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We consider the anomalous magnetic moment of the muon aμ, which shows a significant deviation from
the Standard Model expectation given the recent measurements at Fermilab and Brookhaven National Lab
(BNL). We focus on Standard Model effective field theory (SMEFT) with the aim to identify avenues for
the upcoming LHC runs and future experiments such as MUonE. To this end, we include radiative effects to
aμ in SMEFT to connect the muon anomaly to potentially interesting searches at the LHC, specifically
Higgs decays into muon pairs and such decays with resolved photons. Our investigation shows that, similar
to results for concrete UV extensions of the Standard Model, the Fermilab/BNL result can indicate strong
coupling within the EFT framework and aμ is increasingly sensitive to a single operator direction for high
scale UV completions. In such cases, there is some complementarity between expected future experimental
improvements, yet with considerable statistical challenges to match the precision provided by the recent aμ
measurement.

DOI: 10.1103/PhysRevD.106.075031

I. INTRODUCTION

The search for new physics beyond the Standard Model
(SM), which so far has been unsuccessful, is one of the
highest priorities of the current particle physics program.
A relevant anomaly in this context might be the recent
measurement of the anomalous muon magnetic moment
aμ ¼ ðg − 2Þμ=2 at Fermilab [1], which confirmed the earlier
BNLE821 (BrookhavenNational Lab) results [2], leading to
a ∼4σ tension [3–22] (see also [23] for a summary),

Δaμ ¼ aμðexpÞ − aμðSMÞ ¼ ð25.1� 5.9Þ × 10−10: ð1Þ

Anomalous magnetic moments are characterized by dimen-
sion-six operators ∼ψ̄Lσ

μνψRFμν þ H:c: where F denotes
the QED field strength tensor. Therefore, aμ is directly
sensitive to new interactions in renormalizable field theories
and does not probe any of these theories’ defining param-
eters. This is part of the reasonwhyaμ has received enormous
attention from the beyond the SM (BSM) community, as it
provides a formidably precise tool to constrain the structure

of concrete UV extensions of the SM (see, e.g., [24] for a
recent overview).
In contrast to these model-specific analyses, the null

results of a plethora of new physics analyses at, e.g., the
Large Hadron Collider (LHC) have highlighted model-
independent methods based on effective field theory (EFT)
[25] techniques as alternative approaches to search for new
physics effects. EFT is a powerful tool when extra degrees
of freedom can be consistently integrated out [26–30] and
when measurements are performed at energy scales that do
not violate the scale hierarchies that are implicitly assumed
by the EFT approach [31]. The latter can be challenging
at hadron colliders with their large energy coverage and
significant uncertainties [32,33]. The extraction of aμ from
data is largely free of such shortfalls and there has been
a range of EFT-based investigations into the aμ anomaly
[34–37].
Historically, EFT measurements have played a crucial

role in shaping the understanding of physics of the weak
scale. A famous example is the muon’s lifetime providing
a measurement of the Fermi constant GF, the cutoff of
the low-energy effective theory of the weak interactions.
A constraint on the cutoff gives rise to an upper limit on a
more fundamental mass scale. The latter is an important
pointer toward experimental signatures (based on the
assumption of a well-behaved perturbative expansion). In
the SM,

m
Λ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GFm2

W

q
≃ 0.27 ≪ 1 ð2Þ
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measures the UV completing degrees of freedom of Fermi’s
theory in units of its cutoff.
The Fermi theory shows that new physics could appear at

relatively low scales compared to the cutoff. This is strong
motivation to consider aμ in EFT to clarify implications for
energy scales above themuonmass: In [35] it was shown that
the combination of unitarity constraints and scale evolution
could push the new physics scale to very large values (an
observation that is echoed in concrete UV extensions, see,
e.g., [24,38–46]). This raises the question whether aμ merely
fixes one parameter of the EFT Lagrangian, perhaps with
little phenomenological implications for UV physics. The
comprehensive analysis of [36] has evaluated the anomalous
magnetic moment in Standard Model effective theory
(SMEFT) with higher-order effects by matching and evolv-
ing g − 2 in low-energy effective theory (LEFT), including
flavor-violating contributions, obtaining results consistent
with the previous study of Ref. [34] which included loop
contributions from nondiagonal contributions ofOle and the
dimension-six dipole operator.
In this work, we employ SMEFT [47] to revisit the EFT

context of aμ with the aim to correlate aμ withmeasurements
at the high-luminosity LHC andmuon-specific future experi-
ments such as MUonE [48] (see also Refs. [49–53] for
correlations of aμ with additional modes for new physics
models). To this end, we investigate aμ at full one-loop order

in SMEFT, building on the results of [54,55]. Our findings
show that, as discussed by previous effective interpretations
of the muon g − 2 [34,36], the only operators that could
provide explanations for the Fermilab measurement indi-
vidually are the dipole operators and Ole. To scrutinize
further these operators, we consider a priori sensitive
processes, such as the hμμ signal strength and constraints
that can be placed by the future MUonE experiment.
However, none of these avenues can provide comparable
restrictions on the span of the dipole Wilson coefficients
(WCs) when compared to the Fermilab measurement.
We organize this work as follows: Sec. II provides a

short overview of aμ in SMEFT to make this work self-
contained. We explore the impact of the higher orders
at different scales in Sec. II A and additionally discuss
the possibility that aμ arises as a radiative correction in
Sec. II B. Different avenues with the potential to tension the
dipole operators are studied in Sec. III, focusing on the
decay of the Z boson, the h → μμγ channel at LHC. and
also the MUonE experiment. We conclude in Sec. IV.

II. aμ IN SMEFT

Neglecting contributions to the unphysical (longitudinal)
anapole moment [56], the vertex function for muon-vector
boson interactions can be expanded as

ð3Þ

where the boson’s momentum is given by k ¼ p0 − p and
σμν ¼ i½γμ; γν�=2 are the usual Lorentz algebra generators.
The fermion legs are on shell and the electric charge e is
renormalized through the renormalization conditionF1ð0Þ¼1
at zeromomentum transfer. The anomalousmagneticmoment
for the muon is then defined through the form factor as
aμ ¼ F2ð0Þ, whileF3 is related to the electric dipolemoment.
The effective interactions of SMEFT in the Warsaw

basis [47] that give rise to these form factors can be
modeled with SmeftFR [54,55] which employs FeynRules

[57,58] to obtain the relevant Feynman rules for the
SMEFT Lagrangian truncated at operator-dimension six.
Interfacing with FeynArts [59] enables users to enumerate the
relevant diagrams, and their respective amplitudes can be
calculated with FormCalc [60]. The tensor integrals that
appear in these amplitudes are reduced to scalar Passarino-
Veltman functions [61] (see also Ref. [62]), which can then
be evaluated analytically using PACKAGE-X [63]. The form
factors can then be extracted from these expressions with
the help of the Gordon identities which recast the result into

the form of Eq. (3). For QED, this reduces to the well-
known Schwinger result aμ ¼ α=ð2πÞ [64].
In contrast to the SM, tree-level contributions to the

anomalous magnetic moment are induced in SMEFT by the
operators (see Refs. [65,66])

Of1f2
eB ¼ ðL̄f1σ

μνef2ÞΦBμν;

Of1f2
eW ¼ ðL̄f1σ

μνef2ÞτIΦWI
μν; ð4Þ

where L (e) denotes the left-handed (right-handed) lepton,
Bμν andWI

μν are the field strength tensors for theUð1ÞY and
SUð2ÞL gauge groups, respectively, and Φ is the Higgs
doublet. The Pauli matrices are denoted by τI, I ¼ 1, 2, 3.
The dimension-six operators induce an anomalous mag-
netic moment of1

1We consider only the diagonal entries of the operators in
Eq. (4) and suppress the flavor indices.
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Δatreeμ ¼
ffiffiffi
2

p
vmμ

eΛ2
½cWðCeB þ C�

eBÞ − sWðCeW þ C�
eWÞ�; ð5Þ

where sW (cW) is the sine (cosine) of the Weinberg angle.
Under the assumption that CeW and CeB are real, any
contribution to the electric dipole moment is removed and
the two operators only generate Δaμ (modulo small SM
electroweak radiative effects).
Extending the calculation to one-loop level requires

additional renormalization constants not present in the
SM [66–68]. While no UV divergence is induced in the

F2 and F3 form factors when only SM interactions
are present, the additional SMEFT operators generate
divergences that cannot be removed with the SM counter-
terms, but induce counterterms δCeB and δCeW . By
considering both the γμμ and Zμμ vertices (alongside
the renormalization of Z − γ mixing) we calculate the
UV-divergent parts after dimensional regularization (in
dimensions d ¼ 4 − 2ϵ) and subtract them in the MS
scheme such that both form factors are renormalized at
one-loop order. To this end, we introduce the counterterm
amplitude

ð6Þ

where δF2 and δF3 renormalize the relevant physical
Lorentz structures corresponding to F2ðk2Þ and F3ðk2Þ,
respectively. The factor of i multiplying δF3 is introduced
just for convenience in expressing the equations later on.
We do not consider divergences relevant to the F1 form
factor as this is renormalized in the Thomson limit to
correspond to the correct electric charge [69]. We express
δF2 and δF3 in terms of the usual SM coupling and wave
function renormalization constants (see Ref. [69]) and also
introduce δCeB and δCeW as counterterms for the OeB and
OeW interactions. This allows us to calculate

δF2;3 ¼
mμffiffiffi
2

p
eΛ2

½CeBK1 � C�
eBK

0
1 þ CeWK2 � C�

eWK
0
2

þ 2cWvðδCeB � δC�
eBÞ − 2sWvðδCeW � δC�

eWÞ�;
K1 ¼ 2cWδvþ cWvðδZAA þ δZμμ;�

L þ δZμμ
R Þ

þ vð2δcW − sWδZZAÞ;
K2 ¼ −2sWδv − sWvðδZAA þ δZμμ;�

L þ δZμμ
R Þ

− vð2δsW þ cWδZZAÞ; ð7Þ

where the prime indicates δZμμ;�
L →δZμμ

L and δZμμ
R →δZμμ;�

R .
In the SM, the Higgs potential contains

VðΦÞ ⊃ vðμ2 þ v2λHÞh ¼ th; ð8Þ

which is minimized at tree level via t ¼ 0. Tadpole
diagrams that capture the shift away from the classical
Higgs field value due to higher orders are removed by
introducing the counterterm δtþ t ¼ 0 (see Ref. [69]).
Expressing the vacuum expectation value as a function of
theW mass, Weinberg angle and electromagnetic coupling,
we can formally identify

δv
v

¼ δm2
W

2m2
W
þ δsW

sW
− δZe; ð9Þ

which enters Eq. (7) (δm2
W , δsW , and δZe are the counter-

terms of the W mass m2
W , Weinberg sine angle sW and

electric charge e in the conventions of [69]). Alternatively,
one can employ the so-called Fleischer-Jegerlehner scheme
[70] that shifts the bare vacuum expectation value by
Δv ¼ −δt=m2

H, where mH is the Higgs mass, at the cost
of inducing large corrections to renormalized quantities
[71–73] (for discussions on this scheme, see, for example,
Refs. [74,75]).
As there are two independent operators contributing to

Δaμ, we repeat the calculation for the Zμμ vertex which
leads to similar counterterm expressions. Subsequently, we
determine the values of δCeB and δCeW in the MS scheme
by simultaneously requiring that the UV divergences in the
F2 and F3 form factors for both the γμμ and Zμμ vertices
identically cancel and only finite terms for d → 4 remain.
The one-loop corrections to the magnetic moment in

SMEFT also give rise to soft singularities at finite photon
virtuality. These are soft (and universal) QED corrections
to the dimension-six interactions and they cancel against
soft photon emission off the dimension-six vertex of
Eq. (3). These soft singularities vanish in the limit of zero
virtuality,2 reflecting the fact that the higher-dimensional
operators are a manifestation of scale-suppressed new
physics separated from universal soft (and collinear) effects
in QED (see, e.g., [76] for a general discussion in the
context of QCD). We can therefore omit soft singularities
throughout this calculation.

2We have checked this explicitly.
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Our calculation of Δaμ is performed using mW , mZ and
the fine structure constant α as inputs of the theory.
In principle, semileptonic four-fermion operators of the

ðL̄RÞðR̄LÞ and ðL̄RÞðL̄RÞ classes in the Warsaw basis [47]
also contribute to the anomalous magnetic moment (see
Ref. [36] for the generic case). However, we do not include
them as such operators are often neglected by enforcing
flavor symmetries, similar to the assumptions of
Refs. [77,78] in the top sector. The structure of these
operators can be generated from leptoquarks [79], which
have been explored extensively as explanations of the
anomalous magnetic moment [50,80,81].
Our aim is to identify operators that give rise to

significant corrections to the SM that push the anomalous
magnetic moment to larger values closer to the Fermilab/
BNL result. As such we limit ourselves to operator
directions that are not related to oblique electroweak
precision constraints, i.e., we will neglect the OϕWB and
OϕD operators due to their relations to the S and T
parameters [54,66,82] (we note that the correlations of
aμ and electroweak data have been studied elsewhere, e.g.,
[83,84]). We have also considered only CP-conserving
operators. The remaining WCs are tabled in Table I for a
renormalization scale choice of μ ¼ mμ (the scale relevant
to the aμ measurement, we will discuss the impact of
different choices, e.g., μ ¼ Λ further below).3 As can be
seen, only a subset of these operator constraints is pertur-
batively meaningful. This reflects the general observation
of the aμ anomaly in theories with extended particle
spectra [24,85].

A. UV-divergent operators: aμ as input parameter

From our included operators, the divergent parts of
Eq. (3) depend only on CeB, CeW , CϕB, and CϕW .
The latter two are constrained mainly from simplified

template cross section measurements and Higgs signal
strength measurements at the LHC (see, for example,
Refs. [78,86]) without much potential to further clarify
the muon anomalous magnetic moment measurement. The
tree-level CeB and CeW insertions, on the other hand, are
hard to constrain due to chiral suppression. They are a
subset of the few possible operators that can shift signifi-
cantly the SM expectation when new physics appears at
around the TeV scale. Contours including both operators
are shown in Fig. 1.
As any scheme- and scale-dependent parameter in

Quantum Field Theory, the results understood in terms
of Wilson coefficient constraints depend on the (unphys-
ical) dimensional renormalization scale μ. From the point
of matching calculations a choice of μ ¼ Λ is intuitive,
while scale-dependent logarithms are typically efficiently
resummed by choosing an adapted renormalization scale
relative to the scale of measurement. This is familiar from
many calculations in collider physics (e.g., scale choices of
Higgs decays to bottompairs [87]). It is thereforeworthwhile
to investigate the μ scale choice as an indication of the

TABLE I. Bounds on WCs in units of TeV−2 for consistency with the Fermilab measurement and the errors of the
SM prediction with μ ¼ mμ. We limit ourselves to WC operator values ≲4π=TeV2.

WC (=Λ2) Fermilab/BNL allowed ð1=TeV2Þ SM allowed ð1=TeV2Þ
CeB ½8.21 × 10−6; 1.33 × 10−5� ½−1.84 × 10−6; 1.84 × 10−6�
CeW ½−1.41 × 10−5;−2.27 × 10−5� ½3.15 × 10−6;−3.15 × 10−6�
CW [14.00, 22.60] ½−3.14; 3.14�
CϕB [0.36, 0.58] ½−0.08; 0.08�
CϕW [1.06, 1.71] ½−0.24; 0.24�
Cϕe [7.92, 12.80] ½−1.77; 1.77�
Cð1Þ
ϕl

½−8.27;−13.40� ½1.85;−1.85�
Cð3Þ
ϕl

½−8.27;−13.40� ½1.85;−1.85�
Cle ½−1.69;−2.72� ½0.38;−0.38�

FIG. 1. Bounds in the CeW-CeB plane with the rest of the WCs
fixed at zero from the anomalous magnetic moment with μ ¼ mμ.

3We have checked our results against the renormalization
group evolution analysis of Ref. [36] and find very good
agreement.
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reliability of our calculationwith regards to neglected higher-
order effects. We show this in Fig. 2 for Λ ¼ 1 TeV,
highlighting that the effect on the WCs of dipole operators
is essentially a shift of the allowed interval due to the
presence of the tree-level contribution. Considering the
Fermilab measurement as input, the values of the WCs
wouldneed to increase asμ → Λ. In contrast, the dependence
on CϕB and CϕW through logarithms logðm2=μ2Þ (with m
representing a SMmass scale) leads to a different behavior as
a function of μ as they contribute only radiatively, which
would lead to sign changes when Eq. (1) is used as input.
However, as previously stated, we are not considering this
due to the strong constraints on these WCs from other
processes. It should be noted that all logarithms are sup-
pressed by the UV scale ∼Λ−2 logðm2=μ2Þ, which as larger
scales μ ∼ Λ are considered, decreases slower than the tree-
level Λ−2 contributions.
We evaluate the importance of the one-loop contribution

to Δaμ, when compared to the tree level, with the scale
choice of the muon mass. To do so we consider the
orthogonal rotation of the dipole operators,

Ceγ ¼ cWCeB − sWCeW;

CeZ ¼ sWCeB þ cWCeW; ð10Þ

such that at tree level only Ceγ contributes to the muon’s
dipole moments. Taking into account combinations of Ceγ

and an additional operator, it is possible to evaluate how
sizable the correction factor from loop corrections (the
K-factor) can be when Δaμ lies within the allowed interval
of Fermilab. We define this factor as the ratio of Ceγ at
Next-to-leading-order (NLO) required to reproduce a value
of Δaμ divided by the value considering only tree-level
effects. When no additional operators are present, the Ceγ

K-factor lies at ∼0.9 for μ ¼ mμ and increases logarithmi-
cally as μ → Λ ¼ 1 TeV up to∼1.2. The dependence of the

Ceγ interval consistent with the Fermilab result is shown in
Fig. 3. This shows that also in EFT (mirroring the findings
in concrete UV models [24]), the anomalous magnetic
moment measurement is linked to a sizable coupling. While
this is not directly visible from the tree-level result, the size
of the radiative correction (which is much larger than
typical electroweak corrections) indicates a relative strong
coupling of the EFT when the dipole operators alone are
considered. The presence of additional SMEFT operators,
however, can reproduce the muon g − 2 anomaly without
the need of such large radiative corrections. For example,
sampling values ofΔaμ and CeZ we can see that even if CeZ

is assumed to be of order 10−4, the anomalous magnetic
moment can be reproduced with small radiative corrections
as shown in Fig. 4.

FIG. 2. Individual intervals allowed by the Fermilab measure-
ment for CeB and CeW (left) as a function of the dimensional
regularization scale μ.

FIG. 3. Individual interval allowed by the Fermilab measure-
ment for Ceγ including one-loop contributions is shown with
solid lines and filled as a function of μ. When only tree-level
contributions are included, the corresponding interval is shown
with dashed lines.

FIG. 4. Impact of CeZ on Ceγ for μ ¼ mμ. Relatively small
values of CeZ can cause cancellations rendering the one-loop
contribution of Ceγ negligible and reproducing the Fermilab Δaμ.
For larger sampled values of CeZ, the Ceγ K-factor increases to
keep consistency with the Fermilab measurement.
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We can repeat this procedure for the rest of the SMEFT
operators, calculating the minimum possible Ceγ K-factor
that is required to obtain consistency between the sampled
Δaμ and the Fermilab measurement, shown in Fig. 5.
Phrased differently, we calculate how large a second
SMEFT contribution needs to be in order to cancel the
one-loop contribution of Ceγ rendering the tree level as the
only relevant contribution. In general, the radiative correc-
tion from the dipole operator remains relevant for most
operators unless they approach the nonperturbative limit.
Exceptions are the CϕB, CϕW and Cle operators which,
without acquiring sizable values, can introduce cancella-
tions in the NLO part rendering the loop order negligible.
Due to its link to a direction in the SMEFT parameters

space,Δaμ is a scheme- and scale-dependent parameter and
should therefore be approached with the necessary caution
as scale dependencies can be modified in actual scattering
cross section calculations involving Ceγ . Being an observ-
able, the experimental measurement of g − 2 will be
unaffected by unphysical contributions related to scheme
choices,which should cancelwhen all relevant contributions
are taken into account. The main result, however, remains
that the bounds on the dipole operators are extremely tight,
raising the question whether similar precision can be
achieved through alternative channels. We will revisit this
in Sec. III.

B. aμ as a radiative SMEFT effect

The muon g − 2 measurement can also be interpreted as
an effect of BSM physics from operators that contribute at
one-loop level without leading to UV divergences for the
dimension-six truncation. When considering operators
individually, Cϕ□, Ceϕ and CW cannot produce enough
pull to lift the g − 2 up to the Fermilab measurement unless
their absolute value divided by Λ2 exceeds the limit of
4π=TeV2. For the electroweak scale of 246 GeV this would

correspond to a WC value of order one. Electroweak
precision observables (EWPOs) significantly restrict the

allowed values of Cð1Þ
ϕl , Cð3Þ

ϕl , and Cϕe [88]. The only
remaining currently unconstrained operator that can pro-
vide an explanation of g − 2 is four-fermion Cle, which was
also discussed in Refs. [34,36]. Lepton colliders will be
able to place constraints on this operator [89,90].

III. AVENUES FOR TENSIONING
THE DIPOLE OPERATORS

The dipole operators CeB and CeW are difficult to
constrain in collider environments. In this section, we
explore a range of motivated avenues which could, a priori,
provide bounds either with current experimental uncertain-
ties or in the future. We consider the Z → μμ decay,
expected to be sensitive to CeZ as well as the muon-
Higgs interactions. While the μμγ and μμZ vertices are
sensitive to the dipole operators when the Higgs doublet is
set to its vacuum expectation value, Higgs physics such as
the 125 GeV Higgs boson’s decay h → μμ is also sensitive
to interactions that are linked to aμ. Additionally we
include resolved photon emission h → μμγ which is
directly sensitive to the aμ operators at the cost of low
statistical yield (yet with low experimental systematics as
muons and photons are under very good control at the
LHC). Looking toward the future, we consider the pre-
cision environment provided by the MUonE experiment
[48] proposed at CERN, aiming to measure the hadronic
contributions to the anomalous magnetic moment in μe
scattering, whose sensitivity can also be interpreted as
bounds on the SMEFT operators considered in this work.

A. Z boson decay

The orthogonal rotation of the gauge fields Bμ andW3
μ in

the SM to the physical Z and γ also causes the appearance

FIG. 5. Plots showing the minimum Ceγ K-factor possible that can reproduce the anomalous magnetic moment depending on the range
where an additional operator is sampled. Operators with smaller (larger) impact are shown on the left (right).
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of the CeB and CeW operators in decays of the Z boson to
muons, along with additional BSM interactions. At dimen-
sion-six order only the linear contribution is relevant arising
from interference with tree and virtual SM diagrams. For
the discussion of the Z decay we neglect loop contributions
from SMEFT as they are unlikely to significantly impact
the (relatively poor) constraints.
Denoting as Md6 the tree-level SMEFT amplitude and

Mtree
SM (Mvirt

SM) the tree (virtual) SM amplitude, the departure
from the SM decay width is given by

δΓZ→μμ ¼
jp1j

48πm2
Z
½2M�

d6ðMtree
SM þMvirt

SMÞ�; ð11Þ

where we average over the initial polarizations of the Z
boson and integrate over the phase space (p1 denotes the
three-momentum of one of the final states). The virtual SM
amplitude terms are calculated at the renormalization
scale μ ¼ mZ.
The ParticleDataGroup (PDG) [91] reports an uncertainty

of 0.18 MeVon the decay width of Z → μμ which we use to
construct a χ2 and evaluate the allowed bounds at 68% con-
fidence level of each WC individually for comparability.
Results are shown on Table II where the dipole operators are
essentially unconstrained with bounds exceeding 4π=TeV2.
The muonic decay of the Z boson can only efficiently
constrain the three operators of the class ψ2ϕ2D that
contribute to the anomalous magnetic moment. As with
the EWPOs that also constrain most of these operators, we

see again thatCϕe,C
ð1Þ
ϕl andC

ð2Þ
ϕl contributions cannot lift the

muon g − 2 up to the Fermilab/BNL findings without
creating tension with other measurements.

B. The h → μμγ channel

The decay of the Higgs boson to fermions was calculated
in Ref. [92] (see also [73] for more details on the calculation)
which we utilize in order to identify the sensitivity to the
dipole operators from the signal strength of hμμ. The signal
strength is can be expressed numerically as4

μ ¼ 1þ TeV2

Λ2
ð0.67CeW − 0.19CeBÞ; ð12Þ

at a scale μ ¼ 125 GeV. Bounds on the WCs are then
obtained at 68% CL by constructing a χ2 ¼ ðμ −
1.19Þ2=0.352 using the PDG expectation value [91] which
would correspond to CeB ∈ ½−2.8; 0.8� and CeW ∈
½0.24; 0.81� using a UV scale Λ ¼ 1 TeV. As the sensitivity
is still orders of magnitude less than the anomalous magnetic
moment, this motivates looking into alternative avenues.
The dependence of the OeW and OeB operators on the

Higgs doublet suggests that s-channel processes with
propagating Higgs bosons might provide additional tension
on the bounds on CeB and CeW from the anomalous
magnetic measurement. The operators generate the diagram
shown in Fig. 6 which provides a final state at the LHC
characterized by two muons and a hard photon, arising
from a Higgs resonance (for a detailed discussion of μμ →
hγ process at a future muon collider see Ref. [53]). As the
resonant Higgs is predominantly produced by gluon fusion
at hadron colliders we consider the pðgÞpðgÞ → h →
μþμ−γ channel. Background contamination arising from
the SM will not be characterized by the same resonance
structure which motivates a bump-hunt analysis around
the Higgs peak. While the statistical yield is small, such
data-driven analyses feature largely reduced systematic
uncertainties similar to the Higgs boson’s h → γγ discovery
mode.
We use the SMEFTsim [93,94] implementation of SMEFT5

in the Universal FeynRules Output [95] format to generate
events with MadEvent [96–98]. In the final state we require at
least two isolated leptons identified as muons with trans-
verse momentum pTðμÞ > 15 GeV in the central part of the
detector [pseudorapidity must satisfy jηðμÞj < 2.5]. For an
isolated muon, the sum of jet transverse momenta in the
region ΔR ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δϕ2 þ Δη2

p
< 0.4 must be less than 50%

of the lepton’s pT ,where ϕ denotes the azimuthal angle.
Additionally at least one photon must be present with
pTðγÞ > 15 GeV and ηðγÞ < 2.5 and along with the lead-
ing isolated muons, the Higgs mass Mreco is reconstructed

TABLE II. Bounds on WCs at 68% in units of TeV−2 from the
decay width of the Z boson obtained by constructing a χ2 with the
PDG error (see text). Contributions from dipole operators do not
result in perturbatively meaningful constraints and are not shown.

WC (=Λ2) 68% CL bound

Cϕe ½−0.019; 0.019�
Cð1Þ
ϕl

½−0.016; 0.016�
Cð3Þ
ϕl

½−0.016; 0.016� FIG. 6. Vertex arising from the operators of Eq. (4) that
contributes to the decay of the Higgs.

4We obtain the signal strength using the decay rates provided
in Ref. [92].

5We use the effective ggh interaction implemented in SMEFTsim
to model the Higgs production.
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as the invariant mass of the four momenta total of the
final states. An additional cut 110 ≤ Mreco ≤ 135 GeV is
imposed to select the region close to the resonant mass of
the SM Higgs of 125 GeV.
Differential cross sections in SMEFT can be expressed

as

dσ ¼ dσSM þ Ci

Λ2
dσi; ð13Þ

where the first part arises from pure-SM interactions and
the second term captures the interference of SM and
dimension-six operators. We neglect any term suppressed
by Λ−4. Events are generated independently of the WC in
this linearized setup and an example histogram for the
differential distribution of the reconstructed Higgs mass
is shown in Fig. 7. A binned χ2 can be then constructed
as the difference of the events with and without the EFT
interactions squared, weighted by the SM statistical uncer-
tainty. Performing a fit over the WCs of interest results in
the bounds shown in Fig. 8 for integrated luminosities of
139/fb and 3/ab.
The sensitivity from this channel is once again severely

limited compared to what is indicated from the anomalous
magnetic moment.

C. MUonE

While we have considered the anomalous magnetic
moment of the muon from the BSM perspective, there is
still the possibility that higher-order hadronic contribu-
tions from the SM might resolve the g − 2 anomaly.
The dominant theoretical uncertainty of Eq. (1) arises
from the hadronic vacuum polarization which cannot be
perturbatively computed at low-energy scales as QCD
becomes nonperturbative. Its determination, thus, relies
on data-driven techniques through dispersive relations

in the eþe− → hadrons channel [7–13] which requires
experimental results as input. A confirmation of the
hadronic vacuum polarization through first-principles lat-
tice QCD techniques [21,99–106] would be convincing
evidence that the Fermilab/BNL measurement indeed
implies new physics. With Refs. [99,106] providing results
for the hadronic effects that bring the g − 2 closer to the
Fermilab/BNL this still remains a highly relevant topic
which needs to be resolved in the upcoming years.
An alternative approach was proposed through the

MUonE experiment [48], aiming to determine the hadronic
contributions with high accuracy. Using measurements of
the differential cross section dσ=dt in elastic μe → μe
scattering, where t is the (spacelike) squared momentum
transfer, the hadronic contributions to the fine structure
constant can be accurately determined. This can then be
related to the respective contributions to the anomalous
magnetic moment using a data-driven approach. Scattering
off atomic electrons with a muon beam of 150 GeV from
CERN, the experiment is expected to achieve an integrated
luminosity of L ¼ 1.5 × 107/nb for an expected cross
section of ∼250 μb. In such an experimentally well-
controlled environment, theoretical uncertainties become
limiting factors. There are ongoing efforts to improve
predictions in the SM, see, e.g., [107–112]. In the follow-
ing, we interpret deviations from the SM expectation of the
MUonE experiment as new physics contributions (see also
Ref. [113]) to obtain a qualitative estimate of the experi-
ment’s sensitivity in light of our previous discussion. The
impact of heavy particles is suppressed by their mass due to
the relatively low center-of-mass energy [114], unless they
are strongly coupled to the SM. We consider tree-level
contributions affecting the MUonE measurement from
SMEFT in order to determine how the experiment can
constrain the allowed ranges of relevant WCs, neglecting
flavor-violating contributions from off-diagonal dimen-
sion-six operators.

FIG. 8. Exclusion contours in the CeW − CeB plane from the
h → μμγ channel for integrated luminosities of 139/fb and 3/ab.

FIG. 7. Example histogram for the reconstructed mass of the
Higgs Mreco showing the shape of the SM contribution and
interference of effective interactions with the SM.
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As before, the dσ=dt distribution can be written
linearly in terms of higher dimension operators as in
Eq. (13), truncated at order Λ−2. We calculate the
unpolarized dσ=dt differential distribution for μ−e− →
μ−e− for the SM and for the interference of dimension-
six operators with the SM (see Fig. 9). Bounds on the
WCs are obtained with a binned

χ2 ¼
X

i

ðδNiÞ2
σ2i

; ð14Þ

where δNi denotes the deviation in event counts from

the SM NSM
i and σi ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2stat;i þ σ2syst;i

q
is the combina-

tion of statistical and systematic uncertainties. We use
σstat;i ¼

ffiffiffiffiffiffiffiffiffi
NSM

i

p
and σsyst;i ¼ 10−5NSM

i which is the target
systematic uncertainty by MUonE [48] (see also
Ref. [113]).
We show the bounds on the relevant WCs in Table III.

The operators Cϕe, C
ð1Þ
ϕl and Cð3Þ

ϕl enter our calculations
but their bounds exceed 4π=TeV2; hence we have not
included them in Table III. However, aside from the
measurement by Fermilab/BNL, the MUonE experiment
can place the most stringent bounds from the approaches
we consider in this paper but as in all the other scenarios
these limits are orders of magnitude less restrictive than
the muon g − 2 result.

IV. CONCLUSIONS

Having calculated the anomalous magnetic moment
at one-loop order in SMEFT we observe that the
higher-order contributions from the dipole operators
CeB and CeW are expected to be sizable. This supports
the general finding for concrete UV extensions that
new states need to be relatively strongly coupled to the
muon when they are heavy (which is an underlying
assumption of the EFT approach). Cancellations can
arise from the virtual presence of additional operators,
but they are required to be sizable in most cases with
the exceptions of CϕB, CϕW and Cle. When the operators
are considered on a one-by-one basis, a possible
explanation for the measured value of the muon g − 2
from Fermilab can only arise from the dipole operators
and the four-lepton interaction quantified by Cle. This
agrees with previous conclusions of Refs. [34,36] (our
final Δaμ expression is also in agreement). However,
this leaves little room for a description of g − 2 arising
from new physics at the high-energy scales without
introducing flavor-violating contributions (this path is
explored in Refs. [34,36]).
Under the conservative assumption that new physics

appears specifically in relation to the muon, we explore
the impact of the dipole operators in different exper-
imental scenarios to evaluate whether it is possible to
reach a similar level of precision as the Fermilab/BNL
measurement. While the dipole operators contribute to
the Z decay to muons, the sensitivity of the channel is
poor without any prospect for the dipole operators

(though it can provide constraints on Cϕe, Cð1Þ
ϕl and

Cð3Þ
ϕl ). The presence of the Higgs doublet in the dipole

operators allows us to additionally assess whether
additional tension can be obtained from interactions
of muons with the physical Higgs scalar. The h → μμγ
channel receives SMEFT contributions from CeB and
CeW at tree level and would therefore be an ideal
channel to set bounds directly on aμ-related interactions.
Statistical limitations do not render this mode competi-
tive at the High-Luminosity LHC luminosity of 3/ab. A
precise determination of the hμμ signal strength can
provide improved bounds due to the appearance of the
dipole operators at one-loop level, yet is not sensitive
enough to address the Fermilab/BNL tension with
the SM.
Our last consideration regarding the dipole operators is

the future MUonE experiment attempting to measure the
hadronic contributions in the g − 2 anomaly arising from
the SM. When reinterpreted in terms of SMEFT inter-
actions, this mode provides a competitive bound on the
dipole operator compared to the other modes considered.
However, these are far from the extreme precision
provided by the targeted measurement of the anomalous
magnetic moment at Fermilab/BNL.

TABLE III. Bounds on WCs at 68% CL obtained with a χ2

analysis on the dσ=dt distribution from MUonE. These corre-
spond to jCeγj ≤ 0.18 and jCeZj < 12.75. While operators of the
ψ2ϕ2D class also contribute to the process, MUonE does not
show significant sensitivity.

WC (/Λ2) 68% CL ð1=TeV2Þ
CeB ½−0.21; 0.21�
CeW ½−0.39; 0.39�

FIG. 9. Histograms showing the shapes of the dσ=dt distribu-
tions for the contributing WCs and the tree-level SM expectation.
For each line the WC is set to unity and the rest to zero.

IMPLICATIONS OF THE MUON ANOMALOUS MAGNETIC … PHYS. REV. D 106, 075031 (2022)

075031-9



ACKNOWLEDGMENTS

We thank Anke Biekötter, Christine T. H. Davies,
and Thomas Teubner for helpful discussions. A. B. and
C. E. are supported by the STFC under Grant No.

ST/T000945/1. C. E. is supported by the Leverhulme
Trust under Grant No. RPG-2021-031 and the IPPP
Associateship Scheme. P. S. is funded by an STFC student-
ship under Grant No. ST/T506102/1.

[1] B. Abi et al. (Muon g − 2 Collaboration) (Phys. Rev. Lett.
126, 141801 (2021).

[2] G.W. Bennett et al. (Muon g − 2 Collaboration), Phys.
Rev. Lett. 92, 161802 (2004).

[3] T. Aoyama, M. Hayakawa, T. Kinoshita, and M. Nio, Phys.
Rev. Lett. 109, 111808 (2012).

[4] T. Aoyama, T. Kinoshita, and M. Nio, Atoms 7, 28 (2019).
[5] A. Czarnecki, W. J. Marciano, and A. Vainshtein, Phys.

Rev. D 67, 073006 (2003); 73, 119901(E) (2006).
[6] C. Gnendiger, D. Stöckinger, and H. Stöckinger-Kim,

Phys. Rev. D 88, 053005 (2013).
[7] M. Davier, A. Hoecker, B. Malaescu, and Z. Zhang, Eur.

Phys. J. C 77, 827 (2017).
[8] A. Keshavarzi, D. Nomura, and T. Teubner, Phys. Rev. D

97, 114025 (2018).
[9] G. Colangelo, M. Hoferichter, and P. Stoffer, J. High

Energy Phys. 02 (2019) 006.
[10] M. Hoferichter, B.-L. Hoid, and B. Kubis, J. High Energy

Phys. 08 (2019) 137.
[11] M. Davier, A. Hoecker, B. Malaescu, and Z. Zhang, Eur.

Phys. J. C 80, 241 (2020); 80, 410(E) (2020).
[12] A. Keshavarzi, D. Nomura, and T. Teubner, Phys. Rev. D

101, 014029 (2020).
[13] A. Kurz, T. Liu, P. Marquard, and M. Steinhauser, Phys.

Lett. B 734, 144 (2014).
[14] K. Melnikov and A. Vainshtein, Phys. Rev. D 70, 113006

(2004).
[15] P. Masjuan and P. Sanchez-Puertas, Phys. Rev. D 95,

054026 (2017).
[16] G. Colangelo, M. Hoferichter, M. Procura, and P. Stoffer,

J. High Energy Phys. 04 (2017) 161.
[17] M. Hoferichter, B.-L. Hoid, B. Kubis, S. Leupold, and S. P.

Schneider, J. High Energy Phys. 10 (2018) 141.
[18] A. Gérardin, H. B. Meyer, and A. Nyffeler, Phys. Rev. D

100, 034520 (2019).
[19] J. Bijnens, N. Hermansson-Truedsson, and A. Rodríguez-

Sánchez, Phys. Lett. B 798, 134994 (2019).
[20] G. Colangelo, F. Hagelstein, M. Hoferichter, L. Laub, and

P. Stoffer, J. High Energy Phys. 03 (2020) 101.
[21] T. Blum, N. Christ, M. Hayakawa, T. Izubuchi, L. Jin, C.

Jung, and C. Lehner, Phys. Rev. Lett. 124, 132002 (2020).
[22] G. Colangelo, M. Hoferichter, A. Nyffeler, M. Passera, and

P. Stoffer, Phys. Lett. B 735, 90 (2014).
[23] T. Aoyama et al., Phys. Rep. 887, 1 (2020).
[24] P. Athron, C. Balázs, D. H. J. Jacob, W. Kotlarski, D.

Stöckinger, and H. Stöckinger-Kim, J. High Energy Phys.
09 (2021) 080.

[25] S. Weinberg, Physica (Amsterdam) 96A, 327 (1979).
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