
Physics Letters B 835 (2022) 137562

Contents lists available at ScienceDirect

Physics Letters B

journal homepage: www.elsevier.com/locate/physletb

An attempt to add Barrow entropy in f (R) gravity

P.S. Ens, A.F. Santos ∗

Instituto de Física, Universidade Federal de Mato Grosso, 78060-900, Cuiabá, Mato Grosso, Brazil

a r t i c l e i n f o a b s t r a c t

Article history:
Received 11 August 2022
Received in revised form 29 October 2022
Accepted 7 November 2022
Available online 11 November 2022
Editor: R. Gregory

In this work, a way to consider together two originally different corrections to the Friedmann equations 
is presented. The first is the Barrow entropy, which imposes a fractal structure on the black hole horizon 
area. While the second is the well-known f (R) gravity, which comes from a generalization of the 
Einstein-Hilbert action. Using the ideas of gravity-thermodynamics conjecture, these two models are 
combined. Then the modified Friedmann equation is obtained. Choosing a particular f (R) model, an 
application is investigated. The state parameter and the density parameters for matter and dark energy 
are calculated. With these results, the dynamic evolution of the universe is discussed.
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1. Introduction

Gravity is one of the fundamental forces in the universe. How-
ever, there is no complete theory applicable to all energy regimes 
that describes this interaction. Classically, the theory of general rel-
ativity is the best gravitational theory that responds very well to 
various observational tests [1]. Although attempts at a quantum 
version have been built and discussed for a long time, a completely 
consistent theory of quantum gravity has not been obtained. At 
low energies, some effective theories have been investigated [2–6]. 
Another study that plays an important role in providing funda-
mental information about the quantum aspect of gravity is the 
black hole thermodynamics. Early works by Hawking and Beken-
stein showed that a black hole radiates at a given temperature and 
that its entropy is proportional to the area of the black hole’s event 
horizon [7–9]. This leads to the possibility that the black hole ther-
modynamics can be investigated in the context of quantum gravity. 
Furthermore, since the beginning of discussions about possible re-
lations between general relativity and thermodynamics, ideas have 
emerged on how to obtain equations to better describe the dif-
ferent periods throughout the expansion of the universe. One of 
them is the holographic principle, which consists of studying the 
behavior of a system based on the characteristics of its surface 
[10]. Theories like this aim to change the way entropy is calcu-
lated [8,11]. From these discoveries, other speculations have been 
analyzed, such as the relationship between thermodynamics and 
Einstein equations, which is known as the gravity-thermodynamics 
conjecture.
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The gravity-thermodynamics conjecture is a formalism that 
allows obtaining Einstein equations from a thermodynamic ap-
proach, using the relationship between entropy and the area of the 
event horizon of a black hole [12–15]. Taking the first law of ther-
modynamics on the apparent horizon, the Friedmann equations 
can be derived. This procedure is applicable in general relativity 
as well as in a variety of modified gravity theories. However, when 
the analysis is extended to a modified theory, the entropy relation 
usually changes [16–20]. Since the Bekenstein-Hawking entropy-
area law is a non-extensive measure, various generalized statistical 
mechanics have been proposed to study cosmic evolution and, in 
general, the gravitational phenomena. Inspired by this, some mod-
els have been developed, such as Tsallis entropy [21,22], Rényi 
entropy [23], among others. Recently, a different proposal, known 
as Barrow entropy [24], has been considered. In this work, Barrow 
entropy and its consequences for the evolution of the universe will 
be studied.

In order to build his model, Barrow was inspired by the ge-
ometrical structure of the COVID-19 virus [24]. In this model, 
quantum-gravitational effects can introduce intricate fractal fea-
tures into the black-hole structure. This structure leads to a fractal 
horizon surface. Then a new black hole entropy relation is defined, 
i.e. S ∼ A f (�) , where f (�) = 1 + �/2. The � parameter quanti-
fies the quantum-gravitational deformation. In this context, some 
applications have been investigated. For example, Baryon asymme-
try has been studied [25], inflation driven by Barrow holographic 
dark energy has been considered [26], early and late periods of 
the universe from a new generalized entropy have been analyzed 
[27], Barrow holographic dark energy has been formulated [28], 
the cosmology using Barrow entropy has been proposed [29], the 
generalized second law of thermodynamics with Barrow entropy 
has been investigated [30], among others. In this context, the main 
le under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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objective of this paper is to analyze the dynamic evolution of the 
universe considering the Barrow entropy in f (R) gravity.

The motivations for considering an alternative gravity theory 
to general relativity arise from various observational data [31–34]
that lead to the accelerated expansion of the current universe. One 
of the simplest and most studied models of modified gravity is 
the f (R) theory [35]. In this modified theory, the gravitational 
action of general relativity takes a general form by incorporating 
an arbitrary function of the Ricci scalar into it. This is not the 
only modified theory of gravity, there are several theories in the 
literature that generalize the general relativity, such as f (R, T )

gravity [36], gravity theories with non-minimally coupled scalar 
fields [37], among many others. Although there are many theories 
of gravity, our interest here is to study f (R) gravity combined with 
Barrow entropy using the ideas of the gravity-thermodynamics 
conjecture and then describe the evolution of the universe from 
there.

This paper is organized as follows. In section 2, Barrow 
entropy and its equations are introduced. Using the gravity-
thermodynamics conjecture, the Friedmann equation is derived for 
two different situations. First, the Hawking-Bekenstein entropy is 
used. And then, consider Barrow entropy. In section 3, f (R) the-
ory is presented. The first law of thermodynamics is discussed. 
In section 4, f (R) theory and Barrow entropy are put together. 
It is assumed that the energy density and pressure of dark en-
ergy are composed of two parts, one due to the modified gravity 
and the other due to Barrow entropy. In this context, a modi-
fied Friedmann equation is obtained. In section 5, an application is 
investigated considering the generalized Carroll-Duvvuri-Trodden-
Turner model. Then the state parameter is calculated. In section 6, 
some concluding remarks are made.

2. Barrow entropy and its equations

In this section, Friedmann equations are obtained using the 
gravity-thermodynamics conjecture [38]. Starting from the first law 
of thermodynamics, two different cases are investigated. In the 
first case, the Bekenstein-Hawking entropy is used, while in the 
second case the Barrow entropy is considered. The first law of 
thermodynamics is given as

T dS = dE − W dV , (1)

where T is temperature, S is entropy, E is the energy, V is the 
volume and W = (ρ − p)/2 is the work, with ρ and p being the 
energy density and pressure, respectively. To apply the first law 
of thermodynamics, temperature and entropy need to be known. 
The standard choice is to use the Bekenstein-Hawking entropy, i.e. 
S = A

4G , with A = 4πr2 the area of the black hole horizon and 
G the gravitational constant [39]. For the temperature is chosen 
T = − 1

2πr

(
1 − ṙ

2Hr

)
, the horizon temperature [12,40]. Here r, the 

apparent horizon, would generally be r = 1√
H2+k/a2

, but since we 
are dealing with the flat case of FRW metric, implying k = 0, we 
have Hr = 1. Thus the temperature can be written in a simpler 
form T = − 1

2πr

(
1 − ṙ

2

)
. Then the first law of thermodynamics be-

comes

− 1

2πr

(
1 − ṙ

2

)
dA

4G
= dE − ρ − p

2
dV . (2)

Imposing the matter conservation equation, i.e. ρ̇ + 3H(ρ + p) = 0, 
Eq. (2) is written as

− 1
(

1 − ṙ
)

dA = −A(ρ + p)dt + ρ + p
dV , (3)
2πr 2 4G 2

2

where dE = V dρ + ρdV = −A(ρ + p)dt + ρdV has been used. Us-
ing dV = Adr = Aṙdt leads to

ṙ

r2
= 4πG(ρ + p). (4)

In a flat universe, ṙ
r2 = −Ḣ , then Eq. (4) becomes

Ḣ = −4πG(ρ + p). (5)

This is the Friedmann equation. Applying it to the conservation 
relation and performing the integration in time, results in

H2 = 8πG

3
ρ + C, (6)

where C acts as the cosmological constant.
It is important to note that, considering a fixed boundary (ṙ =

0) with an energy flux through it [12], there is another way to 
obtain the same Friedmann equation. In this case, the temperature 
is defined as T = 1

2πrA
, for a static system, and the first law of 

thermodynamics is used as dE = T dS .
There are some proposals for obtaining new equations of mo-

tion. One of them is to consider modifications in the black hole 
area, as proposed by Barrow [24]. In this model, the area takes 
into account a possible fractal structure from the surface rough-
ness, which depends on a parameter � representing its intricacy. 
This leads to a new form for entropy which is given as

S =
(

A

4G

)1+�/2

. (7)

From the Barrow entropy, the equation of motion or the modi-
fied Friedmann equation can be obtained following the same pro-
cedure applied previously. Let us consider the entropy defined in a 
more general way, i.e. S = f (A)

4G . In our case, f (A) = A1+ �
2 /(4G)

�
2

is chosen to match Barrow definition. Starting from the first law of 
thermodynamics it is found

− 1

2πr

(
1 − ṙ

2

)
df (A)

4G
= dE − ρ − p

2
dV . (8)

Since df (A) = f ′(A)dA, the last equation reads

− f ′(A)
1

2πr

(
1 − ṙ

2

)
dA

4G
= dE − ρ − p

2
dV . (9)

It should be noted that this equation is similar to Eq. (2). Then, 
following the same procedure as before, it is obtained that

f ′(A)Ḣ = −4πG(ρ + p). (10)

This is the modified Friedmann equation due to Barrow entropy. 
To obtain the second Friedmann equation, Eq. (10) is applied in 
the energy conservation relation. Then

ρ̇ = 3

4πG
f ′(A)H Ḣ . (11)

Performing the integration in time leads to

2

2 − �
f ′(A)H2 = 8πG

3
ρ + �

3
, (12)

where � = 3 2
2−�

f ′(A0)H2
0 − 8πGρ0 is the integration constant. 

Here ρ0 and H0 are the energy density of the fluid and the Hubble 
parameter, respectively, defined as initial conditions of the system, 
typically at present time, furthermore, A0 = 4π H−2

0 is the horizon 
area calculated from these conditions. It is important to note that 
this form of Eq. (12) depends exclusively on the function f (A).
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These equations can be written in the same structure as the 
usual Friedmann equations evidencing the presence of dark energy 
originating from the new entropy. Then Eq. (10) is given as

Ḣ = −4πG

(
ρ + p − Ḣ

4πG
(1 − f ′(A))

)
, (13)

and Eq. (12) becomes

H2 = 8πG

3

(
ρ + �

8πG
+ 3H2

8πG

(
1 − 2

2 − �
f ′(A)

))
. (14)

As a result, the components of dark energy are

ρD E = 1

8πG

(
�(�) + 3H2

(
1 − 2

2 − �
f ′(A)

))
, (15)

pD E = − 1

8πG

(
�(�) + 2Ḣ

(
1 − f ′(A)

)

+ 3H2
(

1 − 2

2 − �
f ′(A)

))
, (16)

with ρD E and pD E being the Barrow’s holographic dark energy 
density and pressure, respectively [41]. It should be emphasized 
that for Eq. (14) as for ρD E and pD E , it is considered specifically 
f (A) = A1+ �

2 /(4G)
�
2 .

It is important to note that, although Eqs. (10)-(12) are enough 
to study the dynamics of the universe, the manipulations of 
Eqs. (13)-(14) that lead to the definitions of Eqs. (15)-(16) are 
necessary to have the conservation relations that are given as 
ρ̇m + 3H(ρm + pm) = 0 and ρ̇D E + 3H(ρD E + pD E ) = 0. Conse-
quently, also making it clear that these two sectors are not in-
teracting, a similar result is shown in references [42–45].

As in the Bekenstein-Hawking case, a static system with an 
energy flux crossing its boundary can be considered, as in [41]. 
Assuming T = 1

2πrA
and the relation −dE = T dS , it is possible to 

arrive at the same equation of motion Eq. (14) and dark energy 
components Eqs. (15) and (16).

In the next section, the f (R) gravity in the context of the 
gravity-thermodynamics conjecture is investigated.

3. f (R) gravity and the first law of thermodynamics

Here the f (R) gravity is considered. Then the effective energy 
density and pressure are obtained. Using these quantities, the first 
law of thermodynamics is investigated. In such a discussion, a cor-
rection for the black hole entropy due to f (R) gravity is analyzed.

Let’s start with the action that describes this modified gravi-
tational theory. This model generalizes the Einstein-Hilbert action, 
replacing the Ricci scalar R by a function of the Ricci scalar f (R), 
i.e.,

S =
∫

f (R)
√−gd4x. (17)

Field equations are derived from the variational principle [35]. 
Varying the action with respect to the metric, the field equations 
are obtained as

Rμν f ′(R)− 1

2
gμν f (R)− (∇μ∇ν + gμν�)

f ′(R) = −κTμν, (18)

where κ = 8πG . Taking a perfect fluid as matter content and a flat 
FRW universe, the field equations are given as

H2 = κ

3 f ′(R)

(
ρM + ρef f

)
, (19)

2Ḣ + 3H2 = − κ
′

(
pM + pef f

)
, (20)
f (R)

3

where the effective density and pressure are defined, respectively, 
as

ρef f = 1

κ

(
R f ′(R) − f (R)

2
− 3H Ṙ f ′′(R)

)
, (21)

pef f = 1

κ

(
Ṙ2 f ′′′(R) + R̈ f ′′(R) − R f ′(R) − f (R)

2
+ 2H Ṙ f ′′(R)

)
.

(22)

These definitions of ρef f and pef f , after some calculation con-
sidering ḟ ′(R) = Ṙ f ′′(R) and that R

2 − 3Ḣ = 6H2, lead to a non-
conservation energy relation given by

ρ̇ef f + 3H(ρef f + pef f ) = 3

κ
H2 ḟ ′(R). (23)

Substituting Eq. (19) in Eq. (20) leads to

dH = − κ

2 f ′(R)

(
ρM + pM + ρef f + pef f

)
dt. (24)

Considering the relation Hr = 1, the last equation is written as

f ′(R)

G
dr = A

(
ρM + pM + ρef f + pef f

)
dt. (25)

In this gravitational theory, the black hole entropy and its rela-
tion to the horizon area is corrected [18–20]. In this context, the 
entropy is given as

S = A f ′(R)

4G
. (26)

Using this modified black hole entropy, Eq. (25) becomes

1

2πr
dS − 1

2πr

A

4G
df ′(R) = A

(
ρM + pM + ρef f + pef f

)
dt. (27)

Now, taking the horizon temperature, i.e. T = − 1
2πr

(
1 − ṙ

2

)
, 

the thermodynamics relation (27) reads

T dS − T
A

4G
df ′(R) = −A (ρ + p)dt + A

2
(ρ + p)dr. (28)

For convenience, it is defined ρ = ρM + ρef f and p = pM + pef f .
Adding the non-conservation relation for f (R) gravity Eq. (23)

to that of matter, i.e. ρ̇M + 3H(ρM + pM) = 0, we get

dρ = −3H(ρ + p)dt + 3

8πG
H2 ḟ ′(R)dt. (29)

Thus, the differential of the energy, which is given as dE = ρdV +
V dρ , results in

dE = ρ Adr − A(ρ + p)dt + 1

2πr

A

4G
df ′(R). (30)

Using Eq. (30) in Eq. (28) we obtain

T dS = dE − W dV + T

(
4 − ṙ

2 − ṙ

)
A

4G
df ′(R). (31)

This is the first law of thermodynamics generated in the context 
of f (R) gravity. However, it is important to note that, an extra 
term T dS̄ with dS̄ = − 

(
4−ṙ
2−ṙ

)
A

4G df ′(R) arises. There are some dis-

cussions in the literature [46,47] which argue that this extra term 
may originate from the entropy generated internally by the out-of-
equilibrium system.

As an attempt to obtain an energy conservation relation in f (R)

theory and determine the first law of thermodynamics without an 
extra term that comes from an out-of-equilibrium system, let us 
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write the modified Friedmann equations, given in Eqs. (19) and 
(20), following Barrow definition. Then these equations become

H2 = κ

3
(ρM + ρD E) , (32)

2Ḣ + 3H2 = −κ (pM + pD E) , (33)

where

ρD E = 1

κ

(
ρef f + 3H2(1 − f ′(R))

)
, (34)

pD E = 1

κ

(
pef f + 2Ḣ(1 − f ′(R)) + 3H2(1 − f ′(R))

)
. (35)

It should be noted that Eqs. (34) and (35) describe holographic 
dark energy due to the f (R) theory. These definitions lead to 
ρ̇D E + 3H(ρD E + pD E ) = 0. Performing the same procedure as be-
fore, one finds

T dS = dE − W dV . (36)

Therefore, the usual first law of thermodynamics is obtained. Fur-
thermore, the entropy correction due to the f (R) theory, Eq. (26), 
is not used.

In the next section, Barrow entropy is taken to f (R) gravity. In 
this context, the dynamics of the universe is investigated.

4. Barrow entropy and f (R) theory

Barrow’s proposal is elegant and carries good motivations. How-
ever, there are obstacles that prevent direct application to explain 
the current behavior of the universe and its history. One of them 
is the fact that in all cases this modification always leads to a de-
Sitter expansion [29]. Another problem is the drastic restriction on 
the possible values of �, when considering the characteristics of 
the Big Bang [41,48], as well as other observations, such as those 
given in [49]. Likewise, there are also several problems present in 
the f (R) gravity models, for example, general viability conditions 
such as f ′(R) > 0 and f ′′(R) > 0 to avoid ghost scalar fields and 
complex mass values for the scalaron field. For a review of f (R)

gravity and its problems see [46].
As both proposals present some problems, the main objective 

of this section is to propose a way to merge these models, in an 
attempt to obtain results that are not subject to the problems each 
one carries individually.

Looking at the definitions given in Eqs. (15), (16), (34) and (35), 
it is possible to perceive similarity in how the terms originated 
from their respective modifications act as dark energy. Taking this 
into account, a new definition for holographic dark energy, which 
carries the Barrow and f (R) modifications, is considered, that is,

ρD E = 1

κ

(
ρef f + 3H2

(
1 − 2

2 − �
f ′(A) f ′(R)

))
, (37)

pD E = 1

κ

(
pef f − 2Ḣ

(
1 − f ′(A) f ′(R)

)

− 3H2
(

1 − 2

2 − �
f ′(A) f ′(R)

))
, (38)

where Eqs. (37) and (38) satisfy the relation ρ̇D E + 3H(ρD E +
pD E ) = 0. In order to obtain the modified Friedmann equations, 
let us start with the first law

T dS = dE − W dV , (39)

with dE = ρdV + V dρ and W = (ρ − p)/2. Then

T dS = V dρ + ρ + p
dV . (40)
2

4

Assuming ρ = ρM + ρD E and p = pM + pD E and using the energy 
conservation relation, the last equation becomes

T dS = −
(

1 − ṙ

2

)
A(ρ + p)dt. (41)

Taking the horizon temperature T = − 1
2πr

(
1 − ṙ

2

)
and entropy 

S = A/4G we have

− 1

2πr

(
1 − ṙ

2

)
dA

4G
= −

(
1 − ṙ

2

)
A(ρ + p)dt. (42)

After some steps, it is written as

ṙ

r2
= 4πG(ρ + p). (43)

Using r = H−1 and ṙ = −H−2 Ḣ lead to

Ḣ = −4πG(ρ + p), (44)

that by bringing the definitions of densities and pressures, Eq. (44)
is rewritten as

f ′(A)Ḣ = − κ

2 f ′(R)

(
ρM + pM + ρef f + pef f

)
. (45)

Applying to the conservation equation and performing a temporal 
integration results in

2

2 − �
f ′(A)H2 = κ

3 f ′(R)

(
ρM + ρef f

)
. (46)

It should be noted that Eqs. (45) and (46) are reduced to the 
usual form for both Barrow and f (R) individually when consider-
ing � = 0 or f (R) = R , respectively.

Another analysis is possible. If the non-equilibrium case is de-
sired, the non-conservation relation is used, i.e.

ρ̇ef f + 3H(ρef f + pef f ) = 3

8πG

2

2 − �
f ′(A)H2 ḟ ′(R). (47)

In addition, entropy correction

S = f (A)

4G
f ′(R) (48)

is considered. This definition for entropy comes from the fact that 
while the Barrow correction acts on how the horizon area is calcu-
lated [24], the f (R) correction acts on the physics of the system, 
specifically as a correction of the gravitational constant [35], as 
Gef f = G/ f ′(R). Furthermore, this form of entropy also fits the 
proposal of dark energy components to result in a thermodynamic 
relation that recovers all the characteristics of the Barrow and f (R)

cases individually. With these ingredients, the thermodynamic re-
lation reads

T dS = dE − W dV + T

(
4 − ṙ + �ṙ/2

2 − ṙ − �(1 − ṙ/2)

)
f (A)

4G
df ′(R).

(49)

As discussed earlier, the last term can originate from an out-of-
equilibrium system [46,47].

As an application, in the next section, the Barrow- f (R) field 
equation will be solved and the state parameter in this context 
will be analyzed.
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Fig. 1. Left side: State parameter ω versus redshift z. Right side: Matter (	M ) and dark energy (	D E ) densities versus redshift. Here it is considered gCDTT + Barrow models 
with H0 = 0.1, λ = 3 × 103, μ = 9.7 × 10−2, 	M (0) = 1, � = 0.
5. Application on the generalized 
Carroll-Duvvuri-Trodden-Turner model

To get an idea of how the addition of Barrow entropy can in-
fluence an f (R) model, Eq. (46) is numerically solved using the 
generalized Carroll-Duvvuri-Trodden-Turner (CDTT) model [50–52]. 
The f (R) function that describes this model is defined as

f (R) = R + λR2 + μ

R
, (50)

where λ is a constant and μ is a parameter with units of mass. 
This model is chosen because it presents two distinct expansion 
periods. Initially dominated by the term λR2, which causes an ex-
ponential expansion. Later, it is dominated by μ/R , which leads to 
asymptotic behavior with a power-law expansion.

Solving the field equation, i.e. Eq. (46), the scale factor is ob-
tained, which is then used to calculate the state parameter, that is 
defined as

ω = pM + pD E

ρM + ρD E
. (51)

In addition, the density parameters,

	M = 8πG

3H2
ρM and 	D E = 8πG

3H2
ρD E , (52)

for matter and dark energy, respectively, are calculated. In Fig. 1
the evolution of the state and density parameters are compared 
using different values of �.

The initial conditions are defined so that the system always 
starts from an inertial expansion, ω = −1/3, to better visualize the 
influence of the dark energy. By default, this f (R) model produces 
an initial acceleration that approaches to exponential, ω = −1, de-
pending on the chosen values of λ, and eventually it stabilizes 
itself to a power law, ω = −2/3, according to the parameter μ. 
All this can be observed by the behavior of curve � = 0. Note that 
the presence of the Barrow modification, i.e. � �= 0, induces an ini-
tial deceleration in the expansion, while changing the asymptotic 
behavior, progressively taking the expansion of the system from 
a power law to an exponential one. In our simulations for values 
close to � = 0.04 or higher, it remains exponential with the differ-
ence being an initial deceleration more predominant while having 
a sharper transition to the asymptotic state. Very large values of 
the � parameter can bring the system collapse for the given con-
ditions.
5

6. Conclusions

From the works of Hawking and Bekenstein, black hole ther-
modynamics opened a window to investigate the equations of the 
gravitational field in a different way, i.e. using the thermodynam-
ics laws. In this paper, gravity-thermodynamics conjecture is used 
to derived the Friedmann equation considering Barrow entropy. In 
Barrow model, it is considered the case that quantum-gravitational 
effects can change actual horizon area of a black hole. In other 
words, this model constructs a fractal horizon surface by increasing 
the black hole area. Taking the ideas of gravity-thermodynamics 
conjecture, f (R) gravity is considered and the first law of thermo-
dynamics in this gravitational model is analyzed. The main study 
developed in this work was to join the Barrow entropy and f (R)

gravity, and from that, analyze the dynamic evolution of the uni-
verse during different periods. Corrections for the dark energy 
components are imposed due to the two models. Our results show 
that the scalar factor and the state parameter exhibit the expected 
behavior both for the individual cases and for the union of the Bar-
row and f (R) models. The results point to a significant influence 
of the intricacy parameter �. However, restrictions related to its 
values in this new context will be studied in future investigations.
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