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Within the SPð2, RÞ symmetry, the two-time model (2T model) has six dimensions with two dimensions of time and the dilaton
field that can be identified as inflaton in a warm inflation scenario with potential of the form ~ ϕ4. From that consideration, we
derive the range of parameters for the Higgs-Dilaton potential, the coupling constant between Higgs and Dilaton (α) is larger than
0.0053 and the mass of Dilaton is smaller than 10−7 GeV. Therefore, the 2T model indirectly suggests that extra dimension can
also be a source of inflation.

1. Introduction

From quantum mechanics, there is a symmetry between
coordinates and momentums that can be described by a
symplectic group. When we combine this spatial symmetry
and Poincaré symmetry, it can be generally described by
the Spð2, RÞ group or leading to the spacetime must be larger
than the ordinary one, there is exactly an extra dimension of
space and time [1, 2]. From there, two-time physics (2T
physics) was formed. The 2T physics provides a better
understanding of symmetries as well as the concept of time.

The 2T model [1–6] could be a well-known choice. The
model presents us with an unusual vision of time that
advances on a plane, i.e., it has two dimensions of time.
The 2T SM (the standard model in 2T physics) has better
features than regular SM in 1T physics. The strong CP prob-
lem of QCD has been solved without axion. It shows us the
1T SM as the “shadow” of 2T framework [5, 6]. The con-
cepts of force, particles, and their interaction in 2T SM are
reduced to 1T physics through spacetime contractions which
are examples that clearly show 1T SM (the standard model
in 1T physics) fully embedded in 2T SM [5, 6]. The 2T con-
cept can be extended in gravity [4]. This theory has pro-
posed expanding the number of spacetime dimensions to

represent the whole cosmos, as well as the introduction of
dilaton and its properties, for more than a decade (since
2008). The remarkable new quantity in the 2T SM model
is the Higgs-Dilaton potential which gives us a new type of
symmetry breaking [5, 6]. Importantly, the Dilaton potential
in this model is open, so it provides us with new bases for
solving other dilemmas. In addition, the development direc-
tions as well as the success of 2T physics can be detailed in
Ref. [3].

After Alan Guth introduced the concept of inflation in
1981 [7], the nature of the inflaton field responsible for infla-
tion remained elusive. For obvious economical reasons,
researchers usually consider Higgs boson as a promising
candidate [8–10]. Currently, there are many inflation sce-
narios. The basic scenario is the slow-roll approximation in
which the potential changes slowly with respect to the field.
We therefore examine this basic approximation in the 2T
model through the Higgs-dilaton coupling.

We recognize that the inflation problem has a deep con-
nection with the number of dimensions of spacetime. The
2T model therefore has both an extradimensional effect
and exotic particles but the inflation is not yet analyzed in
detail, i.e., extra dimensions and dilaton boson can be new
materials for inflation. Therefore, the 2T SM or specifically
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the Dilaton potential in the 2T SM is chosen to analyze the
inflation problem or determine the parameters of this model
when considering dilaton as an inflaton.

This article is organized as follows. In Section 2, we give
a brief introduction to the 2T model and introduce to a new
Dilaton potential. In Section 3, we introduce some salient
features of warm inflation and show that the dilaton can
be identified as inflaton in the warm inflation scenario and
get the parameter domain of the Higgs-Dilaton potential.
Finally, we summarize and make outlooks in Section 4.

2. A Brief Introduction to 2T Model and a New
Dilaton Potential

2.1. The Spð2, RÞ Symmetry in the 2T Model. The main new
feature of 2T physics is a new gauge symmetry called Spð2,
RÞ that works in phase space ðXM , PMÞ (not just in space-
time like 1T physics). We will show that Spð2, RÞ (gauge
symmetry) necessarily requires 2 timelike dimensions.

In 2T physics, spacetime coordinates and energy
momentum are united in a doublet ðXM

1 , XM
2 Þ. XM

1 = XM is
spacetime coordinates in 2T physics and XM

2 = PM is energy
momentum in 2T physics. In short, we can label them as XM

i
with i = 1, 2. The symplectic transformation will act on this
doublet, and therefore, spacetime and energy momentum
can transform to each other. This is a brand new property
of 2T physics. In 1T physics, we just have transformations
between spacetime coordinates, for example, the Lorentz
transformation or even in gauge theory, the local gauge
transformation eiθðx

μÞ just involve spacetime coordinates.
But in 2T physics, we treat spacetime coordinates and energy
momentum equally and they can transform to each other.

The local symplectic transformation is defined as [11]

δωX
M
i τð Þ = εikω

kl τð ÞXM
l τð Þ, ð1Þ

where τ is the proper time, ωijðτÞ = ωjiðτÞ are parameters of
Spð2, RÞ, and εij is tensor Levi-Cavita. To have a connection
with the concept of Spð2, RÞgroup in Section 3.1.1, we can
write it out explicitly like this

δωX
M τð Þ = ω21 τð ÞXM τð Þ + ω22 τð ÞPM τð Þ,

δωP
M τð Þ = −ω11 τð ÞXM τð Þ − ω12 τð ÞPM τð Þ:

(
ð2Þ

Because X′M = XM + δωX
M , P′M = PM + δωP

M so in the
matrix form

X′M

P′M

 !
=

1 + ω21 ω22

−ω11 1 − ω12

 !
XM

PM

 !
= S

XM

PM

 !
:

ð3Þ

So, S should be an element of the symplectic group

ST JS =
1 + ω21 −ω11

ω22 1 − ω12

 ! 0 1

−1 0

 ! 1 + ω21 ω22

−ω11 1 − ω12

 !

=
0 1 − ω12À Á2 + ω11ω22

− 1 − ω12À Á2 + ω11ω22
h i

0

0
B@

1
CA:

ð4Þ

Therefore, we found the constraints of symplectic
parameters ðω12Þ2 = ω11ω22 or

det
ω11 ω12

ω21 ω22

 !
= 0: ð5Þ

And remember that ω12 = ω21 by definition. In that case,
S is indeed a symplectic element. Meanwhile, the local sym-
plectic transformations for the gauge fields is

δωA
ij = ∂τω

ij + ωikεklA
lj + ωjkεklA

il , ð6Þ

for the gauge fields Aij = Aji. The covariant derivative is

DτX
M
i = ∂τX

M
i − εikA

klXM
l : ð7Þ

The gauge fields here are not normal gauge fields corre-
sponding to internal transformation of the field. In 1T phys-
ics, in order to make the Lagrangian invariant under local
gauge transformations of the scalar field, or spinor (we call
this type of transformations internal transformations, they
transform the fields, not coordinates), we have to replace
the normal derivative by the covariant derivative that con-
tains the gauge field and add the kinetic term of the gauge
fields (we can not add the mass term since it will not be
invariant under the gauge transformation of the gauge field;
therefore, we need the Higgs mechanism to generate the
mass of the gauge fields). In 2T physics, however, we also
have the gauge fields corresponding to the transformations
of the coordinates (we call this type of transformations
external transformations). This is a new property that we
do not have in 1T physics.

The Lagrangian that is invariant under this local sym-
plectic transformation is [11].

S0 =
1
2

ð
dτ DτX

M
i

À Á
εijXN

j ηMN

= 1
2

ð
dτ ∂τX

M
i − εikA

klXM
l

� �
εijXN

j ηMN

=
ð
dτ _X

M
PM −

1
2A

ijXM
i X

N
j ηMN

� �
:

ð8Þ

The dot denotes the time derivative with respect to τ. Aij

is the Spð2, RÞ gauge potential. The equation of motion of
this potential goes to the constraints, the target spacetime
(1T) [4]
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We will take the variation of this action to get the
equation of motion for the gauge fields and for X, P. (Note
that ðX2Þ=δðXMXMÞ=XMδX

M + XMδXM =2XMδXM δðX:PÞ
= δðXMpMÞ = PMδX

M + XMδPM = PMδXM + XMδPM)

δS =
ð
dτ
�
PMδ _X

M + _X
M
δPM −

1
2X

2δA11 −
1
2X:PδA

12

−
1
2 P:XδA

21 −
1
2 P

2δA22 −
1
2A

11δ X2À Á
−
1
2A

12δ X:Pð Þ

−
1
2A

21δ P:Xð Þ − 1
2A

22δ P2À Á�

=
ð
dτ
�
PMδ _X

M + _X
M
δPM −

1
2X

2δA11 −
1
2X:PδA

12

−
1
2 P:XδA

21 −
1
2 P

2δA22 − A11XMδXM − A12PMδXM

− A21XMδPM − A22PMδPM

�

=
ð
dτ −

1
2X

2δA11 −
1
2 X:P + P:Xð ÞδA12 −

1
2 P

2δA22
� �

+
ð
dτ

d
dτ

δXMPM

À Á
+
ð
dτ _X

M
δPM − _PMδX

M
� �

+
ð
dτ
À
−A11XMδXM − A12PMδXM − A21XMδPM

− A22PMδPM

Á
=
ð
dτ −

1
2X

2δA11 −
1
2 X:P + P:Xð ÞδA12 −

1
2 P

2δA22
� �

+
ð
dτ

d
dτ

δXMPM

À Á
+
ð
dτ _X

M − A12XM − A22PM
� �

δPM

−
ð
dτ _P

M + A11XM + A12PM
� �

δXM:

ð9Þ

Set δS = 0, we have the equation of motion for the gauge
field A11, A12,A22 as

X2 = P2 = X:P + P:X = 0: ð10Þ

These are the constraints for Spð2, RÞ generators (the
generators of Spð2, RÞ is in general a function of X and P,
QijðX, PÞ. In flat spacetime with no background field, they
are Q11 = X2, Q12 =Q21 = X:P + P:X and Q22 = P2.). The
above equations have nontrivial solutions only if there are
two times, with fewer times these conditions collapse the sys-
tem to triviality. To see why, consider at first with no time
dimension, and ask if there are solutions to equation such as
X2 + Y2 + Z2 +W2 = 0when there are no minus sign for time.
Clearly, this equation just has trivial solution XM = PM = 0
which has no physical content. Next, consider the case with
one time dimension, we see that the only solution is that XM

~ PM must be parallel light-like (null-like) vectors propor-
tional to each other. The angular momentum in defined as

LMN = XMPN − XNPM , ð11Þ

will vanish, and hence, this is a trivial solution that does not
represent even free motion in 1T physics. In the case of two
time dimensions, these equations permit an infinite number
of nontrivial solutions. Evidently, the extra time is not intro-
duced “by hand” but the symmetry demands its existence.
The number of spatial dimensions is not limited, so in general,
the spacetime of 2T physics is d + 2 dimensions where d is the
number of spatial dimensions.

Meanwhile, the equations of motion for X, P are

_X
M − A12XM − A22PM = 0,

_P
M + A11XM + A12PM = 0:

(
ð12Þ

The particle model in 2T is still like the standard model
[5], but the spacetime is larger than the standard model [5].
Another important thing, the particle model in 2T includes
an extra Dilaton in the Higgs potential [5].

Dilaton is a scalar field which lives in 4 + 2 dimensions
of spacetime. In the standard model of 2T physics [5], in
order to initiate the electroweak phase transition that
explains the source of mass for all massive matter, the 4
+ 2 standard model requires the presence of a dilaton field
coupled to the Higgs field. The dilaton is required also by
the 2T formulation of general relativity in 4 + 2 dimen-
sions. More details about dilaton in 2T physics can be
found in Ref. [5].

2.2. The Higgs-Dilaton Potential and Gauge Fixing Technique.
The Higgs-Dilaton potential has the following form which is
as a result of b-gauge symmetry, the inspiration of this sym-
metry comes from BRST formalism [5, 6] but it ultimately
comes from the underlying Spð2, RÞ,

V Φ,Hð Þ = λ H†H − α2Φ2À Á2 +V Φð Þ, ð13Þ

where λ, α are dimensionless couplings. H and Φ are the SU
ð2Þ Higgs and dilaton doublet, respectively. VðΦÞ is the dila-
ton potential and plays a role in construction of the effective
potential.

The more complicated work will be done with the Higgs-
Dilaton Lagrangian:

L A,H,Φð Þ = 1
2Φ∂

2Φ + 1
2 H†D2H + D2H

À Á†
H

� �
− λ H†H − α2Φ2À Á2 − V Φð Þ:

ð14Þ

It is convenient if one chooses a lightcone basis in 4 + 2
dimensions written as

X±′
i = 1ffiffiffi

2
p X0′

i ± X1′
i

� �
, whereXM

i = XM
1 , XM

2
À Á

≡ XM , PMÀ Á
,

⇒
X2 = −2X+′X−′ + XμXμ,

XMPM = −X+′P−′ − X−′P+′ + XμPμ:

8<
:

ð15Þ
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We choose Bars’s parametrization [2] for the compo-
nents of XM as follows:

X+′ = κ, X−′ = κΛ, Xμ = κxμ

⇒κ = X+′,Λ = X−′

X+′ , x
μ = Xμ

X+′ ,
ð16Þ

from these choices (the gauge fixing technology), we can
reduce the 2T metric to 1T metric (Minkowski metric).

Scalar fields will be reduced to the following:

Φ Xð Þ⟶ 1
κ
ϕ xð Þ ;H Xð Þ⟶ 1

κ
h xð Þ,

∂2Φ Xð Þ = ∂M∂MΦ Xð Þ⟶ 1
κ3

∂2ϕ xð Þ
∂xμ∂xμ

,

D2H Xð Þ =DMDMH Xð Þ⟶ 1
κ3

DμDμh xð Þ:

8>>>>>>><
>>>>>>>:

ð17Þ

With the above gauge fixing, one would be able to derive
the following reduction:

L A,H,Φð Þ⟶ 1
2κ4 ϕ

∂2ϕ
∂xμ∂xμ

+ 1
2κ4 h†DμD

μh + DμDμh
À Á†hh i

−
λ

κ4
h†h − α2ϕ2
� �2

−V ϕð Þ:
ð18Þ

Note that all the κ coefficients will be simplified by the
scaling invariant of the actions through δðX2Þ when reduc-
ing from 2T to 1T [5, 6]. The Higgs and Dilaton have rede-
fined [5, 6] as

h xð Þ= 1ffiffiffi
2

p
0

v + σ xð Þ

 !
; h xð Þh i=v ; ϕ xð Þ= 1

α
ffiffiffi
2

p v + αd xð Þð Þ; ϕ xð Þh i= v
α
:

ð19Þ

As discussed in Refs. [5, 6], there are some reasons to
expect that the new Dilaton potential only takes the form
VðΦÞ = ρΦ4, and after gauge fixing to 1T physics, it takes
the form VðϕÞ = ρϕ4. We assume that the resulting scalar
field after reducing the dilaton field from 2T physics to 1T
physics is indeed the inflaton field, and we will use this quar-
tic form of the potential:

V ϕð Þ = ρϕ4, ð20Þ

to study warm inflation in the following sections and notice
that ρ has a very small value, which will be explained in a
later section.

The minimum process of this full Higgs-Dilaton poten-
tial can be considered the minimum process of the potential
when not VðϕÞ. Because ρ is very small, the minimum pro-
cess is detailed in Ref. [5].

The full Higgs-Dilaton potential is expanded as follows:

V h, ϕð Þ = λ

4 v + hð Þ2 − v + αdð Þ2Â Ã2 + ρ

4α4 v + αdð Þ4

= λ

4 h − αdð Þ2 2v + h + αdð Þ2 + ρ

4α4
Á v4 + 4αv3d + 6α2v2d2 + 4α3vd3 + α4d4
À Á

= λ

4 4v2h2 + 4α2v2d2 − 8αv2hd
À Á

+ ρ

4α4
Á v4 + 4αv3d + 6α2v2d2
À Á
+ 3, 4‒fields interaction terms

= λ

4 4v2h2 + 4α2v2d2 − 8αv2hd
À Á

+ 3ρ
2α2 v

2d2 + ρ

4α4
Á v4 + 4αv3d
À Á

+ 3, 4‒fields interaction terms

= v2 h dð Þ:
λ −αλ

−αλ λα2 + 3ρ
2α2

0
@

1
A:

h

d

 !
+ ρ

4α4

Á v4 + 4αv3d
À Á

+ 3, 4‒fields terms

≈
1
2 h′ d′
À Á

:
m2

h′ 0

0 m2
d ′

0
@

1
A:

h′

d′

 !

+ const + 3, 4‒fields terms,
ð21Þ

in which

m2
d′ =

v2 2α4λ + 2α2λ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2α4λ + 2α2λ + 3ρð Þ2 − 24α2λρ

q
+ 3ρ

� �
α2

,

ð22Þ

m2
h′ =

v2 2α4λ + 2α2λ +
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2α4λ + 2α2λ + 3ρð Þ2 − 24α2λρ

q
+ 3ρ

� �
α2

:

ð23Þ
The physical fields are

h′

d′

 !
=

A B

1 1

 !
:

h

d

 !
,

A =
2α4λ − 2α2λ +

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2α4λ + 2α2λ + 3ρð Þ2 − 24α2λρ

q
+ 3ρ

4α3λ ,

B = −
−2α4λ + 2α2λ +

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2α4λ + 2α2λ + 3ρð Þ2 − 24α2λρ

q
− 3ρ

4α3λ :

ð24Þ
To do the above minima and approximation, we have to

remove the term ρv3d/α3 or ρv3/α3 ≪ 1. In addition, the
angle of mixing between h and ϕ is proportional to α, which
is significant in an inflationary scenarino. With large α, ϕ
couples to the standard model particles as large as h does.
The signal strength that produces ϕ at the LHC, for example
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by gluon fusion, is comparable to that of the Higgs field [12,
13]. Therefore, the large α situation must be omitted.

From Equations (22) and (23), when ρ goes to zero, we
derive the massless Dilaton; this is consistent with the dis-
cussion in Ref. [5, 6].

3. Dilaton as Inflaton in the Warm ϕ4 Inflation

Inflation is a very short period of exponential expansion in
the early universe. This era is assumed to happen in order
to explain some problems of the standard Big Bang cosmol-
ogy including the horizon problem, the flatness problem,
and the seeds of cosmic structures. The observational evi-
dences strongly support the general ideas of inflation, but
the details of inflation remain elusive.

In standard inflation, there are two evident ways to cal-
culate the inflaton mass. The first one is using the quadratic
inflaton potential V = ð1/2Þm2φ2, where m is the inflaton
mass. The second one is using the exponential potential V
= e−βφ. In the latter case, we expand the Taylor series of
the potential and the term in front of φ2 is the inflaton mass.

Warm inflation is different to the standard inflation and
is a model of inflation in which, apart from the quantum
fluctuations of the inflaton field; the inflaton field is also sub-
ject to thermal fluctuations due to the interaction with the
background thermal bath. This idea was first initiated by
Berrera in 1995 [14]. Intuitively, we expect that in this model
the inflationary gravitational waves amplitudes must be
smaller than that in the standard “cold” inflation. The reason
is the following. The kinetic energy of the inflaton field will
be dissipated due to the additional thermal fluctuations,
and hence, its roll is slowed down further. This means that
the inflaton field excursion can be small and yet still pro-
duces enough the number of e-folds to resolve the horizon
or flatness problems. In turn, this implies that the tensor-to-
scalar ratio is also small due to the Lyth bound. Indeed, we will
see that this expectation turns out to be true. The ϕ4 potential
in the standard “cold” inflation is ruled out since it predicts a
too large tensor-to-scalar ratio; on the other hand, the ϕ4

potential in warm inflation works perfectly well since the pre-
dicted tensor-to-scalar ratio in this model is much smaller.

However, both of them use the slow rolling approxima-
tion (slow-roll approximation states that 1/2 _φ2 ≪ V , and
therefore ε, jηj≪ 1. Slow-roll approximation is the must
for inflation to happen. There are two formalisms of slow-
roll approximation which are potential slow-roll approxima-
tion (PSRA) and Hubble slow-roll approximation (HSRA).
In this paper, we will always use the former.). The slow-
roll parameters are defined as [15]

ε =
M2

p

2
V ′
V

 !2

,

η =M2
p
V″
V

,

ð25Þ

where Mp is 4D Planck scale and primes denote derivatives
with respect to φ.

In warm inflation, we have two cases which are the weak
and the strong dissipative regimes defined as R≪ 1 and R
≫ 1, respectively:

R = Γ

3H , ð26Þ

where H is the Hubble parameter and Γ is the inflaton decay
rate. For the warm inflation, in addition to the two usual
slow-roll parameters, we have the following two parameters
[16–21]:

β =M2
p
Γ′V ′
ΓV

, σ =M2
p
V ′
φV

: ð27Þ

The slow-roll conditions can be expressed as [16–21]

ε, ηj j, βj j, σj j≪ 1 + R: ð28Þ

In order to make sure that the potential V ~ φ4 is still
reliable, we need to calculate two important quantities,
which are the scalar spectral index ns and the tensor-to-
scalar ratio r. To do that, we first need to mention an impor-
tant quantity in inflation which is the e-folding number N
representing the amount of inflation. In the context of
potential slow-roll approximation, the e-folding number is

N ≡ ln
a t f
À Á
a tið Þ ≃ −

8π
M2

4

ðφ f

φi

V 1 + Rð Þ
V ′ dφ: ð29Þ

From the condition of inflation to end ε ~ 1 + R, we get
the final value of the inflaton field φf . Then, using Equation
(29) to calculate the initial value of the inflaton field φi when
the perturbations exit the horizon. Therefore, ns and r can be
expressed in terms of the slow-roll parameters and assuming
an inflaton decay rate Γ = aT . Finally, with the inflation at 60
e-folds, one gets 10−15 < ρ < 10−13 in all case [16–21].

Considering our assumption in (20) to fit the SPð2, RÞ
symmetry, the Dilaton potential has the quartic form. Thus,
this form is compatible with a warm inflation scenario. A
quartic inflaton potential in the warm inflation scenario
has also been studied in [16–21].

Furthermore, the determination of the value of dissipa-
tive coefficient Γ = aT (or a) currently only stops at the esti-
mate in the example models. Because the determination of
the dissipative components of Inflaton is not specific. This
can go beyond the standard model and SM-like versions as
2T model. Calculations in some specific cases and the expan-
sion of Γ can be found in Refs. [16, 22–27]. However, we can
roughly outline that a is a function of coupling constants of
the dissipative channels of inflaton.

Based on Ref. [20], with strong and weak dissipative
regime, the important quantities are summarized in
Table 1. Especially the values of ρ (or λ) and a is derived
when combined with Planck data [28].

In Table 1, to satisfy all cases, we choose ρ = 10−14. Thus,
in the weak dissipative regime, a = 5 × 10−4. In the strong
dissipative regime, we choose a = 5 × 10−2.
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With mh′ = 125GeV, v = 246GeV, and ρ = 10−14, we can
deduce the following relationship:

λ = 3:05176 × 1021α2 − 7:09172 × 108
4:72781 × 1022α4 + 4:72781 × 1022α2 − 1:09866 × 1010 :

ð30Þ

Furthermore, we have the condition,

ρv3

α3
= 10−14 × 2463

α3
≪ 1⇒ α≫ 0:0053: ð31Þ

We then deduce the mass of dilaton in Figure 1. Because
α is small, the mass of Dilaton decreases, must be smaller

Table 1: The values of quantities are calculated to give the result rðnsÞ that satisfy the Planck data [28]. ns is the scalar spectral index.

Regime
Weak dissipative regime Strong dissipative regime

Quantity

The power spectrum: P1/2
R ~ some × 10−5 λ′ ffiffiffi

a
p

N3

6
ffiffiffiffiffi
70

p
π3

 !1/3 4N3λ′
125π8/3

2
315

� �1/3
" #3/8

The tensor-to-scalar ratio: r nsð Þ 4
ffiffiffiffiffi
14

p

625
ffiffiffi
5

p
a1/2
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than 10−7GeV when 0:1 < α < 1. So, Figure 2 is plotted, to
show how rðnsÞ is compatible with the Planck data [28].

We see that the larger the α, the smaller the mass of the
dilaton. Therefore, the signal of Dilaton will be very small
even though the coupling constant with Higgs is large.

Finally, when combined with the Planck data [28], in all
regimes, we get ρ = 10−14, from which the coupling constant
(α) between Higgs and Dilaton can be deduced.

4. Conclusion and Discussion

We showed that dilaton can be a candidate of inflaton in the
warm inflation scenario. Accordingly, the parameter domain
of the Higgs-Dilaton potential is retrieved. This indirectly
shows that extra dimensions can play an important role in
the inflation problem.

The Higgs-Dilaton potential can be added ϕ2 that is the
dominant component of the standard inflation, thus a
dimensional mass parameter can be added along with ϕ2.
But it breaks the basic Spð2 ; RÞ symmetry. This parameter
can be derived from the interaction of Dilaton with SðxÞ
which is an additional scalar field, can be seen as inflaton
[29–31]. This has been done consistently with the scale
invariance required by 2T physics [32].

According to Refs. [16, 22–27], to be able to find more
dissipative components in 2T physics, we need to extend this
model in combination with supersymmetry or extending the
Higgs-Dilaton potential one more time with exotic particles
but must conform to the Spð2, RÞ symmetry. Also, because
in the 2T model, Dilaton only interacts directly with Higgs.
Therefore, there are not enough dissipative components to
have a suitable value of a or r for the Planck data [28]. This
is an interesting work after this article.

There are the other studies in Cosmology, or example,
the cosmological constant and inflation [33, 34]. But in this
model, the inflation and reheating period have not been ana-
lyzed in detail. We considered that dilaton is inflaton in the
warm scenario. This presents another opportunity to study
extra dimensions as well as other inflationary scenarios.

The extradimensional phenomena can give many pre-
diction for experiments. Our next work focuses on extra
dimensions, in order to describe their properties in the baryo-
genesis or leptongenesis scenario and cosmology problems.

The 2T model is a hologram of string theory and has a
connection with SM. Therefore, analyzing and refining this
model is a “road” to create a good bridge between two theo-
ries, in which the problem of inflation and the matter-
antimatter asymmetry are significant problems.

New physical effects from the interaction between Higgs
and Dilaton may change the electroweak, but this model still
fits into the standard model through the Bars transformation
that has been mentioned in Section 2.2. Thus, these changes
(such as the Higgs couplings to fermions) will indeed pro-
vide new explanations for difficult problems (such as baryo-
genesis) without changing the electroweak nature.

In a context with too many free parameters, the first step
in our paper shows that the small Dilaton potential can be
combined with the warm inflation problem and then derive

the parameter domain α. If further extended to other prob-
lems, the range of values α that is derived in this paper need
to be confirmed more fully.
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