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1 Introduction

The massless 2-flavor Schwinger model is an unparticle theory1 in 1+1 dimensions with
a free massive scalar and a conformal sector that survives at low energy. In a previous
paper, [2], I discussed the massive 2-flavor Schwinger model, resolving some puzzles posed
many years ago by Coleman. [3] Part of the resolution was a conjecture that in the model
with equal and opposite fermion masses at θ = 0 (or equal masses at θ = π), small fermion
masses do not break the conformal symmetry of the long-distance sector of the model even
though the massive scalar has nontrivial interactions.2 Thus I argued that the massive
fermions are bound into conformally invariant unparticle stuff. In this paper, I describe
some quantitative evidence for this wild-sounding conjecture by finding the correlation
functions of the flavor-diagonal fermion-bilinear scalar conformal operators. I find that
the mass term does not break the conformal symmetry, but modifies it and I calculate the
non-trivial scaling dimensions of the unparticle stuff in perturbation theory in the fermion
mass parameter. I introduce tools that make these calculations easier and discuss some of
the calculations in detail.

While I focus on the long-distance conformal theory in this paper, my primary interest
is in the particle physics of the full model. I hope that it is an example of unparticle
physics, a conformal sector interacting with massive particles without breaking the con-
formal symmetry, with a well-defined procedure for the calculation of physical quantities.
Though the physics is still very simple, it is non-trivial and we can calculate. The resulting
theory may be an interesting laboratory for studying the particle physics of interacting
unparticle theories.

1See for example, [1].
2For simplicity of presentation in this paper, we will keep θ = 0.
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2 The Schwinger model

The Lagrangian of the n-flavor Schwinger model is

L =

 n∑
j=1

ψj

(
i 6∂ − eA/

)
ψj

− 1
4F

µνFµν −
n∑
j=1

µjψjψj (2.1)

I begin by discussing µj = 0 and consider the mass term in section 4.3, 4 The massless
model has a classical U(n) × U(n) chiral symmetry acting on the right- and left-moving
fermion fields,

ψj1 ≡
1 + γ5

2 ψj → Rjk ψk1 ψj2 ≡
1− γ5

2 ψj → Ljk ψk2 (2.2)

It is broken by the anomaly down to SU(n)× SU(n)×U(1).
In Lorenz gauge, ∂µAµ = 0, we can write

Aµ = εµν∂νA/m (2.3)

where
m2 = n e2/π (2.4)

At this point, it is not obvious why we should choose m this way but we will see that the
answer is the chiral U(1) anomaly. Then the Lagrangian is

L =

 n∑
j=1

(
iψj 6∂ ψj − eψjγµψjεµν∂νA/m

)+ 1
2m2A22A (2.5)

If we change the fermionic variables to

Ψj = eieAγ
5/mψj = ei(π/n)1/2Aγ5

ψj (2.6)

the fermions become free and the Lagrangian becomes

L =

 n∑
j=1

iΨj 6∂Ψj

+ 1
2m2A22A− 1

2∂µA∂
µA (2.7)

The last term is the effect of the anomaly. It is worth recalling how this works in more
detail. The redefinition (2.6) is an axial U(1) transformation — ∂µA has axial-vector
couplings because

γµε
µν∂νA = γµγ

5∂µA (2.8)
3Some of ideas in this paper are related to the analysis of diagonal color models in 1+1 [4]. See also [5–8].
4My conventions are: g00 = −g11 = 1, ε01 = −ε10 = −ε01 = ε10 = 1. From the defining properties

{γµ, γν} = 2gµν and γ5 = − 1
2 εµνγ

µγν , it follows that γµγ5 = −εµνγν and γµγν = gµν + εµνγ5, and we will
use the representation γ0 =

(
0 1
1 0

)
, γ1 =

(
0 −1
1 0

)
, γ5 = γ0γ1 =

(
1 0
0 −1

)
. Then in the massless theory, the Dirac

components ψ1 and ψ2 describe right-moving and left-moving fermions, respectively.
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and an axial transformation induces a change in the Lagrangian because of the chiral U(1)
anomaly. The effect from an infinitesimal axial transformation is proportional to the 2D
anomaly of the axial U(1) current,

∂µj
µ
5 = −n e

π
εµν∂µAν = −n e

π
2A/m (2.9)

d

dα

 n∑
j=1

eieαAγ5/mψj γµ

(
i∂µ − e εµν∂ν(1− α)A/m

)
eieαAγ

5/mψj


= − n e

2

m2π
A(1− α)2A (2.10)

Integrating (2.10) from α = 0 to 1 gives n∑
j=1

ψj γµ

(
i∂µ − e εµν∂νA/m

)
ψj

 =

 n∑
j=1

iΨj 6∂Ψj

+ n e2

2m2π
A2A

= iΨ 6∂Ψ− 1
2∂µA∂

µA (2.11)

where Ψ is given by (2.6). This is why we chose m the way we did in (2.3) and (2.4).
Focusing on A in (2.7), we can replace it with somewhat more normal looking fields

as follows.

1
2m2A22A− 1

2∂µA∂
µA → −m

2

2 B
2 + B2A− 1

2∂µA∂
µA (2.12)

= −m
2

2 B
2 + 1

2∂µB∂
µB − 1

2∂µC∂
µC (2.13)

where
C = A+ B (2.14)

so B is a massive free field and C is a massless ghost and the Lagrangian becomes

L =

 n∑
j=1

iΨj 6∂Ψj

− m2

2 B
2 + 1

2∂µB∂
µB − 1

2∂µC∂
µC (2.15)

Thus for gauge invariant correlators of local fields, the result of summing the pertur-
bation theory to all orders can be found simply by making the following replacements:5

Aµ = εµν∂ν(B − C)/m (2.16)
F 01 = ∂µ∂

µ(B − C)/m (2.17)

ψj = e−i(π/n)1/2 (C−B)γ5Ψj (2.18)

with m = e
√
n/π from (2.4) and using the free-field Lagrangian, (2.15).

We will be particularly concerned with flavor-diagonal fermion-bilinear scalar
operators.

Oj = ψ∗j1ψj2 = e2i(π/n)1/2 (C−B)Ψ∗j1Ψj2 (2.19)
5This argument appears in [9].
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The free-fermion bilinears (2.19) have the remarkable property of “bosonization.” [10,
11] For us, what this means is that any non-zero correlator of the Ojs and O∗j s can be cal-
culated in terms of the massive scalar field, B, the ghost C, and free canonically normalized
massless “scalar fields”, Dj with the replacement

Oj →
ξm

2π e2i(π/n)1/2 (C−B) e2iπ1/2Dj (2.20)

where
ξ ≡ eγE/2 where γE is Euler’s constant. (2.21)

Note that in perturbation theory, the only non-zero correlators are those with equal num-
bers of Ojs and O∗j s for each j. But there are important non-perturbative effects, again
related to the anomaly.

The non-perturbative effects are particularly simple in the 1-flavor model,
where (2.18) gives

ψ = e−iπ
1/2 (C−B)γ5Ψ (2.22)

and there is only one conjugate pair of scalar fermion bilinears

O1 = ψ∗1ψ2 → e2iπ1/2 (C−B)Ψ∗1Ψ2 →
ξm

2π e2iπ1/2 (C−B) e2iπ1/2D (2.23)

Now the effects of the bosonization field D are exactly canceled by the effects of the ghost
C and (2.23) is

O1 = ψ∗1ψ2 →
ξm

2π e−2iπ1/2 B (2.24)

Because the B field is massive, this means that the effects of the O operators on one
another are exponentially suppressed at distances larger that 1/m. But then if we have
any combination of O1 and O∗1 fields in some region of space, we can look at their correlator
with a conjugate set in a distant region. We can then calculate the correlator perturbatively
using (2.24) and as the distance between the regions goes to infinity, the result factors into
a product of correlators in the separate regions. Cluster decomposition then implies that
we can calculate the correlator of any combination of O1s and O∗1s using (2.24) up to a
phase factor

O1 → eiθ
ξm

2π e−2iπ1/2 B (2.25)

This implies, among other things, that

〈0|O1|0〉 = eiθ
ξm

2π (2.26)

so O1 has a VEV that breaks the chiral symmetry. One can think of the massless field D
as the Goldstone boson of the spontaneously broken chiral symmetry, but it is unphysical
because its effects are completely canceled by the ghost field C.6 If we add a fermion mass,
the B field is no longer free and in addition to the physical fermion mass, the parameter θ
in (2.25) becomes the physical θ-parameter.7

6See [12].
7See for example, [3].
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3 Two flavors

The 2-flavor model has a non-Abelian chiral symmetry, but we will again be mostly con-
cerned with the physics of the flavor diagonal fermion-bilinear scalars that carry the chiral
T3 symmetry

ψ11 → eiφψ11 ψ21 → e−iφψ21 ψ12 → e−iφψ12 ψ22 → eiφψ22 (3.1)

and the chiral U(1) symmetry

ψ11 → eiφψ11 ψ21 → eiφψ21 ψ12 → e−iφψ12 ψ22 → e−iφψ22 (3.2)

Now with two flavors, we can again write the (flavor-diagonal) fermion bilinears in
bosonized form

Oj ≡ ψ∗j1ψj2 = ei
√

2π (C−B)Ψ∗j2Ψj1 = ξm

2π ei
√

2π (C−B) e2iπ1/2Dj (3.3)

and when we calculate any correlator that is non-zero in perturbation theory, and thus al-
lowed by the perturbatively conserved chiral symmetries (3.1) and (3.2), standard bosoniza-
tion arguments imply that (3.3) gives the result of summing the perturbation theory to
all orders.

The massless scalar fields D1 and D2 and the ghost field C do not make physical sense
in isolation because of infrared divergences, [13] but their exponentials in (3.3) generate
conformally invariant correlators in the theory at long distances and the scale is fixed by
the mass m. This is unparticle stuff with no particle interpretation. [1] For example

〈0|T O1(x)O∗1(y)|0〉 = (ξm)
(2π)2 exp

[
K0

(
m
√
−(x− y)2 + iε

)] (
−(x− y)2 + iε

)−1/2
(3.4)

where K0 is related to the scalar propagator8

K0
(
m
√
−x2 + iε

)
= 2πi

∫
d2p

(2π)2
e−ipx

p2 −m2 + iε
(3.5)

Eq. (3.4) implies that the fermion bilinears have scaling dimension 1/2 rather than their
naive engineering dimension 1. For n > 2, the fermion bilinears have scaling dimension
1 − 1/n. This is zero for n = 1 which is why there is no conformal sector at all in the
Schwinger model.

We can rewrite (3.3) as

O1 = ψ∗11ψ12 = ξm

2π ei
√

2π (C−B) ei
√

2π (D++D−) = ξm

2π ei
√

2π (C+D+−B+D−)

O2 = ψ∗21ψ22 = ξm

2π ei
√

2π (C−B) ei
√

2π (D+−D−) = ξm

2π ei
√

2π (C+D+−B−D−)

O∗1 = ψ∗12ψ11 = ξm

2π e−i
√

2π (C−B) e−i
√

2π (D++D−) = ξm

2π e−i
√

2π (C+D+−B+D−)

O∗2 = ψ∗22ψ21 = ξm

2π e−i
√

2π (C−B) e−i
√

2π (D+−D−) = ξm

2π e−i
√

2π (C+D+−B−D−) (3.6)

8Note that there is no arbitrariness here because these composite operators do not require multiplicative
renormalization for µj = 0 so the position-space correlators are well-defined for non-zero separation. A
subtractive renormalization is required for the 2-point function at zero separation and is needed to define
the Fourier transforms.
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where
D± = 1√

2
(D1 ±D2) (3.7)

Now D+ transforms like a Goldstone boson associated with spontaneous breaking of the
chiral U(1) and as in the n = 1 model its effects in gauge invariant matrix elements are
completely canceled by the ghost field C. Thus we are tempted to write

O1 ≡ ψ∗11ψ12 →
ξm

2π e−i
√

2π (B−D−) O2 ≡ ψ∗21ψ22 →
ξm

2π e−i
√

2π (B+D−)

O∗1 ≡ ψ∗12ψ11 →
ξm

2π e−i
√

2π (−B+D−) O∗2 ≡ ψ∗22ψ21 →
ξm

2π e−i
√

2π (−B−D−) (3.8)

But (3.3), (3.6), and (3.8) cannot be right in general because they would imply VEVs for
O1 and O2, and their conjugates, breaking the chiral T3 symmetry spontaneously. This
cannot happen in 1+1 dimensions [13] .

But (3.8) is nevertheless a very useful shorthand because we can show using cluster
decomposition that it gives the correct matrix elements for the correlators that are not
forbidden by the conserved chiral T3 symmetry, (3.1), up to the arbitrary angle θ. To
understand this, note that we know that (3.8) works for perturbatively allowed correlators
and consider two similar looking correlators

〈0|T O1(x)O2(0)O∗1(y)O∗2(y + z)|0〉 (3.9)

and
〈0|T O1(x)O∗2(0)O∗1(y)O2(y + z)|0〉 (3.10)

for −(y)2 →∞ with x2 and z2 fixed

Cluster decomposition requires that in the limit (3), (3.9) factorizes into

〈0|T O1(x)O2(0)|0〉 〈0|T O∗1(y)O∗2(y + z)|0〉 (3.11)

When we calculate (3.9) using (3.8), the exponentials of K0 in the terms that involve y all
go to 1 and the power-law terms are(

−y2)1/2 (−(y + z − x)2)1/2

(−(y − x)2)1/2 (−(y + z)2)1/2 → 1 (3.12)

and we must conclude that the two factors in (3.11) are non-zero and the non-zero result
is given by their calculation from (3.8) up an arbitrary phase eiθ.

But for (3.10) the power law terms are(
−y2

)−1/2 (
−(y + z − x)2

)−1/2 (
−(y − x)2

)−1/2 (
−(y + z)2

)−1/2
→ 0 (3.13)

consistent with the fact that expectation values in the separate factors vanish because of
chiral T3 conservation.

Similar considerations apply to all correlators and we can use (3.8) to calculate all
correlators with zero chiral T3 up to a single arbitrary phase that we will set to 1. When
we add a mass term in the next section, this means that will keep θ = 0.

– 6 –
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So for example

〈0|T O1(x)O2(y)|0〉 = (ξm)
(2π)2 exp

[
−K0

(
m
√
−(x− y)2 + iε

)] (
−(x− y)2 + iε

)−1/2

(3.14)
The dictionary for computing the non-zero correlators of the exponentials is standard.

Between each pair of operators we include the terms

〈0|eis1
√

2π B(x) eis2
√

2π B(y)|0〉 → exp
[
−s1s2K0

(
m
√
−(x− y)2 + iε

)]
(3.15)

〈0|eis1
√

2πD−(x) eis2
√

2πD−(y)|0〉 → (ξm)s1s2
(
−(x− y)2 + iε

)s1s2/2
(3.16)

So for example, in (3.14), one factor of ξm/(2π) comes from each of the two operators in
the correlator, a 1/(ξm) comes from (3.16).

Note that the results of this dictionary are identical to those of [2] but there they were
derived in a much more complicated way by first perturbatively evaluating correlators
involving operators with zero dimension and then using cluster decomposition to isolate
the nonperturbative contributions. The dictionary, (3.8), (3.15), and (3.16), does all this
automatically as long as we only apply it to the non-zero correlators with zero chiral T3.

Notice also that a parity transformation interchanges

O1 ↔ O∗1 and O2 ↔ O∗2 (3.17)

so the B and D− fields in (3.8) are pseudo-scalars.

4 Conformal coalescence, parity, and ± mass

Notice that in (3.8), the pair of operators O1 and O∗2 (and similarly the conjugate pair O∗1
and O2) have the same dependence on D−. We are also interested in the parity, so we
define the operators

O+− = 1
2

(
ξm

2π

)(
O1 −O∗2 +O∗1 −O2

)
O−− = 1

2i

(
ξm

2π

)(
O1 −O∗2 −O∗1 +O2

)
O++ = 1

2

(
ξm

2π

)(
O1 +O∗2 +O∗1 +O2

)
O−+ = 1

2i

(
ξm

2π

)(
O1 +O∗2 −O∗1 −O2

)
(4.1)

where the first subscript gives the parity and the second subscript controls the low-energy
behavior. Every term in the expansion of the O+− and O−− operators contains at least
one massive B. Thus we expect these operators to disappear from the low-energy theory
and we expect the O++ and O−+ operators to simplify. At low energies we expect (always

– 7 –
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with θ = 0)

O+− = i

(
ξm

2π

)
sin
(√

2π B
) (

ei
√

2πD− − e−i
√

2πD−
)

→ 0 (4.2)

O−− =
(
ξm

2π

)
sin
(√

2π B
) (

ei
√

2πD− + e−i
√

2πD−
)

→ 0 (4.3)

O++ =
(
ξm

2π

)
cos
(√

2π B
) (

ei
√

2πD− + e−i
√

2πD−
)

→
(
ξm

2π

)(
ei
√

2πD− + e−i
√

2πD−
)

(4.4)

O−+ = −i
(
ξm

2π

)
cos
(√

2π B
) (

ei
√

2πD− − e−i
√

2πD−
)

→ −i
(
ξm

2π

)(
ei
√

2πD− − e−i
√

2πD−
)

(4.5)

Note that it looks like we can combine the exponentials of ±i
√

2πD− into sines and cosines,
but this would actually be a mistake because these exponentials carry opposite values of
the chiral T3 and must be treated separately in correlators.

The disappearance of the O±− fields in the low-energy limit was discussed (in a more
complicated way) in [4] and [2] and called “conformal coalescence”.

The low-energy limits of the non-zero 2-point functions of these fields for zero fermion
mass are exactly as expected from the low-energy forms in (4.5).

〈0|T O+−(x)O+−(y)|0〉0 = 〈0|T O−−(x)O−−(y)|0〉0

= 2 (ξm)
(2π)2 sinh

[
K0

(
m
√
−(x− y)2 + iε

)] (
−(x− y)2 + iε

)−1/2

→ 0 (4.6)
〈0|T O++(x)O++(y)|0〉0 = 〈0|T O−+(x)O−+(y)|0〉0

= 2 (ξm)
(2π)2 cosh

[
K0

(
m
√
−(x− y)2 + iε

)] (
−(x− y)2 + iε

)−1/2

→ 2 (ξm)
(2π)2

(
−(x− y)2 + iε

)−1/2
(4.7)

Thus we can calculate the low-energy correlators directly using the low-energy forms.
We will use this to investigate the effect of a VERY SPECIAL fermion mass term. We

add to the Lagrangian (2.1) (for n = 2) the fermion mass term

δL = −µ
(
ψ1ψ1 − ψ2ψ2

)
= −2µO+− = 2iµ

(
ξm

2π

)
sin
(√

2π B
) (

ei
√

2πD− − e−i
√

2πD−
)

(4.8)
with equal and opposite masses for the fermions at θ = 0. In [2], I briefly discussed the
consequences of a mass term like (4.8) proportional to O+−. Here I will expand on this
and calculate the matching of such a mass term onto the low-energy conformal theory

– 8 –
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in a perturbation expansion in the fermion mass. Normally, one might expect a mass
to produce a mass gap, eliminating the low-energy conformal sector and breaking the
conformal stuff into ordinary particles. If this happens, perturbation theory in the mass
the parameter would be plagued by infrared divergences. But in this case, because of
the special properties of the O+− operator, the matching occurs at the scale m and the
matching contribution involves only short distance physics.9 I will argue that this modifies
the conformal symmetry without breaking it while producing non-trivial interactions for
the massive scalar and the unparticle stuff.

The leading contribution at low energies is the second order term obtained by inte-
grating out the B, using

〈0|B(z1)B(z2)|0〉 → − i

m2 δ(z1 − z2) (4.9)

which gives an effective interaction(
ξ2µ2

π

)(
e2i
√

2πD− + e−2i
√

2πD− − 2
)

(4.10)

The fermion mass term (4.8) breaks the chiral symmetry but not parity so operators
with different parity do not mix. Thus we are interested in the diagonal correlators in the
low-energy effective theory below the m scale,

〈0|T O±+(x)O±+(y)|0〉µ (4.11)

= ±
(
ξm

2π

)2
〈0|T

(
ei
√

2πD−(x) ± e−i
√

2πD−(x)
) (
ei
√

2πD−(y) ± e−i
√

2πD−(y)
)
|0〉

µ

The first-order term in µ2 is

± i
(
ξm

2π

)2(ξ2µ2

π

)∫
d2z

× 〈0|T
(
ei
√

2πD−(x) ± e−i
√

2πD−(x)
) (
ei
√

2πD−(y) ± e−i
√

2πD−(y)
)

×
(
e2i
√

2πD−(z) + e−2i
√

2πD−(z) − 2
)
|0〉0 (4.12)

We can now evaluate this by looking for the terms with chiral T3 = 0.
The third term in the third set of parentheses is not interesting. Because it doesn’t

depend on z, it is just a vacuum energy contribution (which is the same for both the O++
and O−+ correlators as it must be) and so we can ignore it. But the first and second terms
give non-trivial contributions - both the same so they add with the result

± iµ2 ξ

2mπ3

∫
d2z

√
−(x− y)2 + iε(

−(x− z)2 + iε
)(
−(y − z)2 + iε

) (4.13)

Thus we need the integral∫
d2z

1(
−(x− z)2 + iε

)(
−(y − z)2 + iε

) (4.14)

9See section 3 of [14].
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Similar integrals in momentum space are very familiar but here the roles of UV and
IR divergences are reversed! There are short-distance singularities at z = x and z = y as
expected, because the non-zero mass term requires regularization and is multiplicatively
renormalized.10 But there is no large z infrared divergence so the expansion in powers of
µ makes sense. We can combine denominators as usual to get∫ 1

0
dα

∫
d2z

1(
−z2 + α(1− α)(−(x− y)2 + iε)

)2 (4.15)

Wick rotation is now z0 → −iz2 and the integral becomes the Euclidean integral

− i
∫ 1

0
dα

∫
d2z

1(
z2 + α(1− α)(−(x− y)2)

)2 (4.16)

One way to deal with the short distance singularities is to use dimensional regular-
ization. Because we are computing a matching contribution onto the long-distance theory
for distances larger than 1/m, it is appropriate to choose the dimensional scale to be the
matching scale of order m. Then our integral becomes (in dimension 2 + η)

− imη
∫ 1

0
dα

∫
d2+ηz

√
−(x− y)2(

z2 + α(1− α)(−(x− y)2)
)2

= −imη 2π1+η/2

Γ(1 + η/2)

∫ 1

0
dα

∫ ∞
0

dz z1−η
√
−(x− y)2(

z2 + α(1− α)(−(x− y)2)
)2

= −imη 2π1+η/2

Γ(1 + η/2)
πη

4 sin(πη/2)

∫ 1

0
dα

√
−(x− y)2(

α(1− α)(−(x− y)2)1−η/2

= −imη 2π1+η/2

Γ(1 + η/2)
πη

4 sin(πη/2)
Γ(η/2)
Γ(η)

√
−(x− y)2 + iη(

(−(x− y)2 + iη
)1−η/2 (4.17)

Expanding the result in powers of η and putting back the original iε for Minkowski space
gives ∫

d2z
1(

−(x− z)2 + iε
)(
−(y − z)2 + iε

) = −4iπ
log
(
m
√
−(x− y)2 + iε

)(
−(x− y)2 + iε

) (4.18)

so (4.13) becomes

± µ2 2ξ
π2m

log
(
m
√
−(x− y)2 + iε

)√
−(x− y)2 + iε

(4.19)

Dimensional regularization works simply enough in this case, but it will be useful to
understand the integral in different ways. The long-distance behavior should be indepen-
dent of the details of our short distance regularization. In particular, we can cut off the
short distance behavior in (4.15) at 1/m by adding a 1/m2 term to get

− i
∫ 1

0
dα

∫
d2z

√
−(x− y)2(

z2 + α(1− α)(−(x− y)2) + 1/m2)2
= −iπ

∫ 1

0
dα

1(
α(1− α)(−(x− y)2) + 1/m2) (4.20)

In the long-distance limit, −(x− y)2 � 1/m2, this again gives (4.18).
10This is simply related to the subtractive regularization of the 2-point function of the fermion-bilinears.
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The key things in (4.19) are the appearance of the logarithm of m and the absence of
any logarithm of µ. This again shows that the matching is happening at the scale m and
there are no IR divergences. The log of m does not indicate that conformal invariance is
broken. Rather, it is exactly what we would expect if the conformal symmetry of the 2-
point functions at long distances is not broken to this order in µ2 but the parity eigenstate
operators, O±+ have scaling dimensions d± that change in opposite directions when the
mass term is turned on. Adding (4.19) to the zeroth-order contribution gives

ξm

2π2
1√

−(x− y)2 + iε
± µ2 2ξ

π2m

log
(
m
√
−(x− y)2 + iε

)√
−(x− y)2 + iε

(4.21)

which is the expansion to leading nontrivial order in µ of

〈0|T O±+(x)O±+(y)|0〉µ = ξ
m2−2d±

2π2
1

(−(x− y)2 + iε)d±
(4.22)

where

d± = 1∓ 4µ2/m2

2 (4.23)

5 4-point functions

The non-zero 4-point functions in the massless theory at long distances can be calculated
simply from (3.16) and (4.5). They are11

〈0|T O±+(x1)O±+(x2)O±+(x3)O±+(x4)|0〉0

= 2
(
ξm

2π

)4 1
(ξm)2

∑
3 6= perms

{jklm}={1234}

(5.1)

×

√√√√ (
−(xj − xk)2 + iε

)(
−(xl − xm)2 + iε

)(
−(xj − xl)2 + iε

)(
−(xj − xm)2 + iε

)(
−(xk − xl)2 + iε

)(
−(xk − xm)2 + iε

)
〈0|T O++(x1)O−+(x2)O++(x3)O−+(x4)|0〉0

= − 2
(
ξm

2π

)4 1
(ξm)2

∑
3 6= perms

{jklm}={1234}

(−1)j+k (5.2)

×

√√√√ (
−(xj − xk)2 + iε

)(
−(xl − xm)2 + iε

)(
−(xj − xl)2 + iε

)(
−(xj − xm)2 + iε

)(
−(xk − xl)2 + iε

)(
−(xk − xm)2 + iε

)
11Note the particular pattern of O++s and O−+s in (5.2). This is just a convenience to make the result

easy to write down compactly.
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We begin by discussing (5.1). The order µ2 correction to (5.1) is

i

(
ξm

2π

)4(ξ2µ2

π

)∫
d2z

× 〈0|T
(
ei
√

2πD−(x1) ± e−i
√

2πD−(x1)
) (
ei
√

2πD−(x2) ± e−i
√

2πD−(x2)
)

×
(
ei
√

2πD−(x3) ± e−i
√

2πD−(x3)
) (
ei
√

2πD−(x4) ± e−i
√

2πD−(x4)
)

×
(
e2i
√

2πD−(z) + e−2i
√

2πD−(z) − 2
)
|0〉0

(5.3)

As for the 2-point function, the third term in the last line gives an irrelevant vacuum
energy contribution while the first and second terms give effects of the following form:

± iµ2 ξ
6m4

8π5

∫
d2z 〈0|T e±i

√
2πD(xj) e±i

√
2πD(xk) e±i

√
2πD(xl) e∓i

√
2πD(xm)e∓2i

√
2πD(z)|0〉0

(5.4)
(the j, k and l indices have the same sign in the exponent) which gives

± iµ2 ξ2

8π5

∑
m

∫
d2z

(
−(z − xm)2 + iε

) ∏
j<k
j,k 6=m

√
−(xj − xk)2 + iε∏

n=
j,k,l

(
−(z − xn)2 + iε

)√
−(xn − xm)2 + iε

(5.5)

So we need the integral12

∫
d2z

(
−(z − xm)2

)
∏

n=
j,k,l

(
−(z − xn)2 + iε

) (5.6)

= 2
∫

[dα] d2z δ

1−
∑
n=
j,k,l

αn


(
−(z − xm)2

)
(∑

n=
j,k,l

αn
(
−(z − xn)2 + iε

))3

= 2
∫

[dα] d2z δ

1−
∑
n=
j,k,l

αn


(
−(z − xm)2

)
(
−z2 +

∑
n=
j,k,l

(
2αn(zxn)− αnx2

n

)
+ iε

)3

= 2
∫

[dα] d2z̃ δ

1−
∑
n=
j,k,l

αn


(
−
(
z̃ −

(∑
n=
j,k,l

αnxn
)
− xm

)2)
(
−z̃2 −

(∑
n=
j,k,l

αnx2
n

)
+
(∑

n=
j,k,l

αnxn
)2

+ iε

)3

= 2
∫

[dα] d2z δ

1−
∑
n=
j,k,l

αn


(
−z2 −

(
xm +

(∑
n=
j,k,l

αnxn
))2

)
(
−z2 −

(∑
n=
j,k,l

(
αnx2

n

))
+
(∑

n=
j,k,l

αnxn
)2

+ iε

)3

Now we can Wick rotate and do the z integration

= −2i
∫

[dα] d2z δ

1−
∑
n=
j,k,l

αn

 (
z2 + a

)
(z2 + b)3 = −iπ

∫
[dα] δ

1−
∑
n=
j,k,l

αn

 b+ a

b2 (5.7)

12The iε is not necessary in the numerator.
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where

a = −

xm −
∑

n=
j,k,l

αnxn




2

b =

 3∑
j=1

(
−αjx2

j

)+

∑
n=
j,k,l

αnxn


2

(5.8)

and because
∑
n=j,k,l αn = 1 in the integral, we can write

b = −
∑
j<k

αjαk(xj − xk)2 b+ a = −
∑
n=
j,k,l

αn(xm − xn)2 (5.9)

If we cut off the integral at short distance as in (4.20), (5.7) becomes

= −iπ
∫

[dα] δ

1−
∑
n=
j,k,l

αn


(
−
∑

n=
j,k,l

αn(xm − xn)2
)

(
−
∑
j<k αjαk(xj − xk)2 + 1/m2

) (5.10)

In the long-distance limit, −(xj−xk)2 � 1/m2, this gives (suppressing the iεs in the result)∫
d2z

(
−(z − xm)2)∏

n=
j,k,l

(
−(z − xn)2 + iε

)
→ −2iπ

∑
j 6=m

−(xm − xj)2

(xk − xj)2(xl − xj)2 log
(
m
√
−(xk − xj)2

√
−(xl − xj)2/

√
−(xk − xl)2

)
(5.11)

Putting all this together gives

± µ2 ξ2

4π4

∑
m

∏
j<k
j,k 6=m

√
−(xj − xk)2∏

n=
j,k,l

√
−(xn − xm)2

×
∑
j 6=m

−(xm − xj)2

(xk − xj)2(xl − xj)2 log
(
m
√
−(xk − xj)2

√
−(xl − xj)2/

√
−(xk − xl)2

)

= ± µ2 ξ2

2π4

∑
pairs {j,k}=

{1,2},{1,3},{1,4}

√
−(xj − xk)2

√
−(xl − xm)2√

−(xj − xl)2
√
−(xj − xm)2

√
−(xk − xl)2

√
−(xk − xm)2

× log

m4
√
−(xj − xl)2

√
−(xj − xm)2

√
−(xk − xl)2

√
−(xk − xm)2√

−(xj − xk)2
√
−(xl − xm)2


(5.12)

Adding the zeroth order term gives

2
(
ξm

2π

)4 ( 1
ξm

)2 ∑
pairs {j,k}=

{1,2},{1,3},{1,4}

√
−(xj − xk)2

√
−(xl − xm)2√

−(xj − xl)2
√
−(xj − xm)2

√
−(xk − xl)2

√
−(xk − xm)21± 4µ2

m2 log

m4
√
−(xj − xl)2

√
−(xj − xm)2

√
−(xk − xl)2

√
−(xk − xm)2√

−(xj − xk)2
√
−(xl − xm)2


(5.13)
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This is the expansion to order µ2 of

ξ2m4−4d±

8π4

∑
pairs {j,k}=

{1,2},{1,3},{1,4}

(
−(xj − xk)2)d± (−(xl − xm)2)d±

(−(xj − xl)2)d± (−(xj − xm)2)d± (−(xk − xl)2)d± (−(xk − xm)2)d±

(5.14)
This is consistent with the result (4.22) for the 2-point function and is the simplest possible
result consistent with conformal invariance for the O±+ fields with scaling dimensions d±.

In the mixed correlator, (5.2), the pieces of the calculation are very similar but they
get put together very differently. The first order correction to (5.2) is

− iµ2 ξ
6m4

8π5

∫
d2z

(
〈0|T e−i

√
2πD(x1) ei

√
2πD(x2) ei

√
2πD(x3) ei

√
2πD(x4)e−2i

√
2πD(z)|0〉0

− 〈0|T ei
√

2πD(x1) e−i
√

2πD(x2) ei
√

2πD(x3) ei
√

2πD(x4)e−2i
√

2πD(z)|0〉0
+ 〈0|T ei

√
2πD(x1) ei

√
2πD(x2) e−i

√
2πD(x3) ei

√
2πD(x4)e−2i

√
2πD(z)|0〉0

− 〈0|T ei
√

2πD(x1) ei
√

2πD(x2) ei
√

2πD(x3) e−i
√

2πD(x4)e−2i
√

2πD(z)|0〉0
)

= iµ2 ξ2

8π5

∑
m

(−1)m
∫
d2z

(
−(z − xm)2

) ∏
j<k
j,k 6=m

√
−(xj − xk)2 + iε∏

n=
j,k,l

(
−(z − xn)2 + iε

) √
−(xn − xm)2 + iε

(5.15)

Except for a factor of (−1)m in the sum, this is proportional to (5.5). So following the
same steps and putting everything together now gives

µ2 ξ2

4π4

∑
m

(−1)m
∏

j<k
j,k 6=m

√
−(xj − xk)2∏

n=
j,k,l

√
−(xn − xm)2

∑
j 6=m

−(xm − xj)2

(xk − xj)2(xl − xj)2

× log
(
m
√
−(xk − xj)2

√
−(xl − xj)2/

√
−(xk − xl)2

)

=µ2 ξ2

4π4

∏
α 6=β

1√
−(xα − xβ)2

( (−(x1 − x3)2
)(
−(x2 − x4)2

)
log

(
−(x2 − x4)2

−(x1 − x3)2

)

−
(
−(x1 − x2)2

)(
−(x3 − x4)2

)
log

(
−(x2 − x4)2

−(x1 − x3)2

)

−
(
−(x1 − x4)2

)(
−(x2 − x3)2

)
log

(
−(x2 − x4)2

−(x1 − x3)2

) )

= 2µ2

m2 log
(
−(x2 − x4)2

−(x1 − x3)2

)
〈0|T O++(x1)O−+(x2)O++(x3)O−+(x4)|0〉0 (5.16)

Adding the zeroth order term gives(
1 + 2µ2

m2 log
(
−(x2 − x4)2

−(x1 − x3)2

))
〈0|T O++(x1)O−+(x2)O++(x3)O−+(x4)|0〉0 (5.17)

which is the expansion of(
−(x2 − x4)2)2µ2/m2

(−(x1 − x3)2)2µ2/m2 〈0|T O++(x1)O−+(x2)O++(x3)O−+(x4)|0〉0 (5.18)

So again conformal invariance is satisfied.
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6 Higher 2n-point functions

The calculation of higher 2n-point correlators is straightforward but quickly gets compli-
cated. The leading correction to the 2n-point function involves integrals of the form∫

d2z

∏2n
j=n+2

(
−(z − xj)2)∏n+1

j=1
(
−(z − xj)2 + iε

) (6.1)

It would be a difficult task to calculate this using the direct methods of section 5, but
we can use (4.18) and (5.11) and linear algebra to write down the result without further
integration.

Here is how this works for the the 6-point function with the integral∫
d2z

(
−(z − x5)2) (−(z − x6)2)∏n+1

j=1
(
−(z − x1)2 + iε

) (
−(z − x2)2 + iε

) (
−(z − x3)2 + iε

) (
−(z − x4)2 + iε

)
(6.2)

The point is that the product (
−(z − x5)2) (−(z − x6)2) (6.3)

can be written as a linear combination of
(
−(z−xj)2) (−(z−xk)2), (−(z−x5)2) (−(z−xk)2),

and
(
−(z − xj)2) (−(z − x6)2) where j and k are less than 5. In fact, this can be done

in many different ways because the z dependence can be written in terms of the nine
combinations {

z2
+, z+, 1

}
×
{
z2
−, z−, 1

}
(6.4)

where
z± = z0 ± z1 (6.5)

So we can write

(
−(z − x5)2) (−(z − x6)2) =

9 terms∑
{j,k}6={5,6}

β(j, k)
(
−(z − xj)2) (−(z − xk)2) (6.6)

Then setting (6.3) equal to (6.6) gives 9 linear equations for the 9 βs depending on the
xj±. Then in each of the terms in the sum in (6.6), one or two of the factors cancel with
factors in the denominator and the integral reduces to (4.18) or (5.11).

A similar procedure can be used to calculate the leading corrections to the 2n-point
function in terms of n2 βs.

While this is simple to describe, I have not found a choice of βs that leads to any
simple or intuitive result.

7 More questions

The analysis above gives some nontrivial checks of the conjecture that the 2-flavor
Schwinger model has an unbroken conformal sector even when small equal and opposite
fermion masses are turned on and describes the calculation of the leading corrections to
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all flavor-diagonal correlators in a systematic expansion in the fermion mass parameters.
But the simple calculational scheme used here leaves some questions unanswered. Can
the matrix analysis of 6-point and higher correlators in sections 6 be simplified. What
happens in higher orders in µ2? Do the scaling dimensions of the fermion-bilinears, (4.23),
give a clue to the nature of the phase transition that must occur between µ2 � m2 and
µ2 � m2? [3] Are there observable effects at high energies of the non-trivial dimensions in
the conformal sector? Can the analysis be extended to include other fermion bilinears and
the non-abelian chiral symmetry. [15] And most importantly, does this solvable model give
any clue to how an unbroken conformal sector might show up in the particle physics of our
3+1 dimensional world?13 I believe that it is worth studying this model further.

Acknowledgments

I am grateful for discussions with Tom Banks, Jacob Barandes, David Kaplan, and for very
important questions from Hofie Hannesdottir and Rashmish Mishra.

This project has received support from the European Union’s Horizon 2020 research
and innovation programme under the Marie Skodowska-Curie grant agreement No 860881-
HIDDeN.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited. SCOAP3 supports
the goals of the International Year of Basic Sciences for Sustainable Development.

References

[1] H. Georgi and Y. Kats, Unparticle self-interactions, JHEP 02 (2010) 065 [arXiv:0904.1962]
[INSPIRE].

[2] H. Georgi, Automatic fine-tuning in the two-flavor Schwinger model, Phys. Rev. Lett. 125
(2020) 181601 [arXiv:2007.15965] [INSPIRE].

[3] S.R. Coleman, More about the massive Schwinger model, Ann. Phys. 101 (1976) 239.

[4] H. Georgi and B. Noether, Non-perturbative Effects and Unparticle Physics in Generalized
Schwinger Models, arXiv:1908.03279 [INSPIRE].

[5] L.V. Belvedere, K.D. Rothe, B. Schroer and J.A. Swieca, Generalized two-dimensional
abelian gauge theories and confinement, Nucl. Phys. B 153 (1979) 112 [INSPIRE].

[6] R.E. Gamboa Saravi, F.A. Schaposnik and J.E. Solomin, Path integral formulation of
two-dimensional gauge theories with massless fermions, Nucl. Phys. B 185 (1981) 239
[INSPIRE].

[7] C. Gattringer and E. Seiler, Functional integral approach to the N flavor Schwinger model,
Annals Phys. 233 (1994) 97 [hep-th/9312102] [INSPIRE].

13A referee suggested [16] for discussion of how a 1+1 dimensional model might be relevant in 3+1
dimensions.

– 16 –

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/JHEP02(2010)065
https://arxiv.org/abs/0904.1962
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0904.1962
https://doi.org/10.1103/PhysRevLett.125.181601
https://doi.org/10.1103/PhysRevLett.125.181601
https://arxiv.org/abs/2007.15965
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2007.15965
http://dx.doi.org/10.1016/0003-4916(76)90280-3
https://arxiv.org/abs/1908.03279
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1908.03279
https://doi.org/10.1016/0550-3213(79)90594-7
https://inspirehep.net/search?p=find+J%20%22Nucl.Phys.%2CB153%2C112%22
https://doi.org/10.1016/0550-3213(81)90375-8
https://inspirehep.net/search?p=find+J%20%22Nucl.Phys.%2CB185%2C239%22
https://doi.org/10.1006/aphy.1994.1062
https://arxiv.org/abs/hep-th/9312102
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9312102


J
H
E
P
1
0
(
2
0
2
2
)
1
1
9

[8] D. Delphenich and J. Schechter, Multiflavor massive Schwinger model with nonAbelian
bosonization, Int. J. Mod. Phys. A 12 (1997) 5305 [hep-th/9703120] [INSPIRE].

[9] H. Georgi and B. Warner, Generalizations of the Sommerfield and Schwinger models, JHEP
01 (2020) 047 [arXiv:1907.12705] [INSPIRE].

[10] S.R. Coleman, The quantum sine-Gordon equation as the massive Thirring model, Phys. Rev.
D 11 (1975) 2088 [INSPIRE].

[11] S. Mandelstam, Soliton operators for the quantized sine-Gordon equation, Phys. Rev. D 11
(1975) 3026 [INSPIRE].

[12] J.B. Kogut and L. Susskind, How to Solve the eta –> 3 pi Problem by Seizing the Vacuum,
Phys. Rev. D 11 (1975) 3594 [INSPIRE].

[13] S.R. Coleman, There are no Goldstone bosons in two-dimensions, Commun. Math. Phys. 31
(1973) 259 [INSPIRE].

[14] H. Georgi, Effective field theory, Ann. Rev. Nucl. Part. Sci. 43 (1993) 209 [INSPIRE].

[15] E. Witten, Nonabelian bosonization in two-dimensions, Commun. Math. Phys. 92 (1984) 455
[INSPIRE].

[16] C.-Y. Wong, Open string QED meson description of the X17 particle and dark matter, JHEP
08 (2020) 165 [arXiv:2001.04864] [INSPIRE].

– 17 –

https://doi.org/10.1142/S0217751X9700284X
https://arxiv.org/abs/hep-th/9703120
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9703120
https://doi.org/10.1007/JHEP01(2020)047
https://doi.org/10.1007/JHEP01(2020)047
https://arxiv.org/abs/1907.12705
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1907.12705
https://doi.org/10.1103/PhysRevD.11.2088
https://doi.org/10.1103/PhysRevD.11.2088
https://inspirehep.net/search?p=find+J%20%22Phys.Rev.%2CD11%2C2088%22
https://doi.org/10.1103/PhysRevD.11.3026
https://doi.org/10.1103/PhysRevD.11.3026
https://inspirehep.net/search?p=find+J%20%22Phys.Rev.%2CD11%2C3026%22
https://doi.org/10.1103/PhysRevD.11.3594
https://inspirehep.net/search?p=find+J%20%22Phys.Rev.%2CD11%2C3594%22
https://doi.org/10.1007/BF01646487
https://doi.org/10.1007/BF01646487
https://inspirehep.net/search?p=find+J%20%22Commun.Math.Phys.%2C31%2C259%22
https://doi.org/10.1146/annurev.ns.43.120193.001233
https://inspirehep.net/search?p=find+J%20%22Ann.Rev.Nucl.Part.Sci.%2C43%2C209%22
https://doi.org/10.1007/BF01215276
https://inspirehep.net/search?p=find+J%20%22Commun.Math.Phys.%2C92%2C455%22
https://doi.org/10.1007/JHEP08(2020)165
https://doi.org/10.1007/JHEP08(2020)165
https://arxiv.org/abs/2001.04864
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2001.04864

	Introduction
	The Schwinger model
	Two flavors
	Conformal coalescence, parity, and +- mass 
	4-point functions
	Higher 2n-point functions
	More questions

