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Abstract: It is  currently  widely  accepted  that  gluons,  while  massless  at  the  level  of  the  fundamental  QCD Lag-
rangian,  acquire  an  effective  mass  through  the  non-Abelian  implementation  of  the  classic  Schwinger  mechanism.
The key dynamical ingredient that triggers the onset of this mechanism is the formation of composite massless poles
inside the fundamental vertices of the theory. These poles enter the evolution equation of the gluon propagator and
nontrivially affect  the way the Slavnov-Taylor  identities  of  the vertices  are  resolved,  inducing a  smoking-gun dis-
placement  in  the  corresponding  Ward  identities.  In  this  article,  we  present  a  comprehensive  review of  the  pivotal
concepts associated with this dynamical scenario, emphasizing the synergy between functional methods and lattice
simulations and highlighting recent advances that corroborate the action of the Schwinger mechanism in QCD.
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I.  INTRODUCTION

Gluons  are  massless  at  the  level  of  the  fundamental
Lagrangian that describes pure Yang-Mills theories or the
gauge  sector  of  Quantum  Chromodynamics  (QCD)  [1],
and  the  use  of  symmetry-preserving  regularization
schemes,  such  as  dimensional  regularization  [2], en-
forces their  masslessness  at  any  finite  order  in  perturba-
tion  theory.  Nonetheless,  mounting  evidence  indicates
[3–7] that the nonperturbative gluon self-interactions give
rise to  a  dynamical  gluon  mass,  or  mass  gap,  as  origin-
ally  asserted  four  decades  ago  in  a  series  of  seminal
works  [8– 13]  and  subsequently  explored  in  a  variety  of
contexts [14–22]. In principle, this mass sets the scale for
dimensionful  quantities  such as  glueball  masses  [23, 24]
and the "chiral limit" trace anomaly [25] and cures the in-
stabilities (e.g., Landau pole) stemming from the infrared
divergences  of  the  perturbative  expansion.  The  gluon
mass  gap  underlies  the  concept  of  a  "maximum  gluon
wavelength,"  above  which  an  effective  decoupling
(screening) of the gluonic modes occurs [26] and is intim-
ately connected  to  confinement,  fragmentation,  and  sup-
pression of the Gribov copies; see, e.g., [27–29] and ref-
erences therein.

In  a  strict  sense,  the  term mass  gap is  understood  to

mean a physical scale, which is independent of the gauge-
fixing procedure used to quantize the theory,  and invari-
ant  under  changes  of  the  renormalization  scale μ.  Of
course,  when the  emergence of  such a  mass  is  exhibited
by  the  off-shell n-point  correlation  (Green)  functions  of
the theory, the resulting effects are both gauge- and μ-de-
pendent. Nevertheless, the distinctive patterns induced by
the gluon mass to the infrared behavior of two- and three-
point  functions  admit  a  pristine  physical  interpretation,
providing invaluable information on the nature and opera-
tion of the underlying dynamical mechanisms. Moreover,
a special  combination  of  these  correlation  functions,  de-
nominated process-independent  QCD  effective  charge
[10, 30, 31],  allows  the  definition  of  a  renormalization-
group-invariant  gluonic  scale  of  approximately  half  the
proton mass [32, 33].

∆(q2)

Particularly conclusive in this context is the character-
istic feature of infrared saturation displayed by the gluon
propagator, which has been observed in numerous large-
volume lattice simulations [34–40] and explored within a
variety of continuum approaches [41–53]. This special at-
tribute is  rather general,  manifesting itself  in the Landau
gauge when other  gauge-fixing choices  are  implemented
[54–60] and in the presence of dynamical quarks [61–65].
In all these cases, as the scalar form factor, , of the
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∆−1(0) = m2

gluon  propagator  reaches  a  finite  nonvanishing  value  in
the  deep  infrared,  a  gluon mass  may be  defined  through
the simple identification , as in the case of or-
dinary massive fields. However, as we will  see in detail,
the field-theoretic circumstances that account for this ex-
ceptional  behavior  are  far  from  ordinary,  involving  a
subtle  interplay  between  nonperturbative  dynamics  and
symmetry.

q2 = 0

The  way  to  reconcile  local  gauge  invariance  with  a
gauge boson mass was elucidated long ago by Schwinger
[66, 67]:  a gauge boson may acquire a mass,  even if  the
gauge  symmetry  forbids  a  mass  term  at  the  level  of  the
fundamental Lagrangian,  provided  that,  at  zero  mo-
mentum transfer  ( ), its  vacuum polarization  devel-
ops a pole with positive residue. In what follows, we will
refer to this fundamental idea as the "Schwinger mechan-
ism."  As we will  demonstrate,  this  special  mechanism is
indeed operational in the gauge sector of QCD.

∆(q2)

The precise  implementation  of  the  Schwinger  mech-
anism in the case of Yang-Mills theories is commonly ex-
plored with continuum Schwinger function methods, such
as the Schwinger-Dyson equations (SDEs) [3, 68–73] and
the functional  renormalization group [74–78], which de-
scribe  the  momentum evolution  of  correlation  functions.
A crucial  ingredient  in  all  such  studies  is  the  incorpora-
tion of longitudinally  coupled massless  poles [79–83] in
the fundamental  interaction vertices of the theory.  These
poles carry color and correspond to massless bound state
excitations,  whose  formation  is  governed  by  appropriate
Bethe-Salpeter  equations  (BSEs)  [79–82].  The  inclusion
of these poles in the diagrammatic expansion of the SDE
that  determines  the  function ,  or,  equivalently,  the
gluon vacuum polarization, triggers the Schwinger mech-
anism, giving rise to a dynamically generated gluon mass
[43, 59, 79– 82].  It  is  important  to  emphasize  that  these
massless  poles  do  not  produce  divergences  in  physical
observables  (see  Sec.  XI)  and  are  intimately  connected
with the vortex picture of confinement; see, e.g., Ch.7 of
[84] and references therein.

Since  the  massless  poles  are  longitudinally  coupled,
they  drop  out  from  the transversely  projected vertices
employed in lattice simulations [65, 85–89], and only the
pole-free parts contribute  to  the  lattice  results.  Nonethe-
less,  the  information  on  the  existence  of  the  massless
poles is unequivocally encoded in the pole-free parts. In-
deed, the additional key role of the massless poles is their
participation  in  the  realization  of  the  Slavnov-Taylor
identities  (STIs)  [90, 91]  satisfied  by  the  vertices:  the
form  of  the  STIs  remains  intact,  but  they  are  resolved
through  the  crucial  participation  of  the  massless  poles
[10, 41, 43, 46, 92– 95]. Thus,  when  the  gluon  mo-
mentum of the STIs is taken to vanish, the Ward identit-
ies (WIs) satisfied by the pole-free parts are displaced by
a  characteristic  amount,  dubbed  the displacement func-
tion [96];  quite  remarkably,  it  is  exactly  identical  to  the

BS amplitude for the pole formation found when solving
the corresponding dynamical equations. The WI displace-
ment function serves as a smoking-gun signal, whose pre-
cise measurement furnishes a highly nontrivial confirma-
tion  of  the  action  of  the  Schwinger  mechanism  in  QCD
[46, 96].

In this study, we review the central concepts and tech-
niques that are instrumental to the aforementioned frame-
work,  focusing  especially  on  recent  developments  that
have enabled the systematic scrutiny and preliminary sub-
stantiation  of  this  entire  approach  [96].  Furthermore,  we
emphasize the creative synergy between continuum meth-
ods  and  gauge-fixed  lattice  simulations  of  Schwinger
functions and elaborate on the close connection between
dynamics and symmetry, as expressed through the SDEs
and BSEs, as well as the special displacement of the WIs.

The article is organized as follows. In Sec. II, we in-
troduce  the  notation  and  the  basic  SDEs  that  govern  the
relevant two- and three-point correlation functions. Then,
in Sec. III, we discuss in detail the salient features of the
Schwinger  mechanism  in  the  context  of  the  pure  Yang-
Mills  theory.  Sec.  IV  is  dedicated  to  the  derivation  and
solution of the BSE that controls the emergence of poles
in the three-gluon and ghost-gluon vertices. In Sec. V, we
explain in detail  how the gluon mass gets induced at the
level  of  the  gluon  SDE,  once  the  massless  poles  have
been formed. In Sec. VI, we introduce the concept of the
WI displacement and discuss its  origin and implications,
while in  Sec.  VII,  we  derive  the  WI  displacement  func-
tion of the three-gluon vertex. Then, in Sec. VIII, we de-
termine this  particular  function  from  the  judicious  com-
binations  of  ingredients  obtained  from  lattice  QCD.  In
Sec.  IX,  we  present  a  deep  connection  between  the  WI
displacement  and  an  important  identity  that  enforces  the
nonperturbative masslessness of the gluon in the absence
of  the  Schwinger  mechanism.  In  Sec.  X,  we  analyze  in
detail the  structure  of  the  transition  amplitude  that  con-
nects an off-shell gluon with the composite excitation and
derive a compact formula that relates its value at the ori-
gin with the gluon mass.  In continuation,  in Sec.  XI,  we
demonstrate with an explicit example the mechanism that
leads to the cancellation of the massless poles from the S-
matrix.  Finally,  our  concluding remarks  are  presented in
Sec. XII. 

II.  NOTATION AND GENERAL FRAMEWORK

In this section we establish the necessary notation and
comment on  the  basic  functional  equations  that  determ-
ine the dynamics of the correlation functions that we con-
sider in this work.

The Lagrangian density of the SU(N) Yang-Mills the-
ory with covariant gauge-fixing is given by 
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LYM = −
1
4

Fa
µνF

aµν+
1
2ξ

(∂µAa
µ)

2− ca∂µDab
µ cb , (1)

Aa
µ(x) ca(x) ca(x)

Fa
µν = ∂µA

a
ν −∂νAa

µ+

g f abcAb
µA

c
ν Dab

µ =

∂µδ
ac+g f ambAm

µ

a = 1, . . . ,N2−1
f abc

LYM

where , ,  and  denote  the  gauge,  ghost,
and  antighost  fields,  respectively, 

 is  the  antisymmetric  field  tensor, 
 is  the  covariant  derivative  in  the  adjoint

representation, and ξ represents the gauge-fixing paramet-
er.  For  the  color  indices,  we  have ,  and

 represent completely  antisymmetric  structure  con-
stants of SU(N). Clearly, the transition to QCD is imple-
mented by adding the appropriate kinetic and interaction
terms  for  the  quark  fields  to .  In  what  follows,  we
will work exclusively with Eq. (1), corresponding to pure
Yang-Mills theory.

Throughout the  article  we carry  out  calculations  em-
ploying Feynman rules  derived in  the  Minkowski  space;
then,  the  final  expressions  are  passed  to  the  Euclidean
space,  where  their  numerical  evaluation  is  carried  out1).
Note that  all  derivations  are  valid  for  space-like  mo-
menta only;  this  allows the use of inputs taken from lat-
tice  simulations  and  facilitates  the  comparison  of  the
functional results to those of the lattice.

∆ab
µν(q) = −iδab∆µν(q)

In  the Landau  gauge that  we  employ,  the  gluon
propagator, ,  assumes the completely
transversed form 

∆µν(q) = ∆(q2)Pµν(q) , Pµν(q) := gµν−qµqν/q2 ,

∆(q2) =Z(q2)/q2 , (2)

Z(q2)
where,  for  latter  convenience,  we  have  introduced  the
gluon dressing function, .

The SDE for the gluon propagator is given by 

∆−1(q2)Pµν(q) = q2Pµν(q)+ iΠµν(q) , (3)

Πµν(q)
Πµν(q)

where  is the  gluon  self-energy,  shown  diagram-
matically in the first row of Fig. 1. Since  is trans-
verse, 

qµΠµν(q) = 0 =⇒ Πµν(q) = Π(q2)Pµν(q) , (4)

and from Eq. (3), it follows that 

∆−1(q2) = q2+ iΠ(q2). (5)

∆−1(q2)
Note  that,  in  the  case  of  the  infrared  finite  solutions  for

,  found  in  lattice  simulations  and  numerous  SDE
analyses,  the  square  of  the  gluon mass  is  identified with

∆−1(q2)the finite nonvanishing value of  at the origin [41,
97], namely 

m2 = ∆−1(0) . (6)

Dab(q2) = iδabD(q2)
F(q2)

In addition,  we  introduce  the  ghost  propagator,  de-
noted  by ,  and  the  corresponding
dressing function, , defined as 

D(q2) =
F(q2)

q2 . (7)

q = 0
According to numerous lattice simulations and studies in
the  continuum,  at ,  the  dressing  function  reaches  a
finite  nonvanishing  value;  see,  e.g.,  [41, 48, 73, 89,
98–102].

We  next  turn  to  the  three-point  sector  of  the  theory,
which,  in  the  absence  of  dynamical  quarks,  contains  the
three-gluon and the ghost-gluon vertices, denoted by 

IΓabc
αµν(q,r, p) =g f abc IΓαµν(q,r, p) ,

IΓmna
µ (r, p,q) =−g f mna IΓµ(r, p,q) , (8)

q+ p+ r = 0

IΓαµν(q,r, p) IΓµ(r, p,q)

where  all  momenta  are  incoming,  and .  The
corresponding  SDEs  that  govern  the  evolution  of

 and  are  shown  in  the  second  and
third row of Fig. 1,  respectively [73, 82, 100, 103–109].
The omitted terms, indicated by ellipses, contain the fully
dressed four-gluon vertex (with incoming momentum q).
In  general,  these  latter  contributions  are  technically
harder  to  compute;  nonetheless,  related  studies  suggest
that their impact on our analysis is likely to be small [73,
108].

Ki j

Note that, in Fig. 1, we show the Bethe-Salpeter ver-
sion of the vertex SDE, whose main difference is that, in-
side the loops, the tree-level vertices (with incoming mo-
mentum q) are  replaced  by  their  fully  dressed  counter-
parts.  This  substitution may be  carried  out  provided that
the  corresponding  four-particle  kernels  are  modified
accordingly, in order to avoid overcounting. For example,
ladder  graphs  (straight  boxes)  must  be  omitted,  while
cross-ladder graphs (crossed boxes) are retained (see e.g.,
Fig. 7 of [79]). This particular formulation of the SDE of-
fers an important technical advantage: vertex renormaliz-
ation constants, which otherwise would appear when ex-
plicitly multiplying  individual  diagrams,  are  fully  ab-
sorbed by the additional dressed vertices (see Sec. V).

The  algebraic  manipulations  of  potentially  divergent
integrals require the use of symmetry-preserving regular-
ization schemes. This is particularly important, because a
flawed  regularization  procedure  may  introduce  artifacts
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that mimic the effects of a gluon mass. Dimensional regu-
larization  [2]  is  especially  well-suited  for  this  purpose
and will be adopted forthwith. Note, in fact, that its use is
crucial  for  the  demonstration  of  the  seagull  identity  [46,
110] (see Sec. IX), whose validity, in turn, guarantees the
nonperturbative  masslessness  of  the  gluon,  when  the
Schwinger mechanism is not activated.

For  the  loop  integrals  regularized  with  dimensional
regularization, we introduce the short-hand notation ∫

k
:=
µϵ0

(2π)d

∫ +∞

−∞
ddk , (9)

d = 4− ϵ µ0where  is the dimension of the space-time, and 
denotes the 't  Hooft mass.  It  is  understood that the regu-
larization  is  employed  until  certain  crucial  cancellations
take  place,  and  the  procedure  of  renormalization  is  duly
carried out. Past that point, the resulting equations are fi-
nite, and no regularization is needed. 

III.  SCHWINGER MECHANISM IN YANG-MILLS
THEORIES

Endowing gauge bosons with a mass in a field-theor-
etically consistent  way is  particularly  subtle.  In  this  sec-
tion,  we  review  the  generation  of  a  gluon  mass  through
the  nonperturbative  realization  of  the  well-known
Schwinger mechanism [66, 67], in the context of a Yang-
Mills theory described by Eq. (1).

The general  idea of  the mechanism is  best  expressed

Π(q2)
Π(q2)

Π(q2) = q2Π(q2)

in terms of the dimensionless vacuum polarization, ,
defined  in  terms  of  the  gluon  self-energy  through

, such that
 

∆−1(q2) = q2[1+ iΠ(q2)] . (10)

Π(q2)
q2 = 0

Schwinger's  fundamental  observation  states  that,  if  the
vacuum  polarization  develops a  pole  at  zero  mo-
mentum  transfer  ( ), the  vector  meson  (gluon)  ac-
quires  a  mass,  even  if  the  gauge  symmetry  prohibits  the
inclusion of a mass term at the level of the defining Lag-
rangian. Thus, one has 

lim
q→0

iΠ(q2) =m2/q2 =⇒ lim
q→0
∆−1(q2) = lim

q→0
(q2+m2)

=⇒ ∆−1(0) = m2 , (11)

and the vector meson picks up a mass, in the sense that its
propagator at the origin saturates at a finite nonvanishing
value,  which  is  determined  by  the  (positive)  residue  of
the pole.

Π(q2)

The argument described above is completely general,
and its key conclusion does not depend on the dynamical
details  that  lead  to  the  appearance  of  a  massless  pole  in

. Of course, in practice, depending on the character-
istics of each theory, the circumstances that trigger the se-
quence  described  in  Eq.  (11)  may  be  very  distinct  [111,
112]. In the case of Yang-Mills theories, the origin of the
pole is purely dynamical, as first described in the classic

Fig. 1.    (color online) (first row) The diagrammatic representation of the gluon self-energy. (second row) The SDE for the three-gluon
vertex. (third row) The SDE for the ghost-gluon vertex. White (colored) circles denote fully dressed propagators (vertices), while the
orange ellipses denote four-particle kernels.
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work by Eichten and Feinberg [92].  In what follows, we
will  present the modern implementation of this  scenario,
as it has been developed in a series of articles during the
past few years.

The  general  idea  is  that  the  nonperturbative  vertices
of the theory develop special  massless composite excita-
tions, which find their way into the gluon vacuum polar-
ization through the SDE in Fig. 1 [43, 79–82]. In particu-
lar,  the  three-gluon  and  ghost-gluon  vertices  assume  the
general form (see Fig. 2) 

IΓαµν(q,r, p) =Γαµν(q,r, p)+Vαµν(q,r, p) ,
IΓα(q,r, p) =Γα(q,r, p)+Vα(q,r, p) , (12)

Γαµν(q,r, p) Γα(r, p,q)
Vαµν(q,r, p)

Vα(q,r, p)

where  and  are the  pole-free  com-
ponents  of  the  two  vertices,  while  and

 contain longitudinally  coupled bound-state
poles, with the special tensorial structure 

Vαµν(q,r, p) =
qα
q2 Cµν(q,r, p)+

rµ
r2 Aαν(q,r, p)+

pν
p2 Bαµ(q,r, p) ,

Vα(q,r, p) =
qα
q2 C(q,r, p) .

(13)

We  emphasize  that  the  pole-free  components  are  not
"regular" functions,  in  the  strict  sense  of  the  term,  be-
cause certain  of  their  form  factors  diverge  logarithmic-
ally in the infrared region; see, e.g., [113]. Note also that
the corresponding tree-level expressions are given by 

Γ0
αµν(q,r, p) =(q− r)νgαµ+ (r− p)αgµν+ (p−q)µgνα ,
Γ0
α(q,r, p) =rα . (14)

Vαµν(q,r, p)
Vα(q,r, p)

Iα(q)

Iα(q) = qαI(q2) I(q2)
Vαµν(q,r, p)

I(q2)
C(q,r, p) Cµν(q,r, p)

Iα(q)

The  longitudinal  nature  of  the  and
 is easily established at the level of Fig. 2. Spe-

cifically, the black circle denotes the transition amplitude,
,  connecting  a  gluon  with  a  (massless  composite)

scalar; since  this  amplitude  depends  on  a  single  mo-
mentum, q, and a single Lorentz index, α, its general form
is  simply ,  where  is  a  scalar  form
factor  [79, 80].  In  the  case  of , Bose  sym-
metry  enforces  the  same  property  in  the  remaining  two
channels,  thus  finally  accounting  for  the  general  form
given in Eq. (13). The form factor  is eventually ab-
sorbed into  and ; additional details on
the structure of  will be given in Sec. X.

Vαµν(q,r, p) Vα(q,r, p)
An  immediate  consequence  of  Eq.  (13)  is  that

 and  satisfy the crucial relations 

Pαα′ (q)Pµµ′ (r)Pνν′ (p)Vαµν(q,r, p) = 0 , Pαα′ (q)Vα(q,r, p) = 0 ,
(15)

therefore, they drop out  from the typical  quantities  stud-
ied on the lattice, which involve the transversely projec-
ted vertices [see, e.g., Eq. (75)]. In fact, as we will see in
detail in Sec. XI, Eq. (15) is instrumental for the cancella-
tion  of  all  pole  divergences  from  physical  observables,
such as S-matrix elements.

Vαµν(q,r, p)

Vαµν(q,r, p)

Note that, even though  possesses poles in
all three of its channels, only the one associated with the
q-channel, i.e.,  the  channel  that  carries  the  physical  mo-
mentum entering the gluon propagator,  is  actually  relev-
ant.  In  fact,  the  longitudinal  structure  of , to-
gether  with  the  fact  that  we  work  in  the  Landau  gauge,
making  the  gluon  propagators  inside  Feynman  diagrams
transverse, leads to the simplification 

IΓαµν(q,r, p)
IΓα(q,r, p) Γαµν(q,r, p) Γα(q,r, p)

Vαµν(q,r, p) Vα(q,r, p)

Fig. 2.    (color online) The diagrammatic representation of the three-gluon and ghost-gluon vertices introduced in Eq. (12): 
(first row) and  (second row). The first term on the r.h.s. indicates the pole-free part,  or , while the second
denotes the pole term  or .
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Pµµ′ (r)Pνν′ (p)Vαµν(q,r, p) =
qα
q2 Pµµ′ (r)Pνν′ (p)Cµν(q,r, p) . (16)

Cµν(q,r, p)
Thus,  for  our  analysis,  we  only  require  the  tensorial

decomposition  of  the  term  in  Eq.  (13),  given
by 

Cµν(q,r, p) =C1 gµν+C2 rµrν+C3 pµpν+C4 rµpν+C5 pµrν ,
(17)

C j :=C j(q,r, p) Cµν(q,r, p)

q+ p+ r = 0

where .  Now,  when  the  of  Eq.
(17)  is  substituted  into  Eq.  (16)  and  the  relation

 is  appropriately  employed,  only  two  form
factors survive: 

Pµµ′ (r)Pνν′ (p)Vαµν(q,r, p) =
qα
q2 Pµµ′ (r)Pνν′ (p)

[
C1 gµν+C5qµqν

]
.

(18)

q = 0

C5 O(q2)

C1(q,r, p)
Vαµν(q,r, p) C(q,r, p)
Vα(q,r, p)

Since  we  are  mostly  interested  in  the  behavior  of  the
gluon propagator at the origin, we will be expanding the
relevant  equations  around ,  keeping  terms  at  most
linear in q. In such an expansion, the term proportional to

 in Eq. (18) is subleading, being of order . There-
fore,  finally,  one  ends  up  with  a  single  relevant  form
factor  per  pole  vertex,  namely ,  related  to

,  and ,  the  unique  component  of
.

f (q,r, p) q = 0 p = −r
In what follows, we will repeatedly use the Taylor ex-

pansion of a function  around  ( ), giv-
en by 

lim
q→0

f (q,r, p) = f (0,r,−r)+qα
[
∂ f (q,r, p)
∂qα

]
q=0
+ · · · ,

= f (0,r,−r)+2(q · r)
[
∂ f (q,r, p)
∂p2

]
q=0
+ · · · ,

(19)

O(q2)where the ellipses denote terms of  or higher.

C1(q,r, p) C(q,r, p)
There  are  two  important  results  relevant  for  the

Taylor expansion of  and , namely 

C1(0,r,−r) = 0 , C(0,r,−r) = 0 . (20)

C1(q,r, p) = −C1(q, p,r)

IΓα(q,r, p)
Γ̃α(q,r, p)

The first  relation  follows  directly  from  the  Bose  sym-
metry  of  the  three-gluon  vertex,  which  implies  that

. The justification of the second re-
lation in Eq. (20) is less immediate, relying on special re-
lations  [72, 114]  linking  with  the  vertex

 introduced  in  Sec.  VI.  As  we  will  see  in  Sec.
VII, the first relation in Eq. (20) will be derived in a com-
pletely independent way from the fundamental WIs satis-

fied by the three-gluon vertex.
C1(q,r, p)

C(q,r, p) q = 0
In view of Eq. (20), the Taylor expansion of 

and  around  yields 

lim
q→0

C1(q,r, p) = 2(q · r)C(r2) + · · · ,

lim
q→0

C(q,r, p) = 2(q · r)C(r2) + · · · , (21)

with 

C(r2) :=
[
∂C1(q,r, p)
∂p2

]
q=0
, C(r2) :=

[
∂C(q,r, p)
∂p2

]
q=0
.

(22)

C(r2) C(r2)

C(r2) C(r2)

IΓαµν(q,r, p) IΓα(q,r, p)

C(r2) C(r2)

C(r2)

Γαµν(q,r, p)

The functions  and  are  central  to  the  ensuing
analysis. In  particular,  there  are  three  pivotal  points  re-
lated to them that will be elucidated in the next sections.
First, we will prove that nonvanishing  and  do
indeed emerge  from  the  corresponding  dynamical  equa-
tions  for  and .  In  fact,  as  we  will
see in the next section, these two functions turn out to be
the BS  amplitudes describing  the  formation  of  a  gluon-
gluon  and  a  ghost-antighost colored composite  bound
state,  respectively.  Second,  we  will  derive  the  formula
that expresses the gluon mass in terms of  and 
and demonstrate that it furnishes a result compatible with
the lattice simulations; this will be the subject of Sec. V.
Third,  in Sec.  VI,  we will  elaborate on the notion of the
WI  displacement  and  show  that  corresponds pre-
cisely  to  the displacement  function that  quantifies  the
modification  of  the  WIs  satisfied  by  in  the
presence of massless poles. 

IV.  DYNAMICAL FORMATION OF MASSLESS
POLES

Vαµν(q,r, p) Vα(q,r, p)

IΓαµν(q,r, p) IΓα(q,r, p) q→ 0
C(r2)

C(r2)

We next turn to the study of the precise dynamics that
leads to  the  formation  of  the  poles  that  com-
prise  and  entering Eq. (13). The fun-
damental equations that control this process are the SDEs
for  and , which, in the limit ,
provide a set  of  linear  BSEs for  the quantities  and

, defined in Eqs. (21) and (22).
λ := ig2CA/2 CA

S U(N)

In what follows, we set , where  is the
Casimir  eigenvalue  of  the  adjoint  representation  [N for

].  Then,  the  system  of  SDEs  shown  in Fig.  1 as-
sumes the form [96] 

IΓαµν =Γ0
αµν−λ

∫
k
IΓαβγ∆βρ∆γσKµνσρ11 +2λ

∫
k
IΓαDDKµν12 ,

IΓα =Γ0
α−λ

∫
k
IΓαβγ∆βρ∆γσKσρ21 −λ

∫
k
IΓαDDK22 ,

(23)
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where, for compactness, all momentum arguments, indic-
ated explicitly on the diagrams of Fig. 1, have been sup-
pressed.

Pµ′µ(r)Pµ
′

ν (p)
q→ 0

rα

qα qα

rα

Γαµν(q,r, p) Γα(q,r, p)
q→ 0

C(r2) C(r2)

Next,  we  substitute  into  Eq.  (23)  the  expressions  for
the fully dressed vertices given in Eq. (12). In addition, in
order to exploit Eq. (18), the first of the two equations are
multiplied  by  the  factor .  Then,  as  the  limit

 is taken, two tensorial structures emerge: one asso-
ciated  with  the  pole-free  terms,  which  is  proportional  to

, and one associated with the pole terms, being propor-
tional to . The matching of the terms proportional to 
on both sides leads to the desired BSEs, while the match-
ing of the terms proportional to  furnishes a dynamical
system  for  the  so-called  "soft-gluon"  form-factors  of

 and  [see,  for  example,  Eq.  (68)].
Focusing on the BSEs, the limit  activates Eq. (21),
and the functions  and  make their appearance.

Specifically, after employing the useful relation ∫
k
(q · k) f (k,r) =

(q · r)
r2

∫
k
(r · k) f (k,r) , (24)

f (k,r)
C(r2)

C(r2)

with  denoting a generic kernel, we arrive at a sys-
tem  of  homogeneous  equations  involving  and

, namely (see Fig. 3) 

C(r2) =− λ
3

∫
k
C(k2)∆2(k2)Pρσ(k)Pµν(r)K̃µνσρ11

+
2λ
3

∫
k
C(k2)D2(k2)Pµν(r)K̃µν12 ,

C(r2) =−λ
∫

k
C(k2)∆2(k2)Pσρ(k)K̃σρ21 −λ

∫
k
C(k2)D2(k2)K̃22 ,

(25)

K̃i j := (r · k/r2)Ki j(r,−r,k,−k)

d4k→ id4kE

where .  Note  that  the  above
derivation has been carried out in Minkowski space, and
hence, the imaginary factor of i in the definition of λ. Be-
fore  proceeding  with  the  numerical  analysis,  the  result
must be  passed  to  the  Euclidean  space,  following  stand-
ard conversion rules. Note, in particular, that the integral
measure changes according to ; this addition-
al factor of i combines with λ to yield real expressions.

C(r2) C(r2)

The system of integral equations given in Eq. (25) are
the  BSEs  that  govern  the  formation  of  massless  colored
bound states out of two gluons and a ghost-antighost pair;
the  functions  and  are  the  corresponding  BS
amplitudes.  It  is  therefore  of  the  utmost  importance  to
find nontrivial  solutions  for  these  functions,  even  if  cer-
tain  simplifying  assumptions  will  be  implemented  at  the
level of the ingredients entering Eq. (25).

Ki j

Γαµν Γα
Ki j

To  that  end,  we  employ  the  "one-particle  exchange"
approximation  for  the  kernels ,  shown  in Fig.  4;  the
ingredients  required  for  their  evaluation  are  the  fully
dressed propagators and vertices. Note that only the pole-
free  parts  and  are  relevant  for  the  evaluation  of
the  kernels , because  the  various  projections  imple-
mented  during  the  derivation  of  Eq.  (25)  activate  Eq.
(15);  the reader is  referred to [96], and in particular  Ap-
pendix A therein, for further details.

αs = g2/4π
αs = 0.63

µ = 4.3 αs
C(r2) C(r2)

αs

The system of integral equations in Eq. (25) is linear
and homogeneous in the unknown functions, thus corres-
ponding to  an  eigenvalue  problem,  which  finally  singles
out  a  special  value  for  the  strong  coupling, .
Specifically, we find that  when the renormaliza-
tion point  GeV. For this particular value of , we
find nontrivial  solutions for  and ,  which  are
shown in the left panel of Fig. 5. This value of  is to be

C(r2) C(r2)

Fig.  3.    (color online) The  diagrammatic  representation  of  the  coupled  system of  BSEs  that  governs  the  evolution  of  the  functions
 and .
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∆−1
R (µ2) = µ2

Lsg(µ2) = 1 Lsg(r2)

αs αs = 0.27

contrasted  with  the  corresponding  value  obtained  within
the  concrete  renormalization  scheme  that  we  employ.
Specifically,  we  work  within  the  general  framework  of
the momentum subtraction (MOM) scheme [115], where
two-point functions acquire their tree-level expressions at
a given scale μ, i.e., . Within this scheme, we
adapt the so-called asymmetric version [65, 87, 116–119],
characterized  by  the  condition ,  where 
is  the  form  factor  of  the  three-gluon  vertex  in  the  soft-
gluon ("asymmetric") configuration (see Eq. (75)); the es-
timated value of  within this scheme is  [65, 87].

αs

Ki j

αs

C⋆(r2)
C⋆(r2)

It is natural to interpret this numerical discrepancy in
the values of  as an artifact of the truncation employed,
especially  the  approximation  of  the  kernels  by  their
one-particle  exchange  diagrams.  It  is  worth  mentioning
that, according to a preliminary analysis, moderate modi-
fications of the kernel affect the value of  considerably,
leaving  the  form  of  the  solutions  found  for  and

 essentially  unmodified.  This  observation  implies
that  a  more  complete  knowledge  of  the  corresponding

αsBSE kernels  is  required  in  order  to  decrease  towards
its correct  MOM  value.  Nevertheless,  the  solutions  ob-
tained with the approximations described above should be
considered as fairly reliable.

C⋆(r2) C⋆(r2)

C(r2)

q = 0

It  is  important  to  stress  that,  due to  the  homogeneity
and linearity  of  Eq.  (25),  the  overall  scale  of  the  solu-
tions is undetermined, since the multiplication of a given
solution  by  an  arbitrary  real  constant  produces  another
solution. In the case of the solutions shown in Fig. 5, de-
noted  by  and ,  the  scale  has  been fixed by
requiring the best possible match with the corresponding
result  obtained  for  from  the  WI  displacement  in
Sec. VIII. This scale ambiguity originates from consider-
ing only  the  leading  order  terms  of  the  BSEs  in  the  ex-
pansion around ; it may be resolved if further orders
in q are  kept,  because  of  the  additional  inhomogeneous
terms that they induce; see, e.g., [120–122].

C⋆(r2)
C⋆(r2)

Note finally that  is considerably larger in mag-
nitude  than  [82],  indicating  that  the  three-gluon
vertex accounts for the bulk of the gluon mass. 

Ki jFig. 4.    (color online) The one-particle exchange approximations of the kernels  and the associated kinematic conventions.
 

C⋆(r2) C⋆(r2)

Vνα′β′

d1 d4

Fig. 5.    (color online) (left panel) The solutions for  (purple dot-dashed) and  (red dashed) obtained from the coupled BSE
system of Eq. (25). (right panel) Diagrammatic representation of the mass term that emerges from the insertion of the pole term 
into the diagrams  and  of Fig. 1.
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V.  GLUON MASS VIA THE SCHWINGER
MECHANISM

In  this  section,  we  elucidate  in  some  detail  how  the
inclusion  of  vertices  with  massless  poles  into  the  gluon
SDE  triggers  the  Schwinger  mechanism,  leading  to  the
generation of a gluon mass.

dµν1 (q)
In order to fix the ideas, let us consider a specific ex-

ample, namely the diagram  shown in the first row
of Fig. 1, corresponding to the expression 

idµν1 (q) =λ
∫

k
Γ
µαβ
0 (q,k,−k−q)∆αα′ (k)∆ββ′ (k+q)

× IΓνα
′β′ (q,k,−k−q) . (26)

IΓνα
′β′ (q,k,−k−q)

{α,µ,ν} →{ν,α′,β′}
d̂µν1 (q)

Vνα′β′ (q,k,−k−q)

Next, we use a three-gluon vertex containing the type of
massless poles described above (evidently with the appro-
priate relabeling of indices) for . In par-
ticular, we  substitute  the  vertex  given  in  the  first  equa-
tion  of  Eq.  (12)  into  Eq.  (26),  with ,
and denote by , the contribution originating exclus-
ively from the term , namely 

id̂µν1 (q) =λ
∫

k
Γ
µαβ
0 (q,k,−k−q)∆αα′ (k)∆ββ′ (k+q)

×Vνα
′β′ (q,k,−k−q) . (27)

Vαµν

Cα
′β′ (q,k,−k−q)

Now, from the general form of  given in Eq. (13) it is
evident that, since we work in the Landau gauge, the only
term  that  survives  in  Eq.  (27)  is  proportional  to

, such that 

id̂µν1 (q) =λ
qν

q2

∫
k
Γ
µαβ
0 (q,k,−k−q)∆αα′ (k)∆ββ′ (k+q)

×Cα
′β′ (q,k,−k−q) . (28)

d̂µν1 (q) qµqν

d̂µν1 (q) = (qµqν/q2)d̂1(q2)
Clearly,  can  only  be  proportional  to ; there-
fore, we set , with1)
 

id̂1(q2) =λ
qµ
q2

∫
k
Γ
µαβ
0 (q,k,−k−q)∆αα′ (k)∆ββ′ (k+q)

×Cα′β′ (q,k,−k−q) . (29)

d̂1(0)We next determine , 

id̂1(0) =λ
qµ
q2 lim

q→0

∫
k
Γ
µαβ
0 (q,k,−k−q)

×∆αα′ (k)∆ββ′ (k+q)Cα
′β′ (q,k,−k−q) . (30)

q = 0
q = 0

The expansion of the integrand around  proceeds by
inserting Eq. (21) and setting  elsewhere, yielding 

id̂1(0)= 2λ
qµqν
q2

∫
k
kνΓµαβ0 (0,k,−k)Pαβ(k)∆2(k2)C(k2) , (31)

with 

Γ
µαβ
0 (0,k,−k) = 2kµgαβ− kαgµβ− kβgµα . (32)

gµν

gµµ = 4 Pµµ(q) = 3
Since  the  integral  is  proportional  to ,  we  find  (using
that  and ) 

id̂1(0) =
λ

2

∫
k
kµΓ
µαβ
0 (0,k,−k)Pαβ(k)∆2(k2)C(k2)

=3λ
∫

k
k2∆2(k2)C(k2) . (33)

d̂µν1 (q) Π(q2)
d̂1(0)/q2

d̂1(0)

To  establish  explicit  contact  with  the  formulation  by
Schwinger described in Sec. III, notice that the contribu-
tion of  to the gluon vacuum polarization, , is
simply  given  by ;  as  advocated,  it  amounts  to  a
massless pole, whose residue is precisely .

d3 d4
d4

d1

Cα′β′
q→ 0 C(k2)

d1 d4

d4
Y(k2)

The full  computation  of  the  total  gluon  mass  pro-
ceeds  by  including  the  effects  of  diagrams  and ,
shown in the first line of Fig. 1. Specifically, diagram 
will  contribute  to  the  mass  for  the  same  reason  as ,
namely due  to  the  insertion  of  the  massless  pole  associ-
ated  with  the  three-gluon  vertex,  proportional  to ;
eventually,  after  the  limit  has  been  taken, 
emerges once  again.  As  a  result,  the  corresponding  con-
tributions from  and  may be naturally combined in-
to a  single  expression,  whose  diagrammatic  representa-
tion  is  given  in  the  right  panel  of Fig.  5.  Note  that  the
contribution  from  graph  contains  a  function  denoted
by , given by [43] 

Y(k2) =
iλ

2k2 kρ
∫
ℓ

∆µρ(ℓ)∆αν(ℓ+ k)Γαµν(k, ℓ,−k− ℓ) , (34)

d4
d3

IΓα

C(q,r, p) q→ 0
C(k2)

whose origin is the one-loop subdiagram nested inside .
In  addition,  the  contribution  of  originates  from  the
pole  in  the  fully  dressed  ghost-gluon  vertex, , in  ac-
cordance  with  Eqs.  (12)  and  (13);  it  is  proportional  to

, and once the limit  has been implemented,
to .

As with  any  SDE  computation,  multiplicative  renor-
malization  must  be  implemented  following  the  standard
rules.  In  particular,  we introduce the  renormalized fields
and coupling constant [123] 
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Aaµ
R (x) =Z−1/2

A Aaµ(x) , ca
R(x) = Z−1/2

c ca(x) ,

gR =Z−1
g g , (35)

such that the associated two-point functions are renormal-
ized as 

∆R(q2) = Z−1
A ∆(q2) , DR(q2) = Z−1

c D(q2) . (36)

Similarly, the renormalization constants of the three fun-
damental  Yang-Mills  vertices  (ghost-gluon,  three-gluon,
and four-gluon) are defined as 

IΓµR = Z̃1IΓµ; IΓµαβR = Z3IΓµαβ; IΓµαβνR = Z4IΓµαβν.
(37)

In addition,  we  employ  the  following  set  of  exact  rela-
tions 

Zg = Z̃1Z−1/2
A Z−1

c = Z3Z−3/2
A = Z1/2

4 Z−1
A , (38)

R

which  are  enforced  by  the  STIs  of  the  theory.  Once  the
renormalization procedure  has  been  completed,  the  sub-
script " " will be suppressed from all quantities, in order
to avoid notational clutter.

Next we pass the answer to Euclidean space and make
standard  use  of  the  hyperspherical  coordinates,  carrying
out the trivial angular integrations. The final result reads 

m2 =3λ̂
∫ ∞

0
dyZ2(y)

[
6παsCAZ4Y(y)−Z3

]
C(y)

+ λ̂ Z̃1

∫ ∞

0
dy F2(y)C(y) , (39)

Z(q2) F(q2)
λ̂ :=CAαs/8π

where  we  have  employed  the  gluon  and  ghost  dressing
functions,  and ,  introduced  in  Eqs.  (2)  and
(7), respectively, and have set .

Z̃1

Turning to the renormalization constants appearing in
Eq. (39),  let  us first  point  out that,  in the Landau gauge,

 has  a  finite,  cutoff-independent  value,  by  virtue  of
Taylor's  theorem  [90];  in  fact,  in  the  so-called  "Taylor

Z̃1 = 1

Z̃1 ≈ 0.95 Z3 Z4

scheme" [124–126], we have that . However, in our
analysis we will employ the "asymmetric" MOM scheme
mentioned  earlier,  which  yields  a  slightly  lower  value,

 [102].  On  the  other  hand,  both  and  are
cutoff-dependent, thus, considerably complicating the use
of Eq. (39).

Γαµν
To circumvent  this  difficulty,  consider  the  renormal-

ized SDE of the pole-free part, , shown in Fig. 6; the
renormalization constants that survive, after the relations
in Eq. (38) are duly employed, are explicitly shown. It is
relatively straightforward to establish that the sum 

Gµαβ(q,r, p) :=Z3Γ
µαβ
0 (q,r, p)

+Z4
[
aµαβ3 (q,r, p)+aµαβ4 (q,r, p)

]
(40)

Gµαβ(0,k,−k) a3 a4

Y(k2)

a3 a4
1
2

is precisely  the  combination  of  vertex  diagrams  that  ap-
pears  inside the kernel  of  the mass equation (right  panel
of Fig.  5),  in  the  special  momentum  configuration

 [123]. Note that the graphs  and , after
appropriate symmetrization, generate precisely the contri-
bution  associated  with  the  function ;  in  fact,  the
symmetry factor of the diagrams  and  is , exactly
as needed to reach Eq. (40).

Then, if we set 

Gµαβ(0,k,−k) = 2G(k2)kµgαβ+ · · · , (41)

kαgµβ kβgµα kµkαkβ

Pαβ(k)

where  the  ellipsis  indicates  contributions  proportional  to
, , or , which get annihilated when con-

tracted by the projector , Eq. (39) may be written as 

m2 = 3λ̂
∫ ∞

0
dyZ2(y)G(y)C(y) + λ̂ Z̃1

∫ ∞

0
dy F2(y)C(y) .

(42)

But, as is clear from the SDE, one may also set 

Gµαβ(q,r, p) = Γµαβ(q,r, p)− [aµαβ1 (q,r, p)+aµαβ2 (q,r, p)] .
(43)

For practical purposes, the main difference between Eqs.

Z3 Z4 a3 a4
1
2

Fig. 6.    (color online) The SDE satisfied by the pole-free part of the renormalized three-gluon vertex, with the vertex renormalization
constants  and  explicitly indicated. The symmetry factor of diagrams  and  is .
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(40) and (43) is the absence of renormalization constants
in the latter.  In that  sense,  Eq. (43) is  more reliable,  and
will  be  used for  the  actual  determination of  the  value  of
the gluon mass.

In particular, we have that 

Γµαβ(0,k,−k) =2Lsg(k2)kµgαβ+ · · · ,
aµαβi (0,k,−k) =ai(k2)kµgαβ+ · · · (i = 1,2) , (44)

G(k2)so  that  the  form  factor ,  introduced  in  Eq.  (40),  is
now given by 

G(k2) = Lsg(k2)− 1
2

[a1(k2)+a2(k2)] . (45)

G(k2)
m2 Lsg(k2)

a1(k2) a2(k2)
a1 a2

K11 K12

This  last  form  of  will  be  used  in  Eq.  (42)  for  the
numerical computation of . The quantity  is de-
termined  from  large-volume  lattice  simulations  [65, 87,
123, 127],  while the form factors  and  must
be computed from the graphs  and  in Fig. 6, where
the  one-particle  exchange  approximation  for  the  kernels

 and , shown in Fig. 4, will be implemented.
C(y)

C(y)

C(y) ∼ y−1.45 C(y) ∼ y−1.12

It is important to stress that the solutions for  and
 obtained from  the  BSEs  decrease  sufficiently  rap-

idly  in  the  ultraviolet  for  the  integrals  of  Eq.  (42)  to  be
convergent.  In  particular,  for  large  values  of y,  we  have
that  and  [96].

m = 320±35

a1(k2) a2(k2)

mL = 354±1
∆(0) =

7.99±0.05 GeV−2

µ = 4.3

The  numerical  evaluation  of  Eq.  (42)  finally  yields
the value of  MeV [7], where the error is es-
timated  from  the  uncertainties  in  the  evaluation  of  the
form factors  and . The calculated value of m
is  in  very  good  agreement  with  the  lattice  value

 MeV, which is obtained from the inverse of
the  saturation  value  of  the  gluon  propagator, 

,  when  the  renormalization  point  is
 GeV; see Fig. 7 and [102]. Note that the lattice er-

ror reported is purely statistical.
It is clear that the value of m extracted in this manner

depends on the choice of  the renormalization point μ,  as
already stated in the Introduction. Specifically, if a differ-
ent  point  of  renormalization,  say ν, had  been  chosen  in-
stead,  the entire  curve of  the gluon propagator  would be
modified according to [128] 

∆(q2, ν2) =
∆(q2,µ2)
ν2∆(ν2,µ2)

, (46)

q2 = 0which, for , yields 

m2(ν2) = m2(µ2)ν2∆(ν2,µ2) . (47)

Note  finally  that  a  renormalization-group-invariant
gluon mass  may  be  obtained  by  working  with  the  pro-
cess-independent effective charge [5, 32, 33], which con-

mRGI = 430±10

stitutes the QCD analogue of the Gell-Mann–Low coup-
ling known from QED [129]. The value of this mass turns
out to be  MeV. 

VI.  WARD IDENTITY DISPLACEMENT:
GENERAL OBSERVATIONS

We will  now turn  to  another  central  point  of  the  en-
tire  approach  and  elaborate  on  the  displacement  that  the
Schwinger mechanism induces to the WIs satisfied by the
pole-free parts of the vertices [46].

Ba
α(q)c̄m(r)cn(p) Ba

α

c̄m cn

f amn

Γ̃α(q,r, p)

In order  to  fix  the  ideas  with  a  relatively  simple  ex-
ample, we consider the vertex , where 
is  the  "background"  gluon,  while  ( )  are  the  anti-
ghost  (ghost)  fields.  This  vertex  has  a  reduced  tensorial
structure, and, due to the general properties of the Back-
ground Field Method (BFM) [130–137] (see Sec. IX),  it
satisfies  an  Abelian  STI.  Specifically,  after  suppressing
the gauge coupling g and the color  factor , the con-
traction of the remainder of this vertex, to be denoted by

, yields 

qαΓ̃α(q,r, p) = D−1(p2)−D−1(r2) , (48)

D(q2)where  is the ghost propagator defined in Eq. (7).

Γ̃α(q,r, p)
At this  point,  we  assume  that  the  form  factors  com-

prising  do not contain poles, i.e., the Schwing-
er  mechanism  is  turned  off.  In  that  case,  one  may  carry
out the Taylor expansion of both sides of Eq. (48), keep-
ing terms at most linear in q: 

[l.h.s] =qαΓ̃α(0,r,−r) ,

[r.h.s] =qα
∂D−1(r2)
∂rα

. (49)

qαEquating the coefficients of the terms linear in  on both
sides, one arrives at a simple QED-like WI 

Γ̃α(0,r,−r) =
∂D−1(r2)
∂rα

. (50)

Γ̃α(0,r,−r)Since  is described by a single form factor,
namely 

Γ̃α(0,r,−r) = Ã(r2)rα , (51)

we may cast Eq. (50) into the equivalent form 

Ã(r2) = 2
∂D−1(r2)
∂r2 . (52)

ĨΓα(q,r, p)
Let  us  now  activate  the  Schwinger  mechanism,  and

denote the resulting full vertex by ; in complete
analogy with Eq. (13), it is composed of a pole-free com-
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ponent and a pole term, according to 

ĨΓα(q,r, p) = Γ̃α(q,r, p)+
qα
q2 C̃(q,r, p) . (53)

ĨΓα(q,r, p)

As  the  Schwinger  mechanism  becomes  operational,  the
STIs satisfied by the elementary vertices retain their ori-
ginal  form  but  are  now  resolved  through  the  nontrivial
participation  of  the  massless  pole  terms  [10, 41, 43, 46,
92–95].  In  particular,  satisfies, as  before,  pre-
cisely Eq. (48), namely 

qα ĨΓα(q,r, p) = qαΓ̃α(q,r, p)+ C̃(q,r, p) = D−1(p2)−D−1(r2) .
(54)

ĨΓα(q,r, p) qα

q2

Γ̃α(q,r, p)

q = 0

Importantly,  the  contraction  of  by  cancels
the  massless  pole  in ,  yielding  a  completely  pole-free
result. Consequently, the WI obeyed by  may be
derived  as  before,  by  carrying  out  a  Taylor  expansion
around , keeping terms at most linear in q. In partic-
ular, we obtain 

qαΓ̃α(0,r,−r) = C̃(0,r,−r)+qα
∂D−1(r2)
∂rα

−
∂C̃(q,r, p)
∂qα


q=0

 .
(55)

C̃(0,r,−r)
It  is  clear  now  that  the  only  zeroth-order  contribution
present in Eq. (55), namely , must vanish: 

C̃(0,r,−r) = 0 . (56)

C̃(q,r, p)
r↔ p C̃(q,r, p) = −C̃(q, p,r)

B(q)c̄(r)c(p)

It  is  interesting  to  note  that  this  last  property  is  a  direct
consequence  of  the  antisymmetry  of  under

, ,  which  is  imposed  by  the
general ghost-antighost symmetry of the  ver-
tex. Let us now set ∂C̃(q,r, p)

∂qα


q=0
= 2rα C̃(r2) ,

C̃(r2) :=
∂C̃(q,r, p)
∂p2


q=0
, (57)

and proceed with the matching the terms linear in q, thus,
arriving at the WI 

Γ̃α(0,r,−r) =
∂D−1(r2)
∂rα

− 2rα C̃(r2)︸    ︷︷    ︸
WIdisplacement

. (58)

Evidently, the WI in Eq. (58) is displaced with respect to
that  of  Eq.  (50)  by  an  amount  proportional  to  the  BSE
amplitude  for  the  dynamical  pole  formation,  namely

C̃(r2).  Similarly,  the  displaced  analogue  of  Eq.  (52)  is
given by 

Ã(r2) = 2
[
∂D−1(r2)
∂r2 − C̃(r2)

]
. (59)

 

VII.  WARD IDENTITY DISPLACEMENT OF THE
THREE-GLUON VERTEX

Γαµν

C(r2)

In this section,  we demonstrate that  the WI displace-
ment of  is expressed precisely in terms of the func-
tion ,  which  is  thus  found  to  play  a  dual  role:  it  is
both the BS amplitude associated with the pole formation
and the displacement function of the thee-gluon vertex.

IΓαµν(q,r, p)
The starting point of our analysis is the STI satisfied

by the vertex , 

qαIΓαµν(q,r, p) =F(q2)
[
∆−1(p2)Pσν (p)Hσµ(p,q,r)

−∆−1(r2)Pσµ (r)Hσν(r,q, p)
]
, (60)

Habc
νµ (q, p,r) = −g f abcHνµ(q, p,r)

Hσµ(p,q,r) Hσν(r,q, p)
rµ pν

where  is  the ghost-gluon
kernel [138].  Note  that  and  con-
tain  massless  poles  in  the  and  channels, respect-
ively,  which are completely eliminated by the transverse
projections in Eq. (65). In what follows, we will employ
the special relation [80, 96] 

Hνµ(p,q,r) = Z̃1gνµ+qρKνµρ(p,q,r) , (61)

Z̃1

q→ 0

which  is  particular  to  the  Landau  gauge.  is  the  same
constant introduced in Eq. (39), and the kernel K does not
contain poles as .

It is clear from Eqs. (12) and (13) that 

Pµµ′ (r)Pνν′ (p)
[
qαIΓαµν(q,r, p)

]
=Pµµ′ (r)Pνν′ (p)[qαΓαµν(q,r, p)+Cµν(q,r, p)] , (62)

while, from the STI of Eq. (60) 

Pµµ′ (r)Pνν′ (p)
[
qαIΓαµν(q,r, p)

]
= Pµµ′ (r)Pνν′ (p) F(q2)Rνµ(p,q,r) ,

(63)

where 

Rνµ(p,q,r) := ∆−1(p2)Hνµ(p,q,r)−∆−1(r2)Hµν(r,q, p) . (64)

Then,  equating  the  right-hand  sides  of  Eqs.  (62)  and
(63), we obtain 
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qα
[
Pµµ′ (r)Pνν′ (p)Γαµν(q,r, p)

]
=Pµµ′ (r)Pνν′ (p)

[
F(q2)Rνµ(p,q,r)−Cµν(q,r, p)

]
. (65)

q = 0
Next, we carry out the Taylor expansion of both sides of
Eq. (65) around , keeping terms that are at most lin-
ear in q.

The  computation  of  the l.h.s. of  Eq.  (65)  is  immedi-
ate, yielding 

[l.h.s] = qαT µνµ′ν′ (r)Γαµν(0,r,−r) , T µνµ′ν′ (r) := Pµµ′ (r)Pνν′ (−r) .
(66)

Γαµν(0,r,−r)Given  that  depends  on  a  single  momentum
(r), its general tensorial decomposition is given by1)
 

Γαµν(0,r,−r) =2A1(r2)rαgµν+A2(r2)(rµgνα+ rνgµα)

+A3(r2)rαrµrν . (67)

Ai(r2)
A1(r2)

r→ 0

The form factors  do not contain poles, but are not
regular functions; in particular,  diverges logarith-
mically as , due to the "unprotected" logarithms that
originate from  the  massless  ghost  loops  in  the  diagram-
matic expansion of the vertex [87, 113].

It is then elementary to derive from Eq. (67) that 

T µνµ′ν′ (r)Γαµν(0,r,−r) =A1(r2)λµ′ν′α(r) ,

λµνα(r) :=2rαPµν(r) , (68)

and therefore, Eq. (66) becomes 

[l.h.s] =A1(r2)qαλµ′ν′α(r) . (69)

The  computation  of  the r.h.s.  of  Eq.  (65)  is  slightly
more  laborious;  hence,  we  will  highlight  some  of  the
technical issues involved [96].
 

Pµµ′ (r)Pνν′ (p)
Cµν(q,r, p)

C1(q,r, p)gµν

(i)  The  action  of  the  projectors  on
 triggers Eq. (18), and, to the lowest order in q,

only the term  remains.
 

Rνµ(−r,0,r) = 0
(ii)  Since  it  follows  immediately  from  Eq.  (64)  that

, the  vanishing  of  the  zeroth  order  contri-
bution imposes the condition 

C1(0,r,−r) = 0 , (70)

in  exact  analogy  to  Eq.  (56).  Note  that  we  have  arrived
once again  at  the  result  of  Eq.  (20),  but  through  an  en-

tirely  different  path:  while  Eq.  (20)  is  enforced  by  the
Bose  symmetry  of  the  three-gluon  vertex,  Eq.  (70)  is  a
direct consequence of the STI that this vertex satisfies.
 

(iii) The  Taylor  expansion  involves  the  differenti-
ation of the ghost-gluon kernel. In particular, to the low-
est order in q, we encounter the partial derivatives [

∂Hνµ(p,q,r)
∂qα

]
q=0
=Kνµα(−r,0,r) ,

[
∂Hµν(r,q, p)
∂qα

]
q=0
=Kµνα(r,0,−r) , (71)

where Eq. (61) has been used.
 

(iv)  We  next  employ  the  tensorial  decomposition
[139], 

Kµνα(r,0,−r) = −W(r2)
r2 gµνrα+ · · · , (72)

T µνµ′ν′ (r)
T µνµ′ν′ (r)Kνµα(−r,0,r) =

−T µνµ′ν′ (r)Kµνα(r,0,−r)

W(r2)

where the ellipsis denotes terms that get annihilated upon
contraction  with  the  projector . Eq.  (72),  in  con-
junction with the elementary relation 

,  enables  us  to  finally  express  the
partial  derivatives  of  Eq.  (71)  in  terms  of  the  function

.
 

Taking points (i)–(iv) into account, we can show that
the r.h.s. of Eq. (65) becomes 

[r.h.s] =qαλµ′ν′α(r)
[
F(0)

{
Z̃1[∆−1(r2)]′

+
W(r2)

r2 ∆−1(r2)
}
−C(r2)

]
, (73)

r2
where the "prime" denotes differentiation with respect to

.
The  final  step  is  to  equate  the  terms  linear  in q that

appear in Eqs. (70) and (73) and thus obtain the WI 

A1(r2) = F(0)
{

Z̃1[∆−1(r2)]′+
W(r2)

r2 ∆−1(r2)
}
−C(r2) .

(74)
Vαµν(q,r, p)

Γαµν(q,r, p)
C(r2)

C(r2) = 0

Thus,  the  inclusion  of  the  term  in  the  three-
gluon  vertex  leads  ultimately  to  the  displacement  of  the
WI  satisfied  by  the  pole-free  part ,  by  an
amount  given  by  the  function .  Evidently,  if

,  one  recovers  the  WI  in  the  absence  of  the
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Schwinger mechanism. 

VIII.  THE DISPLACEMENT FUNCTION FROM
LATTICE INPUTS

C(r2)
Γαµν

In  this  section,  we  determine  the  functional  form  of
 from the  "mismatch"  between the  quantities  enter-

ing both sides of the WI of , using inputs obtained al-
most  exclusively  from  lattice  simulations.  The  crucial
conceptual  advantage of  such a  determination is  that  the
lattice  is  inherently  "blind"  to  field  theoretic  constructs,
such as  the  Schwinger  mechanism;  the  results  are  ob-
tained through  the  model-independent  functional  aver-
aging over  gauge-field  configurations.  Thus,  the  emer-
gence  of  a  nontrivial  signal  would  strongly  indicate  that
the Schwinger mechanism, with the precise field theoret-
ic realization described here, is indeed operational in the
gauge sector of QCD.

A1(r2)

Lsg(r2)

We  first  establish  a  pivotal  connection  between  the
form factor  and a  special  projection of  the three-
gluon vertex,  which  has  been  studied  extensively  in  lat-
tice  simulations  [65, 85, 86, 88, 89, 116, 118, 127,
140– 143].  Specifically,  after  appropriate  amputation  of
the external legs, the lattice quantity  is given by
 

Lsg(r2)=
Γ0
αµν(q,r, p)Pαα′ (q)Pµµ′ (r)Pνν′ (p)IΓα

′µ′ν′ (q,r, p)
Γ0
αµν(q,r, p)Pαα′ (q)Pµµ′ (r)Pνν′ (p)Γ0

α′µ′ν′(q,r, p)

∣∣∣∣∣∣ q→0
p→−r

,

(75)

where the suffix "sg" stands for "soft gluon."
Vα

′µ′ν′ (q,r, p)

IΓα
′µ′ν′ (q,r, p)→ Γα′µ′ν′ (q,r, p)

Clearly,  by virtue of Eq. (15),  the term ,
associated  with  the  massless  poles,  drops  out  from  Eq.
(75) in  its  entirety,  amounting  to  the  effective  replace-
ment .

N DThen, the numerator, ,  and denominator, ,  of the
fraction  on  the  r.h.s.  of  Eq.  (75),  after  employing  Eq.
(67), become 

N =4(d−1)[r2− (r ·q)2/q2]A1(r2) ,

D =4(d−1)[r2− (r ·q)2/q2] . (76)

N/D

At  this  point,  the  path-dependent  contribution  contained
in  the  square  bracket  drops  out  when  forming  the  ratio

, and Eq. (75) yields the important relation [102] 

Lsg(r2) =A1(r2) . (77)

A1(r2)

A1(r2) Lsg(r2)

In  conclusion,  the  form  factor  appearing  in  Eq.
(74)  is  precisely  the  one  measured  on  the  lattice  in  the
soft-gluon kinematics; Eq. (77) is to be employed in Eq.
(74), in order to substitute  by .

After this last operation, we pass the result of Eq. (74)

r2 = −r2
E

r2
E > 0

from Minkowski to Euclidean space, following the stand-
ard  conversion  rules.  Specifically,  we  set ,  with

 the  positive  square  of  an  Euclidean  four-vector,
and use 

∆E(r2
E) = −∆(−r2

E) ,

FE(r2
E) = F(−r2

E) ,

LE
sg(r2

E) = Lsg(−r2
E) ,

CE(r2
E) = −C(−r2

E) . (78)

C(r2)
E

Then,  solving  for ,  we  get  (suppressing  the  indices
" ") 

C(r2) = Lsg(r2)−F(0)
{
W(r2)

r2 ∆−1(r2)+ Z̃1[∆−1(r2)]′
}
.

(79)

C(r2)

W(r2)

µ = 4.3 W(r2)

For  the  determination  of ,  we  use  lattice  inputs
for all the quantities that appear on the r.h.s. of Eq. (79),
with the exception of  the function ,  which will  be
computed from the SDE satisfied by the ghost-gluon ker-
nel. The lattice inputs are shown in Fig. 7; all curves are
renormalized at  MeV. The computation of 
is  rather  technical  and  given  in  detail  in  [96],  Appendix
B; the result is shown in the left panel of Fig. 8.

C(r2)
C(r2)

C(r2) = 0
C(r2)

W(r2)

When  all  aforementioned  quantities  are  inserted  into
the r.h.s.  of  Eq.  (79),  a  nontrivial  result  emerges  for

,  which  is  shown  in  the  right  panel  of Fig.  8.  The
blue  error  band  assigned  to  represents  the  total
propagation  of  the  individual  errors  associated  with  all
the inputs  entering Eq.  (79).  Quite  interestingly,  the  res-
ult  obtained  is  markedly  different  from  the  case
of  (green dotted horizontal line in the right pan-
el of Fig. 8) and bears a striking resemblance to the 
obtained from the BSE solution. In fact, the marked sim-
ilarity  between  the  two  curves  provides  strong  evidence
in support  of  the  veracity  of  the  approximations  em-
ployed in deriving these results and corroborates the SDE
treatment  that  yields  the  result  for  shown  in  the
left panel of Fig. 8. 

IX.  WARD IDENTITY DISPLACEMENT AND
SEAGULL IDENTITY

qµqν

gµν

When deriving the mass formula of Eq. (39), we dealt
exclusively  with  the  component  of  the  gluon
propagator, given that the pole terms V contribute only to
this particular tensorial structure. The transversality of the
self-energy, as captured by Eq. (4), clearly states that the
complete treatment of the  component must yield pre-
cisely the same answer; nonetheless, the detailed demon-
stration  of  this  fact  in  the  present  context  is  highly  non-
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gµν∆−1(0)
trivial. In particular, the WI displacement turns out to be
crucial for the appearance of a term , as can be
best exposed within the formalism emerging from the fu-
sion  of  the  pinch  technique  (PT)  [10, 15, 72, 147, 148]
and the BFM, known as "PT-BFM scheme." In this  sec-
tion,  we  briefly  outline  the  key  elements  of  this  general
construction;  for  further  details,  the  reader  is  referred  to
[97, 149].
 

(i) Within the PT-BFM framework, the starting point

∆̃µν(q)
Qa
µ(q) Ba

µ(−q)
Π̃µν(q)

Π̃µν(q)

of  our  analysis  is  the  propagator  connecting  a
quantum  gluon, ,  with  a  background  one, ;
the  corresponding  self-energy, , is  diagrammatic-
ally shown in Fig. 9. One of the most striking properties
of  is its "block-wise" transversality [97, 149, 150]:
each of  the three subsets  of  diagrams shown in Fig.  9 is
individually transverse, i.e., 

qνΠ̃
µν
i (q) = 0 i = 1,2,3. (80)

Lsg(r2)

Lsg(r2)

Fig. 7.    (color online) (upper panel) The gluon propagator (left) and the first derivative of its inverse (right). (lower panel) The ghost
dressing function (left) and the soft gluon form factor  of the three-gluon vertex (right). All items are taken from [102] and cured
from volume and discretization artifacts. Note that  is markedly below unity in the infrared region, displaying the characteristic
zero crossing and the attendant logarithmic divergence at the origin [77, 87, 113, 144–146].

 

W(r2)

C(r2)

Fig. 8.    (color online) (left panel） The function , computed from the one-loop dressed SDE that governs the ghost-gluon kernel.
(right panel) The displacement function  obtained from Eq. (79) (blue continuous curve), compared to the same quantity obtained
from the BSE in Eq. (25) (purple dot-dashed curve).

 

Emergence of mass in the gauge sector of QCD Chin. Phys. C 46, 112001 (2022)

112001-15



ĨΓ
This  result  is  a  direct  consequence  of  the  Abelian

STIs satisfied by the fully dressed vertices, denoted by ,
entering these diagrams, namely 

qµĨΓµαβ(q,r, p) =∆−1
αβ(r)−∆−1

αβ(p) ,

qµ ĨΓ
mnrs
µαβγ(q,r, p, t) = f mse f ernIΓαβγ(r, p,q+ t)

+ f mne f esrIΓβγα(p, t,q+ r)
+ f mre f ensIΓγαβ(t,r,q+ p) , (81)

together with Eq. (54).
 

∆(q2) ∆̃(q2)(ii)  and  are related by the exact identity 

∆(q2) = [1+G(q2)]∆̃(q2) , (82)

G(q2) gµν

∆(q2)

where  is the  component of a special two-point
function [114, 151, 152]. Eq. (82) allows one to recast the
SDE governing  in the alternative form 

∆−1(q2)Pµν(q) =
q2Pµν(q)+ iΠ̃µν(q)

1+G(q2)
, (83)

F−1(0) = 1+G(0)

which has the advantage that its diagrammatic expansion
contains  vertices  that  satisfy  Abelian  STIs.  Note  finally
that,  in  the  Landau  gauge  only,  the  powerful  identity

 [153]  expresses  the  function G at  the
origin in terms of the saturation value of the ghost dress-
ing function.
 

(iii)  The  corresponding  vertices  develop  massless
poles,  following  the  exact  same  pattern  indicated  in  Eq.
(12) and (13). We can generically set 

ĨΓ = Γ̃+ Ṽ , (84)

Ṽand  the  tensorial  structures  of  the  vertices  are  those
given in Eq. (13) but with the corresponding form factors
carrying a "tilde," e.g., 

Ṽα(q,r, p) =
qα
q2 C̃(q,r, p). (85)

gµν(iv) In order to isolate the  component, we simply

q = 0
Γ̃

Π̃
µν
2 (q)

a3 a4

set  in  the  parts  of  the  diagrams  that  contain  the
pole-free vertices, ;  the implementation of this limit,  in
turn,  triggers  the  corresponding  WIs.  The  block-wise
transversality property  of  Eq.  (80)  enables  one  to  mean-
ingfully consider this limit within each block, in the sense
that there  is  no  communication  between  blocks  that  en-
forces cancellations, as what happens in the conventional
formulation within the ordinary covariant gauges. We can
therefore illustrate this basic point by means of the block
that  is  operationally  simpler,  namely ,  represented
by diagrams  and  of Fig. 9.
 

(v)  A  crucial  ingredient  in  this  demonstration  is  the
seagull identity [46, 110], which states that 

∫
ddk k2 ∂ f (k2)

∂k2 +
d
2

∫
ddk f (k2) = 0 , (86)

f (k2)
f (k2) = ∆(k2),D(k2)

for  functions  that  satisfy  Wilson's  criterion  [154];
the cases of physical interest are . This
identity is particularly powerful, because, in conjunctions
with  the  WIs  of  the  PT-BFM  formalism,  it  enforces  the
nonperturbative masslessness of the gluon in the absence
of the Schwinger mechanism.
 

gµν

Π̃
µν
2 (q) q = 0

aµν4 gµν

aµν3 (q) gµν qµqν

q→ 0
q2 B(q2)

gµν

q→ 0

(vi)  We  now want  to  determine  the  value  of  the 
component of  at .  We have that  the (q-inde-
pendent)  contribution  from  is  proportional  to ,
while  contains  both  and  components;
however,  in the limit  the latter vanishes,  precisely
due to the absence of a pole in . Let us denote by 
the total contribution proportional to  originating from
both diagrams; using the Feynman rules of the BFM [72],
it is rather straightforward to show that, as , 

iB(0)=
2λ
d

F(0)
[∫

k
kµD2(k2 )̃Γµ(0,−k,k)−d

∫
k

D(k2)
]
. (87)

When the Schwinger mechanism is turned off, the WI of
Eq. (50) may be recast in the form 

Γ̃µ(0,−k,k) = −2kµD−2(k2)
∂D(k2)
∂k2 , (88)

and therefore, Eq. (87) becomes 

Π̃µν(q)Fig. 9.    (color online) The diagrammatic representation of the self-energy ; the grey circles at the end of the gluon lines indicate
a background gluon. The corresponding Feynman rules are given in Appendix B of [72].
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iB(0) = −4λ
d

F(0)
[∫

k
k2 ∂D(k2)
∂k2 +

d
2

∫
k

D(k2)
]

︸                              ︷︷                              ︸
seagull identity

= 0 . (89)

When the Schwinger mechanism is activated, the dis-
placed WI of Eq. (58) must be employed, such that 

Γ̃µ(0,−k,k) = −2kµ
[
D−2(k2)

∂D(k2)
∂k2 + C̃(k2)

]
. (90)

Upon  insertion  of  Eq.  (90)  into  Eq.  (87),  the  first  term
triggers the seagull identity as before and vanishes, while
the second furnishes a nonvanishing finite result 

iB(0) =
4λ
d

F(0)
∫

k
k2D2(k2)C̃(k2) . (91)

(vii) Using the exact relation [96] 

C(k2) = F(0) C̃(k2) , (92)

ĨΓα(q,r, p) IΓα(q,r, p)
which is derived from the "background-quantum identity"
that  relates  and  [72, 114],  Eq.  (91)
becomes 

iB(0) =
4λ
d

∫
k
k2D2(k2)C(k2) . (93)

d = 4 Z̃1

Π̃
µν
1 (q) Π̃

µν
3 (q)

Setting , introducing the renormalization constant 
and the ghost dressing function F, and then passing to Eu-
clidean space and employing spherical coordinates, it is a
straightforward exercise to confirm that the expression in
Eq.  (93)  is  identical  to  that  given  by  the  second  term in
Eq. (39).  Completely  analogous  procedures  may  be  ap-
plied to the remaining two blocks,  and , by
exploiting the Abelian STIs of Eq. (82) [43].
 

gµν
In  summary,  the  WI  displacement  of  the  vertices

evades the  seagull  identity  and endows the  compon-
ent  of  the  gluon  propagator  with  the  exact  amount  of
mass required by its transverse nature. 

X.  RELATING THE GLUON MASS WITH THE
TRANSITION AMPLITUDE

Vαµν(q,r, p)

Iα(q)

It  is  particularly instructive to zoom into the detailed
composition of  the  vertex , by essentially  un-
folding  the  black  circles  in Fig.  2 and exposing  the  dia-
grammatic structure of the transition amplitude , in-
troduced in  the  paragraph  following  Eq.  (14).  This  ana-
lysis unravels interesting diagrammatic properties and al-
lows us to derive a simple relation between the transition

amplitude and the gluon mass.
Vαµν(q,r, p)

Iα(q)

Bµν(q,r, p)

iδab/q2

Bµν(q,r, p) f abc

Vαµν(q,r, p)

The basic elements composing the vertex ,
shown  in Fig.  10,  are  (i)  the  transition  amplitude ,
which connects a gluon to the massless composite excita-
tion,  (ii)  the  propagator  of  the  latter,  and  (iii)  the  vertex
function , connecting the massless excitation to
a  pair  of  gluons.  Since  color  indices  are  suppressed  in
Fig. 10, we emphasize that the propagator of the colored
massless  excitations  is  given  by  the  expression ,
i.e.,  it  carries  color,  as  it  should.  Similarly,  the  vertex

 is  multiplied  by  the  structure  constants ,
providing precisely the color term that has been factored
out from  in Eq. (13). Thus, we have 

Vαµν(q,r, p) =Iα(q)
(

i
q2

)
Bµν(q,r, p) ,

Iα(q) =qαI(q2) , (94)

with 

Bµν(q,r, p) =B1 gµν+B2 rµrν+B3 pµpν

+B4 rµpν+B5 pµrν . (95)

Vαµν(q,r, p)Given that the  appearing in Eqs. (13) and (94)
represents the same vertex, we immediately deduce that 

C1(q,r, p) = iI(q2)B1(q,r, p) . (96)

C1(0,r,−r) = 0
B1(0,r,−r) = 0

Evidently,  since  [see  Eqs.  (20)  and
(70)],  one  obtains  from  Eq.  (96)  that ,  so
that 

lim
q→0

B1(q,r, p) =2(q · r)B(r2)+ · · · ,

B(r2) :=
[
∂B1(q,r, p)
∂p2

]
q=0
, (97)

and therefore, from Eq. (96), we have 

C(r2) = iI(0)B(r2) . (98)

I(0) m2

s1

Iα(q) Īα(q)

d1

In  order  to  illustrate  the  origin  of  a  key  relation
between  and , let us simplify the discussion by as-
suming that graph  in Fig. 10 represents the only contri-
bution to , denoted by . Clearly, the equivalent
approximation  at  the  level  of  the  analysis  presented  in
Sec.  V would  be  to  assume that  only  graph  in Fig.  1
contributes to the gluon mass.

Īα(q)It is straightforward to deduce from Fig. 10 that 
is given by 
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Īα(q) =
CA

2

∫
k
Γ
αβλ
0 (−q,−k,k+q)∆λµ(k)∆βν(k+q)

×Bµν(q,k,−k−q) , (99)

1
2

Īα(q) = qα Ī(q2) Ī(q2) =
qα Īα(q)/q2

where  is the corresponding symmetry factor. Since, by
Lorentz  invariance, ,  we  have  that 

. Therefore, from Eq. (99), we obtain
 

Ī(q2) =
CA

2q2

∫
k
{qαΓαβλ0 (−q,−k,k+q)}∆λµ(k)∆βν(k+q)

×Bµν(−q,−k,k+q) . (100)

Γ0
αµν(q,r, p)Next,  employing the expression for  given in

Eq. (14), we have that
 

qαΓ
αβλ
0 (q,k,−k−q) = −(q2+2q · k)gβλ+ · · · (101)

∆λµ(k) ∆βν(k+q)

where  the  ellipsis  indicates  terms  that  get  annihilated
upon  contraction  with  the  Landau-gauge  propagators

 and  in the integrand of Eq. (100).

Ī(0)
(2q · k) Ī(0)

(2q · k)2B(k2) Pµµ(k) = 3

In  order  to  determine  from  Eq.  (100)  the  expression
for ,  note  that,  by  virtue  of  Eq.  (97),  only  the  term

 in Eq. (101) contributes to , yielding the com-
bined contribution . Thus, using ,
 

Ī(0) =−6CA
qµqν

q2

∫
k
kµkν∆2(k2)B(k2)

=− 3CA

2

∫
k
k2∆2(k2)B(k2) . (102)

λ := ig2CA/2
Returning to Eq. (33) and substituting in it Eq. (98), it

is clear that ( ) 

id̂1(0) = g2 Ī(0)
{
−3CA

2

∫
k
k2∆2(k2)B(k2)

}
︸                            ︷︷                            ︸

Ī(0)

. (103)

id̂1(0)
m2

As  mentioned  above,  at  this  level  of  approximation,
 is the only contribution to the gluon mass, to be de-

noted by ; therefore, Eq. (103) becomes 

m2 = g2 Ī2(0) . (104)

Vαµν Iα(q)→ Īα(q)
d1

Īα(q)

Thus, the pattern that emerges from the study of this par-
ticular example may be summarized as follows: when the
vertex  is given by Eq. (94) with , its in-
sertion in the corresponding propagator graph  leads to
the replication of , as shown schematically in Fig. 11.

Iα(q) s1 s3

s4 s5

It  turns  out  that  this  property  may  be  generalized  to
include  the  entire ,  composed  by  the  graphs , ,

, and  in Fig. 10, provided that the propagator graphs

Vαµν(q,r, p) Iα(q)
si di

d2 s2

Fig.  10.    (color online) The  diagrammatic  representation  of  the  vertex  in  terms  of  the  transition  amplitude ,  the
propagator of the massless excitation, and the vertex function. Note that the diagrams  are in one-to-one correspondence with  of
Fig. 1, except for the seagull graph , which has no analogous .

 

d1

IΓαµν(q,r, p) = Γαµν(q,r, p)+Vαµν(q,r, p)
Īα(q)

Fig. 11.    (color online) The diagrammatic representation of the sequence that leads to Eq. (104). (first row) The diagram  of Fig. 1,
once the replacement  of Eq. (12) is implemented. (second row) The diagrammatic steps that lead
to the replication of , and eventually, to Eq. (104).
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d1 d3 d4 d5, , , and  of Fig. 1 are correspondingly included;
for details, see [80]. The final result is precisely the gen-
eralization of Eq. (104), namely 

m2 = g2I2(0) . (105)

Iα(q)

Bµν(q,r, p)

We emphasize that, as far as the numerical determina-
tion  of  the  gluon  mass  is  concerned,  Eq.  (105)  contains
the same  information  as  that  in  Eq.  (39)  once  the  dia-
grammatic  expansion  of  is implemented.  Nonethe-
less, the formulation presented above exposes an elabor-
ate diagrammatic pattern and is particularly useful for the
analysis  presented in  the  next  section,  mainly  due to  the
role played by the vertex function . 

XI.  ABSENCE OF POLE DIVERGENCES IN THE
S-MATRIX

As has been emphasized in early literature on the sub-
ject, one of the main properties of the massless compos-
ite  excitations  that  trigger  the  Schwinger  mechanism  is
that they  do  not  induce  divergences  in  on-shell  amp-
litudes;  see,  e.g.,  [111, 112].  In  the  case  of  the  Yang-
Mills theories  that  we  study,  the  elimination  of  poten-
tially divergent terms hinges on the longitudinality of the
vertices V,  as  captured  by  Eq.  (13),  in  conjunction  with
the  special  limit  given  by  Eq.  (97).  In  this  section,  we
demonstrate with  a  specific  example  how all  terms  con-
taining massless  poles  are  either  annihilated  in  their  en-
tirety,  or,  in  the  kinematic  limit  where  poles  might  in
principle cause  divergences,  they  give  finite  contribu-
tions, i.e., they correspond to evitable singularities.

ga
µ(k1)gb

ν(k2)→ gc
ρ(k3)gd

σ(k4)
ga
α(ki) ki

q = k2− k1 = k4− k3
q2 = t

Let  us  consider  the  elastic  scattering  process
, depicted in Fig. 12, where the

 denotes  an "on-shell"  gluon of  momentum ,  and
 is  the  corresponding  momentum

transfer,  with  being the relevant  Mandelstam vari-
able. The  scattering  amplitude  consists  of  the  three  dis-
tinct terms denoted by (a), (b), and (c) in Fig. 12. We no-
tice that, unlike (a) and (c), diagram (b) has no perturbat-
ive  analogue,  since  all  components  that  compose  it  are
generated  through  nonperturbative  effects;  in  particular,

Bµν(q,r, p)note the appearance of the vertex function , in-
troduced in the previous section.

As we will show at the end of this section, the elimin-
ation of all pole divergences does not rely on any particu-
lar  properties  associated  with  the  "on-shellness"  of  the
gluons;  this  feature  is  especially  welcome,  given  that
gluons do not appear as asymptotic states. Nonetheless, it
is instructive to first  examine how the cancellations pro-
ceed when  the  gluons  are  assumed  to  be  on-shell,  be-
cause this  will  allow us to identify the crucial  properties
that must be fulfilled in the off-shell case.

ϵµ(k)

To  that  end,  let  us  assume  that  due  to  the  on-shell-
ness of the gluons, each external leg is contracted by the
corresponding  transverse  polarization  vector, ,  for
which 

kµϵµ(k) = 0 . (106)

(a)We start our discussion with diagram , given by 

(a) =ϵµ(k1)ϵν(k2)IΓαµν(q,k1,k2)∆(q)Pαβ(q)

× IΓβρσ(q,k3,k4)ϵρ(k3)ϵσ(k4) . (107)

Vαµν(q,r, p)Noting that, due to the longitudinality of , 

Vαµν(q,r, p)Pαβ(q)ϵµ(r)ϵν(p) = 0 , (108)

IΓ
it  is  clear  that  the  terms V drop out  from Eq.  (107),  and
the  two  fully  dressed  vertices  are  replaced  by  their
pole-free  counterparts,  Γ.  As  a  result,  the  contribution
from graph (a) is finite.

Turning to diagram (b), we have that 

(b) = Bµν(q,k1,k2)
[

i
q2

]
Bρσ(q,k3,k4) . (109)

q→ 0As the limit  is taken, Eq. (97) is triggered, such
that 

lim
q→0

(b) ={2(q · k1)B(k2
1)}

[
i

q2

]
{2(q · k3)B(k2

3)}

=4i|k1||k3|cosθ1 cosθ3B(k2
1)B(k2

3) , (110)

Fig. 12.    (color online) The four-gluon scattering amplitude and the three types of diagrams contributing to it. The abbreviation "1PI"
stands for "one-particle irreducible." Note that diagram (b) is composed entirely by nonperturbative structures.
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θ1 θ3 k1
k3

where  and  are the angles formed between q and 
and , respectively. The above contribution is clearly fi-
nite.

ki

ki k1

kµ1/k
2

ϵµ(k1)

Finally, note that none of the possible V-type vertices
survives in the diagrams contributing to (c), precisely due
to their longitudinal nature. Indeed, if a vertex is fully in-
serted in a diagram, i.e., when none of its momenta is any
of  the ,  it  is  contracted  by  three  Landau-gauge  gluon
propagators,  and  Eq.  (15)  is  automatically  triggered.  In
contrast, if  some  of  the  legs  of  the  vertex  carry  a  mo-
mentum ,  say ,  the  part  of V that does  not  get  can-
celled by the transverse gluon propagators will be propor-
tional  to ; it  is  therefore  annihilated  upon  contrac-
tion with , by virtue of Eq. (106).

q→ 0
Thus, it is evident from the above considerations that,

in the limit , the terms associated with the massless
composite excitations furnish only finite contributions to
the amplitude.

k2
i

k2
i = 0 k2

i = m2

It is important to recognize that, in the above demon-
stration, the only element introduced due to the assumed
on-shellness  of  the  scattered gluons is  the  contraction of
the  amplitude  by  the  corresponding  polarization  vectors,
satisfying  Eq.  (106).  In  particular,  note  that  at  no  point
have we assumed anything special about the values of ,
i.e., neither that  nor that .

As a result, it is possible to relax the on-shellness con-
dition completely and consider the above amplitude as an
off-shell sub-process, embedded into a more complicated
scattering  process,  as  depicted  in Fig.  13.  Indeed,  the
demonstration presented  above  remains  unaltered,  be-
cause  the  on-shell  gluons  are  replaced  by  Landau-gauge
propagators,  which  trigger  precisely  the  same  relations
that the polarization vectors did in the on-shell case.

In conclusion, the above analysis, albeit restricted to a
special  example,  strongly  supports  the  notion  that  the
terms associated with the massless excitations do not in-

duce any divergences in the QCD scattering amplitudes. 

XII.  CONCLUSIONS

The apparent simplicity of the QCD Lagrangian con-
ceals a wealth of dynamical patterns, giving rise to a vast
array  of  complex  "emergent  phenomena"  [155]. As  ar-
gued  in  a  series  of  recent  works  [5, 6, 156],  the  pivotal
notion that unifies all these phenomena is the emergence
of  a  hadronic  mass,  which  leaves  its  imprint  on  a  wide
range of  physical  observables.  The generation of  a  mass
scale due to the self-interactions of the gluons represents
arguably  the  most  fundamental  expression  of  such  an
emergence. In the present work, we have highlighted cer-
tain  salient  aspects  of  the  research  activity  dedicated  to
this subject,  within a framework that  is  based predomin-
antly on  the  SDEs  of  the  theory  but  capitalizes  extens-
ively on a number of results obtained from large-volume
lattice simulations.

C(r2)

The central  idea  underlying  the  approach  summar-
ized in this article is the implementation of the celebrated
Schwinger  mechanism  in  the  context  of  nonperturbative
QCD.  The  activation  of  this  mechanism  hinges  on  the
formation of  massless  longitudinal  poles  in  the  funda-
mental vertices of the theory. These poles are composite,
carry  color, and  play  a  dual  role:  they  provide  the  re-
quired  structures  in  the  gluon  vacuum  polarization  and
nontrivially affect  the way the STIs of  these vertices are
realized. This  dual  nature  of  the  poles  is  perfectly  en-
coded in  the  function ,  which describes  the  distinct
displacement  to  the WI satisfied by the pole-free part  of
the  three-gluon  vertex,  and,  at  the  same  time,  is  the
bound-state  wave  function  that  governs  the  dynamical
formation  of  the  massless  poles  by  the  merging  of  two
gluons,  through  a  characteristic  BSE.  This  duality,  in
turn,  unveils  a  profound  connection  between  dynamics
(BSEs) and  symmetry  (STIs),  which  becomes  particu-
larly patent within the PT-BFM framework.

In fact, it is tempting to interpret these massless poles
as  composite  would-be Nambu-Goldstone bosons,  given
that  they  appear  to  fulfill  precisely  all  crucial  functions
typically  ascribed  to  the  latter,  namely  (i)  they  are  "ab-
sorbed" by  the  gluons  to  make  them massive,  (ii)  main-
tain  the  STIs  of  the  theory  intact  once  the  gluons  have
been endowed with mass, (iii) are longitudinally coupled,
and (iv) do not introduce divergences in physical observ-
ables, e.g., the S-matrix, as shown in Sec. XI. It would be
very interesting to pursue this point further; a most prom-
ising starting point for such an investigation is offered by
the PT-based analysis first presented in [95].

C(r2)
The displacement  of  the  WI,  quantified  by  the  func-

tion ,  is  exclusive  to  the  special  realization  of  the
Schwinger  mechanism  reviewed  here.  The  use  of  lattice
results as  the  main  ingredients  for  the  pertinent  WI  re-
veals  the  presence  of  a  robust  model-independent  signal

 

Fig. 13.    The four-gluon amplitude regarded as a completely
off-shell  subprocess,  embedded  into  a  multi-quark  scattering
process.
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C(r2)for ,  which is in agreement with the result obtained
from  the  solution  of  the  BSE,  under  certain  simplifying
assumptions. These findings corroborate the operation of
the  Schwinger  mechanism in  QCD and  set  the  stage  for
further novel developments.
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