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In this paper the general features of the neutrino sector in TeV scale quantum gravity theories, such as
Arkani-Hamed-Dimopoulos-Dvali (ADD) model and “many species” theory, are investigated. This class of
theories has an inherent way of generating small neutrino masses. After reviewing this mechanism it is
generalized to a realistic three-flavor case. Furthermore, a procedure is presented on how to diagonalize a
mass matrix which is generated by this class of theories and how one can find the Standard Model flavor
eigenstates. The developed general approach is applied to two specific scenarios within ADD and many
species theory and possible effects on neutrino oscillations and on unitarity of the lepton mixing matrix are
calculated. Finally, a short overview of phenomenology which can be potentially testable by the current
neutrino experiments is presented.
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I. INTRODUCTION

The Standard Model (SM) of particle physics is one of
the most successful theories because it fully accounts for
all the processed data from high-energy particle physics
accelerators.
Nevertheless, there are several hints that the SM is not

complete. In particular, it produces two outstanding puzzles
that are the subject of the present paper: 1) the origin and
inexplicable smallness of the neutrino mass; 2) the hier-
archy problem.
The hierarchy problem is perhaps the most prominent

naturalness puzzle of the SM and gravity plays a defining
role in its essence due to the following [1]. The Higgs mass
is quadratically sensitive towards the cutoff of the theory,
but the ultimate cutoff is provided by gravity in the form of
the Planck mass. This cutoff is fully nonperturbative since
the Planck mass is an absolute upper boundary on the mass
of elementary particles. Indeed, any elementary object
much heavier than the Planck scale is a classical black hole.
This raises the question of what keeps the observed value

of the Higgs mass-term by some 34 orders of magnitude
smaller than the expected upper limit. This hierarchy
strongly hints toward some new stabilizing physics not
far from the weak scale.
One mechanism for stabilization is based on lowering the

fundamental scale of quantum gravity. In this framework,

the Planck mass MP still sets the coupling strength of
graviton at large distances. However, the actual scale M�,
at which the quantum gravitational effects are strong, is
much lower. Correspondingly, in such a scenario the cutoff-
sensitive corrections to the Higgs mass are regulated by
the scale M� and not by MP. This idea was originally
proposed in the Arkani-Hamed-Dimopoulos-Dvali (ADD)
model [2,3]. (see, [4] for string theory realization).
In this setup the fundamental scale of gravity is lowered

due to a large volume of extra dimensions. The reason is
that due to universal nature of gravity, the graviton wave
function spreads over the entire volume of extra space and
gets effectively “dilute”. As a result, the coupling scale of a
graviton MP is hierarchically larger than the fundamental
scale of quantum gravity M�.
Remarkably, more recently it was shown in [5,6] (for

various aspects, see, [7–11]) that the effect of lowering
the cutoff M� relative to Planck mass MP is a universal
property of any theory with a large number of particle
species. Correspondingly, a general solution to the hier-
archy problem based on this mechanism was proposed in
[5] and further studied in subsequent papers. We shall refer
to this as the “many species” framework.
As explained in [5], the ADD model of large extra

dimensions represents a particular manifestation of this
very general phenomenon. There the role of the species is
assumed by the Kaluza-Klein (KK) excitations of graviton.
This connection enables us to understand the dilution of
graviton wave function in the extra space of ADD as a
dilution in what is called in [7] the “space of species”.
In the latter paper, it was argued that, due to unitarity
and other general consistency properties, the “space of
species” in many respects behaves as an ordinary geo-
metric space.
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In a particularly interesting realization of the“many
species” solution the role of the species is played by the
identical copies of the SM [5,6] and various phenomeno-
logical aspects of this proposal were studied in [9].
Soon after the invention of the low-scale quantum

gravity idea, it was realized, first [12,13] within the
ADD model and later in [9] within the many species
theory, that this general framework, as a bonus, offers a
universal solution to the neutrino mass problem in the SM.
Namely, the same mechanism that explains the hierarchy
between the weak and Planck scales, is responsible for the
suppression of the neutrino mass.
Naturally, this fact boosts the motivation for the above

class of theories, since the origin and the hierarchy of the
neutrino mass is a fundamental open question in SM. Due to
the phenomenon of neutrino oscillations [14], we know that
they have a mass and this is now a field of several ongoing
experiments. So far, neutrino mass has not been detected
directly; just the upper bound of roughly 1 eV have been
given [15]. It is also not known whether the neutrino mass is
of Majorana or of Dirac nature as this is the case with all
other fermions of the SM. We also do not know why
neutrinos are so much lighter than charged fermions.
If neutrino masses are of Dirac type and originate from

an ordinary Higgs mechanism, an unusually small Yukawa
coupling would be required for generating masses smaller
than eV.
Lack of explanation for this smallness, prompted think-

ing that perhaps the neutrino mass is of Majorana type. In
such a case, the mass term must be generated from an
effective high-dimensional operator [16] and the smallness
can be attributed to the high cutoff scale. In the traditional
seesaw mechanism [17–21], such an effective operator is
generated by integrating out a neutrino’s hypothetical right-
handed partner with a large Majorana mass.
However, after the formulation of theories with low-

scale gravity, it became clear that they offer an alternative
possibility in form of naturally small Dirac neutrino
masses. Originally, this idea was realized in [12,13] within
the ADD framework [2] and deeper analysis in [22–29]. We
shall refer to this as ADDM model. Later a complementary
mechanism of suppressed neutrino mass was introduced by
Dvali-Redi (DR) [9] within the “many species” framework
with identical copies of the SM.1

Although complementary, the above two scenarios are
based on one and the same fundamental mechanism of the
suppression of the neutrino Yukawa coupling, very similar
to the suppression of the coupling of the graviton. In both
cases, this can be viewed as a consequence of the dilution of
the wave function of the sterile neutrino into the bulk of the
extra space of species. This dilution is identical to the

dilution of the wave function of the graviton in the same
space. In ADD this space is also organized as a real
coordinate space but this does not change the essence of the
dilution. In summary, the theories with low M� can solve
both the hierarchy and the neutrino mass problems by the
same mechanism. Both hierarchies are controlled by the
ratio M�=MP.
The main focus of the present work is implications for

neutrino physics. The above class of theories predict certain
universal features of phenomenological interest. In particu-
lar as already discussed in [13] for ADDM and in [9] for
DR scenarios, the mixing with the tower of sterile neutrino
species results into oscillations of neutrinos into the
hidden sector. This implies nonconservation of the neutrino
number within the SM and, correspondingly, a seeming
violation of unitarity. This is obviously of potential
experimental interest.
We will work out a general framework for how neutrino

physics can be treated in this class of theories. Moreover,
we will generalize this framework to a realistic three-flavor
case and investigate their effects on low-energy phenomena
and observables such as neutrino oscillations into the
hidden modes and possible deviations from the Standard
Model Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix
which can be tested experimentally. This is still an ongoing
project [31].
This paper is organized as follows. In Sec. II the

structures of DR and ADDM models are presented and
reviewed. In Sec. III we formulate a general approach how
neutrino masses are induced in these kinds of theories
and how we can guarantee the smallness of their mass. In
Sec. IV we present a generalization of the mass matrices to
a realistic three-flavor case and in Sec. V we investigate the
special case of highly-symmetric mass matrices which are
of interest for the DRmodel. In Sec. VI the phenomenology
of TeV scale gravity theories in neutrino physics is
investigated. In Sec. VII we wrap up our findings and
give an outlook on possible experimental tests.

II. ADD AND “MANY SPECIES THEORY”

A. Many species theory

Originally the idea of many mirror copies of the SM has
been proposed in [5,6] as the framework for solving the
hierarchy problem. In this work, it has been shown that
through introducing N particle species, the fundamental
scale of gravity M� in lowered relative to Planck scale MP
in the following way,

M2
p ≥ NM2�: ð1Þ

This result has been obtained using the well-established
properties of black hole physics and is fully nonperturba-
tive. In order to lower the scale of gravity to TeV energies,
N must be of the order of 1032. Since the bound (1) is

1Such scenarios have other potential bonuses. For example,
particles of other copies could just interact with each other
gravitationally and are good candidates for dark matter [9,30].
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independent of the nature of the particles, the species of
various types can be used for lowering the gravitational
cutoff. A particular version introduced in [5,6], assumes
that the species are identical copies of the SM.
Phenomenological aspects including the generation of
neutrino mass were discussed in [9].
In this work, it is assumed that the species obey the

full permutation group PðNÞ initially. This means that all
species are equidistant in what one can call the “space of
species”. This gives a certain predictive power to the theory.
Alternative choices such as cyclic symmetry are also
possible. It was shown that many species framework can
give various phenomenological signatures, including micro-
black holes, in the region of TeV energies. In the present
work, we shall focus on the implications for neutrinomasses.
We shall study generalizations of the mechanism, origi-

nally introduced in [9], which allows the generation of
small neutrino masses in many species framework. This
mechanism represents an infrared alternative to seesaw
which cannot be used in frameworks with a low cutoff.
Let us briefly review the results of [9]. As already said,

the framework representsN identical copies of the SM. The
copies are permuted under PðNÞ. It is useful to visualize the
copies as placed on equidistant sites in the space of
species. Fermions of each sector are charged under their
own gauge group. The exceptions are sterile neutrinos,
which represent the right-handed partners of corresponding
active left-handed neutrinos. We shall denote them by νRj,
where j ¼ 1; 2;…; N is the label of the SM copy. These
particles do not carry any charges under the SM gauge
groups. Thus the notion of “belonging” is defined by their
transformation properties under the permutation group
PðNÞ as well as by their couplings to particles of specific
SM copies. In particular, the gauge charges do not forbid
sterile neutrinos to interact with neutrinos of the other
copies. One can say that sterile neutrinos are not confined
to specific sites in the space of species. The most generic
renormalizable coupling has the following structure,

ðHLÞiλijνRj þ H:c:; ð2Þ

where H and L stand for the Higgs and lepton doublets of
the ith copy. Here λij is a N × N Yukawa matrix interaction
in the space of species. This Yukawa coupling matrix is
restricted by the permutation symmetry group PðNÞ and
has the following form:

λij ¼

0
BBB@

a b b …

b a b …

b b a …

… … … . .
.

1
CCCA: ð3Þ

For the calculation of the mass matrix of neutrinos, one has
to have a closer look at the Higgs doublet Hi. The simplest

case for calculation is when the permutation symmetry is
unbroken by the electroweak vacua. This means, that the
vacuum expectation value (VEV) of the Higgs doublet in
every copy of the SM takes the same value v. In this section
we shall focus on this case. The generalization to the case of
broken permutation symmetry will be given later.
For now, let us, therefore, take v as the VEV of the

Higgses for all copies. Then, the mass matrix takes the
form mij ¼ λijv.
This mass matrix has the eigenvalues

m0
1 ¼ ða − bÞv; ð4Þ

mH ¼ ½aþ ðN − 1Þb�v; ð5Þ

corresponding to the eigenvectors

ν01 ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
N − 1

N

r
ν1 −

1ffiffiffiffi
N

p νh; ð6Þ

and

νH ¼ 1ffiffiffiffi
N

p ν1 þ
ffiffiffiffiffiffiffiffiffiffiffiffi
N − 1

N

r
νh: ð7Þ

It is worth noticing for later convenience that the light
eigenvalue is N − 1 times degenerated. Because

b ≤
1ffiffiffiffi
N

p ; ð8Þ

and a ≈ 100b we see that the mass of the neutrino is
suppressed by the number of species. The mechanism
presented here can explain the smallness of the neutrino
mass but has no phenomenological implications which can
be tested by experiments due to the huge mass of the heavy
state which scales with the number of species which is of
order N ≈ 1032.

B. The ADDM model

The ADDM model [2–4] is based on the idea that in
addition to observed 3 space dimensions, there exist d
additional compact-space ones with radii Ri; i ¼ 1; 2;…; d
below tenths of a millimetre.
The role of the gravitational cutoff in this theory is

played by the fundamental Planck mass of the (4þ d)-
dimensional theory, Mf. The two Planck scales are
related via,

MP ¼ Mf

ffiffiffiffiffiffiffiffiffiffiffiffi
Md

fVd

q
; ð9Þ

where
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Vd ¼ ð2πÞdR1…Rd; ð10Þ

is the volume of the extra-dimensional space.
Like the DR, this theory provides a solution to the

hierarchy problem by lowering the cutoff Mf relative to
Planck mass due to the large volume of extra space. Mf ∼
TeV requires that the volume of the extra space, measured
in units of the fundamental Planck mass, be about
Md

fVd ∼ 1032.
As noticed in [5] the lowering of the cutoff in ADD can

be understood as a particular case of many species effect.
This is because the quantity Md

fVd measures the number
of Kaluza-Klein species of the graviton. Thus, Eq. (9)
represents a particular manifestation of a more general
relation (1).
According to this theory, the Standard Model particles

are localized on a 3-dimensional hypersurface (brane)
which is embedded in the bulk of d large extra dimensions.
The graviton propagates into the entire high-dimensional
space. Together with gravity, the bulk is a natural habitat for
all possible particles that carry no gauge quantum numbers
under the Standard Model group.
Notice that [2] the bulk particles cannot carry any

quantum numbers under the SM gauge group. This is a
consistency requirement that follows from the gauge
invariance and is an intrinsic feature of the localization
mechanism of the gauge field on the brane [32].
Correspondingly, the localization of SM gauge fields on
the brane automatically forbids the existence of any bulk
modes with such charges. Only the particles carrying no
SM gauge quantum numbers are permitted to represent
bulk modes. In particular, such are sterile neutrinos that
play the role of the right-handed partners of the ordinary
left-handed neutrinos of the Standard Model.
This setup generates a naturally small Dirac mass for

neutrinos [12,13]. This mass originates from the mixing
of the right-handed component of bulk sterile neutrino ν
with the Standard Model left-handed neutrino νL which is
localized on the brane. In the approximation of a zero-width
brane, the part of the action responsible for this mixing can
be written as

Z
d4x

h

Md=2
f

HðxμÞν̄LðxμÞνðxμ; yi ¼ 0Þ þ H:c:; ð11Þ

where xμ stands for ordinary 4-dimensional spacetime
coordinates and yi; i ¼ 1; 2;…; d are the extra ones. The
brane location is taken at yi ¼ 0 point. The canonically
normalized (4þ d)-dimensional fermion field νðx; yÞ has
dimensionality ð3þ dÞ=2. Correspondingly, the coupling
constant has dimensionality −d=2. We have parametrized
this coupling constant in terms of the fundamental scaleMf

and an order-one dimensionless constant h.

From the point of view of 4-dimensional theory, νðx; yÞ
represents a tower of Kaluza-Klein modes with their masses
quantized in units of the inverse radii m2 ¼ P

i n
2
i =R

2
i

where ni are integers.
Notice that, a high dimensional fermion field ν,

viewed from the point of view of a 4-dimensional theory,
has no chirality. That is, at each Kaluza-Klein level of
mass m it contains 4-dimensional fermions of both chir-

alities, νðmÞ
R and νðmÞ

L . The 4-dimensional reduction of the
coupling (11) gives

hMf

MP
Hν̄L

X
m

νðmÞ
R þ H:c:; ð12Þ

where the factor 1=MP comes from the canonical normali-
zation of the Kaluza-Klein modes. Notice that only the

right-handed components νðmÞ
R of the Kaluza-Klein modes

mix with SM neutrino.
After taking into account the VEV of the Higgs field,

hHi≡ v, the above couplings translate as the Dirac-type
mass terms

mDν̄L
X
m

νðmÞ
R þ H:c:; ð13Þ

withmD ≡ hvMf

MP
. This mixing generates a Dirac mass of the

SM neutrino. Below, for evaluating the mass matrix we
shall restrict ourselves to the case of a single extra
dimension. In this case, the masses of Kaluza-Klein
excitations are labeled by a single integer m ¼ n=R.
Taking into account the Dirac mass terms of Kaluza-

Klein modes coming from the mixing between their left-
and right-handed components,

X∞
n¼−∞

n
R
ν̄nRν̄nL; ð14Þ

the resulting mass matrix has the form

M ¼

0
BBBBBBBB@

mD

ffiffiffi
2

p
mD

ffiffiffi
2

p
mD …

ffiffiffi
2

p
mD

0 1
R 0 … 0

0 0 2
R … 0

… … … … …

0 0 0 … k
R

1
CCCCCCCCA
: ð15Þ

After the diagonalization of the mass matrix, one can
express a neutrino of a specific flavor with the following
expression,

ν ¼ 1

Ω

�
ν0 þ ξ

X
n¼1

1

n
ν̃n

�
; ð16Þ
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with

ξ ¼
ffiffiffi
2

p
vMfRh

MP
: ð17Þ

The normalization parameter is Ω2 ¼ 1þ π2

6
ξ2.

The mass of the lightest eigenstate ν0 is

mD ¼ hvMf

MP
: ð18Þ

The other eigenstates have

mn ≈
n
R
: ð19Þ

One of the important phenomenological implications of
this scenario is the oscillation of active neutrino species into
the KK neutrinos [13]. The effect takes place already for a
single-flavor case. We shall review this later and compare it
with the case of three flavors of active neutrino species.

III. GENERALIZATION OF NEUTRINO MASSES

We have seen that in ADDM and in DR one can generate
small neutrino masses by introducing a sterile neutrino
which is uncharged under the SM gauge group and can
therefore propagate into an additional space which was
introduced in this class of theories. In the case of ADDM,
this space is represented by the bulk of large extra
dimensions and in the DR it is described as the “space
of species”. In both cases, the neutrino mass is suppressed
by the large effective volume of this extra space.
This common structure we want to investigate further.

We shall make a rather general assumption of the existence
of an extra space in which the sterile neutrino can
propagate. Also, we assume that this extra space lowers
the scale of gravity via

M2� ¼
M2

P

Λ
; ð20Þ

where Λ is the volume of the extra space measured in
fundamental units. In ADDM the size of the extra space is a
function of R ΛðRÞ and in DR of N ΛðNÞ.
It is assumed that the particles that are not charged under

the SM gauge symmetries can propagate in this extra space.
That is, the couplings of such particles are more or less
uniformly spread over this space. Correspondingly, the
coupling to individual copies is suppressed.
Within the known framework there are two candidates for

such particles. The first one is of course the graviton since
gravity interacts universally. The second natural candidate is
a sterile neutrino. Currently, it is not known whether the
neutrino is a purely Majorana particle. If it is not, then there
necessarily exists a sterile partner νR that together with an

ordinary left-handed neutrino forms a Dirac state. This sterile
neutrino carries no gauge quantum numbers under the
StandardModel group. Correspondingly, it has no obligation
to be confined to the site where our Standard Model is
located. Instead, just like gravity, such particles can spread
over the entire extra space, regardless of whether this space
stands for extra-space dimensions or the space of species.
This spread naturally suppressed the coupling of the sterile
fermion to SM neutrino, thereby resulting in a small Dirac
mass. The suppression of the coupling with many mixing
partners results from the principle of unitarity and was
shown in [7]. This is the key mechanism behind the small
neutrino mass both in ADDM [12] as well as in DR [9].
A possible operator for neutrino mass of the SM neutrino

is the Dirac operator

yHν̄LνR; ð21Þ

where y is a Yukawa coupling and H is the SM Higgs
doublet. In this framework, the left-handed neutrinos of the
SM can mix with different types of right-handed neutrinos
which are inhabitants of the extra space. So νR is a
superposition of all possible mixing partners

νR ¼ 1

Λ

X
n

cnνnR: ð22Þ

Of course, the superposition has to be normalized and this
depends on the size of the extra space the right-handed
neutrinos live in. Therefore the different contributions of
all mixing partners have to be divided by the volume of
space in which they can propagate. The resulting form
of (21) is then

yHν̄LνR ¼ yv
Λ

ν̄L
X
n

cnνnR: ð23Þ

With (20) one gets

Mf

MP
yvν̄L

X
n

cnνnR: ð24Þ

The factor in front of the operator represents the effective
Dirac mass of neutrino which we can denote by

mD ¼ Mf

MP
yv: ð25Þ

Here we want to point out that this prefactor is suppressed
by the Planck mass. We see that it induces a small Dirac
mass for neutrinos. This captures a universal essence of
generating a small neutrino mass in ADDM [12] and in DR
[9] formulated in a theory-independent way. It follows that
a small mass of neutrinos is a natural property of this class
of theories. The new feature is that the suppression of the
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mass of the neutrino comes from the size of the extra space
to which the sterile neutrino can propagate. This is very
different from the introduction of a heavy Majorana particle
as this is the case in the seesaw model. In other words, the
spirit of the solution for the smallness of the neutrino mass
we presented here is an infrared solution, and not an
ultraviolet solution, by introducing a very heavy particle.
Of course, such mixing can also occur between νRj

and the left-handed inhabitants, νLi, of the extra space.
Therefore, we also include the mass terms of the following
form,

mijν̄LiνRj: ð26Þ

Let us label the neutrino of the SM with i ¼ 1 and
redefine the Yukawa coupling as y ¼ yc1. Moreover, let us
assume that the interactions among certain pairs of neu-
trinos are stronger than the mixing with other types. We
shall organize such mass terms as the diagonal entries mii.
Correspondingly the off-diagonal entries μij will denote
mixings with other species. The resulting mass matrix is

0
BB@

mD μ12 … …

μ21 m22 μ23 …

..

.
… . .

.
…

1
CCA; ð27Þ

with μ1i ¼ cimD, and we ordered the diagonal entries
according to their hierarchy

mD < m22 < … < mkk: ð28Þ

Assuming that the mixing angles, due to off-diagonal
entries, are small, we can split this matrix into the diagonal
and off-diagonal parts and treat the latter one as a
perturbation

0
BB@

mD μ12 … …

μ21 m22 μ23 …

..

.
… . .

.
…

1
CCA

¼

0
BB@

mD 0 … …

0 m22 0 …

..

.
… . .

.
…

1
CCAþ

0
BB@

0 μ12 … …

μ21 0 μ23 …

..

.
… . .

.
…

1
CCA;

ð29Þ

and we denote

V ≡

0
BB@

0 μ12 … …

μ21 0 μ23 …

..

.
… . .

.
…

1
CCA: ð30Þ

With this, we find that the eigenvalues do not become
corrected in the first order in mixing

mi ¼ mii þ hnijVjnii ¼ mii þO2: ð31Þ

The correction to the mass eigenstates has the following
form

jm1i ¼ j1ð0Þi þ
X
k¼2

μ1k

mð0Þ
1 −mð0Þ

k

jkð0Þi; ð32Þ

where the jni are the eigenstates of the unperturbed matrix.
Of course, one has to normalize the expression with

Norm2 ¼ 1þ
X
k≠n

�
μnk

mð0Þ
n −mð0Þ

k

�
2

: ð33Þ

This leads then to the following expression for the mass
eigenstates

jm⃗i ¼

0
BB@

1 μ12
m1−m2

…
μ21

m2−m1
1 …

..

.
… . .

.

1
CCAjn⃗i; ð34Þ

symbolically

jm⟶i ¼ Uj n⟶i: ð35Þ

Now one has to invert U in order to find the expression
for the space states. In order to invert the matrix U, we use
the equation

ðAþ XÞ−1 ¼ A−1 þ Y; ð36Þ

with

Y ¼ −A−1XA−1; ð37Þ

and X being in this case the perturbation matrix V. One,
therefore, gets for U−1

U−1 ¼

0
BB@

1 − μ12
m1−m2

…

− μ21
m2−m1

1 …

..

.
… . .

.

1
CCA: ð38Þ

This is how the mixing with the states of extra space takes
place in the case of a single flavor of SM neutrino. In
particular, the above reproduces the results of such mixings
in ADDM [12] and in DR [9] for the case of a single flavor.
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IV. GENERALIZATION TO
THREE-FLAVOR CASE

We now generalize the discussion for the case of three
flavors of SM neutrinos. The simplest (but unrealistic)
case is if all three-flavor neutrinos have their own mixing
partners in the extra space. In such a case the mass matrix
has the following block-diagonal form

M ¼

0
B@

Me 0 0

0 Mμ 0

0 0 Mτ

1
CA; ð39Þ

where the Mα stands for the mass matrices of the different
flavors. Each of them has a form analogous to (27). Of
course, we must take mixing among the different flavors
into account. This is necessary for phenomenological
consistency. In particular, to make the SM three flavor

neutrino oscillations possible. In order to incorporate this
phenomenon we have to depart from the above block-
diagonal structure. We therefore write

M ¼

0
B@

Me eμ eτ

eμ Mμ μτ

eτ μτ Mτ

1
CA; ð40Þ

where we denote with the αβ (α; β ¼ e; μ; τÞ entries the
mixing matrices among the different space state partners
of different flavors. In order to increase the precision of
the perturbative calculation, we treat the mixing of the
flavor ground states (i.e., the direct mixing among SM
neutrinos) as part of the perturbed matrix and not as a part
of the perturbation matrix V. This leads to the following
expressions for the mass eigenstates of the three active
neutrinos (we denoted the entries of the SM-like mixing
elements as U−1

ei )

jme
1i ¼ U−1

e1 jei þ U−1
e2 jμi þ U−1

e3 jτi þ
X
k¼2

U−1
e1 μ

e
1k þ U−1

e2 eμ1k þ U−1
e3 eτ1k

me
1 −me

k
jke1i

þ
X
k¼2

U−1
e1 eμ1k þ U−1

e2 μ
μ
1k þ U−1

e3 μτ1k
me

1 −mμ
k

jkμ1i þ
X
k¼2

U−1
e1 eτ1k þ U−1

e2 μτ1k þU−1
e3 μ

τ
1k

me
1 −mτ

k
jkτ1i: ð41Þ

This is the expression for the lightest mass eigenstate and we identify it with the dominant mass eigenstate for the electron
neutrino. We have to invert this expression now in an analogous way as in the one-flavor case and in order to do so we
assume that

Ue1 ≫ Ue2; Ue3 ≫ eμ1i; eτ1i: ð42Þ

Then we can write the interaction eigenstate approximately as

jνei ¼ Ue1jme
1i þ Ue2jmμ

1i þ Ue3jmτ
1i −Ue1

�X
k¼2

U−1
e1 μ

e
1k þU−1

e2 eμ1k þ U−1
e3 eτ1k

me
1 −me

k
jme

ki

þ
X
k¼2

U−1
e1 eμ1k þU−1

e2 μ
μ
1k þ U−1

e3 μτ1k
me

1 −mμ
k

jmμ
ki þ

X
k¼2

U−1
e1 eτ1k þ U−1

e2 μτ1k þ U−1
e3 μ

τ
1k

me
1 −mτ

k
jmτ

ki
�
: ð43Þ

If we assume that Uei are already normalized, the normalization looks as follows:

N2
e ¼ 1þ Ue1

�X
k¼2

U−1
e1 μ

e
1k þU−1

e2 eμ1k þU−1
e3 eτ1k

me
1 −me

k

�
2

þ
�X

k¼2

U−1
e1 eμ1k þ U−1

e2 μ
μ
1k þU−1

e3 μτ1k
me

1 −mμ
k

�
2

þ
�X

k¼2

U−1
e1 eτ1k þ U−1

e2 μτ1k þ U−1
e3 μ

τ
1k

me
1 −mτ

k

�
2

: ð44Þ

We can simplify the expression for the flavor neutrino a little bit further by assuming that the masses of the bulk states in
the diagonal entries are the same for all flavors. This means that

me
k ¼ mμ

k ¼ mτ
k ¼ mk: ð45Þ

We also want to assume that different cross-mixing elements among different flavors have the same structure as the mixing
of bulk states with their own flavor. This means that also the mixing parts αβ1k and μα1k look like
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μα1k ¼ μfðmα
DÞ; ð46Þ

with the same overall constant μ and the same function f
depending on the induced Dirac mass just differing by the
argument. This leads then to the following expression for
the flavor eigenstate

jνei ¼ Ue1jme
1i þUe2jmμ

1i þUe3jmτ
1i

−Ue1

X3
α¼1

X
k¼1

μe1kU
−1
e1 þ μμ1kU

−1
e2 þ μτ1kU

−1
e3

me −mk
jkαi:

ð47Þ

Now let us drop the assumption (42) and give for the
simplified equation (47) the expression for a larger cross
mixing among the SM neutrinos which is a more realistic
scenario. Then the equation gets modified in the follow-
ing way,

jνei¼Ue1jme
1iþUe2jmμ

1iþUe3jmτ
1i−

X3
α¼1

X
k¼1

Ue

⟶
C
⟶

me−mk
jkαi;

ð48Þ

with

Ue

⟶ ¼

0
B@

Ue1

Ue2

Ue3

1
CA; ð49Þ

and

C
⟶ ¼

0
B@

μe1kU
−1
e1 þ μμ1kU

−1
e2 þ μτ1kU

−1
e3

μe1kU
−1
μ1 þ μμ1kU

−1
μ2 þ μτ1kU

−1
μ3

μe1kU
−1
τ1 þ μμ1kU

−1
τ2 þ μτ1kU

−1
τ3

1
CA: ð50Þ

In an analogous way, Eq. (43) can get modified.
With these developed tools we can now calculate a

general expression for a flavor eigenstate of a neutrino
which has mixing with a large number of extra states and
also includes mixing with the other flavor states. The
investigated case of nondegenerated nonperturbed eigen-
states can be used for the ADDM scenario and via a cross-
check we can reproduce the one-flavor equation obtained
in [13]. In the following section we show how one can
calculate the flavor states for a highly-degenerated mass
matrix which are important for the DR scenario.

V. HIGHLY-SYMMETRIC MASS MATRICES

So far we investigated the case of a very general mass
matrix which contains mixing with all the states of the extra
space, but the cases where these mass matrices have a
specific structure and are highly symmetric are of interest
also. One specific example of this is the “many species
theory” with exact copies of the SM.
We now want to present a way to deal with these kind of

matrices when they are blockwise grouped in their mass
matrix. Without loss of generality, we illustrate this on the
example of the DR scenario. A grouping of the different
copies of the SMcan occur according to theVEVof theHiggs
doublets. Notice that even if copies obey a strict permutation
symmetry, this symmetry can be spontaneously broken by
the VEVs of the Higgs doublets. This is because, due to the
low cutoff and the cross-couplings among different doublets,
the potential can admit vacua in which Higgs doublets of
different copies take different VEVs, hHji ¼ vj.
Also, because in principle a Majorana mass term for

neutrinos is not forbidden either by gauge or by permu-
tation symmetry, we will investigate the common Dirac
operator

ðHLÞiλijνRj; ð51Þ

also a Weinberg operator of the form

ðLciσ2HÞiλijðHiσ2LÞj; ð52Þ

where the indices i and j label different copies and L being
the SU(2) doublet and σ2 acting in this space. As pre-
viously, we assume that Yukawa couplings obey the
PðNÞ-symmetry and therefore have the form of (3).
Notice that the operators (52) break the global lepton

number symmetries explicitly.
The key now is to assign different Higgs VEVs to

different SM copies. We group the copies with the same
VEVs in diagonal blocks of the neutrino mass matrix.
Let us consider a minimal case of this sort in which the

VEVs take two possible values v and v0. We take a
subgroup of size N < NTOTAL and assign the VEV v. To
the rest of the species M ¼ NTOTAL − N we assign the
VEV v0. This assignment can be expressed as

vi ¼
�
v for i ≤ N

v0 for i > N:
ð53Þ

Taking this into account and plugging it into the operators
(51) and (52) one gets the following mass matrices
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MMajorana ¼

0
BBBBBBBBBBBBBBBB@

av2 bv2 bv2 … bv2 bv0v … bv0v

bv2 av2 bv2 … bv2 ..
. . .

. ..
.

..

. . .
. ..

. ..
. . .

. ..
.

bv2 … av2 bv0v … bv0v

bv0v … bv0v av02 bv02 bv02 … bv02

..

. . .
. ..

.
bv02 av02 bv02 … bv02

..

. . .
. ..

. ..
. . .

. ..
.

bv0v … bv0v bv02 … av02

1
CCCCCCCCCCCCCCCCA

; ð54Þ

and

MDirac ¼

0
BBBBBBBBBBBBBBBB@

av bv bv … bv bv … bv

bv av bv … bv ..
. . .

. ..
.

..

. . .
. ..

. ..
. . .

. ..
.

bv … av bv … bv

bv0 … bv0 av0 bv0 bv0 … bv0

..

. . .
. ..

.
bv0 av0 bv0 … bv0

..

. . .
. ..

. ..
. . .

. ..
.

bv0 … bv0 bv0 … av0

1
CCCCCCCCCCCCCCCCA

: ð55Þ

The diagonalization of the above mass matrices will be performed in the next section.

A. Diagonalizing of the Majorana mass matrices

In this part, the Majorana mass matrices will be dia-
gonalized. Because the resulting expressions are rather
complex the diagonalization procedure will be done within
certain limits. The two limits which will be discussed are
v0 ≫ v and vice versa.

1. The symmetric-breaking limit of the mass matrix

Here the focus lies on the Majorana mass matrix (54) and
we make the assumption that the breaking of PðNÞ is into
two equally large sectors, M ¼ N. In order to simplify the
resulting equations even further, we will also assume that
v0 ≫ v. we put the value v0 close to the cutoff of the theory
ð∼TeVÞ. This will lead to very interesting phenomeno-
logical implications.
We start diagonalizing (54) noticing that it is a 2 × 2

block matrix. As the first step, we multiply the matrix with
the following transformation matrix

U0 ¼
�
S 0

0 S

�
; ð56Þ

where S is the diagonalization matrix of a matrix of just
ones (a matrix with the same entry everywhere)

S ¼

0
BBB@

1 −1 … …

..

.
1 0 …

..

.
0 . .

.
0 …

1
CCCA: ð57Þ

This leads then to the following expression

U0−1MMajoranaU0 ¼ U0−1
�
A B

C D

�
U0

¼
�
S−1AS S−1BS

S−1CS S−1DS

�
; ð58Þ

where the matrices A, B, C, and D denote the block entries
of the mass matrix. One can separate the diagonal entries of
the matrices A and D from the rest of the matrix and turn
this one into a matrix with just the same entry

A¼vλij¼

0
BBB@
ða−bÞv2 0 …

0 . .
.

0

..

.
… ða−bÞv2

1
CCCAþ

0
BBB@
bv2 … …

..

. . .
. ..

.

..

.
… bv2

1
CCCA:

ð59Þ
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The diagonal part commutes with S and one is therefore left with the following matrix

0
BBBBBBBBBBBB@

ða − bÞv2 þ Nbv2 0 … Nbvv0 0 … 0

0 ða − bÞv2 0 … 0 … 0

..

.
0 . .

.
0 … 0

Nbvv0 0 … ða − bÞv02 þ Nbv02 0 … 0

0 … 0 ða − bÞv02 … 0

0 … … 0 . .
.

0

1
CCCCCCCCCCCCA

: ð60Þ

Now one can take out the diagonal element and can bring
it down to a 2 × 2 matrix of the following form,

�
Nbv2 Nbvv0

Nbvv0 Nbv02 þ ða − bÞðv02 − v2Þ

�
: ð61Þ

In order to find the mass eigenstates, one has to
manipulate (60) further with the following rotation matrix,

�
cosðθÞ sinðθÞ
− sinðθÞ cosðθÞ

�
; ð62Þ

with the rotation angle

θ ¼ 1

2
arctan

�
2

vv0

v02 − v2

�
: ð63Þ

The rotation matrix multiplied with the U0 matrix gives the
transformation matrix of the mass matrix. The result is

U ¼

0
BBBBBBBB@

cosðθÞ −1 … −1 sinðθÞ 0 …

cosðθÞ 1 0 … sinðθÞ 0 …

..

.
0 . .

. ..
.

0 …

− sinðθÞ 0 … 0 cosðθÞ −1 …

..

.
0 … 0 ..

.
1 0 …

1
CCCCCCCCA
:

ð64Þ

From here we can see that just two states are affected by the
symmetry breaking and the rest stays degenerated with
the eigenvalues ða − bÞv2 and ða − bÞv02 . Therefore, we
can rewrite the new heavy states in terms of the heavy states
of the unbroken permutation subset, which we already
encountered in Eqs. (6) and (7). Again in order to simplify
the rotation angle (63), we use the limit v0 ≫ v. The result
is then the following:

nbH ¼ nH −
v
v0
ñH; ð65Þ

ñbH ¼ ñH þ v
v0
nH; ð66Þ

where we used tilde for the v0 sector. When one now solves
for the species states of the two different sectors one gets
the following two expressions,

n1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
N − 1

N

r
n01 þ

1ffiffiffiffi
N

p nbH þ 1ffiffiffiffi
N

p v
v0
ñbH; ð67Þ

(notice that for the sake of simplicity the overall normali-
zation factor is suppressed)

nNþ1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
N − 1

N

r
ñ01 þ

1ffiffiffiffi
N

p ñbH −
1ffiffiffiffi
N

p v
v0
nbH; ð68Þ

with the eigenvalues of the mass eigenstates,

m0
1 ¼ ða − bÞv2; ð69Þ

m̃0
1 ¼ ða − bÞv02 ; ð70Þ

mH ¼ 2ða − bÞv2; ð71Þ

m̃H > MP: ð72Þ

This is a rather interesting result for phenomenology which
we will take a closer look at later. We want to point out that
the common heavy eigenstate nH has a mass, independent
of N, which was not the case in the original mechanism.
This means that the common heavy eigenstate is not super
heavy and neutrino oscillations into this state are therefore
possible.

2. Asymmetric breaking pattern with a large heavy sector

One can also break the symmetry in a way that the
sectors include different amounts of copies, N ≠ M, where
N stands for the sector with a VEV of v and M for v0.
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In order to keep the expressions for the final results in a simple form, we take the limit Mv02 ≫ Nv2. After repeating the
same diagonalization procedure, the matrix (60) in this case has the following form,

0
BBBBBBBBBBBB@

ða − bÞv2 þ Nbv2 0 … Mbvv0 0 … 0

0 ða − bÞv2 0 … 0 … 0

..

.
0 . .

.
0 … 0

Nbvv0 0 … ða − bÞv02 þMbv02 0 … 0

0 … 0 ða − bÞv02 … 0

0 … … 0 . .
.

0

1
CCCCCCCCCCCCA

: ð73Þ

Before we can perform the rotation, we have to make an
intermediate step which brings the off-diagonal entries to
the same value. Therefore one applies another transforma-
tion matrix of the form

0
BBBBBBBBB@

1 0 … … … …

0 . .
.

0 … … …

..

.
… κ 0 … …

..

.
… 0 1 0 …

..

.
… … 0 . .

.
0

1
CCCCCCCCCA
; ð74Þ

with κ being

κ ¼
ffiffiffiffiffi
N
M

r
: ð75Þ

After this procedure the off-diagonal entries are equal
and one can perform the rotation like in the symmetric case.
Correspondingly, one gets a mixing angle of the form

θ ¼ 1

2
arctan

�
−2

ffiffiffiffi
N

p ffiffiffiffiffi
M

p
bvv0

Nbv2 −Mbv02

�
: ð76Þ

The resulting transformation matrix is

U¼

0
BBBBBBBBB@

cosðθÞ −1 … −1 sinðθÞ 0 …

cosðθÞ 1 0 … sinðθÞ 0 …

..

.
0 . .

. ..
.

0 …

−κsinðθÞ 0 … 0 κcosðθÞ −1 …

..

.
0 … 0 ..

.
1 0 …

1
CCCCCCCCCA
; ð77Þ

and θ simplified to

θ ¼
ffiffiffiffiffi
N
M

r
v
v0
: ð78Þ

The resulting mass eigenstates are then

nbH ¼ nH −
N
M

v
v0
ñH; ð79Þ

ñbH ¼ ñH þ v
v0
nH; ð80Þ

with the eigenvalues

mH ¼ ða − bÞv2; ð81Þ

m̃H > MP: ð82Þ

The corresponding copy eigenstates are

n1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
N − 1

N

r
n01 þ

1ffiffiffiffi
N

p nbH þ 1ffiffiffiffi
N

p N
M

v
v0
ñbH; ð83Þ

nNþ1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
M − 1

M

r
þ 1ffiffiffiffiffi

M
p ñbH −

1ffiffiffiffiffi
M

p v
v0
nbH: ð84Þ

We see that the mass mH is the same as for the
degenerated mass eigenstates.

3. Asymmetric breaking pattern with a large light sector

One can also investigate the case with a large light sector
Nv2 ≫ Mv02 . In this case, the procedure is the same
and (73) stays untouched. The resulting mixing angle is

θ ¼ −
ffiffiffiffiffi
M
N

r
v0

v
: ð85Þ

The eigenvalues are

mH ¼ ða − bÞv02 ; ð86Þ
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m̃H > MP: ð87Þ

The corresponding eigenstates are given by

ñbH ¼ v
v0
nH þ ñH; ð88Þ

nbH ¼ ñH −
Mv0

Nv
nH: ð89Þ

The copy eigenstates are

n1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
N − 1

N

r
n01 −

1ffiffiffiffi
N

p v0

v
nbH þ 1ffiffiffiffi

N
p v0

v
ñbH; ð90Þ

nNþ1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
M − 1

M

r
ñ01 þ

1ffiffiffiffiffi
M

p nbH þ 1ffiffiffiffiffi
M

p M
N

�
v0

v

�
2

ñbH: ð91Þ

Now the situation is reversed. The mH goes to the
eigenvalues of the degenerated states of the heavy sector.
Taking v0 close to the cutoff (∼TeV) the estimated values of
mH could be up to ∼keV.

B. Diagonalizing of the Dirac mass matrix

Let us now turn to diagonalization of the Dirac mass
matrix which results from the operator (51). The procedure
is similar but some details differ from the Majorana case.

1. The symmetric-breaking limit of the Dirac mass matrix

After the first steps, similar to the ones taken for the
Majorana case, the matrix has the form

0
BBBBBBBBBBBB@

ða − bÞvþ Nbv 0 … Nbv 0 … 0

0 ða − bÞv 0 … 0 … 0

..

.
0 . .

.
0 … 0

Nbv0 0 … ða − bÞv0 þ Nbv0 0 … 0

0 … 0 ða − bÞv0 … 0

0 … … 0 . .
.

0

1
CCCCCCCCCCCCA

: ð92Þ

Now the situation is different because the matrix (92) is not
symmetric (60). Because of this one has to introduce the
auxiliary parameter κ already in the symmetric breaking
limit

κ ¼
ffiffiffiffi
v0

v

r
; ð93Þ

and the rotation angle is

θ ¼
ffiffiffiffi
v
v0

r
: ð94Þ

The resulting heavy eigenstates are

nbH ¼ 1ffiffiffi
2

p nH −
1ffiffiffi
2

p ñH; ð95Þ

ñbH ¼ ñH þ v
v0
nH; ð96Þ

with the eigenvalues

mH ¼ 2ða − bÞv; ð97Þ

m̃H > MP: ð98Þ

Solving for the species states leads to

n1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
N − 1

N

r
n01 þ

ffiffiffiffi
2

N

r
nbH þ 1ffiffiffiffi

N
p ñbH; ð99Þ

nNþ1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
N − 1

N

r
n01 −

ffiffiffiffi
2

N

r
v
v0
nbH þ 1ffiffiffiffi

N
p ñbH: ð100Þ

2. Asymmetric breaking pattern with a large heavy sector

Now we turn again to the cases of asymmetric breaking
of the permutation group. We investigate the scenario with
M ≫ N. In order to do so, in the matrix (92) we replace N
with M for one sector like in the Majorana case. In this
scenario the auxiliary parameter becomes

κ ¼
ffiffiffiffiffiffiffiffi
Nv0

Mv

r
; ð101Þ

and the resulting rotation angle is

θ ¼
ffiffiffiffiffiffiffiffi
Nv
Mv0

r
: ð102Þ

The mass eigenstates are
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nbH ¼ nH −
N
M

ñH; ð103Þ

ñbH ¼ vffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2 þ v02

p nH þ v0ffiffiffiffiffiffiffiffiffiffiffiffi
v02þv2

p ñH; ð104Þ

with the eigenvalues

mH ¼ ða − bÞv; ð105Þ
m̃H > MP: ð106Þ

The species states are

n1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
N − 1

N

r
n01 þ

1ffiffiffiffi
N

p nbH þ 1ffiffiffiffi
N

p N
M

ñbH; ð107Þ

nNþ1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
M − 1

M

r
ñ01 þ

1ffiffiffiffiffi
M

p ñbH −
1ffiffiffiffiffi
M

p v
v0
nbH: ð108Þ

Again the oscillation in our copy has an extremely small
frequency because the Δm goes to 0 but, on the other hand
it is suppressed as 1=N, but N in the present case is
not large.

3. Asymmetric breaking pattern with a large light sector

Finally, let us investigate the case with N ≫ M and
v0 ≫ v. The auxiliary parameter κ stays the same as in
Eq. (101). The rotation angle is

θ ¼ −
ffiffiffiffiffiffiffiffi
Mv0

Nv

r
; ð109Þ

with the eigenstates

nbH ¼ ñH −
M
N
nH; ð110Þ

ñbH ¼ ñH þ v
v0
nH: ð111Þ

The eigenvalues are

mH ¼ ða − bÞv0; ð112Þ
m̃H > MP: ð113Þ

The corresponding species states are

n1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
N − 1

N

r
n01 −

1ffiffiffiffi
N

p v0

v
nbH; ð114Þ

nNþ1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
M − 1

M

r
ñ01 þ

1ffiffiffiffiffi
M

p nbH: ð115Þ

VI. PHENOMENOLOGY

We now want to turn to the phenomenological implica-
tions of the theoretical framework we built up in the
previous sections. We will do this within a specific theory.
First, we want to point out that the first steps in this topic
were already done in [13] for ADDM and [9] in DR, but in
both cases, just the one-flavor case of the SM neutrino was
investigated. We now aim to generalize this analysis to the
three-flavor case using the general framework which we
presented before.

A. Phenomenology of ADDM model

First, we want to discuss the phenomenology of the
ADDM scenario in a realistic three-flavor setting. In order
to do so, we want to use the framework of Sec. III and apply
our generally derived formulas to the ADDM case. First,
we have to define the mass matrix we are investigating. For
this, we take the ansatz from [13] and generalize it to the
three-flavor case. To write down the resulting mass matrix
we assume that the flavor symmetry is preserved in the
bulk. This leads to the effect that the mixing among bulk
states is diagonal and the resulting mass matrix is

0
BBBBBBBBBBBBBBBBBBBBB@

mee

ffiffiffi
2

p
mee … … meμ

ffiffiffi
2

p
mee … meτ

ffiffiffi
2

p
mee …

0 1
R 0 … … … … … … …

0 0 . .
.

0 … … … … … …

0 0 0 k
R 0 … … … … …

mμe

ffiffiffi
2

p
mμμ …

ffiffiffi
2

p
mμμ mμμ

ffiffiffi
2

p
mμμ … mμτ

ffiffiffi
2

p
mμμ …

0 … … … 0 1
R 0 … … …

..

.
… … … … 0 . .

.
0 … …

mτe

ffiffiffi
2

p
mττ … … meτ

ffiffiffi
2

p
mττ … meτ

ffiffiffi
2

p
mττ …

0 … … … … … … 0 1
R …

1
CCCCCCCCCCCCCCCCCCCCCA

: ð116Þ

In order to perform the diagonalization of this mass matrix, one has to define the parametrization of the UPMNS matrix
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UPMNS ¼

0
B@

c12c13 c13s12 s13
−c23s12eiϕ − c12s13s23 c12c23eiϕ − s12s13s23 c13s23
s23s12eiϕ − c12c23s13 −c12s23eiϕ − c23s12s13 c13c23

1
CA: ð117Þ

With this PMNS-matrix parametrization, we can use the
formula (48) to calculate the expression for e.g., the muon
neutrino. The result is

jνμi ¼ Uμ1jme
1i þ Uμ2jmμ

1i þ Uμ3jmτ
1i

þUμ

⟶
C
⟶X

α

X
k

1

k
jkαi; ð118Þ

with C
⟶

ADD

C
⟶

ADD ¼

0
B@

ξeU−1
e1 þ ξμU−1

e2 þ ξτU−1
e3

ξeU−1
μ1 þ ξμU−1

μ2 þ ξτU−1
μ3

ξeU−1
τ1 þ ξμU−1

τ2 þ ξτU−1
τ3

1
CA; ð119Þ

and the normalization

N2
μ ¼ 1þ π2

2
ðUμ

⟶
C
⟶Þ2: ð120Þ

Notice that the parameters ξα are related to each other via

ξe ∝ me ≈Oð1Þmμ ≈O0ð1Þmτ; ð121Þ

and therefore the key parameter in this expression is just the
size of the dominant extra dimension R.
In order to get an impression of the dependence of this

deviation of the composition of a muon neutrino from the
Standard Model composition, one can calculate the survival
probability. We assume that just the lowest modes of the
KK towers contribute to the oscillations since the higher
modes get averaged out due to large mass splittings. Then
the survival probability reads as

Pðνμ → νμÞ ¼
1

jNμj4
�X

i

X
j

jUμij2jUμjj2e
iðm2

i
−m2

j
Þ

2E

þ 3jU⃗μ C⃗ j4
�
π4

90
− 1

��
; ð122Þ

with E being the energy of the investigated neutrino. This
can be compared to the original result in [13] for the one-
flavor case

P ¼ 1

ð1þ ðπ2=6Þξ2Þ2
�
ð1þ ξ2Þ2 þ

�
π4

90
− 1

�
ξ4

− ξ2sin2
ðm2

n −m2
DÞt

4E

�
: ð123Þ

From these two equations, one can see that some properties
of the one-flavor case also appear in a modified way in the
three-flavor equation. Particularly interesting is how in
ADDM models the averaged out modes influence the
survival probability by a term proportional to ðπ4

90
− 1Þ if

just the lowest mode is not averaged out. Of course, the
experimental setup and the specific mass splitting deter-
mine how many modes can be resolved in the oscillations.
As more Kaluza-Klein modes participate as less important
the contribution of the averaged-out modes is.
For comparison of the three-flavor scenario with SM

prediction, we take the latest results of the NuFIT
Collaboration [33] which are

θ12¼33;44°; θ23¼49;0°; θ13¼8;57°; δCP¼195°:

ð124Þ

With this data, one can calculate the survival probability of
a muon neutrino depending on the parameter ξ of the
ADDMmodel. Figure 1 shows the result of this calculation
and how it deviates from the SM case. Thus, the precision
measurements of neutrino oscillations can put bounds
on the critical value ξ of the ADDM model. This can be
directly related to R which has been searched for by several
different experiments [34–45] with the strongest bound
being R < 0.81 μm. From Fig. 1 we get a feeling of how
sensitive neutrino probes can be and we see that a size of
R ¼ 0.4 μm still has quite strong deviations from the SM,
and therefore modern neutrino experiments can hope for
giving bounds around R < 0.4 μm or even smaller.
An interesting distinguishing property of neutrino experi-

ments is that these measure the size of the largest extra

FIG. 1. Survival probability of a muon neutrino in a three-flavor
ADD mixing scenario
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dimension, meanwhile fifth force, collider, and astrophysical
experiments give bounds on the fundamental scale of gravity
M�. According to [46] the bounds onM� areM�>4TeV for
tabletop experiments, M�>5.9–11.2TeV for collider sig-
nals, andM� > 1700 TeV for neutron star estimations. How
these bounds translate into the actual size of the extra
dimensions depends heavily on the number of assumed
extra dimensions and if one allows a different scale among
them. Therefore, measuring R via neutrino experiments is a
complementary way to test the ADDM scenario.
Moreover, this deviation from the SM case also affects the

unitarity of the lepton mixing matrix. If the familiar three
flavors of the SM neutrinos exhaust the spectrum of neutral
leptons, the 3 × 3 mixing matrix we measure in neutrino
experiments must be unitary. This does not hold if there exist
more than three neutrinos. In this case, the lepton mixing
matrix is not a 3 × 3matrix anymore but a ð3þ nÞ × ð3þ nÞ
matrix where n is the number of additional neutrinos.
Nevertheless, in the experiments that are sensitive to

active species, we would still measure only the 3 × 3 part of
the full lepton mixing matrix. Since this restricted part, in
general, will not be unitary we will effectively register a
deviation from unitarity. This happens also in the ADDM
model where neutrinos can oscillate into the KK modes.
Using the above results, the 3 × 3 part of the full lepton
mixing matrix would get modified in the following way

0
BBB@

Uee
1
Ne

Ueμ
1
Ne

Ueτ
1
Ne

Uμe
1
Nμ

Uμμ
1
Nμ

Uμτ
1
Nμ

Uτe
1
Nτ

Uτμ
1
Nτ

Uττ
1
Nτ

1
CCCA: ð125Þ

Now the task is to measure the parameters of the well-
known PMNS matrix very precisely and look for possible
deviations from unitarity. Of course, this feature is not
unique to ADDM and something similar can be realized in
other models too. However, the above example provides us
with concrete motivated framework for setting bounds on
the unitarity-violating parameters and using them for
discriminating between the different models. We are going
to see this explicitly in the next section when we discuss the
phenomenology of the DR model and confront it with the
ADDM framework.

B. Phenomenology of the Dvali-Redi model

The generalization of the mass matrix in the DR scenario
goes as follows. The general structure of the mass matrix is
again similar to (40) but this time the off-diagonal block
matrices have the following form

Mαβ ¼

0
BB@

mαβ 0 0 …

0 mαβ 0 …

..

.
0 . .

. ..
.

1
CCA: ð126Þ

This specific structure comes from the fact that in this
theory the mixing among the different flavors can happen
within a single copy since it is determined by the physics
of the SM. This leads to the following electron neutrino
eigenstate

jνei ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
N − 1

N

r
ðUe1jm1i þ Ue2jm2i þ Ue3jm3iÞ

þ 1ffiffiffiffi
N

p ðUe1jmH
1 i þ Ue2jmH

2 i þ Ue3jmH
3 iÞ: ð127Þ

The key parameter is the number of active species.
Above we showed how we can group the total number
of species into light and heavy sectors; now one can
investigate different scenarios with sectors which contain
different numbers of copies. Because we have access
predominantly to our copy of the SM, for us the scenarios
with a small number of active species in the sector our copy
belongs to are of special interest. Due to this reason, we
focus on the scenarios with large heavy sectors that bring
down the number of active species in our sector.
Taking the two expressions we found earlier for the

Weinberg and Dirac operator (83) and (107) and comparing
them with each other, one sees that the oscillation into the
other sector is suppressed by the number of active species
in the large sector. Therefore, one can safely ignore this
contribution, especially in the Weinberg case, since there it
is further suppressed by the scale of the larger VEV v0.
Then, the probability of survival in the one-flavor case [9]
is given by

PðtÞ ¼ 1 −
4

N
sin2

�
Δm2t
2E

�
: ð128Þ

In this scenario, the problem of observing the effect is
shifted from the large suppression by the amplitude into
the extremely low frequency which comes from very small
splitting among the mass eigenstates. Nevertheless, this
case is still of high potential interest for long-baseline
experiments of neutrino oscillations. Astrophysical sources
of high-neutrino fluxes could be useful candidates for
testing such scenarios. Of course, detection of deviations
from the expected neutrino flux in pure SM requires an
understanding of the operation mechanisms of these
sources to sufficiently high accuracy.

1. Integrating out scenario

We observed that in small light sector scenarios the
suppression of the amplitude goes contrary to the frequency
of the oscillations. A scenario that can bring both param-
eters to the range of easier experimental accessibility is the
“integrating out” scenario which we will now consider. The
goal is to combine the advantages of the different above-
studied scenarios into a unique setup. Let us assume that the
permutation symmetry is broken very heavily among the
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two sectors; one sector contains a large number M of
copies and another sector contains a smaller number N.
(This is the case which we have already discussed above.)
However, let us now assume that due to additional
breaking of the permutation symmetry, the smaller sector
is further split into two sectors with the numbers N0
and M0. Obviously, the primary breaking of perturbation
symmetry into the M and N sectors is still dominant and
the secondary breaking does not affect physics up to
effects of order OðNMÞ which is already negligibly small.
Due to this reason, this sector can be considered as
effectively decoupled from the other sectors.
Let us now turn our attention to the leftover copies that

are broken down into two smaller sectors N0 and M0. Here
we have a choice to which sector our SM copy belongs. In
particular, we can assume that the number of copies in our
sector N0 is much larger than the other sectorM0. This does
not decrease the suppression of the amplitude very much
but allows us to liberate the value of the common heavy
eigenstate mH in which the neutrinos of both sectors
oscillate and can make Δm large enough for bringing
the frequency to a value comparable to the ordinary
oscillations of the SM. This scenario of splitting is
analogous to the large light-sector scenario.
Overall this integrating out scenario enables us to free

both parameters of the theory. It allows us to bring down the
number of copies and the corresponding oscillation frequen-
cies to a scale that makes it observable for experiments.
We can now calculate the oscillation in the three-flavor

case with an equal-size splitting scenario. The equation for
the survival probability can be written down as

Pðνμ → νμÞ ¼
X6
i¼1

X6
j¼1

jUμij2jUμjj2e
iðm2

i
−m2

j
Þ

2E : ð129Þ

First, we want to point out that in this expression no modes
are averaged out like in the ADDM scenario. The reason
for this is that just three additional mass eigenstates have
to be included; meanwhile, in ADDM scenarios the KK
tower can inhabit a very large number of additional mass
eigenstates. To analyze Eq. (129) further we split it up in
the following way

Pðνμ → νμÞ ¼
�
N − 1

N

�
2X3

i¼1

X3
j¼1

jUμij2jUμjj2e
iðm2

i
−m2

j
Þ

2E

þ N − 1

N2

X3
i¼1

X6
j¼4

jUμij2jUμjj2e
iðm2

i
−m2

j
Þ

2E

þ N − 1

N2

X6
i¼4

X3
j¼1

jUμij2jUμjj2e
iðm2

i
−m2

j
Þ

2E

þ 1

N2

X6
i¼4

X6
j¼4

jUμij2jUμjj2e
iðm2

i
−m2

j
Þ

2E : ð130Þ

The first term in this expression represents the oscillations
within the flavors which are already known in the SM. For
large N these oscillations are just slightly modified. One
also sees that the dominant contributions are coming from
oscillations into the hidden species of order 1

N like in the
one-flavor case in Eq. (129). The contributions of solely the
BSM terms are suppressed by 1

N2. Figure 2 shows the result
of the calculations for a muon neutrino. In this figure we
see that the difference compared to the SM can be also
quite severe and therefore we expect that current neutrino
experiments can restrict the number of species to
N > 10 − 100. Using neutrinos to test extra species is
quite an exciting result because the LHC gives a lower
bound on M� and therefore an upper bound to the number
of species meanwhile neutrino experiments give a lower
bound on N. Testing the DR scenario with neutrinos is
therefore complementary to the bounds that LHC gives us.
Let us also show the unitarity violation in the SM lepton

mixing matrix which is expected by the DR scenario. For
this, we have to look into the formula (127). Picking out the
3 × 3 block matrix in the upper-left corner of the resulting
mixing matrix we can write

0
BBBBB@

ffiffiffiffiffiffiffi
N−1
N

q
Uee

ffiffiffiffiffiffiffi
N−1
N

q
Ueμ

ffiffiffiffiffiffiffi
N−1
N

q
Ueτffiffiffiffiffiffiffi

N−1
N

q
Uμe

ffiffiffiffiffiffiffi
N−1
N

q
Uμμ

ffiffiffiffiffiffiffi
N−1
N

q
Uμτffiffiffiffiffiffiffi

N−1
N

q
Uτe

ffiffiffiffiffiffiffi
N−1
N

q
Uτμ

ffiffiffiffiffiffiffi
N−1
N

q
Uττ

1
CCCCCA
: ð131Þ

This is the matrix which is measured by experiments. One
can immediately see that unitarity is violated by the overall

factor of
ffiffiffiffiffiffiffi
N−1
N

q
. This is a characteristic signature of the

theory and it comes from the democratic oscillation into the
common heavy eigenstates of the neutrino matrix. The idea
of testing the violation of unitarity experimentally by using
available experimental data is still ongoing work [31].

FIG. 2. Survival probability of a muon neutrino in a three-flavor
case in DR model with an equal size splitting scenario.
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At the end of the phenomenological section we want to
briefly address matter effects for such theories. To calcu-
late these effects one can use the standard paradigm for
additional sterile neutrinos and therefore, the effective
Hamiltonian can be written as

Heff ¼
1

2E

2
6666664
U

0
BBBBBB@

me 0 0 0 0

0 mμ 0 0 0

0 0 mτ 0 0

0 0 0 m4 0

0 0 0 0 . .
.

1
CCCCCCA
U†

þ

0
BBBBBB@

A 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 A0 0

0 0 0 0 . .
.

1
CCCCCCA

3
7777775
; ð132Þ

with A ¼ 2
ffiffiffi
2

p
GFNeE, A0 ¼ −

ffiffiffi
2

p
GFNnE and Ne, Nn

being the densities of electrons, neutrons respectively.
The consequence is that resonances for BSM modes can
appear and change the oscillation pattern. Even though it is
not guaranteed that these resonance effects appear in
experiments which are heavily influenced by matter effects
like IceCube [47] there is still a chance that a favorable
combination of experimental parameters can increase the
sensitivity of the experiment.

VII. CONCLUSIONS

In this paper, we have focused on neutrino masses in the
class of theories in which gravity cutoff is lowered down to
∼TeV scale. The two main frameworks accomplishing this
lowering of the cutoff are ADD [2,3] and “many species”
[5,6] theories. In both cases, the decrease of the gravita-
tional cutoff can be understood as a result of the “dilution”
of the graviton wave function in a certain space labeled
by a new coordinate. In both scenarios, the volume of this
space can be measured by the number of particle species.
Correspondingly, the role of the coordinate can be played
by a species label. As shown in [5], in case of ADD [2]
the species represent the Kaluza-Klein excitations.
Correspondingly, the extra space has an actual geometric
meaning of large extra spatial dimensions. On the other
hand, in the “many species” solution to the hierarchy
problem [5,6], the species can be arbitrary particles.
Previously it has been suggested that in both scenarios

the small neutrino masses emerge naturally due to the
dilution of the wave function of the sterile (right-handed)
neutrino in the extra space. Within ADDM this idea was
introduced [12] and its phenomenological implications
were studied in [13]. In this case, the wave function of
the sterile neutrino is diluted in the actual geometric extra

space. This results in a highly suppressed Yukawa coupling
between the sterile and the active neutrino of the SM,
thereby, generating a tiny neutrino mass. As shown in [13],
due to the mixing of an active left-handed neutrino with the
KK tower of the sterile partner, a nontrivial oscillation
pattern emerges.
More recently it has been shown [9] that a similar

suppression mechanism of the neutrino mass works in the
DR scenario [5,6] in which species represented the iden-
tical copies of the SM and the role of the extra coordinate is
played by their label. Using this framework, it was shown
in [9] that the dilution of the wave function of the sterile
neutrino in the space of species results in a small neutrino
mass. However, as discussed there the phenomenological
aspects of this scenario are very different from the case
of [12] which relies on ADDM framework.
In this paper, we have generalized the above original

proposals in certain directions. In particular, we included
a more realistic case of three SM neutrino flavors. We
adopted the universal language of species which allows
capturing some general aspects of the neutrino mixing
matrix and confront different scenarios.
We calculated an approximate formula for the flavor

eigenstates of a general mass matrix using perturbation
theory in the three-flavor case. Next, we showed how highly
symmetric mass matrices can be calculated in an exact
manner and we investigated different symmetry breaking
patterns of these highly symmetric mass matrices. We gave
explicit expressions for flavor eigenstates for each case.
Our further step was to apply these generally derived

formulas to the explicit theories of neutrino masses such as
the proposal of ADDM [12,13] within ADD and the one of
DR [9] within the many species frameworks respectively.
Here we used the derived formulas and gave a three-flavor
solution that depends on the parameters of the specific
theories.
As it was already pointed out in [13,9] within ADDM

and DR frameworks, the generic prediction of both
scenarios is the nonconservation of neutrino number within
the SM; this is due to the mixing of SM active neutrinos
with the tower of sterile partners. This mixing results in the
oscillations of neutrinos into hidden species as well as in
seeming violation of unitarity within the SM lepton sector.
Thus, our calculations of these effects for three-flavor

case have important phenomenological implications in both
directions. First is the account of deviations of neutrino
oscillations from the case of SM. Second, is the para-
metrization of violation of unitarity of the PMNS matrix.
The structures of unitarity-violation in the two different

theories (ADDM [12,13] of ADD versus Dvali-Redi [9]
of many species) differ from each other. Our analyses
therefore has a discriminating power between these two
theories.
In general, we can say that small neutrino mass gen-

eration via mixing with a large number of extra species is an
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exciting field with different phenomenological effects on
low-energy neutrino physics. These effects can be searched
for both in current neutrino experiments, such as IceCube,
as well as in the planned ones like JUNO [48]. Here, the
violation of unitarity can be tested and one can use their
results to give bounds on the parameters of the theories,
such as the size of the extra dimensions in ADDM or the
number of sterile neutrino species to which our neutrino
mixes within many species scenario.
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