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1 Introduction

The Brownian loop soup (BLS) [1] is an ideal gas of Brownian loops in two dimensions
with a distribution chosen so that it is invariant under local conformal transformations.
The distribution depends on a single parameter, the intensity λ > 0. The BLS is implicit
in the work of Symanzik [2] on Euclidean quantum field theory, more precisely, in the
representation of the partition function of Euclidean fields in terms of random paths that
are locally statistically equivalent to Brownian motion. This representation can be made
precise for the Gaussian free field, in which case the random paths are independent of each
other and can be generated as a Poisson process. Viewed this way, the BLS consists of 2λ
Gaussian free fields (a generally non-integer number).

The BLS is closely related not only to Brownian motion and the Gaussian free field but
also to the Schramm-Loewner Evolution (SLE) and Conformal Loop Ensembles (CLEs). It
provides an interesting and useful link between Brownian motion, field theory, and statistical
mechanics. Inspired and partly motivated by these connections, in [3–5] we introduced and
studied operators that compute properties of the BLS, discovering new families of conformal
primary fields and analyzing the operator content of the emerging conformal field theory.
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In this paper, we derive the bulk stress-energy tensor of the theory as well as the
boundary stress-energy tensor in the upper half-plane. We also analyze the relation
of the boundary stress-energy tensor to domain perturbations and boundary condition
changing operators.

1.1 Preliminary definitions

The Brownian Loop Soup (BLS) is an ideal gas of planar loops. If A is a set of loops, the
partition function of the BLS restricted to loops from A can be written as

ZA =
∞∑
n=0

λn

n!
(
µloop(A)

)n
, (1.1)

where λ > 0 is a constant and µloop is a measure on planar loops called Brownian loop
measure and defined as

µloop ≡
∫
C

∫ ∞
0

1
2πt2 µ

br
z,t dt dA(z), (1.2)

where A denotes area and µbrz,t is the complex Brownian bridge measure with starting point
z and duration t.1 ZA can be thought of as the grand canonical partition function of a
system of loops with fugacity λ, and the BLS can be shown to be conformally invariant
and to have central charge c = 2λ, see [1, 3].

As in [5], in this paper we will only be concerned with the outer boundaries of Brownian
loops. More precisely, given a planar loop γ in C, its outer boundary ` = `(γ) is the
boundary of the unique infinite component of C \ γ. Note that, for any planar loop γ, `(γ)
is always a simple closed curve, i.e., a closed loop without self-intersections. Hence, in this
paper, we will work with collections L of simple loops ` which are the outer boundaries
of the loops from a BLS and for us, with a slight abuse of terminology, a BLS will be a
collection of simple loops.

Given a simple loop `, let ¯̀ denote its interior, i.e., the unique, bounded, simply
connected component of C \ `. In other words, a point z belongs to ¯̀ if ` disconnects z from
infinity, in which case we write z ∈ ¯̀. In [3], the authors studied the correlation functions
of the layering operator2

Vβ (z) = exp

iβ ∑
`:z∈¯̀

σ`(z)

 , (1.3)

where σ` are independent, symmetric, (±1)-valued Boolean variables associated to the loops.
One difficulty arises immediately due to the scale invariance of the BLS, which implies that
the sum at the exponent is infinite with probability one. This difficulty can be overcome by
imposing a short-distance cutoff δ > 0 on the diameter of loops3 (essentially removing from

1We note that the Brownian loop measure should be interpreted as a measure on “unrooted” loops, that
is, loops without a specified starting point. Unrooted loops are equivalence classes of rooted loops. The
interested reader is referred to [1] for more details.

2In this paper we use the terms field and operator interchangeably.
3An additional infrared cutoff or a “charge neutrality” or “charge conservation” condition may be

necessary in some circumstances — we refer the interested reader to [3] for more details.
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the loop soup all loops with diameter smaller than δ), which produces a cutoff version V δ
β

of Vβ . The cutoff δ can be removed by rescaling V δ
β by δ−2∆(β), with ∆(β) = λ

10(1− cosβ),
and sending δ → 0. When δ → 0, the n-point correlation functions of δ−2∆(β)V δ

β converge
to conformally covariant quantities [3], showing that the limiting field is a scalar conformal
primary field with real and positive conformal dimensions varying continuously as periodic
functions of β, namely as

∆(β) = ∆̄(β) = λ

10(1− cosβ). (1.4)

This limiting field is further studied in [4], where its canonically normalized version is
denoted by Oβ .4

For a domain D with a boundary ∂D and a point ζ ∈ ∂D, the boundary field Bδε(ζ)
studied in this paper counts the number of loops ` with diameter at least δ passing within
a short-distance ε of ζ. This is a boundary version of the edge field studied in [5] and
discussed in section 1.2 below. As in [5], the cutoffs δ, ε > 0 are necessary to keep Bδε(ζ)
from being infinite or identically zero. We show that they can be removed (i.e. sent to zero)
by placing the field Bδε inside n-point correlation functions with n ≥ 2 and renormalizing it
by an appropriate power of ε.

1.2 The edge counting operator

For the reader’s convenience, in this section we provide a brief introduction to the edge
counting operator introduced in [5]. Some of the properties of the edge counting operator
will be essential to the analysis carried out in this paper.

The edge counting operator E(z), for z in the interior of a domain D, is defined in [5]
as the limit

E(z) := ĉ√
λ

lim
ε→0

ϑ−1
ε Eε(z), (1.5)

where

Eε(z) := lim
δ→0

(
N δ
ε (z)−

〈
N δ
ε (z)

〉
D

)
= lim
δ→0

(
N δ
ε (z)− λµloop

D (diam(`) > δ, ` ∩Bε(z) 6= ∅)
) (1.6)

and ϑε denotes the scaling limit of the probability that, in critical site percolation on the
triangular lattice, there are one open and two closed paths crossing the annulus with inner
radius ε and outer radius 1, known as a three-arm event.

Here N δ
ε (z) counts the number of loops γ with diameter5 diam(γ) = diam(`) larger than

δ and whose “edge” ` (the outer boundary) comes ε−close to z. The angle brackets 〈·〉D
denote expectation with respect to the Brownian loop soup in D (of fixed intensity λ), µloop

D

is the Brownian loop measure µloop restricted to D, i.e. the unique (up to a multiplicative
4By canonically normalized we mean that 〈Oβ(z)O−β(z′)〉C = |z − z′|−4∆(β).
5The diameter of a loop is the largest distance between any two point on the loop.
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constant) conformally invariant measure on simple planar loops [6], and Bε(z) is the disk of
radius ε centered at z.

The subtraction of the mean in (1.6) is needed because the mean is divergent in the
limit δ → 0, due to the scale invariance of the BLS. With this, the field Eε is well defined in
the sense of correlation functions. More precisely, it is shown in [5] that, for any collection of
points z1, . . . , zn ∈ D at distance greater than 2ε from each other, with n ≥ 2, the following
limit exists:

〈Eε(z1) . . . Eε(zn)〉D := lim
δ→0
〈Eδε(z1) . . . Eδ

ε(zn)〉D. (1.7)

The normalization ϑε used in (1.5) is a consequence of the fact that the µloop
D -measure

of “macroscopic” loops coming to distance ε of z in the interior of D tends to zero like
ϑε ∼ ε2/3 when ε → 0. This can be understood using a deep connection [6] between the
Brownian loop measure µloop

D and a conformally invariant model of non-simple loops, called
CLE6, which emerges from the scaling limit of critical two-dimensional percolation [7, 8].
Using this connection, the exponent 2/3 is directly related to the probability of a three-arm
event in the bulk in two-dimensional percolation [9, 10].

The field E is only formally defined by (1.5) because it cannot be evaluated pointwise,
as is customary in (Euclidean) quantum field theory. However, it is shown in [5] that E has
well-defined n-point functions and behaves like a conformal primary field with dimensions
(1/3, 1/3). The constant ĉ and the multiplicative factor ĉ√

λ
are chosen so that the field is

canonically normalized, that is,

〈E(z1)E(z2)〉C = |z1 − z2|−4/3. (1.8)

More generally, the n-point functions of the edge operator can be expressed as

〈E(z1) . . . E(zn)〉D = ĉn

λn/2

∑
(S1,...,Sr)∈S

λrαS1
D . . . αSrD , (1.9)

where S = S(z1, . . . , zn) denotes the set of all partitions of {z1, . . . , zn} such that each
element Sl of (S1, . . . , Sr) ∈ S has cardinality |Sl| ≥ 2 and, for any subset Sl = {zj1 , . . . , zjk}
of {z1, . . . , zn},

αSlD ≡ α
zj1 ,...,zjk
D := lim

ε→0
ϑ−kε µloop

D

(
` ∩Bε(zjm) 6= ∅,m = 1, . . . , k

)
. (1.10)

It is shown in [5] that, if D ⊆ C is either the complex plane C or the upper-half
plane H or any domain conformally equivalent to H, for any collection of distinct points
z1, . . . , zk ∈ D with k ≥ 2, the above limit exists and has the following property. If D′ is a
domain conformally equivalent to D and f : D → D′ is a conformal map, then

α
f(z1),...,f(zk)
D′ =

 k∏
j=1
|f ′(zj)|−2/3

αz1,...,zkD . (1.11)

This, combined with (1.9), implies that

〈E(f(z1)) . . . E(f(zn))〉D′ =

 k∏
j=1
|f ′(zj)|−2/3

 〈E(z1) . . . E(zn)〉D . (1.12)
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1.3 Summary of the main results and structure of the paper

Section 2. We provide integral expressions of the bulk stress-energy tensor T that can be
used to compute certain correlation functions involving T . We verify that the
Ward identities involving these correlation functions are satisfied, confirming the
validity of our expressions for T .

Section 3. We study a boundary version of the edge counting operator E (1.5), namely

B(ζ) := 1√
λ

lim
ε→0

ε−2Eε(ζ), (1.13)

where ζ ∈ ∂D. We show that, when D is the upper half-plane H and x1, x2 ∈ R,

〈B(x1)B(x2)〉H = |x1 − x2|−4. (1.14)

We identify a new operator, formally

T (ζ) :=
√
λB(ζ)ε−2Eε(ζ), (1.15)

whose behavior is consistent with the role of boundary stress-energy tensor. We
derive part of the operator product expansion of T × T (3.34) and check the
Ward identity (3.16).

Section 4. We link the operator T to local deformations in the boundary of the domain
and to the insertion of a pair of operators that generate a Brownian excursion
in the domain (with the insertion points as starting and ending points of the
excursion) and appear to behave like boundary 1-leg operators.

2 The bulk stress-energy tensor

In this section we show how to express the bulk stress-energy tensor T in the BLS in terms
of the edge counting operator E and in terms of the vertex layering operator O. From these
expressions, we compute two examples of correlation functions of primary fields with T

and show that they satisfy the conformal Ward identities, confirming the validity of our
expressions for T . The strategy of this section is inspired by [11, 12]. In particular, the
techniques of [12], where the authors derive the central charge of the O(n→ 0) model, have
been used in [5] to determine the central charge of the BLS.

2.1 Identification

The holomorphic and anti-holomorphic components of the stress-energy tensor can be
understood as the generators of conformal transformations. The holomorphic component
of the stress-energy tensor in a two-dimensional CFT can generally be understood as the
level-2 descendant of the identity operator

(L−21)(z) ≡ T (z). (2.1)

– 5 –
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(a) Non-zero C(p,p′)
EE . (b) Non-zero C(p,p′)

OβO−β
.

Figure 1. The non-zero three-point function coefficients are shown. Rows and columns label (p, p′)
for primary operators with dimensions (p/3, p′/3). Left: between two edge-counting operators.
Right: between two vertex operators. The operators giving contributions to T , corresponding to 1
(left) and 1, J,W (right) are marked in red (hatched).

The anti-holomorphic component T̄ is equivalently given by L̄−2. Their conformal dimensions
are (2, 0) and (0, 2) for the holomorphic and anti-holomorphic component, respectively.

Our strategy is to identify the stress-energy tensor starting from the operator product
expansion (OPE) of two primary operators A1 and A2 (see section 6.6.3 of [13])

A1(z + ε)×A2(z) =
∑
P

∑
{k,k̄}

CP12β
P{k}
12 β̄

P{k̄}
12 ε∆P−∆1−∆2+K ε̄∆̄P−∆̄1−∆̄2+K̄

· L−k1 . . . L−kN L̄−k̄1
. . . L̄−k̄N̄

P(z),
(2.2)

where the outer sum runs over all primary operators P, and the inner sum is over all
collections of indices (the descendant levels) ki, k̄i with K = ∑

ki∈{k} ki and K̄ = ∑
k̄i∈{k̄} k̄i.

β
P{k}
12 , β̄

P{k̄}
12 are numerical coefficients fully determined by the Virasoro algebra (they

depend on the central charge and the conformal dimensions of the operators involved),
and CP12 are three-point function coefficients of the theory. If we choose A1 and A2 so
that (2.2) contains the identity operator then the stress tensor will appear as a descendent.
In particular, the identity is contained in the OPE

E(z + ε)× E(z) = |ε|−4/3
(

1 + ε2
2∆E
c
T (z) + . . .

)
= |ε|−4/3

(
1 + ε2

1/3
λ
T (z) + . . .

)
,

(2.3)

where ∆E = 1/3 is the conformal dimension of E and c = 2λ is the central charge, and where
higher descendants, as well as other conformal blocks and the anti-holomorphic components,
have been omitted. The term containing T (z) appears at order O(ε−2/3+2ε̄−2/3) in (2.3),
and no other term appears at the same order. (The anti-holomorphic component T̄ would

– 6 –
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z

z′

θ

ρ

Figure 2. Every loop whose outer boundary comes close to the point z and intersects the dashed
circle somewhere contributes to T (z) in (2.4). The red points represent the insertion points of the
edge-counting operators E at z and z′ = z + ρeiθ.

appear at order O(ε−2/3ε̄−2/3+2).) This can be deduced from the analysis carried out in [4],
as shown in figure 1a. Thus one can identify

T (z) = λ

1/3 lim
ρ→0

ρ−2/3 1
2π

∫ 2π

0
dθ e−2iθE

(
z + ρeiθ

)
E(z), (2.4)

since the integral in (2.4) singles out the term of the expansion in the right-hand side
of (2.3) that corresponds to the stress-energy tensor. As shown in figure 2, the loops that
contribute to the integral in (2.4) are those that come close to z and that intersect the circle
of radius ρ centered at z. This provides a geometric interpretation for the stress-energy
tensor. T̄ is obtained by replacing e−2iθ with e2iθ.

As a consequence of conformal invariance, correlation functions involving the stress-
energy tensor in the bulk obey the conformal Ward identities

〈
T (z)

N∏
j=1
Aj(zj)

〉
C

=
N∑
j=1

(
∆j

(z − zj)2 + 1
z − zj

∂zj

)〈
N∏
j=1
Aj(zj)

〉
C

, (2.5)

where Aj denotes a generic primary operator with conformal dimension ∆j . In the next
section, we test (2.4) using (2.5).

– 7 –
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2.2 Correlation functions

We now use the full-plane mixed four-point function 〈Oβ(z1)O−β(z2)E(z3)E(z4)〉C to com-
pute 〈T (z)Oβ(z1)O−β(z2)〉C and 〈T (z)E(z1)E(z2)〉C, which can then be compared to the
Ward identities (2.5). (See section 1.1 for the definition of Oβ(z).) The four-point function
was computed in [5] and can be written as

〈Oβ (z1)O−β (z2) E (z3) E (z4)〉C

= 〈Oβ (z1)O−β (z2)〉C
[
α̂z3,z4C − (1− cosβ) α̂z3,z4z1|z2;C + λ (1− cosβ)2 α̂z3z1|z2;Cα̂

z4
z1|z2;C

]
,
(2.6)

where, letting zjk = zj − zk,

〈Oβ (z1)O−β (z2)〉C = |z12|−4∆(β)

〈E (z3) E (z4)〉C = α̂z3,z4C = |z34|−4/3

α̂z3z1|z2;C = 27/6π

31/4
√

5 Γ (1/6) Γ (4/3)

∣∣∣∣ z12
z13z23

∣∣∣∣2/3
α̂z3,z4z1|z2;C = |z34|−4/3 − Ztwist

2 ,

(2.7)

and

Ztwist = Ztwist (z1, z2; z3, z4)

=
∣∣∣∣ z13z24
z2

34z23z14

∣∣∣∣2/3
∣∣∣∣2F1

(
−2

3 ,
1
3; 2

3 , x
)∣∣∣∣2 − 4Γ

(
2
3

)6

Γ
(

4
3

)2
Γ
(

1
3

)4 |x|
2/3
∣∣∣∣2F1

(
−1

3 ,
2
3; 4

3 , x
)∣∣∣∣2


(2.8)

corresponds to eq. (52) of [14] with x = z12z34
z13z24

.
We can then apply (2.4) to (2.6) using (2.7) by expanding α̂z+ρe

iθ

z1|z2;C in powers of ρ.
Observe that the terms independent of θ (e.g., α̂z,z+ρe

iθ

C = ρ−3/4) do not contribute because
of the integral

∫ 2π
0 dθ e−2iθ, while the terms containing powers of ρ greater than 2/3 give

zero in the limit ρ→ 0. This gives

〈T (z)Oβ (z1)O−β (z2)〉C

= λ

1/3 lim
ρ→0

ρ−2/3 1
2π

∫ 2π

0
dθ e−2iθ

〈
E
(
z + ρeiθ

)
E (z)Oβ (z1)O−β (z2)

〉
C

= 3λ (1− cosβ)
2 |z12|−4∆(β) lim

ρ→0
ρ−2/3 1

2π

∫ 2π

0
dθ e−2iθZtwist

(
z1, z2; z, z + ρeiθ

)
.

(2.9)

Using the fact that ρ−2/3Ztwist(z1, z2; z, z + ρeiθ) is analytic and expanding it in powers of
ρ, performing the integral, and sending ρ→ 0, we obtain

〈T (z)Oβ(z1)O−β(z2)〉C = ∆(β) (z1 − z2)2−2∆(β)(z̄1 − z̄2)−2∆(β)

(z − z1)2(z − z2)2 , (2.10)

which corresponds to the Ward identity (2.5) for N = 2,A1,2 = O±β , and ∆j = ∆(β).

– 8 –
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In a very similar manner, one can obtain 〈T (z)E(z3)E(z4)〉C using the fact that the
identity block is also contained in the OPE of Oβ(z+ε)×O−β(z). The term containing T (z)
appears at order O(ε−2∆(b)+2ε̄−2∆(b)) (the anti-holomorphic component T̄ appears at order
O(ε−2∆(β)ε̄−2∆(β)+2)), but in this case there are other contributions to the OPE at the same
order. The relevant operators are conformal primaries with dimensions (1, 0) and (2, 0), and
we denote them J andW , respectively. They are shown in figure 1b, which is obtained using
results from [4]. More precisely, in the case of two layering vertex operators, (2.2) gives

Oβ (z + ε)×O−β (z)

= |ε|−4∆(β)ε2
(
β

1{2}
OβO−β (L−21) (z) + β

J{1}
OβO−βC

J
OβO−β (L−1J) (z) + CWOβO−βW (z)

)
+ . . .

= |ε|−4∆(β)ε2
(2∆ (β)

c
T (z) + 1

2C
J
OβO−β∂zJ (z) + CWOβO−βW (z)

)
+ . . . ,

(2.11)

where higher descendants, other conformal blocks, as well as the anti-holomorphic com-
ponents, have been omitted. The coefficients β1{2}

OβO−β and βJ{1}OβO−β are determined by the
Virasoro algebra and are given by 2∆(β)/c and 1/2, respectively [13]; the central charge
of the BLS is c = 2λ, (L−1J)(z) = ∂zJ(z), and C1

OβO−β = 1 because of the (canonical)
normalization of Oβ . Finally, the three-point function coefficients CJOβO−β and CWOβO−β can
be computed6 as explained in [4], which gives(

CJOβO−β

)2
= λ

10 sin2 β(
CWOβO−β

)2
= 1

2
(
CJOβO−β

)4
.

(2.12)

Based on these considerations, one can write

T (z) = λ

∆ (β)

[
lim
ρ→0

ρ4∆(β)−2 1
2π

∫ 2π

0
dθ e−2iθOβ

(
z + ρeiθ

)
O−β (z)

− 1
2C

J
OβO−β∂zJ (z)− CWOβO−βW (z)

]
.

(2.13)

Applying (2.13), (2.6) and (2.7), and using the fact that 〈JEE〉C = 〈WEE〉C = 0, as
can be seen from figure 1a, we obtain

〈T (z) E (z3) E (z4)〉C

= λ

∆ (β) lim
ρ→0

ρ4∆(β)−2 1
2π

∫ 2π

0
dθ e−2iθ

〈
Oβ

(
z + ρeiθ

)
O−β (z) E (z3) E (z4)

〉
C

= −λ (1− cosβ)
∆ (β) lim

ρ→0
ρ−2 1

2π

∫ 2π

0
dθ e−2iθ α̂z3,z4

z|z+ρeiθ;C =

= λ (1− cosβ)
2∆ (β) lim

ρ→0
ρ−2 1

2π

∫ 2π

0
dθ e−2iθ Ztwist

(
z, z + ρeiθ; z3, z4

)
6In [4] we found that CJOβ1Oβ2

= 0 for generic β1, β2. In the special case β1 + β2 = 0 mod 2π the
coefficient is given in (2.12).
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= 1
3

(z3 − z4)4/3

(z − z3)2 (z − z4)2 (z̄3 − z̄4)2/3 . (2.14)

This is the correct form of the conformal Ward identity in the bulk, i.e. (2.5), with
N = 2,Aj = E and ∆j = 1/3.

We point out that using (2.13) in〈
Oβ̃(z + ρeiθ)O−β̃(z)Oβ(z1)O−β(z2)

〉
C
, (2.15)

which was derived in [4], and performing a similar analysis, taking into account the
contributions from J and W from (2.11), leads again to (2.10), as expected.

To conclude this section, we compute the bulk stress-energy tensor two-point function,
which is fixed by conformal invariance to be 〈T (z)T (z′)〉C = (c/2)/(z− z′)4. We apply (2.3)
to (2.14) by setting z3 = z′ + ρeiθ, z̄3 = z̄′ + ρe−iθ, z4 = z′, z̄4 = z̄′ in (2.14) and obtain〈

T (z)T (z′)
〉
C

= λ

1/3 lim
ρ→0

ρ−2/3 1
2π

∫ 2π

0
dθ e−2iθ 1

3
(ρeiθ)4/3

(z − z′ − ρeiθ)2(z − z′)2(ρe−iθ)2/3

= λ

(z − z′)4 .

(2.16)

This is indeed the correct form of the stress-energy tensor two-point function in a theory
with central charge c = 2λ.

3 The boundary stress-energy tensor

In this section we introduce a boundary version of the edge operator discussed in section 1.2
and study some of its properties. In particular, we show that it is essentially the boundary
stress-energy tensor (up to a factor of

√
λ).

3.1 The boundary edge counting operator and its correlation functions

The same analysis briefly discussed in the section 1.2 can be carried out for a point ζ on
the boundary ∂D of a domain D, where D is either a finite domain with a sufficiently
smooth boundary or the upper half plane H. In this case, for technical reasons, it is
convenient to consider loops that cross a slit of size ε > 0, which is reminiscent of the
operators discussed in [11, 15]. (We note that defining the operator using disks instead,
as on the plane, would have led to the same results.) Moreover, it is necessary to change
the normalization from ϑ−1

ε ∼ ε−2/3 to ε−2, because weight of loops crossing a slit of size ε
attached to the boundary goes to zero like ε2 (see [1]). This is consistent with the well-known
fact that in a renormalizable quantum field theory operators at the boundary require a
different renormalization from those in the bulk [16] (producing, in general, a different set
of conformal dimensions) and leads to the following (formal) definition of boundary edge
counting operator

B(ζ) := ĉb√
λ

lim
ε→0

ε−2Ēε(ζ), (3.1)

– 10 –



J
H
E
P
1
1
(
2
0
2
2
)
0
0
9

x2x1
ε

Figure 3. A Brownian loop and its outer boundary in the upper-half plane. Such a loop would
contribute to the two-point function of boundary edge counting operators inserted at x1 and x2
because the loop intersects the slits of size ε at both points.

where Ēε(ζ) is a boundary version of the operator Eε which counts the number of loops
crossing a slit of size ε attached at ζ ∈ ∂D and ĉb is chosen so that B is canonically
normalized when D = H, that is, for points x1, x2 on the real line,

〈B(x1)B(x2)〉H = |x1 − x2|−4. (3.2)

At the end of section 3.2, we will see that ĉb = 1.
The existence of the n-point functions of the field B follows from the same arguments

used in [5]. First of all, we note that the proof that the limit in (1.7) exists extends trivially
to the case in which (some of) the points zj are moved to the boundary of the domain (see
Lemma A.1 of [5]). This means that〈

Ēε(x1) . . . Ēε(xn)
〉

H
= lim

δ→0

〈
Ēδε(x1) . . . Ēδε(xn)

〉
H

(3.3)

exists for all x1, . . . , xn ∈ R with n ≥ 2, which allows us to state the following result.

Proposition 3.1. For any collection of distinct points x1, . . . , xn on the real line, with
n ≥ 2, the following limit exists:

〈B(x1) . . .B(xn)〉H := ĉnb
λn/2

lim
ε→0

ε−2n
〈
Ēε(x1) . . . Ēε(xn)

〉
H
. (3.4)
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Moreover,

〈B(x1) . . .B(xn)〉H = ĉnb
λn/2

∑
(S1,...,Sr)∈S

λrβS1 . . . βSr , (3.5)

where S = S(x1, . . . , xn) denotes the set of all partitions of {x1, . . . , xn} such that each
element Sl of (S1, . . . , Sr) ∈ S has cardinality |Sl| ≥ 2 and, for any subset Sl = {xj1 , . . . , xjk}
of {x1, . . . , xn},

βSl ≡ βxj1 ,...,xjk := lim
ε→0

ε−2kµloop
H (` ∩Bε(xjm), m = 1, . . . , k) . (3.6)

Proof. The proposition is analogous to Theorem 2.3 of [5] and its proof follows directly
from the arguments used in the proofs of Lemmas 2.1 and 2.2 of [5].

The two-point function 〈B(x1)B(x2)〉H can be calculated exactly, as follows. For any
s > 0, the scale invariance of the BLS implies that

〈B (sx1)B (sx2)〉H = ĉ2
b

λ
lim
ε→0

ε−4
〈
Ēε (sx1) Ēε (sx2)

〉
H

= s−4 ĉ
2
b

λ
lim
ε→0

(
ε

s

)−4 〈
Ēε/s (x1) Ēε/s (x2)

〉
H

= s−4 〈B (x1)B (x2)〉H .

(3.7)

Since 〈B(x1)B(x2)〉H can only depend on |x1 − x2|, this means that

〈B(x1)B(x2)〉H ∼ |x1 − x2|−4, (3.8)

and we can choose ĉb so that the proportionality constant is 1. (As mentioned above, it
will turn out that ĉb = 1.)

3.2 Identification of the boundary stress-energy tensor

We now present the main results of this section, which allow us to identify
√
λB with the

boundary stress-energy tensor of the theory. To this end, we recall the formal definition of
layering vertex operator in the upper-half plane [4]

Õβ (z) := lim
δ→0

(ĉHδ)−2∆(β) exp

iβ ∑
`∈Lδ

z∈¯̀

σ`

, (3.9)

where ∆(β) = ∆̄(β) = λ
10(1 − cosβ), σ` is a symmetric (±1)-valued random variable

associated to loop `, and Lδ is a BLS from which all loops of diameter smaller than δ have
been removed, z ∈ ¯̀ means that z is in the interior of the domain bounded by ` (it is
disconnected from infinity by `); ĉH is chosen so that〈

Õβ(z)
〉

H
= |z − z̄|−2∆(β). (3.10)

Equation (3.10) is obtained in [4], while the existence and conformal covariance properties
of more general n-point functions are proved in [3]. Essentially, when a layering operator is
inserted at z, each loop ` such that z ∈ ¯̀ picks up a phase eiβσ` . We note that the layering
vertex operators are scalar operators.
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Proposition 3.2. For any choice of points z1, z2 ∈ H, we have that〈
B(0)Õβ(z1)Õ−β(z2)

〉
H

=

− ĉb
√
λ(1− cosβ)

〈
Õβ(z1)Õ−β(z2)

〉
H

·
{

2
5

[(
Im
( 1
z1

))2
+
(

Im
( 1
z2

))2
]
− 4

5 Im
( 1
z1

)
Im
( 1
z2

)
G(σ(z1, z2))

}
,

(3.11)

where σ(z1, z2) = |z1−z2|2
|z1−z̄2|2 ,

G(σ) = 1− σ 2F1

(
1, 4

3; 5
3; 1− σ

)
, (3.12)

and 2F1 is the hypergeometric function.

Proof. Using (3.6) and (3.7) from [5] applied to the upper half-plane and with z3 = 0
and the exponent 2/3 replaced by 2, we obtain an analog of (3.8) therein, namely〈

B(0)Õβ(z1)Õ−β(z2)
〉

H
= −λ(1− cosβ)

〈
Õβ(z1)Õ−β(z2)

〉
H

· ĉb√
λ

lim
ε→0

ε−2µloop
H

(
` ∩Bε(0) 6= ∅, ` separates z1, z2

)
.

(3.13)

In order to evaluate the limit in (3.13), we use the fact that

lim
ε→0

ε−2µloop
H

(
` ∩Bε(0) 6= ∅, ` separates z1, z2

)
= µbub

H (` separates z1, z2), (3.14)

where µbub
H is the measure on Brownian bubbles in H, pinned at the origin, defined in [1],

and the equality follows from Theorem 1 of [1].
As explained in Remark 7.1 of [17] and in [18], µbub

H is closely related to the SLE8/3

excursion measure µSLE8/3
H ; more precisely µbub

H = 8
5µ

SLE8/3
H . Therefore we have〈

B (0) Õβ (z1) Õ−β (z2)
〉

H

= −
√
λĉb (1− cosβ)

〈
Õβ (z1) Õ−β (z2)

〉
H

8
5µ

SLE8/3
H (` separates z1, z2)

= −
√
λĉb (1− cosβ)

〈
Õβ (z1) Õ−β (z2)

〉
H

· 8
5
(
µ

SLE8/3
H

(
z1 ∈ ¯̀

)
+ µ

SLE8/3
H

(
z2 ∈ ¯̀

)
− 2µSLE8/3

H (z1, z2 ∈ ¯̀)
)
.

(3.15)

Since µSLE8/3 is obtained by multiplying the law of an SLE8/3 ε-bubble (i.e., an SLE8/3
excursion in H starting at the origin and ending at ε) by ε−2 and passing to the limit, the
proof is concluded by using (3.2) and (3.3) from Proposition 1 of [18] to evaluate the three
terms in the last line of the last equation.

The importance of Proposition 3.2 lies in the fact that it allows us to identify the
boundary stress-energy tensor of our CFT. The ingredients for this identification are
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• the Ward identity at the presence of a boundary (see eq. (24) of [16])
〈
T (x)Õβ(z1)Õ−β(z2)

〉
H

=
2∑
j=1

(
∆(β)

(x− zj)2 + 1
x− zj

∂zj + ∆(β)
(x− z̄j)2 + 1

x− z̄j
∂z̄j

)〈
Õβ(z1)Õ−β(z2)

〉
H
,

(3.16)

where T denotes the boundary stress-energy tensor with x ∈ R,

• the expression (see eq. (2.2) of [4])
〈
Õβ(z1)Õ−β(z2)

〉
H

= |z1 − z2|−4∆(β)|z1 − z̄2|4∆(β)|z1 − z̄1|−2∆(β)|z2 − z̄2|−2∆(β)

· exp
[
−2∆(β)(1− σ(z1, z2))3F2

(
1, 1, 4/3; 2, 5/3; 1− σ(z1, z2)

)]
,

(3.17)

where 3F2 is the hypergeometric function.7

Plugging (3.17) into the right-hand side of (3.16), sending x → 0, and comparing
with (3.11) shows that the result equals

√
λ
ĉb

〈
B(0)Õβ(z1)Õ−β(z2)

〉
H
. By translation invari-

ance, this means that, on the real line, we can make the identification T =
√
λ
ĉb
B. According

to (3.2), for any two points x1, x2 ∈ R, T would then have the two-point function

〈T (x1)T (x2)〉H = λ

ĉ2
b |x1 − x2|4

, (3.18)

but since the stress-energy tensor T satisfying (3.16) is assumed to be normalized in such a
way that

〈T (z1)T (z2)〉H = c/2
|z1 − z2|4

, (3.19)

where c denotes the central charge (see, e.g., eq. (8) of [16]), from the relation c = 2λ
valid for the BLS with intensity λ, we conclude that ĉb = 1 and determine the boundary
stress-energy tensor to be

T =
√
λB. (3.20)

In other words, the discussion above leads to the following result.

Proposition 3.3. For any choice of distinct points z1, z2 ∈ H and x ∈ R, T (x) =
√
λB(x)

satisfies the Ward identity (3.16).
7We note that the expression (3.17), which was derived in [4] using results from [18, 19], is rigorous.
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3.3 Operator product expansion

In this section we discuss the OPE of T × T . In order to do that, we first express the
mixed four-point function

〈
B(x1)B(x2)Õβ(z1)Õ−β(z2)

〉
H

in terms of µloop
H -weights. For

that purpose, it is useful to introduce some additional notation. We define

βxz := lim
ε→0

ε−2µloop
H

(
` ∩Bε(x) 6= ∅, z ∈ ¯̀) (3.21a)

βxz1|z2 := lim
ε→0

ε−2µloop
H

(
` ∩Bε(x) 6= ∅, ` separates z1, z2

)
(3.21b)

βx1,x2
z1|z2 = βx1,x2

z2|z1 := lim
ε→0

ε−4µloop
H (` ∩Bε(xj) 6= ∅ for j = 1, 2; ` separates z1, z2). (3.21c)

where the existence of the limits follows from the proof of Lemma 2.2 of [5].

Proposition 3.4. For any choice of points z1, z2 ∈ H and x1, x2 ∈ R, with the notation of
Proposition 3.2, we have that

〈
B(x1)B(x2)Õβ(z1)Õ−β(z2)

〉
H

=
〈
Õβ(z1)Õ−β(z2)

〉
H

[
βx1,x2 − (1− cosβ)βx1,x2

z1|z2 + λ(1− cosβ)2βx1
z1|z2β

x2
z1|z2

]
=
〈
Õβ(z1)Õ−β(z2)

〉
H

[
〈B(x1)B(x2)〉H − (1− cosβ)βx1,x2

z1|z2 + λ(1− cosβ)2βx1
z1|z2β

x2
z1|z2

]
.

(3.22)

Proof. The result follows from carrying out the analysis leading to (5.6) in [5] to the
upper half-plane, with the exponents 2/3 replaced by 2. The last line of (3.22) follows from
Proposition 3.1, which allows us to make the identification 〈B(x1)B(x2)〉H = βx1,x2 .

We now discuss (3.22) in some detail. First of all, we note that, arguing as in the proof
of Proposition 3.2 and using again Proposition 1 of [18], one can find an explicit expression
for the last term between square brackets of the last line of (3.22), namely using

βxz1|z2 = lim
ε→0

ε−2µloop
H

(
` ∩Bε(x) 6= ∅, ` separates z1, z2

)
= µbub

H,x

(
` separates z1, z2

)
= 8

5
(
µ

SLE8/3
H,x (z1 ∈ ¯̀) + µ

SLE8/3
H,x (z2 ∈ ¯̀)− 2µSLE8/3

H,x (z1, z2 ∈ ¯̀)
)

= 2
5

(Im z1)2

(dist(x, z1))4 + 2
5

(Im z2)2

(dist(x, z2))4 −
4
5

Im z1

(dist(x, z1))2
Im z2

(dist(x, z2))2G(σ(z1, z2)),

(3.23)

where µbub
H,x is the measure of Brownian bubbles in H pinned at x and µSLE8/3

H,x is the measure
of SLE8/3 excursions in H from x (in other words, they are the measures µSLEbub

H and
µ

SLE8/3
H , respectively, after a translation of the closure of H that moves the origin to x).

Next, we note that the first two terms between square brackets in the last line of (3.22)
diverge as |x1 − x2| → 0. This is clear for 〈B(x1)B(x2)〉H = |x1 − x2|−4, so we analyze the
remaining term. We need to understand the behavior of βx1,x2

z1|z2 as |x1 − x2| → 0. For any
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s > 0, the scale invariance of the BLS implies that

βsx1,sx2
z1|z2 = lim

ε→0
ε−4µloop

H (` ∩Bε(sxj) 6= ∅ for j = 1, 2; ` separates z1, z2)

= s−4 lim
ε→0

(ε/s)−4µloop
H (` ∩Bε/s(xj) 6= ∅ for j = 1, 2; ` separates z1/s, z2/s)

= s−4βx1,x2
z1
s
| z2
s

.

(3.24)

In particular, β0,s
z1|z2 = s−4β0,1

z1
s
| z2
s

.
For s very small, z1/s and z2/s are very far from 0 and 1, and one can expect

that β0,1
z1
s
| z2
s

∼ β0
z1
s
| z2
s

. This can be justified using the relation between µloop and critical

percolation (see the proof of Lemma 2.2 in the appendix of [5]). Essentially, µloop
H of the

set of loops getting ε-close to 0 and 1 and separating z1/s from z2/s can be expressed in
terms of the probability that a critical percolation cluster contained in the upper half-plane
gets close to 0 and 1 and “swallows” z1/s but not z2/s or vice versa. Because of properties
of percolation (namely the fact that a percolation configuration can be obtained by a
local exploration process and the fact that two such processes are independent when they
happen in spatially separated regions), the probability of such an event in a percolation
model with a small mesh size a is well approximated by the product of four terms: (i)
the probability that the semi-annulus of inner radius ε and outer radius 1/2 centered at 0
contains a three-arm event (i.e., contains a percolation cluster crossing the semi-annulus
without touching the real line), (ii) the probability that the semi-disk of inner radius ε and
outer radius 1/2 centered at 1 contains a three-arm event, (iii) the probability that the
clusters crossing the semi-annuli centered at 0 and 1 are connected, (iv) the probability
that the cluster crossing the semi-annulus centered at 0 “swallows” z1/s but not z2/s or
vice versa. In the scaling limit, a → 0, the first two terms are equal and scale like ε2:
(i)=(ii) ∼ ε2. Term (iii) is bounded away from 0 and 1 as a→ 0 by the well-known (and
celebrated) Russo-Seymour-Welsh theorem, so it can be neglected. Since β0,1

z1
s
| z2
s

is obtained

by multiplying µloop
H by ε−4, we can use one factor of ε−2 to compensate for (ii). If we

now combine (i) and (iv) and multiply them by the remaining factor of ε−2, as ε→ 0, we
obtain β0

z1
s
| z2
s

. Putting everything together and using the last line of (3.23), we obtain
β0,1
z1
s
| z2
s

∼ β0
z1
s
| z2
s

∼ s2, which suggests that β0,s
z1|z2 ∼ s

−2 as s→ 0, and more generally,

βx1,x2
z1|z2 ∼ |x1 − x2|−2 as |x1 − x2| → 0. (3.25)

Combined with (3.22), these observations lead to the conclusion that,〈
B(x1)B(x2)Õβ(z1)Õ−β(z2)

〉
H

=
〈
Õβ(z1)Õ−β(z2)

〉
H
|x1 − x2|−4

[
1 +O

(
|x1 − x2|2

)]
,

(3.26)

which implies that the OPE of B × B starts with

B(x)× B(x′) = 1
|x− x′|4

+ . . . , (3.27)

where 1 denotes the identity operator.
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The identification T =
√
λB, made in the previous section, gives the OPE

T (x)× T (x′) = λ

|x− x′|4
1 + . . . , (3.28)

which is consistent with T being the stress-energy tensor of a CFT with central charge c = 2λ.
In order to guess the next term in the OPE of T × T , note that

βx1,x2
z1|z2 = lim

ε→0
ε−4µloop

H (` ∩Bε(xj) 6= ∅ for j = 1, 2; ` separates z1, z2)

= lim
ε→0

ε−4µloop
H (` ∩Bε(x1) 6= ∅; ` separates z1, z2)

+ lim
ε→0

ε−4
[
µloop

H (` ∩Bε(xj) 6= ∅ for j = 1, 2; ` separates z1, z2)

− µloop
H (` ∩Bε(x1) 6= ∅; ` separates z1, z2)

]
= lim

ε→0
ε−4

[
µloop

H (` ∩Bε(x1) 6= ∅; ` separates z1, z2)

− µloop
H (` ∩Bε(x1) 6= ∅, ` ∩Bε(x2) = ∅; ` separates z1, z2)

]
= lim

ε→0
ε−2µloop

H (` ∩Bε(x1) 6= ∅; ` separates z1, z2)

· ε−2
[
1− µloop

H (` ∩Bε(x1) 6= ∅, ` ∩Bε(x2) = ∅; ` separates z1, z2)
µloop

H (` ∩Bε(x1) 6= ∅; ` separates z1, z2)

]
.

(3.29)

Observing that

lim
ε→0

ε−2µloop
H (` ∩Bε(x1) 6= ∅; ` separates z1, z2) = µbub

H,x1(` separates z1, z2) (3.30)

is finite, (3.25) suggests that, as ε→ 0,

ε−2
[
1− µloop

H (` ∩Bε(x1) 6= ∅, ` ∩Bε(x2) = ∅; ` separates z1, z2)
µloop

H (` ∩Bε(x1) 6= ∅; ` separates z1, z2)

]
(3.31)

converges to a function f(x1, x2) such that lim|x1−x2|→0 |x1 − x2|2f(x1, x2) = const. If we
make this assumption, we are led to the conclusion that

〈
B (x1)B (x2) Õβ (z1) Õ−β (z2)

〉
H

=

〈
Õβ (z1) Õ−β (z2)

〉
H

|x1 − x2|4

+ const√
λ

〈
B (x1) Õβ (z1) Õ−β (z2)

〉
H

|x1 − x2|2
+ o

(
|x1 − x2|−2

)
,

(3.32)

which implies the OPEs

B(x)× B(x′) = 1
|x− x′|4

1 + const√
λ

1
|x− x′|2

B(x) + . . . (3.33)
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and

T (x)× T (x′) = λ

|x− x′|4
1 + const
|x− x′|2

T (x) + . . . . (3.34)

The general form of the OPE of the stress energy tensor with itself (see, e.g., eq. (8) of [16])
is consistent with (3.34) and the fact that the central charge of the theory is 2λ, and implies
that const = 2.

4 Domain perturbations and boundary condition changing operators

In the first part of this section (section 4.1) we discuss the relation between local boundary
deformations and the operator T . In the second part (section 4.2), we introduce boundary
operators that generate Brownian excursions and show that they behave like boundary
condition changing operators and how they are related to T .

4.1 Domain perturbations

Roughly speaking, inserting the stress-energy tensor at z corresponds to applying a conformal
transformation that preserves ∞ and has a simple pole at z. Let Hε denote the upper half-
plane from which a disk of radius ε center at the origin has been removed, i.e. Hε := H\Bε(0).
The map

fε(z) = z + ε2

z
(4.1)

preserves ∞, has a simple pole at 0, and transforms Hε to H conformally. (Consequently,
it maps C \ Bε(0) conformally to C.) Therefore, in the limit ε → 0, mapping Hε to H
conformally, which is equivalent to applying fε to Hε, should in some sense be also equivalent
to inserting the boundary stress energy tensor at 0 in the upper half-plane.

Following ideas from [20] (see Proposition 2.6) and [21] (see Proposition 4.3), we will
show that T can be used to express the effect of domain perturbations on the two-point
function of layering vertex operators, corroborating its identification with the boundary
stress-energy tensor. For concreteness, we will work in the upper half-plane.

It follows from the definition (3.9) of Õβ and eq. (4.3) of [3] that〈
Õβ(z1)Õ−β(z2)

〉
Hε〈

Õβ(z1)Õ−β(z2)
〉

H

= exp
(
λ(1− cosβ)µloop

H (` ∩Bε(0) 6= ∅, ` separates z1, z2)
)
, (4.2)

which we can also write as〈
Õβ(z1)Õ−β(z2)

〉
Hε
−
〈
Õβ(z1)Õ−β(z2)

〉
H

= λ(1− cosβ)µloop
H (` ∩Bε(0) 6= ∅, ` separates z1, z2)

〈
Õβ(z1)Õ−β(z2)

〉
H

+O

((
µloop

H (` ∩Bε(0) 6= ∅, ` separates z1, z2)
)2
)
.

(4.3)

– 18 –



J
H
E
P
1
1
(
2
0
2
2
)
0
0
9

This allows us to define a “derivative” with respect to domain perturbations:

∂D
〈
Õβ(z1)Õ−β(z2)

〉
D

∣∣∣
D=H

:= lim
ε→0

〈
Õβ(z1)Õ−β(z2)

〉
H
−
〈
Õβ(z1)Õ−β(z2)

〉
Hε

ε2

= λ(1− cosβ)
〈
Õβ(z1)Õ−β(z2)

〉
Hε

lim
ε→0

ε−2µloop
H (` ∩Bε(0) 6= ∅, ` separates z1, z2)

= −
〈
T (0)Õβ(z1)Õ−β(z2)

〉
H
,

(4.4)

where the last equality follows from (3.13) and shows the appearance of the operator T
inserted at 0. From this expression, using (3.11) one can obtain an explicit formula for the
derivative above.

4.2 Boundary condition changing one-arm operators

Working for concreteness in the upper half-plane H, in this section we consider a Brownian
loop soup in H with an additional Brownian excursion γ0,x in H from the origin 0 to a point
x on the real line, independent of the loop soup. We think of γ0,x as being generated by the
insertion of a pair of boundary operators at 0 and x, and we think of the concatenation of
γ0,x with the interval [0, x] as forming a loop added to the loop soup, with outer boundary
b. The boundary curve b is assigned an independent random sign σb = ±1 with equal
probability. In this model, expectations will be denoted by 〈Φ(0)| · |Φ(x)〉H, where Φ(y)
denotes a boundary operator inserted at y. We will also use PB

H;0,x to denote the probability
distribution of a Brownian excursion8 in H from 0 to x and EB

H;0,x to denote expectation
with respect to PB

H;0,x, while I(·) will denote the indicator function. With this notation,
using (3.9), we have〈

Φ(0)
∣∣∣Õβ(z1)Õ−β(z2)

∣∣∣Φ(x)
〉

H

= lim
δ→0

(ĉHδ)−4∆(β)
〈

exp
[
iβ

(∑
`∈Lδ

z1∈¯̀

σ`−
∑
`∈Lδ

z2∈¯̀

σ`

)]〉
H

·
∑

σb=±1

1
2EB

H;0,x

[
eiβσbI(z1∈b̄)e−iβσbI(z2∈b̄)

]

=
〈
Õβ(z1)Õβ(z2)

〉
H

(
PB

H;0,x(b does not separate z1,z2)+cosβPB
H;0,x(b separates z1,z2)

)
=
〈
Õβ(z1)Õβ(z2)

〉
H

[
1−(1−cosβ)PB

H;0,x(b separates z1,z2)
]
.

(4.5)

Now let Γ0,x denote an SLE8/3 in the upper half-plane from 0 to x, with distribution P
SLE8/3
H;0,x .

The equivalence µbub
H = 8

5µ
SLE8/3
H and the relation between PB

H;0,x and µbub
H on the one hand

8A Brownian excursion in H from 0 to x is a Brownian path starting at 0 and ending at x conditioned to
stay in H. Defining such an object requires some care because it implies conditioning on an event of zero
probability. However, this can be done and PB

H;0,x is a well defined probability measure.
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and between P
SLE8/3
H;0,x and 8

5µ
SLE8/3
H , on the other, imply that

PB
H;0,x(b separates z1, z2) = P

SLE8/3
H;0,x (Γ0,x separates z1, z2), (4.6)

which gives〈
Φ(0)

∣∣∣Õβ(z1)Õ−β(z2)
∣∣∣Φ(x)

〉
H

=
〈
Õβ(z1)Õ−β(z2)

〉
H

[
1− (1− cosβ)PSLE8/3

H;0,x (Γ0,x separates z1, z2)
]
.

(4.7)

This leads to two interesting conclusions. On the one hand, using (3.2) and (3.3)
from Proposition 1 of [18], and letting Γ̄0,x denote the interior of the loop formed by the
concatenation of Γ0,x with [0, x], we have

P
SLE8/3
H;0,x (Γ0,x separates z1, z2)

= P
SLE8/3
H;0,x

(
z1 ∈ Γ̄0,x

)
+ P

SLE8/3
H;0,x

(
z2 ∈ Γ̄0,x

)
− 2P

SLE8/3
H;0,x

(
z1, z2 ∈ Γ̄0,x

)
= 5

8

{
2
5

[(
Im
( 1
z1

))2
+
(

Im
( 1
z2

))2
]
− 4

5 Im
( 1
z1

)
Im
( 1
z2

)
G (σ (z1, z2))

}
x2 + o

(
x2
)
,

(4.8)

where G and σ are the same as in Proposition 3.2. Plugging this expression into (4.7) and
using Proposition 3.2 (remembering that ĉb = 1 and T =

√
λB) gives〈

Φ(0)
∣∣∣Õβ(z1)Õ−β(z2)

∣∣∣Φ(x)
〉

H

=
〈
Õβ(z1)Õ−β(z2)

〉
H

+ 5
8
〈
T (0)Õβ(z1)Õ−β(z2)

〉
H

x2

λ
+ o

(
x2
)
,

(4.9)

showing the appearance of the boundary stress-energy tensor.
On the other hand, it follows from the analysis in section 4 of [14] that9

1− 2P
SLE8/3
H;0,x (Γ0,x separates z1, z2) = 〈φ1,2(0)φ1,2(x)φ2,1(z1)φ2,1(z2)〉O(0)

H

〈φ1,2(0)φ1,2(x)〉O(0)
H

, (4.10)

where the expectations in the right-hand side are computed in the O(n→ 0) model in the
upper half-plane and φ1,2(x) is a boundary 1-leg operator applied at x ∈ R and φ2,1(z) is a
twist operator applied at z ∈ H. Combined with (4.7), (4.10) gives, for β = π,〈

Φ(0)
∣∣∣Õπ(z1)Õπ(z2)

∣∣∣Φ(x)
〉

H

=
〈
Õπ(z1)Õπ(z2)

〉
H

[
1− 2P

SLE8/3
H;0,x (γ̃0,x separates z1, z2)

]
=
〈
Õπ(z1)Õπ(z2)

〉
H

〈φ1,2(0)φ1,2(x)φ2,1(z1)φ2,1(z2)〉O(0)
H

〈φ1,2(0)φ1,2(x)〉O(0)
H

,

(4.11)

9The analysis in section 4 of [14] is carried out in a strip but, as the authors point out at the end of
the section, the quantities involved are conformally invariant, so the results apply to the upper half-plane
as well.
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which leads to an interesting equivalence between quantities in the BLS conformal field
theory and in the O(0) model, namely〈

Φ(0)
∣∣∣Õπ(z1)Õπ(z2)

∣∣∣Φ(x)
〉

H〈
Õπ(z1)Õπ(z2)

〉
H

= 〈φ1,2(0)φ1,2(x)φ2,1(z1)φ2,1(z2)〉O(0)
H

〈φ1,2(0)φ1,2(x)〉O(0)
H

. (4.12)

Note that the equivalence is valid for all λ ≥ 0.
If we now let λ→ 0, all loops from the loop soup are suppressed and

lim
λ→0

〈
Õπ(z1)Õπ(z2)

〉
H

= 1, (4.13)

and we get

〈
Φ(0)

∣∣∣Õπ(z1)Õπ(z2)
∣∣∣Φ(x)

〉λ=0

H
= 〈φ1,2(0)φ1,2(x)φ2,1(z1)φ2,1(z2)〉O(0)

H

〈φ1,2(0)φ1,2(x)〉O(0)
H

. (4.14)

When β = π, the operators Õβ = Õπ act exactly like the twist operators φ2,1. This suggests
that, for λ = 0, we can think of the boundary operator Φ that inserts a Brownian excursion
as a boundary 1-leg operator inserting a chordal SLE8/3. More precisely, we make the
identification

〈Φ(0) | · |Φ(x)〉λ=0
H =

〈
ϕ5/8(0)ϕ5/8(x) ·

〉λ=0

H〈
ϕ5/8(0)ϕ5/8(x)

〉λ=0

H

, (4.15)

where ϕ5/8 is interpreted as a primary operator in the BLS with scaling dimension ∆ = 5/8,
acting as a 1-leg operator in the upper half plane with conformal dimension ∆(κ) = 6−κ

2κ
for κ = 8/3. We note that the scaling dimension of the 1-leg operator is 5/8 for the dilute
O(n→ 0) model with ordinary boundary condition. (The choice of boundary condition in
the O(n) model affects the scaling dimension of the 1-leg operator, see e.g., [22, 23]).

Inserting (4.15) into (4.9) leads to〈
ϕ5/8(0)ϕ5/8(x)Õπ(z1)Õπ(z2)

〉λ=0

H〈
ϕ5/8(0)ϕ5/8(x)

〉λ=0

H

= 1 + 5
8x

2 lim
λ→0

1
λ

〈
T (0)Õπ(z1)Õπ(z2)

〉
H

+ o
(
x2
)
,

(4.16)

which corresponds to the OPE

ϕ5/8(x)× ϕ5/8(0) = |x|−5/4
(

1 + 5
8 lim
λ→0

T (0)
λ

x2 + o
(
x2
))

, (4.17)

showing how the boundary stress-energy tensor emerges in the limit in which two boundary
1-leg operators are brought together.

We note that 1
λ

〈
T (0)Õπ(z1)Õπ(z2)

〉
H
is independent of λ, so that the limit in (4.16)

is not necessary. It is tempting to conjecture that one can remove the limit also from (4.17),
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obtaining an OPE for ϕ5/8 × ϕ5/8 which is valid for all values of λ > 0. The result-
ing expression

ϕ5/8(x)× ϕ5/8(0) = |x|−5/4
(

1 + 5
8
T (0)
λ

x2 + o
(
x2
))

= |x|−5/4
(

1 + 2∆
c
T (0)x2 + o

(
x2
)) (4.18)

with ∆ = 5/8 and c = 2λ is consistent with an OPE for primary operators with scaling
dimension 5/8 and structure constant CTϕ5/8,ϕ5/8

= 1, as one can see comparing (4.18)
to (2.2). We point out again that the operator ϕ5/8 corresponds to φ1,2 in the Kac table
only for the dilute O(n) model with ordinary boundary condition with n = 0. For other
values of n, according to the relation n = −2 cos(4π/κ) with 8/3 < κ ≤ 4, the scaling
dimension of φ1,2, namely 6−κ

2κ , is not 5/8.
It was argued in [4] that the n → 0 limit of the O(n) model, which describes single

self-avoiding loops, is closely related to the BLS in the λ → 0 limit. We saw additional
evidence for this correspondence in this section, where we identified the boundary 1-leg
operator ϕ5/8 with the O(0) model operator φ1,2.

It is curious to note that a similar reasoning can be made for T . Its scaling dimension,
∆ = 2, coincides with that of a boundary 2-leg operator in the O(0) model, namely
∆(κ) = (8−κ)/κ for κ = 8/3. Geometrically, T counts the number of loops coming close to
its insertion point on the boundary (see figure 3). This geometric interpretation coincides
with that of the 2-leg operator, which acts as a sink or source of two self-avoiding random
walks at its insertion point that avoid each other and the boundary of the domain.

It has also been known in the context of polymers in the presence of a boundary that
the 2-leg operator corresponds to the surface energy, supporting our identification above,
see section 6.5.1. of [24] for more details. Additionally, the O(n) model is also known
to obey a non-renormalization property. In the limit n → 0 the conformal dimension of
the 2-leg operator is ∆ = d to all orders in perturbation theory, with d being the spatial
dimension [25], giving an independent explanation for the ∆ = 2 we found here. (We thank
an anonymous referee for bringing this to our attention.)

Moreover, although the ensemble of loops of the BLS contains an infinite number of
loops, if one considers the set of points x on the real line such that the semi-disk of radius
ε centered at x intersects a “macroscopic” loop, its fractal dimension goes to 0 as ε→ 0,
regardless of the value of λ. This allows us to conjecture that T can be identified with the
2-leg operator for all λ. Additionally, it gives an explanation for why the scaling dimension
of B (and T ) is independent of λ.

The discussion in this section can in principle be extended to operators other than
Õβ and to the case in which multiple pairs of boundary 1-leg operators are inserted at
the boundary.

5 Conclusions and future perspectives

For conformal field theories associated to the BLS, we have provided integral expressions
of the bulk stress-energy tensor T based on the OPE of E × E and of Oβ × O−β. These
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expressions can be used to compute certain correlation functions involving T itself, and we
have done this for two specific examples, verifying that the corresponding Ward identities
are satisfied. It would be interesting to extend this analysis to J , the dimension (1, 0)
current that also occurs in these OPEs (see figure 1, position (3,0)).

Furthermore, we have identified a new operator T whose properties are consistent
with those of a boundary stress-energy tensor. The operator T is essentially a boundary
version of the edge counting operator introduced in [5], and is reminiscent of the boundary
stress-energy tensor discussed in [11, 15]. A full verification that T is the boundary stress-
energy tensor, for example by verifying all Ward identities involving T , is an interesting
open problem.

We have shown that the insertion of T is linked to local deformations of the boundary
of the domain. This is in the spirit of the discussion at the end of section 6 of [6], where
it is argued that the measure on simple loops induced by µloop is well suited to the study
of local deformations of the complex structure of Riemann surfaces. It would indeed be
interesting to study the CFTs arising from the BLS on Riemann surfaces, in particular in
the case of the torus.

The operator T can also be linked to the insertion of a pair of boundary operators
that generate a Brownian excursion between the insertion points. These operators appear
to behave like boundary condition changing operators with scaling dimension ∆ = 5/8,
consistent with ∆(κ) = 6−κ

2κ for κ = 8/3. The appearance of the value κ = 8/3 is not
surprising since the outer boundary of a Brownian loop is locally distributed like an SLE8/3
curve. It would also be interesting to further explore the properties of these putative
boundary condition changing operators.
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