well as in
[14,16]. These works put the SM processes and DM
decoupling on the same footing and include the effects
of energy transfer between the sectors from annihilation of
DM into the observable sector.
This is, however, not the final answer. First, previous

works had to assume that DM stays in thermal equilibrium
with either photons or neutrinos placing a principal
restriction on the relative branching into electrons/photons
and neutrinos, and dominance of one over the other had
to be assumed. Second, energy transfer due to elastic
scattering processes were not included. Since the rate of
elastic collisions dominates over the annihilation rate in
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nonrelativistic freeze-out, this leaves a lingering doubt on
the theoretical uncertainty of the Neff prediction. Moreover,
elastic collisions enter the prediction of the DM temper-
ature, with the latter feeding into the annihilation efficiency.
Therefore, in order to obtain both Neff and the final DM
abundance self-consistently, we must extend the scope of
previous works. For this undertaking, one solves a system
of coupled Boltzmann equations over a great dynamical
range that spans from relativistic to nonrelativistic regimes
for DM and electrons, with rates that can exceed the Hubble
rate by many orders of magnitude, resulting in excruciating
numerical demand on precision when detailed balancing
conditions have to be fulfilled.
In this work, we overcome those obstacles and, for the

first time, present a complete treatment of MeV-scale DM
decoupling. We take into account all relevant two-to-two
scattering processes—inelastic and elastic. We allow for
individual temperatures in electrons/photons, neutrinos,
and in the dark sector and for the latter two include the
chemical potential. By making some minimal assumptions
on the particle distribution functions, we are able to cast the
problem of the three coupled sectors into a form that is
amenable to numerical solution. It affords us a solution of
the DM relic abundance with arbitrary branching ratios into
electron/photons and neutrinos and at the same time
provides a prediction of Neff , measured from the cosmic
microwave background (CMB) data that include all appar-
ent dominant contributions. The purpose of this work is to
lay out the methodology and demonstrate it on an exem-
plary complex scalar DM model with flavor-blind Z0
mediated couplings to charged and neutral leptons. It is
to be followed up by considering several classes of MeV-
scale new physics [20].
The paper is organized as follows. In Sec. II, we provide

an overview over the coupled sectors system. In Sec. III, the
approximations that we take on the thermodynamics are
discussed. In Sec. IV, this is followed up by detailing the
associated collision terms. Our results and numerical
solution are presented in Sec. VI, and the cosmological
Neff constraint is discussed in Sec. VII. Conclusions are
presented in Sec. VIII, followed by several appendixes
providing additional explicit expressions that enter our
calculations.

II. THREE-SECTOR SYSTEM OVERVIEW

We start our investigation by highlighting the essential
stages in the time evolution of thermal sub-GeV DM
freeze-out. The particle content of the Universe in the
relevant epoch prior to/during BBN is given by the
electromagnetically (“EM”) interacting particles (electrons,
positrons, and photons), the active three flavors of SM
neutrinos (“ν”), and by the particles of the dark sector
(“ϕ”), where we assume that only the DM particle is
populated in abundance and other particles associated with
it have largely disappeared. For the sake of a comparative

discussion, we define the following thermally averaged
interaction rates:

Γweak ≡ neG2
FT

2
γ ; ð1aÞ

Γann ≡ nϕhσannvi; ð1bÞ

Γexch;i ≡ n2ϕhσann;ivδEi=ρi; ð1cÞ

Γscatt;i ≡ nihσϕiscattvi: ð1dÞ

Here, Γweak informs us on the overall rate of SM weak
interactions, such as νe ↔ νe. We anchor the rate on the
electron number density ne to account for the latter’s
suppression once the photon temperature Tγ drops below
one MeV; GF is the Fermi constant. The rate of DM
annihilation Γann is given by the total thermally averaged
annihilation cross section hσannvi into all channels times the
DM number density nϕ. For the rate of energy exchange,
Γexch;i of DM with the EM (i ¼ e and γ) or neutrino (i ¼ ν)
sector, one additionally weighs the annihilation cross
section by the injected energy. We define the rate normal-
ized to the energy density ρi. Finally, the rate of elastic DM
scattering on a target i is obtained from the elastic scattering
cross section σϕiscatt. All these rates are then to be compared
to the Hubble rate H. For example, when Γexch;ν ∼H, it
means that the equivalent of the neutrino energy density
between the ϕ and neutrino sectors is exchanged in any
volume of space within a Hubble time H−1. In this work,
we shall assume similar efficiency of annihilation into the
EM and ν sectors, so that we do not further keep track on
the index i on the exchange rate and simply write Γexch
instead. As we shall see explicitly below, Γexch=H deter-
mines when the departure from a common temperature
shared by three sectors happens, while Γann=H and
Γscatt;i=H determine the DM freeze-out and kinetic decou-
pling temperatures from sector i, respectively.
The sequence of decoupling for MeV DM is different

than for weakly interacting massive particles (WIMPs).
WIMP DM in thermal equilibrium with the SM bath
freezes out at a temperature mWIMP=20 ≫ 1 MeV when
the EM and ν sectors remain in perfect thermal equilibrium.
In contrast, MeV DM typically decouples after weak
interactions cease to keep the EM and ν sector thermally
coupled. In other words, a fair fraction of energy density
relative to SM radiation can still be stored in the dark sector
at the time of neutrino decoupling. The latter happens
once Γweak < H.
In the case of interest here, DM annihilation into both ν

and EM sectors can then act as the agent that keeps the
latter two sectors in equilibrium despite Γweak < H. This
happens by virtue of energy exchange with associated rate
Γexch. It provides a bridge between the EM and ν sectors
and for as long as Γexch > H, the temperatures of both
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sectors equilibrate, Tν ¼ Tγ. This is depicted by the left-
most diagram (i) in Fig. 1.
At some point, energy exchange will become less

efficient, Γexch < H, leading to a departure of neutrino
and photon temperatures, Tν ≠ Tγ . Nevertheless, DM
annihilation may still heat both sectors by annihilation
into electrons, photons, and neutrinos as long as Γann > H.
Evidently, neutrino and photon temperatures enter the
prediction of Neff , and it is one of the key objectives of
the paper to track the relative evolution of Tγ and Tν to
great precision. This stage is shown in the middle diagram
(ii) of Fig. 1.
Finally, DM chemically decouples and the comoving

DM number freezes out when Γann < H. The DM temper-
ature itself, however, continues to evolve. It is determined
by the more efficient elastic scattering processes Γscatt;i

with either the EM sector or with neutrinos. The canonical
case here is that the DM temperature Tϕ will be remain in
the interval Tϕ ∈ ½Tν; Tγ�. If kinetic equilibrium between
ϕ and all its annihilation products is not maintained, the
evolution of Tϕ in fact enters the DM abundance pre-
diction as demonstrated below. Here, we show this effect
for the first time explicitly. The DM freeze-out stage is
schematically shown in the rightmost diagram (iii) of
Fig. 1.
Solving the gradual decoupling of three sectors in

generality is a very demanding task because of the great
dynamical range that enters in number and energy densities
as well as in interaction rates. To our knowledge, such
treatment is not available in the literature to date. In the
remainder of the paper, we start from full generality of the
system of coupled Boltzmann equations and deduce a
numerically feasible treatment that allows us to track all the
three sectors with great accuracy. It involves a suitable

approximate treatment of thermodynamic quantities and
the specification of the integrated collision terms.

III. APPROXIMATED THERMODYNAMICS

The fundamental quantity describing a particle species in
a homogeneous and isotropic expanding Universe is the
(spatially averaged) momentum distribution function
fðt; jp⃗jÞ, where t is the cosmic time and jp⃗j is the
magnitude of the particle’s three momentum. Its time
evolution is governed by the Boltzmann equation,

∂f
∂t

−H
jp⃗j2
E

∂f
∂E

¼ 1

E
C½f�; ð2Þ

where H is the Hubble rate and E is the energy associated
with jp⃗j. The collision integral C½f� accounts for particle
interactions. In this work, we are chiefly concerned with
two-body processes p1 þ p2 ↔ p3 þ p4, where pi denote
four-momenta. The collision integral of species “1” with a
momentum distribution in p1 is then given by

C½f1� ¼ −
Sg2
2

Z
dΠi¼2;3;4ð2πÞ4δð4Þðp1 þ p2 − p3 − p4Þ

× J
1

g1g2

X
spins

jM12↔34j2: ð3Þ

Here, the factor 2 in the denominator ensures energy-
momentum conservation in each collision, S is a symmetry
factor, dΠi ¼ d3pi=½ð2πÞ32Ei� is the Lorentz-invariant
phase space element, and jM12↔34j2 is the squared matrix
element of the scattering process in question. Throughout
the paper, gi stands for the i-particle degrees of freedom
(without counting its antiparticle for non-self-conjugate

FIG. 1. Schematic depiction of an exemplary evolution of the three coupled sectors (EM, ν, ϕ) in time. Left panel: at an early stage,
even when SM weak interactions have decoupled, Γweak < H, energy exchange processes with rate Γexch > H can keep the EM and ν
sectors equilibrated, and Tν ¼ Tγ follows. Middle panel: once energy exchange becomes inefficient, Γexch < H, the neutrino and EM
sectors are separately heated by the respective annihilation processes with Γann > H, and photon and neutrino temperatures evolve
separately, Tν ≠ Tγ follows. Right panel: DM freezes out when Γann < H but the dark sector temperature Tϕ continues to evolve due to
elastic scattering processes Γscatt;i > H. Finally, when the latter rates become sub-Hubble, DM continues to cool adiabatically.
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species, and thus the same for ni); see the Appendixes for
the explicit values.1 The quantum statistical factor J that
weighs each scattering is given by

J ¼ f1f2ð1� f3Þð1� f4Þ − ð1� f1Þð1� f2Þf3f4; ð4Þ

where the þð−Þ sign applies to bosons (fermions) with the
usual interpretation of Bose enhancement (Pauli blocking).2

Integrating Eq. (2) with different weights over the phase
space of the particle species of interest, we obtain for each
sector the respective evolution of number and energy
densities, ni and ρi,

∂ni
∂t

þ 3Hni ≡ δni
δt

; ð5Þ

∂ρi
∂t

þ 3Hðρi þ PiÞ≡ δρi
δt

; ð6Þ

where Pi is the pressure density. Explicitly, the overall
evolution is obtained by summing all contributing annihi-
lation channels of the number densities, and all two-body
channels (both annihilation and scattering) for the energy
densities,

δni
δt

¼ gi

Z
d3pi

ð2πÞ3Ei

X
ann

C½fi�; ð7Þ

δρi
δt

¼ gi

Z
d3pi

ð2πÞ3Ei

X
all

C½fi�δE; ð8Þ

where δE is the energy exchange for each channel.3 In
summary, δni=δt is the interaction rate of number-changing
processes with another sector, and δρi=δt is the energy
exchange rate with another sector.
As stated before, the general (numerical) solution of such

set of coupled Boltzmann equations (5) and (6) over a great
dynamic range is in practice unfeasible. For the three-sector
system of our interest, we now show how taking some
minimal approximations opens the path to a numerical
solution. The approximations fall into two categories: the
ones to describe the momentum distribution functions and
the ones to obtain detailed balance, which we shall discuss
below in turn.

A. Momentum distribution functions

The aim of this subsection is to show that the evolving
momentum distribution functions can be well described by
the evolution of the temperature, Ti, and the chemical
potential, μi, in each sector (i ¼ γ=e; ν;ϕ). Therefore,
Eqs. (5) and (6) can be replaced by the differential functions
for Ti and μi through the relations given in Appendix A.
Prior to their decoupling, each sector is expected to

maintain kinetic equilibrium at temperature Ti so that their
momentum distribution functions are given by

fiðEi; μiÞ ¼
1

eðEi−μiÞ=Ti ∓ 1
; ð9Þ

where μi is the chemical potential of species i, and “− (þ)”
applies to boson (fermion); the distribution function in
chemical equilibrium is denoted by

feqi ðEiÞ≡ fiðEi; μi ¼ 0Þ:

In the following, we elaborate on the further approxima-
tions taken on the respective sectors. To this end, we use the
tilde overscript to denote dimensionless parameters nor-
malized to their corresponding temperature, e.g., Ẽi ≡
Ei=Ti and μ̃i ≡ μi=Ti.
EM sector The EM sector contains the photon, electrons,

and positrons. Kinetic equilibrium ensures a common
temperature Tγ . While the photon can be simply described
by a blackbody spectrum, the electron carries chemical
potential μe induced by the baryon asymmetry of the
Universe. However, before electron freeze-out, μe is neg-
ligible, and once it becomes relevant, the electron abun-
dance is too diminished to affect the other two sectors any
longer. Therefore, in our calculations, we set μe ¼ 0 and
take its momentum distribution to be a thermal one,

feðẼeÞ ≃
1

eẼe þ 1
ðTγ ≳me=20Þ: ð10Þ

Neutrino sector For all processes of interest in this work,
neutrinos can be treated as being massless. In a standard
cosmological history, their distribution closely tracks a
thermal one [21]. Also in our case, we expect any departure
from the Fermi-Dirac distribution (at nonzero chemical
potential) for neutrinos to be small.4 Finally, we neglect
the mild differences among the three flavors and adopt a

1A factor of 1=2! additionally needs to be supplied on the
right-hand side of (3) for each pair of identical particles in initial
or final states, while another factor of 2 will be multiplied for two
identical particles in the initial state.

2The calculation is based on the assumptions that the process
conserves time reversal, or, equivalently, CP symmetry, and that
inhomogeneities and anisotropies can be neglected.

3If the corresponding channel 1þ 2 → 3þ 4 is pair annihi-
lation, there is δE ¼ E1 þ E2, counting the contributions of both
particle 1 and antiparticle 2. For elastic scattering, δE ¼ E3 − E1,
which is the energy change for particle 1ð≡3Þ; see below for
details.

4The elastic scattering rate per neutrino, nϕhσνϕ→νϕvi, is
approximately of the same order as the DM annihilation rate,
nϕhσϕϕ→ννvi, by virtue of crossing symmetry. As a result, when
DM annihilation is efficient, the redistribution of momenta
among neutrinos through νþ ϕ → νþ ϕ is expected to be
efficient too. After nonrelativistic DM freeze-out, the process
ϕþ ϕ → νþ ν dominates over its inverse, rendering the exact
distribution of neutrinos less relevant.
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flavor-blind momentum distribution function with a first-
order expansion of Eq. (9) in the chemical potential μν,

fνðẼν; μ̃νÞ ≃ feqν ðẼνÞ þ μ̃νf
ð1Þ
ν ðẼνÞ þOðμ̃2νÞ; ð11Þ

where

fð1Þν ðẼνÞ ¼
1

eẼν þ e−Ẽν þ 2
: ð12Þ

The expansion is justified since neutrinos freeze out rela-
tivistically and are always well populated such that μ̃ν ≪ 1.
We will not consider any contributions at Oðμ̃2νÞ order.
Dark sector In this work, we focus on the canonical case

where light DM stays in kinetic equilibrium with itself
until it is decoupled from the EM and neutrino sectors. The
DM distribution function is then characterized by a dark-
sector temperature Tϕ and a chemical potential μϕ.

5

Considering a symmetric DM state and nonrelativistic
freeze-out, its momentum distribution function is described
by ðeẼϕ ∓ 1Þ−1 well before freeze-out, and by e−ðẼϕ−μ̃ϕÞ at
freeze-out and later. Both expressions can be unified by the
approximate form,

fϕðẼϕ; μ̃ϕÞ ≃
eμ̃ϕ

eẼϕ ∓ 1
¼ eμ̃ϕfeqϕ ðẼϕÞ: ð13Þ

Its integrated form yields the number density as nϕ ¼
eμ̃ϕneqϕ ðTϕÞ.

B. Statistical factors in annihilation and scattering

Above we have discussed the assumptions for factoring
out the chemical potential for each momentum distribution
function. In this subsection, we introduce the assumptions
that allow us to do the same for the quantum statistic factor
of each process.
We first rewrite the statistic factor J in Eq. (4) in a form

that collects the difference of the forward and inverse
process as

f1f2ð1� f3Þð1� f4Þ
�
1 − e

E1−μ1
T1

þE2−μ2
T2

−E3−μ3
T3

−E4−μ4
T4

�
;

where in each factor (þ) applies to a boson and (−) to a
fermion in the respective final state. If all sectors are
thermalized with equal temperature, the detailed balance
condition J ¼ 0 is manifest by observing that E1 þ E2 ¼
E3 þ E4 and μ1 þ μ2 ¼ μ3 þ μ4; importantly, the detailed
balance is attained independent of the approximations for
fi introduced above. In the numerical evaluation, the above

parametrization is crucial to maintain detailed balance
when the associated interaction rates become much larger
than the Hubble rate. Finally, to further simplify the
expression of J as a function of μi, we neglect the quantum
statistical factors in the final states, 1� f3;4 ≃ 1. The
uncertainties associated with it are studied in the following
subsection.6

For the purpose of this work, we consider only symmetric
abundances ofDM.For particle annihilation1þ 2 ↔ 3þ 4,
we haveT1 ¼ T2 (μ1 ¼ μ2) andT3 ¼ T4 (μ3 ¼ μ4), together
with energy conservation E1 þ E2 ¼ E3 þ E4 ≡ Eþ. We
now choose the convention that the final state is the heavier
particle-pair involved. This way, when we neglect the
Boltzmann-suppressed final state quantum statistical factors
as discussed above, we still retain the more important initial
state quantum statistical factors of neutrinos and electrons in
the DM annihilation process. This allows us to write

J ¼ f1f2ð1� f3Þð1� f4Þ½1 − eðT−1
1
−T−1

3
ÞEþe2ðμ̃3−μ̃1Þ�

≃ f1f2 − f1f2Δann βann

¼ f1f2ð1 − ΔannÞ þ f1f2Δannð1 − βannÞ; ð14Þ

where Δann ≡ eðT−1
1
−T−1

3
ÞEþ and βann ≡ e2ðμ̃3−μ̃1Þ ¼ e2ðμ̃4−μ̃2Þ.

In the last line of this equation, the first term vanishes when
two sectors are in kinetic equilibrium, i.e., when T1 ¼ T3,
while the second term only vanishes when thermal equilib-
rium is reached, i.e., when μ̃1 ¼ μ̃3.
Elastic scattering is another important element of this

paper that, for the first time, makes the calculation of
energy transfer among the sectors self-consistent. Here, the
temperatures and chemical potentials of the respective
scattering states remain unaltered. By appropriate assign-
ment, we set T1ð2Þ ¼ T3ð4Þ as well as μ1ð2Þ ¼ μ3ð4Þ. In the
integration of the corresponding collision terms, J is to
be weighted by the energy transfer per scattering,
δE≡ E3 − E1 ¼ E2 − E4. Notice that J counts both the
process and its inverse, which are the same in the case of
elastic scattering, so an additional factor of 1=2 is added
below to avoid double counting after integrating over all
possible initial momenta. Similarly, after again neglecting
the statistical factor for the final states, 1� f3;4 ≃ 1, we
obtain

1

2
J ¼ 1

2
f1f2ð1� f3Þð1� f4Þ½1 − eðT−1

2
−T−1

1
ÞδE�

≃ f1f2Δscatt; ð15Þ

with Δscatt ¼ ½1 − eðT−1
2
−T−1

1
ÞδE�=2. We observe, that once

both sectors equilibrate in temperature, T1 ¼ T2, Δscatt

5Such assumption works well for DM freeze-out in two-sector
systems [22] and is expected to hold for DM with MeV mass. In
the context of self-interacting DM [23], MeV DM may stay
kinetically self-coupled until Tϕ ∼ eV [24].

6In our treatment, one may take into account below the
subleading contributions from final state statistics, in terms of
f1f2f3;4, on the right-hand side of Eqs. (14) and (15) in a
straightforward manner.
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vanishes, and there is no further energy transfer by elastic
scattering processes. Evidently, there is no particle number
change in the elastic scattering.
To summarize, we have assigned to each of the three

sectors its own temperature and chemical potential, and
subsequently introduced several approximations, (10)–(15).
They allow us to treat the chemical potentials as prefactors
for the distribution functions involved in the 2 → 2 proc-
esses. In addition, our formulation ensures that detailed
balance is achieved without the cost of extremely high
numerical precision. Next, we turn to the collision integrals
and show how the Ti and μi variables can be separated in
such a treatment.

IV. COLLISION INTEGRALS

In this section, we provide the expressions for the
collision terms in (5) and (6), and demonstrate that the
chemical potentials μ̃i can be factorized, using (11)
and (13).
Concretely, the parametrization introduced above allows

us to decompose the collision integrals into functions of
chemical potentials and functions of temperatures,

δni
δt

¼
X
i≠j

aijβijðμ̃i; μ̃jÞγijðTi; TjÞ; ð16Þ

δρi
δt

¼
X
i≠j

bijβijðμ̃i; μ̃jÞζijðTi; TjÞ; ð17Þ

where aij and bij are either þ1 or −1, depending on the
process, and βij are combinations of the initial state
chemical potentials such as eμ̃iþμ̃j , eμ̃iþμ̃jð1 − βannÞ, or
μ̃ieμ̃j , normalized to unity or zero when all chemical
potentials vanish. The expressions for γij and ζij are
detailed below. Note that elastic scattering processes only
enter in ζ, since particle number is conserved. We also
collect the analytical formulas for β, γ, and ζ for every
interaction considered in this work in Appendix B.
The advantage of such decomposition is that for each

value ofmϕ, one may numerically tabulate the functions γij
and ζij and avoid reevaluating the time-consuming multiple
integrals in each time step in the solution of the Boltzmann
equations or for each coupling strength of interaction.
Moreover, one may readily improve the precision of our
treatment, by adding tabulations of subleading corrections,
such as working to μ2i order or including the quantum
statistical factors for final state particles.

A. Collision term for annihilation

In the case of annihilation, particle 1(3) is the antiparticle
of 2(4). The simplified form of J in (14) for the annihilation
process is independent of E3;4. Therefore, we can simplify
the collision integral by integrating over dΠi¼3;4, yielding

the cross section σ12→34. In zeroth order of the chemical
potentials, βij ¼ 1, and the collision term reads

γð0Þ12↔34 ¼
g1g2
ð2πÞ4

Z
dsdEþdE−

2
feq1 f

eq
2 σ12→34F 12

× ½ð1 − ΔannÞ þ Δannð1 − βannÞ�; ð18Þ

where s ¼ ðp1 þ p2Þ2 is the squared center-of-mass (CM)
energy and E� ¼ E1 � E2. Note that the expression for γ
does not include the number change of antiparticles. The
flux factor reads

F 12 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp1 · p2Þ2 −m2

1m
2
2

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λðs;m2

1; m
2
2Þ

p
2

;

with λða; b; cÞ ¼ a2 þ b2 þ c2 − 2ðabþ acþ bcÞ being
the triangle function. The Lorentz-invariant cross section,
averaged over initial degrees of freedom, is given by [25]

σ12→34 ¼
1

4g1g2F 12

Z
dΠi¼3;4ð2πÞ4

× δð4Þðp1 þ p2 − p3 − p4Þ
X
spins

jM12↔34j2: ð19Þ

One notes the relation g1g2F 12σ12→34 ¼ g3g3F 34σ34→12.
The kinematic ranges for the integration variables are

s ≥ maxfðm1 þm2Þ2; ðm3 þm4Þ2g; Eþ ≥
ffiffiffi
s

p
;

E− − Eþ

�
m2

1 −m2
2

s

�
≤
���� 2F 12

s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2þ − s

q ����:
The calculation of the energy-transfer collision terms for

annihilation, ζð0Þ12↔34, is similarly obtained by supplying
the energy-transfer factor δE ¼ Eþ to the right-hand side
of Eq. (18).

B. Collision term for elastic scattering

For scattering, particle 1(2) is the same as 3(4), and thus,
γij ≡ 0. To account for the energy transferred in elastic
scattering processes, we need to introduce the additional
Lorentz invariant variable t ¼ ðp1 − p3Þ2, due to the E3

dependence in δE. In this case, the ζ collision term at zeroth
order in the chemical potentials can be expressed in terms
of the differential cross section as

ζð0Þ12↔12 ¼
g1g2
ð2πÞ4

Z
dE1dE2dsdtf

eq
1 f

eq
2

dσ12→12

dt

× F 12hΔscattδEi; ð20Þ

where hΔscattδEi is the energy transfer per scattering
averaged over the azimuthal angle ϕ� in the CM frame.
The integration region of t is given by ½−λðs;m2

1; m
2
2Þ=s; 0�.
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Solving the kinematics of the two-body scattering in the medium (“lab”) frame, where E1;2 are defined, allows to separate
δE into ϕ�-independent and -dependent terms, δE0

scatt and δE1
scatt, given by

δE0
scatt ¼

ðE1 − E2Þst − ðE1 þ E2Þðm2
1 −m2

2Þt
λðs;m2

1; m
2
2Þ

;

δE1
scatt ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λðs;m2

1; m
2
2Þtþ st2

p
λðs;m2

1; m
2
2Þ

cosϕ�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λðs;m2

1; m
2
2Þ þ 4ðm2

1E2 þm2
2E1ÞðE1 þ E2Þ − 4E1E2s

q
:

When considering the case that an initial state is at rest, E1 ¼ m1, we obtain δE0
scatt ¼ −t=ð2m1Þ and δE1

scatt ¼ 0, which
gives the expected energy transfer per scattering in the lab frame.
After averaging over ϕ� from 0 to 2π, we obtain

hΔscattδEi ¼
δE0

scatt

2
−
eðT−1

2
−T−1

1
ÞδE0

scatt

2

�
δE0

scattI0

�
δE1

scatt

T2

−
δE1

scatt

T1

�
þ δE1

scattI1

�
δE1

scatt

T2

−
δE1

scatt

T1

�	����
ϕ�¼0

; ð21Þ

where In is the modified Bessel functions of the first kind.

C. Low-temperature regime

So far, we have provided the formulas of factored
collision integrals with thermal distribution functions and
that are to be weighted with factors eμ̃iþμ̃j . As mentioned
earlier, for processes involving neutrinos with distribution
function fν, we also include the second-order contribution

μ̃νf
ð1Þ
ν , where fð1Þν is given in (12). At the time of neutrino

decoupling, μ̃ν is negligible. At low temperatures, however,
the second-order term can become increasingly important
as neutrinos develop a nonvanishing chemical potential.
Thereby, μ̃ν contributes in the prediction of Neff ; see
Eq. (A2). The expressions of the associated collision

integrals are readily obtained by replacing feqi with fð1Þi
in the expressions for γ (18) and ζ (20) above.
Additionally, when the dark state sector becomes deeply

nonrelativistic, extrapolations can be adopted to obtain the
values of β and γ, instead of computing the integrals down
to very small temperatures.7 Once Tϕ ≪ mϕ, we typically
also encounter Tϕ ≪ Tν;γ. The latter condition becomes
quickly fulfilled due to the adiabatic cooling, Tϕ ∝ 1=a2, of
a decoupled nonrelativistic species. Under such conditions,
with mϕ=Tϕ ≥ 100, we scale the (p-wave) interaction rates
according to the temperature dependence of their non-
relativistic thermal average. Thereby, one only integrates
over the momentum distribution of the EM or neutrino
sector. The impact on the final value of Neff is in practice
negligible.

D. Discussion on introduced uncertainties

Before going further to present the numerical results, we
illustrate and comment on the uncertainties introduced by
our approximations.

One uncertainty comes from our approximated inter-
action rates, which neglect final state statistics. The
differences from the exact rates are shown in Fig. 2 for
the energy transfer between the electron and dark scalar for
the choice mϕ ¼ 5 MeV. The solid lines show the inter-
action rates by taking 1� f3;4 ≃ 1, normalized to the exact
values at different photon temperatures (illustrated with

FIG. 2. The ratio of leading-order to exact collision terms as a
function of the temperature ratio Tγ=Tϕ for annihilation (upper
panel) and elastic scattering (lower panel) is shown as solid lines;
mϕ ¼ 5 MeV is chosen for both panels. The classical limit
adopting the Maxwell-Boltzmann (MB) distribution functions
is also shown by the dotted lines for comparison. The various
colors depict different epochs of the Universe, characterized by
Tγ . In the nonrelativistic limit Tϕ;γ ≪ mϕ, both approximations
converge to the exact results. We exclude the nominal singular
point at Tϕ ¼ Tγ , where all rates vanish.

7Uncontrolled errors typically occur in numerical software
when evaluating very small exponents.
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different colors), suggesting percent-level uncertainties
after neutrino decoupling for mϕ ≥ 5 MeV. Our method
improves the precision of interaction rates, especially at
Tϕ ≤ mϕ=3, with respect to the classical approximation
(Maxwell-Boltzmann distributions, dotted lines) that is
typically adopted in the literature. In the deep nonrelativ-
istic regimes where Tγ;ϕ ≪ mϕ, all lines converge, as
expected. Similar results apply to neutrino-ϕ interactions.
Another source of uncertainty is introduced by para-

metrizing each momentum distribution by two variables, Ti
and μi, only. This is of course perfectly justified for the
electron sector. For the neutrino sector, the nonthermal
contribution is below the percent level [2,3], and it is
expected to be even smaller with flavor-blind dark sector-
neutrino interactions. When we present our numerical
results below, we will demonstrate that we recover the
state-of-the-art prediction for Neff. Finally, a description in
terms of temperature and chemical potential in the dark
sector is expected to give accurate results for the problem at
hand as well. The reason is that kinetic equilibrium through
self-scattering is typically maintained until after freeze-out.
The interactions of the dark sector with itself and with SM
particles require specification of the particle physics model,
of which we now present an example and for which these
conditions are satisfied.

V. REPRESENTATIVE PARTICLE MODEL

For the quantitative exploration, we shall consider a
complex scalar DM candidate ϕ with a Z0 mediator [26,27]
as the representative particle physics model. The setup has
been studied in detail as a potential explanation of both the
INTEGRAL 511 keV line and muonic g − 2 anomaly [28]
as well as for its signatures in intensity-frontier experiments
[27]. The interactions between Z0, ϕ and SM leptons
l ¼ e; νe;… are given by

Lint
Z0 ¼ g2ϕZ

0μZ0
μϕ

�ϕ − igϕZ0μðϕ�
∂

↔

μϕÞ − glZ0μl̄γμl: ð22Þ

For concreteness, we consider flavor-blind couplings gl and
assume for the Z0 mass mZ0 ≳ 1 GeV such that Z0 remains
off shell in the scattering/annihilation processes and has
negligible population during DM freeze-out. In further
consequence, the interactions between ϕ and SM leptons
can be treated as by an effective operator with UV scale
ΛZ0 ¼ mZ0= ffiffiffiffiffiffiffiffiffigϕgl

p , and it is in this quantity how we
shall present our results. Note that in this specific model,
DM freeze-out is dominated by p-wave annihilation.
Furthermore, we choose gϕ ≫ gl so that Z0-mediated
e − ν interactions can be neglected. An exploration of
non-flavor-blind couplings and variable branching ratios
will be presented in a dedicated work [20]. Finally, also
note that there is no tree level interaction between ϕ=Z0 and
the photon. An extension to scenarios where the coupling to
the EM sector is (also) through γ is straightforward.

VI. SOLUTION OF THREE-SECTOR SYSTEM

Having established the full formulation of the problem,
we are now in a position to numerically solve the set of
Boltzmann equations for the three-sector system. We do so
by solving for the evolution of the five variables Tγ , Tν, Tϕ,
μ̃ν and μ̃ϕ, as functions of time, or, equivalently, the
evolution of ρEM, ρν, ρϕ, nν, and nϕ.

8 For this, we calculate
and tabulate the values of γijðTi; TjÞ and ζijðTi; TjÞ for
each process on a grid of temperatures ðTi; TjÞ. The
tabulations are then used to compute the evolution of
number and energy densities, ni and ρi, of the three sectors,
respectively.9 As mentioned above, the advantage of such
tabulation is that it only needs to be done once for obtaining
the evolution of δni=δt and δρi=δt once mϕ is fixed; the
actual rates are found by rescaling with the chemical
potential of each species, μ̃i, as well as the UV scale of
our benchmark model, ΛZ0 .

A. SM-only solution (NSM
eff prediction)

Before studying the interplay of the dark sector with the
SM quantities, we compare our numerical prediction of the
standard cosmology, i.e., turning off the dark sector, with
those in the literature that solve for the general neutrino
momentum distributions. The final result is reported in
terms of the parameter NSM

eff . It counts the relativistic SM
neutrino degrees of freedom, that besides the two photon
polarizations constitute the standard radiation content after
BBN and prior to recombination. As such, it measures to
which degree the neutrino-to-photon temperature ratio
deviates from the value derived from SM entropy con-
servation, ð4=11Þ1=3 ≃ 0.7138.
Figure 3 shows our result for the evolution of Tν=Tγ as a

function of photon temperature. As can be seen, neutrinos
decouple from the EM sector at Tγ ∼ 2 MeV. For
Tγ ≲ 40 keV, electron annihilation completes, and the ratio
Tν=Tγ freezes out. As a final value, we obtainNSM

eff ¼ 3.044
in concordance with the values reported in the recent
literature, 3.043–3.046 [3,31–35]; neutrino oscillations
induce a correction to Neff at the 0.001 level only [2].
Since ν − e scattering maintains the kinetic coupling for a
short period even after chemical decoupling, neglecting the
scattering leads to smaller Tν=Tγ and Neff , as shown in the
lower panel of Fig. 3. A similar numerical difference
induced by scattering processes has been obtained in the
literature; see e.g. [36].
Having recovered the standard prediction gives credence

to our approach and shows that any introduced errors
through our approximate treatment are indeed well under
control.

8The correspondence between (ρi, ni) and (Ti, μi) is given
in Appendix A.

9For the SM processes, we have applied finite temperature
QED corrections [29,30] tabulated in nudec_BSM [19].
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B. Neutrino temperature evolution

We now proceed including ϕ and study the joint
evolution with the EM and ν sectors. The initial temper-
ature is set to Tγ ¼ 10 MeV, and we assume μν ¼ μϕ ¼ 0

as thermal initial conditions. At this early stage, if the
normalized energy-transfer rate induced by ϕ defined in
Eq. (1) is much larger than the Hubble expansion rate,
Γexch ≫ H—equivalent to saying that, within a Hubble
time, at least an amount of ργ or ρν is exchanged between
the ϕ-sector with the respective EM and ν sectors—we can
safely take all three sectors to be in thermal equilibrium
and all particle species share the same temperature.10 As
stated above, the situation is different from WIMPs, where
the energy exchange with the EM and ν-sectors can be
neglected at MeV temperatures. Here, all three sectors
evolve independently once both H ≫ Γexch;Γweak are
fulfilled.
The top panel of Fig. 4 shows the ratios Γexch=H and

Γweak=H for the choices ΛZ0 ¼ 0.05, 0.01, 0.001 TeV. The
left and right panels are formϕ ¼ 1 MeVandmϕ ¼ 5 MeV,
respectively. We observe that Γexch > Γweak so that Γexch
controls the decoupling of photon and neutrino temper-
atures. For example, formϕ ¼ 1 MeV andΛZ0 ¼ 0.05 TeV
(blue lines), we find Γexch=H ¼ 1 at Tγ ≃ 0.5 MeV. The
middle panel of Fig. 4 shows the corresponding evolution of
Tν=Tγ and around Tγ ¼ 0.5 MeV neutrino and photon

temperatures can be seen to depart from each other for this
parameter set. The figures also show that stronger SM-DM
interactions, i.e., smaller values of ΛZ0 (green/red lines),
allow for prolonged dark sector-mediated energy exchange.
In consequence,Tν deviates fromTγ later in comparison to a
standard cosmological history. Later decoupling is also
observed for decreasing DM mass. This is because, for
heavier DM, its number density becomes Boltzmann sup-
pressed earlier, compensating for any rise in the DM
annihilation cross section proportional to m2

ϕ=Λ4
Z0 .

After the ϕ-induced energy exchange processes between
the neutrino and EM sectors decouple at Γexch=H ∼ 1, the
residual annihilation of ϕ particles continues to heat both
sectors separately. In the considered flavor-blind model,
this happens with a slight preference for neutrinos. Such
residual annihilation can be important in increasing Neff
only if ρϕ=ρν is still sizeable at Γexch=H ∼ 1 and DM
freezes out nonrelativistically subsequently.11 It is best
observed formϕ ¼ 5 MeVwhere even Tν=Tγ ≥ 1 becomes
possible for an intermittent period of time. Formϕ¼1MeV,
such heating is very mild, especially when the DM freeze-
out happens almost relativistically, corresponding to
ΛZ0 ≳ 0.05 TeV. The overall effect is that Tν=Tγ decreases
less slowly than in the SM-only case. Finally, the ϕ
annihilation rate becomes Boltzmann suppressed and e�
annihilation takes over, heating primarily photons. This
leads to the usual decrease of Tν=Tγ and the ratio freezes
out after both e� and ϕϕ� annihilation processes become
negligible.
In the bottom panel of Fig. 4, we explore the effect of the

elastic scattering contribution on the neutrino temperature
by plotting the ratio of Tν=Tγ without scattering to the one
obtained including scattering (full result). As can be seen,
for symmetric thermal DM, the effect on the neutrino
temperature is below percent level although it would enter
in a precision determination of Neff . In other words, the
energy transfer efficiency of ϕ-annihilation typically domi-
nates over that of ϕ-SM scattering in the evolution of
Tν=Tγ . The situation is markedly different for Tϕ. There,
elastic scattering enters in an important way, and we shall
discuss the evolution of Tϕ=Tγ next.

C. DM temperature and abundance evolution

Turning to the evolution of Tϕ, we note that DM-SM
scattering may keep DM in kinetic equilibrium with its
annihilation products after DM freeze-out. However, since
at that point, Tν ≠ Tγ , the evolution of Tϕ becomes subtle,
and Tϕ will in general lie between Tν and Tγ before DM
decouples kinetically. Figure 5 shows the evolution of
Tϕ=Tγ, where the solid lines are the full result and dashed

FIG. 3. The SM evolution of temperature ratio Tν=Tγ (without
dark sector interactions). The calculation of interaction rate is
based on our formalism, with NLO-QED corrections adopted
from the code developed in [31]. We obtain the final value of
Neff ¼ 3.044 (solid line in upper panel) in concordance with the
recently reported value 3.0440� 0.0002 in [32]. In the lower
panel, we show Tν=Tγ ratio of without ν − e scattering case to the
full case; ν − e scattering affects the Neff prediction only in the
third digit.

10In this case, even if weak interactions freeze out, DM-SM
interactions can keep EM and neutrino sectors in thermal
equilibrium [14].

11That is, this effect is only visible for a limited range of DM
mass and ΛZ0 , and explains, in the left upper panel of Fig. 7 later,
the bump at ΛZ0 ∼ 0.2 TeV for Mϕ ¼ 5 MeV (the blue line).
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lines ignore the elastic scattering contribution. As can
be seen, scattering leads to a slower decline in Tϕ since
Γscatt;i > H. The Tϕ evolution enters the abundance deter-
mination as will be shown below.

We are now in a position to solve for the DM abundance
which we report in terms of the yield variable
Y ≡ ðnϕ þ nϕ� Þ=s, including both particle and antiparticle
number densities, with s being the entropy density. When

FIG. 5. The evolution of Tϕ=Tγ for mϕ ¼ 1 MeV (left panel) and 5 MeV (right panel). The solid lines show the case including ϕ
annihilation and scattering, while the dashed lines only takes into account annihilation. We also show temperature evolution of an
adiabatically cooling DM species with vanishing chemical potential and that is assumed to kinetically decouple from photons at
Tγ ¼ 10 MeV (black solid line).

FIG. 4. The ratio of the ϕ-induced energy-transfer rate to the Hubble rate, Γexch=H (top panels), the evolution of Tν=Tγ (middle
panels), and the latter’s difference when scattering is excluded (bottom panels) as a function of photon temperature Tγ . The left (right)
panel shows the result formϕ ¼ 1ð5Þ MeV and various choices of ΛZ0 as labeled. For comparison, we also show the ratio of Γweak=H by
the black solid lines. The vertical dotted lines depict the Tγ points where Γexch=H ¼ 1. Decreasing ΛZ0 keeps neutrino and EM sectors
longer in equilibrium.
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ϕ;ϕ� makes all the DM, it must match the observationally
inferred abundance [37],

YDM ¼ ΩDMρcrit
mϕs0

¼ 4.2 × 10−7
�
MeV
mϕ

�
: ð23Þ

Here, ΩDM, ρcrit, and s0 are the DM density parameter, the
critical density of the Universe, and the current entropy
density, respectively. While μν is always very small as
neutrinos are strictly relativistic in the early Universe, the
evolution of μϕ is nontrivial when DM becomes non-
relativistic. In this final, nonrelativistic period, the DM
number density gradually freezes out when its chemical
potential converges towards mϕ and Y becomes a constant.
After weak interactions decouple, the dark sector evo-

lution can be separated into four periods, the first three of
which were depicted earlier in Fig. 1: (i) At early times,
when the ϕ-induced energy-exchange rate is larger than the
Hubble rate, Γexch > H, and all three sectors share the same
temperature. Since ργ≥ρϕ≃nϕhδEi, the condition Γann>H
is automatically satisfied. That is, as expected, the evolving
ϕ abundance follows the chemical equilibrium value,
Yeq
ϕ ≡ neqϕ =s, characterized by the common temperature.

(ii) Once Γexch drops below H but Γann > H remains true,
the ϕ abundance continues to follow Yeq

ϕ . Typically, ϕ

scatters efficiently with both EM and neutrino sectors in
this period, Γscatt;i >H with i ¼ EM; ν, and Tϕ lies between
Tγ and Tν with its detailed value depending on the relative

interaction strength; note that once electrons become
Boltzmann suppressed, one encounters a steep decline in
Γscatt;EM unless a direct interaction with photons in
invoked.12 (iii) Later, Γann < H becomes fulfilled, and
DM chemically decouples from the SM thermal bath.
The decoupling of DM is not instantaneous but with a short
transition period, during which μϕ increases from a negli-
gible value to approximately mϕ, resulting in the scaling
nϕ ∝ a−3 with a being the scale factor in comparison to
exponential suppression of neqϕ . (iv) Finally, Γscatt;i < H and
DM kinetically decouples from sector i ¼ EM and/or ν.13

After kinetic decoupling,DMadiabatically cools,Tϕ ∝ a−2,
or, equivalently, Tϕ=Tγ ∝ Tγ .
The evolution of the DM abundance as a function of Tγ is

shown in Fig. 6. Weaker interactions lead to earlier
decoupling and higher abundances. The solid lines show
the full result, and the dashed lines show the result with the
elastic scattering contribution turned off. The annihilation
cross sections required for obtaining the correct value of
ΩDM can thus differ by a factor of a few, as DM-SM elastic
scattering extends the thermalized-to-decoupled transition.
This is particularly true for p-wave annihilation as its

FIG. 6. Evolution of the DM abundance Y as a function of Tγ formϕ ¼ 1 MeV (left panel) and 5 MeV (right panel). The observed DM
abundance is shown as gray solid lines for comparison; see Eq. (23). The dashed lines neglect elastic scattering from the treatment. This
leads to a lower dark sector temperature Tϕ and less efficient p-wave annihilation, resulting in higher DM yields.

12For instance, in the case of mϕ ¼ 1 MeV with ΛZ0 ¼
0.001 TeV (red lines in right panels), Γexch;EM ∼H occurs at
Tγ ∼ 0.1 MeV, below which Tϕ simply follows Tν, as there are
too few e� left.

13In the case of (semi)relativistic freeze-out, thermal and
kinetic decoupling would happen around the same time.
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efficiency depends on the dark sector temperature in an
elevated way. It demonstrates the importance to keep track
of the individual temperatures. To our knowledge, this has
not been demonstrated previously as most (semi)analytic or
even entirely numeric calculations of relic density assume
that DM remains kinetically coupled to the thermal bath of
all its annihilation products (which are all assumed to share
one temperature).

VII. THE CMB Neff CONSTRAINT

A central merit of our introduced methodology is that it
opens the door for a precision prediction of Neff for light
DM annihilation into the EM and ν sectors, a priori with
arbitrary branching ratios. So far, this has not been possible
with the available treatments in the literature. The departure
from the SM-only prediction is parameterized as [37]

ΔNeff ≡ Neff − NSM
eff ; ð24Þ

and we adopt NSM
eff ¼ 3.044 consistent with the result

above. At 95% CL, the combination of Planck and BAO
measurements yields 2.66 ≤ Neff ≤ 3.33 [37]. This number
is expected to improve by the future Simons Observatory to
jΔNeff j≲ 0.1 [38], and by CMB-S4 to jΔNeff j≲ 0.06 [39].
For the exemplary flavor-blind model considered in

this work, there is a small preference to heat the ν sector.
The associated temperature evolution Tν=Tγ explored in
Sec. VI B therefore translates into an elevated value of Neff .
In the left panel of Fig. 7, with benchmark masses
mϕ ¼ 1; 5; 10 MeV, we show the Neff prediction for differ-
ent choices of ΛZ0 . We find that the Planckþ BAO

observations yield a lower bound ΛZ0 ≥ Oð0.08 −
0.001Þ TeV for mϕ ¼ 1–10 MeV. The associated sensitiv-
ity projections for the Simons Observatory and CMB-S4 in
the same DM mass range are ΛZ0 ≥ Oð0.1 − 0.007Þ TeV
and ΛZ0 ≥ Oð0.15 − 0.01Þ TeV, respectively. The lower
panel in Fig. 7 shows the difference of the Neff prediction
without DM-SM scattering from the full result. It demon-
strates that the inclusion of elastic scattering affects the
value of Neff only weakly. This is expected as the energy-
transfer efficiency of scattering is suppressed, compared to
that of annihilation; see also Fig. 4 and the discussion in
Sec. VI B. As shown by the left lower panel of Fig. 7, the
contribution of elastic scattering is reduced both for large
ΛZ0 , where DM only couples feebly to SM particles, and for
smallΛZ0 , where sufficient DM annihilation leads to a small
DM abundance after freeze-out. We conclude that even
with upcoming advances, the effect of scattering will be
difficult to probe for symmetric DM.14

In the right panel of Fig. 7, we show the value ofNeff as a
function of mϕ by imposing a thermal ϕ relic density of
Y ¼ YDM, 0.1YDM and 0.01YDM as labeled. Apparently,
larger DM-SM interactions reduce the finalϕ abundance but
enlargeNeff at CMB.Weobserve that Planckþ BAOcan set
a lower limit on mϕ ≳ 7 MeV on thermal DM if the
branching ratio of DM annihilation into electrons to that
into neutrinos is approximately equipartitioned as by our
assumptions. For mϕ > 10 MeV, DM annihilation decou-
ples just after or even before SMneutrino decoupling to have

FIG. 7. Left panel: The top panel shows the prediction of Neff as a function of ΛZ0 for varying DM masses as labeled together with the
present CMB constraint (shaded) and future sensitivity (dotted lines). The bottom panes shows the (minute) differences in Neff from the
full result, when scattering processes are turned off. Right panel:Neff prediction as a function ofmϕ imposing a fractional relic density as
labeled. The current cosmological limit excludes a thermal relic (black solid line) for mϕ ≲ 7 MeV for the chosen benchmark particle
model, compared tomϕ ≲ 7.6 MeV if one neglects scatterings (black dash-dotted line). If ϕ only constitutes 10% (1%) of DM, one finds
that mϕ ≲ 8.3ð9.4Þ MeV is excluded.

14Those conclusions may differ for asymmetric DM with its
pronounced role of elastic scattering processes; we shall explore
this in future work.
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Y ¼ YDM; thus, the effect on Neff is small. Therefore, for
largerDMmasses,we couple into earlierworks [19]with the
conclusion that future CMB-S4 can probe mϕ < 15 MeV.
For comparison, we also show the Y ¼ YDM curve for the
annihilation-only case (black dash-dotted line). In terms of
the lower limit on mϕ, a 0.6 MeV shift from the full case is
observed, highlighting again the importance of taking into
account the elastic scattering processes.
At last, we mention that for a complex scalar DM our

bounds are slightly stronger than those in the previous work.
For instance, Ref. [16] assumes constant annihilation cross
sections hσann;evi ¼ hσann;νvi ¼ 1.5 × 10−26 cm3=s [16]
and obtainsmϕ ≳ 4.5 MeV,while Ref. [14] concludesmϕ ≳
5.4 MeV with hσann;evi ¼ hσann;νvi ¼ 4 × 10−26 cm3=s.
This is mostly because the observed ΩDM for MeV DM
actually requires larger DM annihilation cross sections than
the values adopted in these references, especially beforeDM-
induced energy transfer eventually decouples in the p-wave
case. Thiswill be studied inmore detail in our followupwork
for both s- and p-wave cases [20]; we recall though that s-
wave DM annihilation into the EM sector is severely con-
strained from indirect searches. Our result also improves on
previous constraints in the literature based on approxima-
tions in DM-SM interactions [13,27] and previous analytical
calculations of CMBNeff bound on annihilation ofOðMeVÞ
DM [14].

VIII. CONCLUSION

The possibility of DM below the GeV scale has been the
center of much attention in recent years. Absent from the
literature is a treatment that allows us to make precision
predictions of both the DM relic abundance and Neff for
MeV-scale DM that annihilates into electron (photons) and/
or neutrinos with arbitrary branching. The reason is that its
abundance is set around neutrino-decoupling and electron
annihilation, and one must track three coupled sectors
across a great dynamical range.
In this work, we lay out a formalism that makes the

solution of this problem amenable to ready numerical
integration. By taking a series of small but essential
approximations we are able to factor out the chemical
potentials of neutrinos and DM from the associated dis-
tribution functions. Together with a suitable algebraic
representation of statistical factors that makes detailed
balancing manifest and numerically robust, the collision
terms of annihilation and scattering can be solved and the
Boltzmann equations integrated. The inclusion of elastic
scattering processes is a first in this context, and it allows us
to account for scattering-mediated energy exchange
between the various sectors through it.
We test our framework using as an example a flavor-

blind vector mediated scalar DM model, with equal
couplings to each neutrino flavor and to electrons featur-
ing p-wave annihilation. Such democratic partitioning

among the sectors is natural for dark sector particles
coupled to the SM lepton SUð2ÞL doublet. For the purpose
of this paper, we take a coupling to lepton number,
including both left- and right-handed chiral electrons.
Because of this flavor-blindness and spin-statistical fac-
tors, the annihilation of ϕ heats both sectors almost
equally, with a small preference for neutrinos. It may
hence be considered a relatively “safe” representative of a
thermal MeV DM candidate. We obtain the modified
evolution of Tν and in consequence, Neff , and ascertain
that elastic scattering plays a subleading role in the
prediction of this important observable in such scenario.
However, accounting for elastic scattering becomes cen-
tral if one wishes to track the DM temperature. Its value is
bracketed by Tν and Tγ before its final kinetic decoupling
and enters the DM abundance calculation when kinetic
equilibrium is not manifestly assumed. We show that
turning on/off the elastic energy transfer to the dark sector
affects the DM relic cross section prediction by a factor of
a few. In addition, the resulting Neff constraint on the DM
mass is also shifted by 0.6 MeV. In the considered model,
using the current CMB constraint, we obtain as minimal
thermal scalar DM mass 7 MeVas being currently allowed
by observations.
In future work, we will employ our established frame-

work to obtain precise predictions on annihilation cross
sections of thermal MeV DM candidates with varying
branching ratios into EM and ν-sectors, varying spin and
varying velocity dependencies, and, more generally, study
the principal cosmological viability of light DM candidates
today and with upcoming observations.
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APPENDIX A: RELATIONS BETWEEN (ρi, ni)
AND (Ti, μ̃i)

With the distribution functions parametrized by the
temperature and chemical potential alone, we may express
n and ρ in terms of T and μ, and vice versa.
EM sector. The total energy density in the EM sector

may be written as

ρEM ¼ π2

30
gEMðTγÞT4

γ ; ðA1Þ

where the effective degrees of freedom of the respective
sector, gEM, evolves from ð2þ 4 × 7=8Þ to 2 during the
decoupling of electrons. Using the known function
gEMðTγÞ, one obtains the value of Tγ from ρEM.
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Neutrino sector. For the massless neutrinos described by
Eq. (11), in a first order expansion in μ̃ν one has

ρν ≃ 3gν
7π2

240
T4
ν

�
1þ μ̃ν

540ζð3Þ
7π4

�
; ðA2Þ

nν ≃ 3gν
3ζð3Þ
4π2

T3
ν

�
1þ μ̃ν

π2

9ζð3Þ
�
; ðA3Þ

where we choose gν ¼ 1 so it does not count anti-neutrino,
and the prefactor, 3, gives the number of SM generations.
The ratio of ρ3ν=n4ν is a function of μ̃ν only. The final value
of Neff is then decided by both Tν=Tγ and μ̃ν.
Dark sector. As μ̃ϕ only enters as a prefactor, it is easier

to first obtain the relation between the average energy
ρϕ=nϕ and Tϕ numerically. For our purposes, we use the
approximation,

ρϕ
nϕ

≃
ð3Tϕ þmϕÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2crTϕ − 3TϕÞ2 þm2

ϕ

q
2

: ðA4Þ

In the relativistic limit, this becomes ρϕ=nϕ ¼ crTϕ with
cr ≡ 2.701 (3.151) for bosons (fermions). In turn, in the
nonrelativistic limit, one has ρϕ=nϕ ¼ mϕ þ 3Tϕ=2.

APPENDIX B: COLLISION TERMS

In our convention, gi counts the (nonidentical) particle
degrees of freedom. Hence, we take gϕ ¼ 1 for the complex
scalar DM particle, ge¼2 for the electron, as well as gν ¼ 1
for each neutrino flavor, distinguishing a chiral neutrino
from its antiparticle. Consequently, each interaction rate
below is expressed with respect to its effect on the number/
energy density of the particle component only (not includ-
ing its antiparticle).
With the three SM generations, the branching ratio of

MeV-scale DM annihilation in our flavor-blind setup in the
limit of me ¼ 0 is ge∶3gν ¼ 2∶3. In our benchmark model,
DM annihilation hence preferentially heats up the neutrino
sector.

1. Interactions within the SM

We start with the process νν ↔ ee, for which the
number-changing rate and energy-exchange rate are
expressed by

δn
δt

����
νν↔ee

¼ γð0Þνν↔ee þ βð1Þνν↔eeγ
ð1Þ
νν↔ee; ðB1Þ

δρ

δt

����
νν↔ee

¼ ζð0Þνν↔ee þ βð1Þνν↔eeζ
ð1Þ
νν↔ee; ðB2Þ

with βð1Þνν↔ee ¼ 2μ̃ν. The corresponding γ- and ζ-collision
terms are

γð0Þ;ð1Þνν↔ee ¼ g2ν
ð2πÞ4

Z
dsdEþdE−

2
feqν f

eq;ð1Þ
ν σνν→eeF 12

× ½ð1 − ΔannÞ þ Δannð1 − βannÞ�;

ζð0Þ;ð1Þνν↔ee ¼ g2ν
ð2πÞ4

Z
dsdEþdE−

2
feqν f

eq;ð1Þ
ν σνν→eeF 12

× Eþ½ð1 − ΔannÞ þ Δannð1 − βannÞ�;

where the total cross section reads

σνν→ee ¼
G2

F

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s − 4m2

e

p
6π

ffiffiffi
s

p

× ½m2
eð48s4W − 8s2W − 3Þ þ sð24s4W − 4s2W þ 3Þ�;

ðB3Þ

with GF being the Fermi constant and sW ∼ 0.47 is the sine
of the Weinberg angle. Here, we have summed up the
contributions from the three neutrino generations in the
cross section which amounts to neutral current processes
for νe;μ;τ and, additionally, the charged current process for
νe. In the Maxwell-Boltzmann approximation and massless
electron limit, we obtain

γð0Þνν→ee →
4G2

Fð24s4W − 4s2W þ 3ÞðT8
γ − T8

νÞ
π5

;

ζð0Þνν→ee →
32G2

Fð24s4W − 4s2W þ 3ÞðT9
γ − T9

νÞ
π5

;

in agreement with the result in [42].
For νe ↔ νe, γ ¼ 0 because of particle number con-

servation. The energy-exchange rate can be expressed as

δρ

δt

����
νe↔νe

¼ βð0Þνe↔νeζ
ð0Þ
νe↔νe þ βð1Þνe↔νeζ

ð1Þ
νe↔νe; ðB4Þ

with βð0Þνe↔νe ¼ eμ̃e , βð1Þνe↔νe ¼ eμ̃e μ̃ν, and

ζð0Þ;ð1Þνe↔νe ¼ gνge
ð2πÞ4

Z
dE1dE2dsdtf

eq;ð1Þ
ν feqe

dσνe→νe

dt

× F 12hΔscattδEi:

As an exception, here we have already summed up the
differential cross sections of all νe∓ → νe∓, ν̄e∓ → ν̄e∓
processes for the three neutrino generations to result in
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X
ν
ð−Þ

;e�

dσνe→νe

dt
¼ G2

Ffð24s4W − 4s2W þ 3Þ½2ðs −m2
eÞ2 þ 2stþ t2� − 6m2

etg
2πðs −m2

eÞ2
: ðB5Þ

In the Maxwell-Boltzmann approximation and in the
massless electron limit, the integration can be carried out
analytically,

X
ν
ð−Þ

e�

ζð0Þνe↔νe →
56G2

Fð24s4W − 4s2W þ 3ÞT4
νT4

γðTγ − TνÞ
π5

;

which is in agreement with the result derived following the
Appendix in [42].

2. DM-electron interactions

We now continue collecting the results for interactions
between DM and SM. For ee ↔ ϕϕ, we may write

δn
δt

����
ee↔ϕϕ

¼ βee↔ϕϕγee↔ϕϕ; ðB6Þ

δρ

δt

����
ee↔ϕϕ

¼ βee↔ϕϕζee↔ϕϕ; ðB7Þ

with βee↔ϕϕ ¼ e2μ̃e and

γee↔ϕϕ ¼ g2e
ð2πÞ4

Z
dsdEþdE−

2
feqe f

eq
e σee→ϕϕF 12

× ½ð1 − ΔannÞ þ Δannð1 − βannÞ�;

ζee↔ϕϕ ¼ g2e
ð2πÞ4

Z
dsdEþdE−

2
feqe f

eq
e σee→ϕϕF 12

× Eþ½ð1 − ΔannÞ þ Δannð1 − βannÞ�:

In the considered exemplary model, the cross section is
given by

σee→ϕϕ ¼ ðs − 4m2
ϕÞ3=2ðsþ 2m2

eÞ
48πs

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s − 4m2

e

p
Λ4
Z0

: ðB8Þ

In the Maxwell-Boltzmann approximation and for
mϕ ¼ me ¼ 0, we obtain

γee↔ϕϕ → g2e
ðT8

ϕ − T8
γÞ

2π5Λ4
Z0

; ζee↔ϕϕ → g2e
4ðT9

ϕ − T9
γÞ

π5Λ4
Z0

:

Turning to the elastic scattering channel ϕe ↔ ϕe, we
have

δρ

δt

����
ϕe↔ϕe

¼ βϕe↔ϕeζϕe↔ϕe; ðB9Þ

with βϕe↔ϕe ¼ eμ̃ϕþμ̃e and

ζϕe↔ϕe ¼
ð2gϕÞð2geÞ

ð2πÞ4
Z

dE1dE2dsdtf
eq
ϕ f

eq
e
dσϕe→ϕe

dt

× F 12hΔscattδEi;

where gϕ ¼ 1 as by our conventions. The differential cross
section for the Z0 mediated model and after averaging over
all initial states reads

dσϕe→ϕe

dt
¼ ðm2

eþm2
ϕ−sÞ2þ tðs−m2

eÞ
4πΛ4

Z0 ½m4
e−2m2

eðm2
ϕþsÞþðm2

ϕ−sÞ2� : ðB10Þ

In the Maxwell-Boltzmann approximation and for
mϕ ¼ me ¼ 0, the collision term reduces to

ζϕe↔ϕe → ðgϕÞðgeÞ
4T4

ϕT
4
γðTϕ − TγÞ
π5Λ4

Z0
; ðB11Þ

where we have not taken into account the contributions
from the antiparticles, ϕ� and eþ, as suggested by the
prefactors.

3. DM-neutrino interactions

Turning to the interaction with neutrinos, for the anni-
hilation νν ↔ ϕϕ, we again write

δn
δt

����
νν↔ϕϕ

¼ γð0Þνν↔ϕϕ þ βð1Þνν↔ϕϕγ
ð1Þ
νν↔ϕϕ; ðB12Þ

δρ

δt

����
νν↔ϕϕ

¼ ζð0Þνν↔ϕϕ þ βð1Þνν↔ϕϕζ
ð1Þ
νν↔ϕϕ; ðB13Þ

with βð1Þνν↔ϕϕ ¼ 2μ̃ν and

γð0Þ;ð1Þνν↔ϕϕðTÞ ¼
g2ν

ð2πÞ4
Z

dsdEþdE−

2
feqν f

eq;ð1Þ
ν σνν→ϕϕF 12

× ½ð1 − ΔannÞ þ Δannð1 − βannÞ�;

ζð0Þ;ð1Þνν↔ϕϕðTÞ ¼
g2ν

ð2πÞ4
Z

dsdEþdE−

2
feqν f

eq;ð1Þ
ν σνν→ϕϕF 12

× Eþ½ð1 − ΔannÞ þ Δannð1 − βannÞ�:
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For the chosen model, the cross section is given by

σνν→ϕϕ ¼ 3
ðs − 4m2

ϕÞ3=2
24π

ffiffiffi
s

p
Λ4
Z0

; ðB14Þ

where the factor of 3 is for three neutrino generations. For
each generation, the result is approximately twice that for
electrons above, since for electrons, one has to average over
noncontributing initial states, ðe−LeþL Þ and ðe−ReþR Þ.
In the Maxwell-Boltzmann approximation and for

mϕ ¼ 0, we find

γð0Þνν↔ϕϕ → ð3g2νÞ
ðT8

ϕ − T8
νÞ

π5Λ4
Z0

;

ζð0Þνν↔ϕϕ → ð3g2νÞ
8ðT9

ϕ − T9
νÞ

π5Λ4
Z0

:

Finally, for the elastic scattering ϕν ↔ ϕν, we write

δρ

δt

����
ϕν↔ϕν

¼ βð0Þϕν↔ϕνζ
ð0Þ
ϕν↔ϕν þ βð1Þϕν↔ϕνζ

ð1Þ
ϕν↔ϕν; ðB15Þ

with βð0Þϕν↔ϕν ¼ eμ̃ϕ , βð1Þϕν↔ϕν ¼ eμ̃ϕ μ̃ν and

ζð0Þ;ð1Þϕν↔ϕν ¼
gϕgν
ð2πÞ4

Z
dE1dE2dsdtf

eq
ϕ f

eq;ð1Þ
ν

dσϕν→ϕν

dt

× F 12hΔscattδEi:

The differential cross section in the exemplary model
reads

dσϕν→ϕν

dt
¼ 3

½ðm2
ϕ − sÞ2 þ st�

4πΛ4
Z0 ðm2

ϕ − sÞ2 ; ðB16Þ

and it coincides with the electron case for me ¼ 0 (when
the factor of 3 is dropped). In the Maxwell-Boltzmann
massless DM approximation, we obtain

ζð0Þϕν↔ϕν → ðgϕÞð3gνÞ
4T4

ϕT
4
νðTϕ − TνÞ
π5Λ4

Z0
: ðB17Þ

Here, we have accounted for the three neutrino generations,
but, as usual, not for the contribution from ϕ� and ν̄.
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