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Abstract: The splitting processes of bremsstrahlung and pair production in a medium are
coherent over large distances in the very high energy limit, which leads to a suppression
known as the Landau-Pomeranchuk-Migdal (LPM) effect. We continue study of the case
when the coherence lengths (formation lengths) of two consecutive splitting processes overlap,
avoiding soft-emission approximations. Previous work made a “nearly-complete” calculation
of the effect of overlapping formation times on gluonic splittings such as g → gg → ggg

(with simplifying assumptions such as an infinite QCD medium and the large-Nc limit). In
this paper, we extend those previous rate calculations from nearly-complete to complete
by including processes involving the exchange of longitudinally-polarized gluons. In the
context of Lightcone Pertubation Theory, used earlier for the “nearly-complete” calculation,
such exchanges are instantaneous in lightcone time and have their own diagrammatic
representation.
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1 Introduction

1.1 Overview

When passing through matter, high energy particles lose energy by showering, via the
splitting processes of hard bremsstrahlung and pair production. At very high energy, the
quantum mechanical duration of each splitting process, known as the formation time,
exceeds the mean free time for collisions with the medium, leading to a significant reduction
in the splitting rate known as the Landau-Pomeranchuk-Migdal (LPM) effect [1–3].1 The

1The papers of Landau and Pomeranchuk [1, 2] are also available in English translation [4].
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generalization of the LPM effect from QED to QCD was originally carried out by Baier,
Dokshitzer, Mueller, Peigne, and Schiff [5–7] and by Zakharov [8, 9] (BDMPS-Z). A
long-standing problem in field theory has been to understand how to implement this
effect in cases where the formation times of two consecutive splittings overlap. Several
authors [10–12] have previously analyzed this issue for QCD at leading-log order, which
arises from the limit where one bremsstrahlung gluon is soft compared to the other very-
high energy partons. In a series of papers [13–19], we and collaborators have worked on a
program to evaluate the effects of overlapping formation times without leading-log or soft
bremsstrahlung approximations. Ref. [19] presented what we called a “nearly complete”
calculation of the relevant rates for the effect of overlapping formation times on both (i)
two consecutive gluon splittings g → gg → ggg and (ii) related (and equally important)
virtual corrections g → gg → ggg → gg to single splitting g → gg. The purpose of the
present paper is to turn “nearly complete” into “complete” (within the context of the
approximations used in earlier work, reviewed below).

Figure 1 shows one example each of time-ordered contributions to (a) the rate for double
splitting g → ggg with energies E → xE + yE + (1−x−y)E and (b) virtual corrections (at
the same order) to the rate for single splitting g → gg with energy E → xE + (1−x)E.
Each diagram is time-ordered from left to right and has the following interpretation: the
blue (upper) part of the diagram represents a contribution to the amplitude for g → ggg or
g → gg, the red (lower) part represents a contribution to the conjugate amplitude, and the
two together represent a particular contribution to the rate. Only high-energy particle lines
are shown explicitly, but each such line is implicitly summed over an arbitrary number of
interactions with the medium, and the rate is averaged over the statistical fluctuations of the
medium. See ref. [13] for details. The examples shown in figure 1 are just two of many that
were incorporated into the “nearly complete” analysis of rates in ref. [19]. That analysis was
carried out in the framework of time-ordered lightcone perturbation theory (LCPT) [22–24],2

where all the lines of figure 1, for example, represent transverse-polarized gluons.
Missing from that analysis were diagrams involving exchange of a longitudinally-

polarized gluon in lightcone gauge. As we’ll review later, such interactions are instantaneous
in lightcone time. Examples are shown in figure 2, where we follow the standard LCPT
convention of using a vertical line (because the interaction is instantaneous) crossed by a
bar to represent the longitudinally-polarized gluon. Analogous contributions to overlap
effects in double splitting have previously been analyzed for large-Nf QED in ref. [17], and
we will use similar methods here.

Also missing from the “nearly complete” calculation of ref. [19] were processes involving
the fundamental 4-gluon interactions of QCD, examples of which are shown in figure 3.
Ref. [16] previously computed such processes in the case of real double splitting g→ggg,
such as figure 3a, but the corresponding virtual diagrams, such as figure 3b, have not
previously been calculated.

2For readers not familiar with time-ordered LCPT who would like the simplest possible example of how
it reassuringly reproduces the results of ordinary Feynman diagram calculations, we recommend section 1.4.1
of Kovchegov and Levin’s monograph [25].
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Figure 1. Two examples (previously computed [13, 19]) of interference contributions to the rates
for (a) double splitting g→ggg and (b) virtual corrections to g→gg (where y is virtual and must
be integrated over). All lines in these diagrams represent high-energy gluons which implicitly and
repeatedly interact with the medium (not shown). The left side above depicts contributions to
the rate, obtained by multiplying a contribution to the amplitude (blue) by a contribution to the
conjugate amplitude (red), with a particular time-ordering of all the vertices. The right side shows
a more compact way of diagrammatically representing the same interference contributions, which
is particularly useful for our implementation and extension [13, 19] of Zakharov’s method [8, 9]
for organizing and computing the LPM effect. In these diagrams, we need not follow a daughter
of the splitting after its emission has occurred in both the amplitude and conjugate amplitude
because we will only consider p⊥-integrated rates. (See, for example, section 4.1 of ref. [13] for an
explicit argument.) The (time-ordered) diagrams are named xyȳx̄ and xyyx̄ here according to the
convention of refs. [13, 19], summarized in the text.

Ixy yx Ixy yx

y x x

y

Figure 2. Two examples of interference contributions involving a longitudinally polarized gluon,
represented by the vertical line crossed by a bar. The line is drawn vertically because the interaction
is instantaneous in (lightcone) time.

4yx4yx

xy

(b)(a)

y

x

Figure 3. Two examples of interference contributions involving a fundamental 4-gluon vertex:
(a) example of double splitting contributions g→ggg calculated in ref. [16], and (b) example of a
corresponding virtual diagram to be computed in this paper.
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Figure 4. Diagrams for real double splitting g→ggg that involve an instantaneous exchange or
fundamental 4-gluon interaction. See figure 7 for the meaning of the large circular blob. The diagram
drawn on a gray background turns out to be exactly zero.
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Figure 5. Like figure 4 but for Class I virtual corrections to single splitting g→gg. Our terminology
“Class I” [19] means that (i) y should be integrated over 0 < y < 1−x for these diagrams and (ii)
x→ 1−x generates another, distinct set of diagrams.

y
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y
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yxF

y
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Figure 6. Like figures 4 and 5 but for Class II virtual corrections to single splitting g→gg. Our
terminology “Class II” [19] means that (i) y should be integrated over 0 < y < 1 for these diagrams
and (ii) the diagrams are symmetric under x→ 1−x.

The goal of this paper, then, is to analyze all remaining gluonic QCD diagrams. These
involve either (i) instantaneous longitudinal gluon exchange in LCPT or (ii) fundamental
4-gluon vertices. A complete list of such diagrams is depicted by figures 4–6, plus addi-
tionally diagrams obtained by replacing x→1−x in figure 5. Each circular blob in the
diagrams represents the sum of a fundamental 4-gluon vertex plus all possible channels for
a longitudinal gluon exchange, as depicted in figure 7.

In naming time-ordered diagrams, such as xyȳx̄ in figure 1a, we follow refs. [13, 19] and
refer to the gluons in order of the time when they were emitted. The absence or presence
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Figure 7. The meaning of the circular blob (“F”) in terms of the fundamental 4-gluon vertex (“4”)
and LCPT instantaneous longitudinal gluon exchange in various channels (I12, I13, I14). The green
color here has no meaning other than to highlight the interactions that make up the circular blob.
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Figure 8. Specific examples of instantaneous diagrams (depicted here in just one of the three
possible channels) that are included in the (a) ȳF x̄ diagram of figure 4 and (b) x̄yF diagram
of figure 6.

of a bar over a letter indicates whether the emission at that time was in the amplitude
or conjugate amplitude. As in figure 7, we will use “4” to denote a fundamental 4-gluon
vertex and use “I” to denote an instantaneous exchange of a longitudinal gluon in LCPT.
Effectively, these are both different types of four-point interactions of transversely-polarized
gluons. When combined together, as in the circular blobs of figures 4–7, we will refer to the
sum with the letter “F,” which is intended to evoke the word “four.”

It’s worth noting that there are two different types of processes where instantaneous
longitudinal gluon exchange plays a role in figures 4–6. One is by mediating 1→3 gluon pair
creation processes as in figure 2. All of the instantaneous vertices included in figures 4 and 5
are of this type. Because of the compact way the diagrams are drawn, this may not be
visually obvious in some cases, such as the ȳF x̄ diagram of figure 4, but the interpretation
can be clarified by redrawing the diagrams as a product of an amplitude and conjugate
amplitude, as in figure 8a. In contrast, the instantaneous vertices included in figure 6
represent 2→2 final-state rescattering corrections (via longitudinal gluon exchange) to the
leading-order g→gg single-splitting process, as depicted for x̄yF in figure 8b.

In principle, there is another type of diagram one can draw in LCPT, shown in figure 9,
which contains a self-energy bubble involving an instantaneous interaction. These types
of self-energy bubble arise from normal ordering in LCPT. In vacuum, they vanish in
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Figure 9. An example of an LCPT diagram that can be ignored.

dimensional regularization. In medium, they are suppressed in the high-energy limit, and
so we will ignore them. (See section 3.2 of ref. [17] for an argument.)

1.2 Assumptions and simplifications

We will make the same simplifying assumptions made for other diagrams in ref. [19]
(and throughout the program of refs. [13–19] for treating overlaps of successive hard
splittings). We work in the theorist’s limit of an infinite, static, homogeneous QCD medium,
and we assume that the parent of the overlapping splitting process is close to on-shell.3

In this context, we take the high-energy limit and make the corresponding high-energy
approximation that the relevant interactions with the medium can be described by the
medium parameter q̂, defined as the proportionality constant in the formula 〈p2

⊥〉 = q̂L for
the typical p⊥ picked up by a high-energy particle traversing a distance L in the medium
(for L large compared to the mean-free path for scattering from the medium). We formally
treat the running coupling αs(µ) as small at scales associated with the splitting vertices for
high-energy particles.4 Throughout, we will only consider rates that have been integrated
over the transverse momenta p⊥ of the final-state daughters of the g→ggg or g→gg splitting
process. We will also work in the large-Nc limit (where Nc is the number of colors), which
drastically simplifies color dynamics for the overlap calculation.5

Throughout this work, our high-energy approximation includes the daughters and
not just the parents of the splitting processes. So, for example, in a g→ggg process that
takes E → xE + yE + zE (where z=1−x−y), we study only the case where xE, yE, and
zE are all parametrically large compared to medium scales — e.g. large compared to the
temperature T of a quark-gluon plasma.6 In consequence, we also ignore the thermal masses
of the parent and daughter gluons.

3More specifically, we assume that the QCD medium is approximately homogeneous over distances
and times of order the formation length tform, which is parametrically of order

√
E/q̂ for the case of

quasi-democratic (i.e. not soft emission) splittings in an infinite QCD medium. In our context, close to
on-shell means that we assume that the parent has |pµpµ| � E/tform. In particular, we do not treat the
cascade of virtuality that would happen in the early part of the shower of a highly off-shell parton (see, for
example, refs. [20, 21]).

4That scale is parametrically µ ∼ (q̂E)1/4 for quasi-democratic splittings in an infinite QCD medium.
5A calculation of 1/N2

c corrections to previously-calculated g→ggg interference diagrams can be found
in ref. [26], which suggests that Nc → ∞ is a moderately good approximation. (With caveats best left
to ref. [26] to describe, 1/N2

c corrections were ≤ 17% for the processes studied there.) A more general
discussion of how the overlap calculation could be performed directly for Nc = 3 may be found in ref. [27],
though numerical implementation might be challenging. (There is also a different type of problem, not about
overlapping formation times, where similar issues arise: the un-integrated p⊥ distribution dΓ/dx d2p⊥ for
single splitting. For a discussion of that using rigid-geometry (antenna) approximations, see refs. [28–30].)

6The particular infrared regularization of infrared double logs used in our earlier, “nearly complete”
computation required a somewhat stronger high-energy condition: see section 3.2.1 of ref. [19]. That’s not
relevant here because the diagrams of this paper do not generate infrared logs.
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In our earlier work [19], there were non-canceling infrared (IR) double-log divergences
of our rates computed in the q̂ approximation, which are cut off by physics beyond the q̂
approximation [31, 32]. There, we introduced an infrared regulator in our calculations.7 In
contrast, we find that the F=4+I diagrams calculated in the current paper do not themselves
generate any net IR divergence. We will later, however, need to temporarily introduce an IR
cut-off for individual time-ordered diagrams, but those divergences will cancel each other.

1.3 Outline

Our strategy in this paper will be to first, in section 2, evaluate the real double-splitting
g→ggg diagrams of figure 4 by adapting the calculations of ref. [16], which were for those
diagrams that have fundamental 4-gluon vertices. In section 3, we then transform those
g→ggg results to obtain results for the virtual diagrams of figures 5 and 6 by using the
diagrammatic techniques of “front-end” and “back-end” transformations that were developed
in ref. [17] in the context of large-Nf QED and later applied to gluon splitting processes in
ref. [19]. A detailed summary of our final formulas for the effect of overlapping formation
times on splitting rates is given in appendix A, in a format allowing easy integration with
the earlier “nearly-complete” results of ref. [19]. The goal of this paper is merely to obtain
formulas for the relevant rates. Our short conclusion in section 4 briefly references where
one must go from here to evaluate the relative importance of the new contributions.

2 g→ggg processes with instantaneous interactions

2.1 The F ȳx̄ diagram

For a concrete start, we now discuss how to generalize earlier results for the 4ȳx̄ interference
diagram of figure 3a to include instantaneous diagrams and so obtain the more general F ȳx̄
diagram of figure 4.

2.1.1 Large-Nc color routings

One effect of taking the large-Nc limit to simplify color dynamics is that certain types of
interference diagrams get contributions from more than one way to route large-Nc color
in those diagram [14, 16].8 A simple way to picture different large-Nc color routings for
a time-ordered diagram is (following refs. [14, 16]) to draw the diagram without crossing
lines on a cylinder, where time runs along the length of the cylinder. Figure 10a, adapted
from ref. [16],9 gives one example for the 4ȳx̄ diagram. There is a different large-Nc color
routing for each different way you can choose which high-energy particles neighbor each
other as one circles around the circumference of the cylinder. There are exactly two different
possibilities for the 4ȳx̄ diagram, both shown in figure 10. We must separately analyze
these color routings because the medium-averaged interactions of the high-energy particles
with the medium during 4-particle evolution (the gray region) is different in the two case.

7For a full discussion, see sections 1.2 and 3 of ref. [19].
8See, in particular, section 2.2.1 of ref. [14] and sections 2.2 and 3.3 of ref. [16].
9See figures 11a and 12a of ref. [16]. An important and potentially confusing difference is that, unlike

ref. [16], our convention here is that the lines are always numbered according to (2.1).
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Figure 10. The two large-Nc color routings of the 4ȳx̄ diagram, drawn on a time-ordered cylinder.
These particular diagrams are drawn completely on the front side of the cylinder. The shaded region
shows the times where four particles are present in the interference diagram (three in the amplitude
plus one in the conjugate amplitude). Numbering of the lines in that region is according to the
convention (2.1).

That’s because, in the large-Nc limit, medium interactions of gluon lines are correlated only
between neighbors.

Following earlier work, we number the lines in these figures according to the longitudinal
momentum fractions of the lines as

(x1, x2, x3, x4) = (−1, y, 1−x−y, x). (2.1)

With this convention, the order of particles going around the cylinder in the gray (4-particle
evolution) section of figure 10b is (1234), which means that any pair of particles are neighbors
except for the pairs 1,3 and 2,4.10 In contrast, the particle order for figure 10a is (1243).11

The contributions of these two color routings of 4ȳx̄ to the differential rate dΓ/dx dy are
related to each other by simply interchanging x3 ↔ x4, which is equivalent to x→ 1−x−y.
It’s our custom to refer to the routing (1234) as our “canonical” routing in this context
and then obtain the result for the other routing by substitution. Henceforth, we’ll refer
to the contribution to the rate from a canonical routing as [dΓ/dx dy]canon. So, for the

10We need not consider the order of particles going around the circle in the 3-particle evolution parts of
figure 10 because, for 3-particle evolution, all three particles are neighbors of each other. This is related to
the fact that, even for finite Nc, there is no interesting color dynamics associated with 3-particle evolution
in this application. See, for example, the arguments in section 2.3–2.4 of ref. [13] or the discussion, in the
context of the q̂ approximation, of ref. [33].

11Our numbering convention here is different from figure 11 of ref. [16]. Here, we always number the lines
according to the momentum fractions as in (2.1). In contrast, figure 11 of ref. [16] always numbers the lines
so that they appear in the order (1234) and instead permutes which values (x1, x2, x3, x4) refer to. In the
end, it amounts to the same thing.
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Figure 11. Like figure 10b but here including all instantaneous diagrams that contribute to the
canonical routing (1234) and so to [dΓ/dx dy]canon

F ȳx̄ .

4ȳx̄ diagram,12 [
dΓ
dx dy

]
4ȳx̄

=
[
dΓ
dx dy

]canon

4ȳx̄
+ (x→ 1−x−y). (2.2)

Let’s now do the same but also include instantaneous diagrams:[
dΓ
dx dy

]
F ȳx̄

=
[
dΓ
dx dy

]canon

F ȳx̄

+ (x→ 1−x−y). (2.3)

The complete set of 4-point plus instantaneous color-routed diagrams that can contribute
to the canonical color routing (1234) is shown on the cylinder in figure 11. In the diagram
labels, we have not written a “canon” subscript on “I14ȳx̄” because there is only one possible
large-Nc color routing of that particular time-ordered diagram — the canonical one. There
is no way to obtain the canonical large-Nc color routing using I13.13

2.1.2 Diagrammatic rule for longitudinal gluon exchange

The 4ȳx̄ diagram was previously calculated in ref. [16]. To evaluate the other diagrams of
figure 11, we will leverage the previous result by only computing in this paper the relative
overall factors of the three diagrams. Then we will adjust the overall factor of the earlier
4ȳx̄ result correspondingly. The relative factors include the effects of helicity contractions,
color contractions, and longitudinal momentum fraction (xi) dependence associated with
the different four-gluon interactions F in the different diagrams of figure 11. Everything
else about the diagrams (the 3-gluon vertices, the evolution of the high-energy particles in
the medium) is the same.

The easiest way to compare the different four-gluon interactions is to forget about
time-ordered perturbation theory for a moment and just think about Feynman rules. These
are shown for light-cone gauge A+=0 in figure 12, where we follow our convention that
unbarred lines represent transversely polarized gluons and the barred line represents a
longitudinally polarized gluon. One may take the rule for longitudinal gluon exchange from

12In ref. [16], the two routings of figure 10 were called (a) 4ȳx̄1 and (b) 4ȳx̄2. The contribution from the
canonical routing was then called [dΓ/dx dy]4ȳx̄2 . We write that as [dΓ/dx dy]canon

4ȳx̄ here because the new
notation seems less obscure.

13You can’t draw a canonically-routed (1234) I13ȳx̄ diagram on the cylinder without crossing any lines.
In the large-Nc limit, I13 only contributes to the other color routing (1243) of F ȳx̄.
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}

ig2fabef cdeδh1,−h2δh3,−h4
(p+

1 − p
+
2 )(p+

3 − p
+
4 )

(p+
1 + p+

2 )2

Figure 12. Ordinary Feynman rule results in lightcone gauge for the four-gluon interactions
appearing in our “F” diagrams. By ordinary Feynman rules, we mean that (i) there is no direction
of time in the above diagrams, (ii) we are not yet taking the large-Nc limit nor yet separating out
different large-Nc color routings, and (iii) we are only talking about the interaction in an amplitude
and are not thinking here about the conjugate amplitude. As in the rest of the text, unbarred
lines refer to transversely polarized gluons, and the barred line is a longitudinally polarized gluon.
(a, b, c, d) are the adjoint-index colors of gluons (1, 2, 3, 4) respectively, and (h1, h2, h3, h4) are the
corresponding helicities ± flowing in the direction of the arrows. The Kronecker deltas arise from
dot products εi · εj = δhi,−hj of the two-dimensional unit polarization vectors of (2.5).

the literature.14 But, since some of the LCPT literature has confusing normalization or
sign issues, we will take a moment here to briefly review the derivation.

In lightcone gauge, the basis ε(λ) for transverse polarizations of a gauge boson with
4-momentum p is given by

(
ε+, ε−, ε

)
(λ)

=
(

0,
ε(λ) · p
p+ , ε(λ)

)
, (2.4)

where ε(λ) is any basis of unit spatial vectors for the xy-plane. For a helicity basis, one may
choose, for example,

ε(±) =
(

1√
2 ,±

i√
2

)
. (2.5)

Here and throughout, boldface letters like ε and p will denote the projection of vectors onto
the xy-plane. Our convention for lightcone coordinates is that v± ≡ (v0 ± v3)/

√
2. So the

4-vector dot product [in (+−−−) metric convention] is u · v = u+v− + u−v+ − u · v, and

14See, for example, figure 54 of ref. [23]. This is the same as our longitudinal gluon exchange rule in
figure 12 after a few adjustments. (i) The labeling of the particles is different. (ii) Presumably a typographic
error: their denominator (p+

c + p+
b ) should be (p+

c + p+
d )2. (iii) Though they draw arrows on their gluon lines

indicating the same convention for gluon momentum flow as our figure 12, they, unlike us, do not adopt
this same convention for helicity flow. So their ε∗a · εb and ε∗d · εb correspond to what we would call (if we
used their labeling of lines but our helicity flow convention) ε∗a · ε∗b = −δha,−hb and ε∗d · ε∗b = −δhd,−hb . (iv)
Ordinary Feynman rules correspond to a perturbative expansion of eiS , where S is the action. Our figure 12
corresponds to contributions to iSeff , where Seff is the effective action after one integrates out longitudinal
polarizations. In contrast, the rules of ref. [23] are for the Hamiltonian. For these interactions, there is
a relative minus sign between Seff and Heff , and so our rules are −i times their rules. One may similarly
compare our figure 12 to tables 2 and 3 of ref. [24], where the overall sign and momentum dependence are
the same as ref. [23], but the overall normalization is more difficult to compare because ref. [24] uses unusual
normalization conventions.
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v± = v∓. The longitudinal polarization is(
ε+, ε−, ε

)
L

= (0, 1,0) . (2.6)

All three 4-vector basis polarizations are orthogonal to each other. The transverse polariza-
tions are furthermore orthogonal to 4-vector p and normalized so that (ε∗(λ))

µ(ε(λ′))µ = −δλλ′ .
The lightcone gauge propagator is (ignoring iε prescriptions for now)

Gµν(q) = − i

q2

[
gµν − qµnν + qνnµ

q · n

]
, (2.7)

where it’s convenient to rewrite lightcone gauge A+ = 0 as n · A = 0 with (n+, n−,n) =
(0, 1,0). The propagator (2.7) may be recast into the form

Gµν(q) = GµνT (q) +GµνL (q) (2.8a)

with
GµνT (q) = i

q2

∑
λ

εµ(λ)(q) ε
ν∗
(λ)(q), GµνL (q) = i

(q · n)2 n
µnν . (2.8b)

Note that q · n = q+.
The rule for the longitudinally polarized gluon exchange in figure 12 comes from

applying normal Feynman rules but including only the longitudinal piece GL of the lightcone
propagator for the exchanged gluon. The result that this rule is independent of any p−

is the reason why (after Fourier transformation to coordinate space) the interaction is
instantaneous in lightcone time x+. It is also local in x ≡ (x1, x2) but is non-local in x−.

2.1.3 The color routings and contractions for figure 11

Now turn to the large-Nc, canonically routed diagrams of figure 11. In our convention
for defining the flow of momenta there, all of the arrows flow away from the four-gluon
interaction in the amplitude, matching the flow convention of figure 12. Note that the
fundamental 4-point vertex in figure 12 can be written as

−ig2
{

1
2f

abef cde(δh1,−h3δh2,−h4−δh1,−h4δh2,−h3)+fadef bce(δh1,−h2δh3,−h4−δh1,−h3δh2,−h4)
}

+(interchange particles 3 and 4), (2.9)

and remember that the two different color routings of the 4ȳx̄ diagram are related by
interchange of particles 3 and 4. In ref. [16], the piece of our (2.9) that contributes to the
canonical large-Nc color routing of the 4ȳx̄ diagram in figure 11 was found to be the first
term in (2.9):

[4ȳx̄]canon ∝ −ig2
{

1
2f

abef cde(δh1,−h3δh2,−h4 − δh1,−h4δh2,−h3)

+ fadef bce(δh1,−h2δh3,−h4 − δh1,−h3δh2,−h4)
}
. (2.10)

If one ignored color routing, the I12 interaction of I12ȳx̄ would give

ig2fabef cdeδh1,−h2δh3,−h4

(
p+

1 − p
+
2

) (
p+

3 − p
+
4

)
(
p+

1 + p+
2

)2 . (2.11)
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This single term is symmetric under exchange of particles 3 and 4, and we find that each
large-Nc color routing corresponds to half of it:

[I12ȳx̄]canon ∝
1
2 ig

2fabef cdeδh1,−h2δh3,−h4

(
p+

1 − p
+
2

) (
p+

3 − p
+
4

)
(
p+

1 + p+
2

)2 . (2.12a)

Finally, there is no color routing issue for the I14ȳx̄ diagram, so we can convert the full (2.11)
for I12 to I14 by switching the labels of particles 2 and 4:

I14ȳx̄ ∝ ig2fadef cbeδh1,−h4δh3,−h2

(
p+

1 − p
+
4

) (
p+

3 − p
+
2

)
(
p+

1 + p+
4

)2 . (2.12b)

Eqs. (2.10) and (2.12) are the only differences in the evaluation of the three diagrams of
figure 11. We’ll find it convenient later on in this paper to have introduced some short-hand
notation for the various factors in these equations:

c12 ≡ fabef cde, c13 ≡ facefdbe, c14 ≡ fadef bce; (2.13a)

h12 ≡ δh1,−h2δh3,−h4 , h13 ≡ δh1,−h3δh2,−h4 , h14 ≡ δh1,−h4δh2,−h3 ; (2.13b)

i12 ≡
(x1−x2)(x3−x4)

(x1+x2)2 , i13 ≡
(x1−x3)(x4−x2)

(x1+x3)2 , i14 ≡
(x1−x4)(x2−x3)

(x1+x4)2 ,

(2.13c)

where the xn are the p+ momentum fractions defined by p+
n ≡ xnP

+, where P is the
4-momentum of the initial particle in the double-splitting process.15 With this notation,
the relative factors that differ between the three diagrams are

[4ȳx̄]canon ∝ −
1
2c12 (h13 − h14)− c14 (h12 − h13) , (2.14a)

[I12ȳx̄]canon ∝
1
2c12h12i12, (2.14b)

I14ȳx̄ ∝ c14h14i14, (2.14c)

where we’ve now absorbed the common factor of ig2 into the joint proportionality.
For future reference, note that the c1n and i1n have been defined in such a way

that (c12, c13, c14) and (i12, i13, i14) cyclically permute when the particle labels (234) are
cyclically permuted. However, the definitions pick up an additional minus sign when
swapping just one pair of particle labels. For example, swapping particles 2 and 4
takes (c12, c13, c14)→ (−c14,−c13,−c12) and (i12, i13, i14)→ (−i14,−i13,−i12) and so takes
(c12i12, c13i13, c14i14)→ (c14i14, c13i13, c12i12).

In the calculation of rates, we will sum/average over final/initial state helicities and
colors, as we did for [4ȳx̄]canon alone in ref. [16]. To compare the relative rates among

15Given that the high-energy splitting processes are highly collinear in our application, one can just as
well say that the xn are the energy fractions defined by p0

n ≡ xnE, as we sometimes do elsewhere. But, in
the context of LCPT, it’s more precise and more general to say that they are p+ momentum fractions.
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our diagrams here, we now need to be explicit about what common factors hidden in the
common proportionality symbols depend on colors and helicities.

Let’s start by first focusing on color. The color factors from the two 3-gluon vertices
in the F ȳx̄ diagrams of figure 11 are proportional to fabff cdf = c12. (Proportionality
is enough here. Since they are the same for all three diagrams, we do not have to keep
track of the appropriate order of the indices in the 3-gluon vertex f ’s because that only
affects the common overall sign of those diagrams.) Letting angle brackets 〈· · · 〉 represent
summing/averaging over colors in this particular context, one finds

〈c12c12〉 = C2
A, 〈c12c13〉 = 〈c12c14〉 = −1

2C
2
A. (2.15)

We then have

[4ȳx̄]canon∝−1
2〈c12c12〉(h13−h14)−〈c12c14〉(h12−h13)∝h12−2h13+h14, (2.16a)

[I12ȳx̄]canon∝ 1
2〈c12c12〉h12i12∝h12i12, (2.16b)

I14ȳx̄∝〈c12c14〉h14i14∝−h14i14, (2.16c)

where we’ve absorbed a common factor of 1
2C

2
A into the second proportionality symbol of

each line.

2.1.4 Helicity contractions

We now need to include the helicity dependence of the two 3-gluon vertices and then
sum/average over helicity. In the notation of refs. [13, 16], the 3-gluon vertices give
factors of16 ∑

h̄

Pm̄
hi→h̄,hy

(
1→ 1−y, y

)
P n̄
h̄→hz,hx

(
1−y → 1−x−y, x

) ∗ , (2.17)

where the P are given in terms of square roots of helicity-dependence vacuum Dokshitzer-
Gribov-Lipatov-Altarelli-Parisi (DGLAP) splitting functions. The exact definitions can be
found in ref. [13],17 where P is defined as a 2-dimensional vector proportional to (1,+i) or
(1,−i) depending on the specific helicity transition. The indices m̄ and n̄ in (2.17) index the
components of that vector. hi is the helicity of the initial particle in the g→ggg splitting
process; (hx, hy, hz) are the helicities of the three daughters; and h̄ is the helicity of the
unlabeled red line connecting the two 3-gluon vertices in each of the three diagrams of
figure 11. With the numbering and flow direction conventions of the lines in figure 11,
(2.17) is

Σm̄n̄ ≡

∑
h̄

Pm̄−h1→h̄,h2

(
1→ 1−y, y

)
P n̄
h̄→h3,h4

(
1−y → 1−x−y, x

) ∗ . (2.18)

16See, in particular, eq. (2.14) of ref. [16] for the 4ȳx̄ diagram, or the earlier discussion of eq. (4.37) of
ref. [13] for the xyȳx̄ diagram.

17See eqs. (4.32) and (4.35) of ref. [13].
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Now let’s sum/average over the daughter and parent helicities. We’ll denote that
helicity sum/average using angle brackets as well. In ref. [16], the relevant average for the
4ȳx̄ diagram was found to be18 (using our notation here)〈

Σm̄n̄ (h12 − 2h13 + h14)
〉
|x1x2x3x4|−1/2 = ζ(4)(x, y) δm̄n̄ (2.19)

with
ζ(4)(x, y) = 2x2 − z2 − (1−y)4 + 2y2z2 − x2y2

(xyz)2(1−y)3 . (2.20)

By repeating that calculation, we find now that the separate pieces of (2.19) are given by

〈Σm̄n̄ h1k〉 |x1x2x3x4|−1/2 = ζ1k(x, y) δm̄n̄ (2.21)

with19

ζ12 =
(
x2+z2) (1+y2)
(xyz)2 (1−y)3 , (2.22a)

ζ13 = (1−y)4 + z2 + x2y2

(xyz)2 (1−y)3 , (2.22b)

ζ14 = (1−y)4 + x2 + z2y2

(xyz)2 (1−y)3 , (2.22c)

in terms of which
ζ(4) = ζ12 − 2ζ13 + ζ14. (2.23)

So, after helicity summing/averaging, (2.16) becomes

[4ȳx̄]canon ∝
〈
Σm̄n̄ (h12 − 2h13 + h14)

〉
∝ ζ(4) δ

m̄n̄, (2.24a)

[I12ȳx̄]canon ∝ 〈Σm̄n̄ h12〉 i12 ∝ ζ12 i12 δ
m̄n̄, (2.24b)

I14ȳx̄ ∝ −〈Σm̄n̄ h14〉 i14 ∝ −ζ14 i14 δ
m̄n̄. (2.24c)

From this, we see that the result for 4ȳx̄ in ref. [16] can be converted to a result for F ȳx̄
(which includes instantaneous diagrams) by

[
dΓ
dx dy

]canon

F ȳx̄

=
{[

dΓ
dx dy

]canon

4ȳx̄
with ζ(4) −→ ζ(F)

}
, (2.25)

18See the discussion of eqs. (2.14–2.16) of ref. [16]. We refer here to the ζ(x, y) of that reference as ζ(4)

to distinguish it from the other ζ’s we construct. The δm̄n̄ dependence of our (2.19) is just a consequence
of transverse-plane rotational invariance after doing the helicity sums. The factor of |x1x2x3x4|−1/2 in
our (2.19) is merely a convenient normalization convention that was used for the definition of ζ in ref. [16].

19If desired, one may rewrite (2.22) in terms of the (x1, x2, x3, x4) variables of (2.1) as

ζ12 = (x2
1+x2

2)(x2
3+x2

4)
(x1x2x3x4)2|x1+x2|3

, ζ13 = (x1+x2)4+(x1x3)2+(x2x4)2

(x1x2x3x4)2|x1+x2|3
, ζ14 = (x1+x2)4+(x1x4)2+(x2x3)2

(x1x2x3x4)2|x1+x2|3
.

– 14 –



J
H
E
P
1
1
(
2
0
2
2
)
1
3
0

where

ζ(F) = ζ(4) + ζ12 i12 − ζ14 i14 = ζ(4) −
(1+y)(z−x)

(1−y)2 ζ12 −
(1+x)(z−y)

(1−x)2 ζ14. (2.26)

We summarize the final formulas for this and all other rates involving 4-gluon interactions
in appendix A.

2.1.5 The ȳx̄F and ȳF x̄ diagrams

The color and helicity sums for the ȳx̄F diagram are the same as those for the F ȳx̄ diagram,
and so the same substitution ζ(4) → ζ(F ) as in (2.25) can be made on the result for the
canonical routing (1234) of ȳx̄4 from ref. [16].

The ȳF x̄ diagram vanishes for the same reason as the ȳ4x̄ diagram in ref. [16], which
can be argued from parity invariance of either the initial or final 3-particle evolution in this
diagram. (See section 3.2 of ref. [16].)

2.2 The F F̄ diagram

There are three large-Nc color routings of the 44̄ diagram, shown in figure 13.20 Again, we
choose the “canonical” routing to be the one ordered (1234) according to (2.1). The total
44̄ contribution can then be written21[

dΓ
dx dy

]
44̄

=
[
dΓ
dx dy

]canon

44̄
+ [(x, y, z)→ (z, y, x)] + [(x, y, z)→ (z, x, y)], (2.27)

where here x, y, and z≡ 1−x−y represent the three daughters of the g → ggg splitting
process. We now generalize to include instantaneous diagrams by writing[

dΓ
dx dy

]
FF̄

=
[
dΓ
dx dy

]canon

FF̄

+ [(x, y, z)→ (z, y, x)] + [(x, y, z)→ (z, x, y)]. (2.28)

The diagrams which contribute to the canonical routing (1234) are shown in figure 14.
For the color and helicity factors, the simplest diagrams are those involving only longi-

tudinally polarized gluon interactions, for which the factors [see figure 12 and eqs. (2.13)] are

[I12 Ī12]canon ∝ 1
2 |ig

2c12h12i12|2, (2.29a)
[I14 Ī14]canon ∝ 1

2 |ig
2c14h14i14|2, (2.29b)

I12 Ī14 ∝
(
ig2c12h12i12

) (
ig2c14h14i14

)∗
, (2.29c)

I14 Ī12 ∝
(
ig2c14h14i14

) (
ig2c12h12i12

)∗
, (2.29d)

20Our figure 13 is adapted from figure 14 of ref. [16]. See footnote 9 of the current paper concerning the
difference in line numbering convention.

21We’ve written (2.27) in a way that most easily tracks how figure 13 was drawn, which was adapted from
ref. [16]. However, one may alternatively relabel the (1243) routing in figure 13 as (1342), which is equivalent
since the direction one circles the circumference of the cylinder does not matter. Then the three routings can
be seen to be cyclic permutations of (234)=(y, z, x) and so of (x, y, z). If desired, that cyclic-permutation
relationship could be made manifest by rewriting (2.27) as[

dΓ
dx dy

]
44̄

=
[
dΓ
dx dy

]canon

44̄
+ [(x, y, z)→ (y, z, x)] + [(x, y, z)→ (z, x, y)].
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CANONICAL ROUTING

] (1243)44[ ] (1234)44[ ] (1423)44[

y
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x y

x

1

4

2

3

x

1

4

2

3

y

Figure 13. The three large-Nc color routings of the 44̄ diagram, drawn with the same conventions
as figure 10 except that here we have not bothered to shade the region of 4-particle evolution. (This
figure is adapted from figure 14 of ref. [16].).
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x

1

4

3

y 2

I 414 ]canon[

x

1

4

3

I14I12

x4

y
2

1

3

Figure 14. Like the middle diagram of figure 13 but here also including all instantaneous diagrams
that contribute to the canonical routing (1234) and so to [dΓ/dx dy]canon

F F̄
.
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where the factors of 1
2 arise for diagrams that have two color routings when only one of those

two routings is included in figure 14. The diagrams involving the fundamental 4-gluon vertex
are a little more subtle, but we can again leverage previous results. The color contractions
and particle numbering in the [4 Ī12]canon diagram of figure 14 are identical to those for
the [4ȳx̄]canon diagram discussed earlier. So, the appropriate piece of the 4-gluon vertex
that contributes to this particular color routing will be the same as that quoted in (2.10),
taken in turn from ref. [16]. Combining with the factors for I12 in the conjugate amplitude
then gives[

4 Ī12
]

canon
∝
{
−ig2

[
1
2c12 (h13−h14) + c14 (h12−h13)

]} (
ig2c12h12i12

)∗
. (2.29e)

Though maybe not at first obvious from the way the diagrams have been drawn, the
[4 Ī14]canon diagram is the same as the [4 Ī12]canon diagram except for interchange of particles
2 and 4 (i.e. x ↔ y). To see that the color routings are the same after that interchange,
remember that it doesn’t matter whether one circles the cylinder one way and names the
routing (1234) or circles the other way and names it in reverse order (1432). All that
matters in the large-Nc limit is which lines are neighbors going around the cylinder.22 So,
by swapping particles 2 and 4 in (2.29e) while remembering that our definitions of c1n and
i1n imply c12 ↔ −c14 and i12 ↔ −i14 under such a swap,[

4 Ī14
]

canon
∝
{
−ig2

[
1
2c14 (h12−h13) + c12 (h13−h14)

]} (
ig2c14h14i14

)∗
. (2.29f)

The color and helicity factors are insensitive to the time ordering of the vertices, and so the
factors for [I12 4̄]canon and [I14 4̄]canon are just the complex conjugates of those for [4 Ī12]canon
and [4 Ī14]canon:[

I12 4̄
]
canon ∝

(
ig2c12h12i12

){
−ig2

[
1
2c12 (h13−h14) + c14 (h12−h13)

]}∗
, (2.29g)[

I14 4̄
]
canon ∝

(
ig2c14h14i14

){
−ig2

[
1
2c14 (h12−h13) + c12(h13−h14)

]}∗
. (2.29h)

This overall complex conjugation doesn’t actually make a difference, since the above are
real-valued. Finally, there is the 44̄ diagram, which has the three color routings shown in
figure 13. As discussed in ref. [16], the contribution of each color routing is just one third
of what the total would be if we naively ignored the necessity of splitting the 44̄ diagram
into different large-Nc color routings. So,

[4 4̄]canon ∝ 1
3

∣∣∣−ig2[c14(h12−h13) + c12(h13−h14) + c13(h14−h12)
]∣∣∣2. (2.29i)

Recall that we defined the (c12, c13, c14) to cyclically permute under permutations of
the indices (234). So (2.15) gives

〈c12c12〉 = 〈c13c13〉 = 〈c14c14〉 = C2
A, (2.30a)

22It also doesn’t matter that we conventionally draw some lines as continuing very slight beyond the last
interaction vertex. Since we only compute p⊥-integrated rates, the evolution of all daughters of the splitting
process can be thought of as stopping the instant they are emitted in both the amplitude and conjugate
amplitude. (See section 4.1 of ref. [13].)
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〈c12c13〉 = 〈c13c14〉 = 〈c14c12〉 = −1
2C

2
A. (2.30b)

From the definition (2.13b) of the h1n, final/initial helicity summing/averaging gives23

〈h12h12〉 = 〈h13h13〉 = 〈h14h14〉 = 2, (2.31a)

〈h12h13〉 = 〈h13h14〉 = 〈h14h12〉 = 1. (2.31b)

Eqs. (2.29) then yield (after absorbing a common factor of C2
Ag

4 into the proportionality)[
I12 Ī12

]
canon

∝ i212, (2.32)[
I14 Ī14

]
canon

∝ i214, (2.33)

I12 Ī14 ∝ −1
2 i12i14, (2.34)

I14 Ī12 ∝ −1
2 i12i14, (2.35)[

4 Ī12
]

canon
=
[
I12 4̄

]
canon ∝

1
2 i12, (2.36)[

4 Ī14
]

canon
=
[
I14 4̄

]
canon ∝ −

1
2 i14, (2.37)

[4 4̄]canon ∝ 3. (2.38)

Adding all nine color-routed diagrams of figure 14 together,

[F F̄ ]canon ∝ 3 + i212 + i214 − i12i14 + i12 − i14, (2.39)

to be compared with just [4 4̄]canon ∝ 3. So, we can convert the result for 44̄ in ref. [16] to
the more general result for FF̄ by[

dΓ
dx dy

]canon

FF̄

=
[
1 + 1

3

(
i212 + i214 − i12i14 + i12 − i14

)] [ dΓ
dx dy

]canon

44̄
. (2.40)

A summary of the final rate formula is given in appendix A.

3 Virtual corrections to g→gg with 4-gluon interactions

3.1 Basic results

In previous work [17, 19], we showed how almost all of the diagrams considered there
for virtual corrections to single splitting g→gg could be simply related to diagrams for
real double splitting g→ggg through what we call front- and/or back-end transformations.
Those same techniques can be applied to all of the virtual diagrams of this paper. In
particular, figure 15 depicts graphically how the virtual diagrams of figures 5 and 6 are
related to the g→ggg diagrams of figure 4. The front- and back-end transformations are
represented by the black arrows in the bottom half of figure 15. Graphically, front-end
transformations correspond to sliding the earliest-time vertex in the interference diagram

23There are no ultraviolet divergences associated with the time-ordered diagrams in this paper. We will
not need to use dimensional regularization (which was used for other diagrams in refs. [14, 15, 17, 19]), and
so the number of possible “helicities” is simply 2 in this paper.
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Figure 15. Relation of the virtual diagrams of figures 5 and 6 to the real g→ggg diagrams of
figure 4 by various combinations of front- and back-end transformations, complex conjugation, and
swapping variable names x ↔ y. Complex conjugation corresponds to flipping a diagram upside
down and swapping the colors blue (amplitude) and red (conjugate amplitude). Complex conjugation
is irrelevant, however, because ultimately we want to take 2 Re(· · · ) of all the virtual diagrams, i.e.
add them to their complex conjugates. Shading above indicates diagrams that happen to be exactly
zero, because the ȳF x̄ diagram vanishes for the reason described in section 2.1.5.

around the front end of the diagram from amplitude to conjugate amplitude or vice versa.
Back-end transformations correspond to similarly sliding the latest-time vertex around
the back end of the diagram. The transformations depicted by figure 15 involve various
combinations, as indicated, of front-end transformations, back-end transformations, complex
conjugation, and swapping variable names x↔ y.

The simplest transformation is a back-end transformation, where the latest-time vertex
changes sign because a −i δH perturbation in the amplitude (from perturbing the evolution
operator e−iHt) moves to become a +i δH perturbation in the conjugate amplitude (from
perturbing (e−iHt)∗ = e+iHt), or vice versa. So figure 15 tells us that24

[
dΓ
dx

]
F x̄y

= −1
2

∫ 1−x

0
dy

{[
dΓ
dx dy

]
F ȳx̄

with x↔ y

}
, (3.1)

24See section 4.1 of ref. [17] and section 2.2 of ref. [19] for earlier discussion and application of back-
end transformations.
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where the loop momentum fraction y has been integrated over.25 The overall factor of 1
2 is

the symmetry factor of the (blue) loop in the amplitude of the Fx̄y diagram in figure 15.
Front-end transformations are similar, but the momentum fractions of the lines must

be adjusted since they are defined relative to the parent energy E of the entire splitting
process, and which line is the parent changes under a front-end transformation. For the
case yx̄F in figure 15, where a y-emission 3-gluon vertex is being slid around the front of
the diagram, this is26

[
dΓ
dx

]
yx̄F

= −1
2

∫ 1

0
dy

{[
dΓ
dx dy

]
ȳx̄F

with (x, y, E) −→
(

x

1−y ,
−y
1−y , (1−y)E

)}
. (3.2)

The sign change appearing in the transformation y → −y/(1−y) arises because our (very
useful) convention [13] is that particles in time-ordered interference diagrams have positive or
negative momentum fractions depending on whether they are emitted first in the amplitude
(blue lines) or conjugate amplitude (red lines), respectively.27

For the x̄yF diagram in figure 15, we combine the above transformation with a back-end
transformation, conjugation, and x↔ y:

[
dΓ
dx

]
x̄yF

= +1
2

∫ 1

0
dy

{[
dΓ
dx dy

]
ȳx̄F

with (x, y, E) −→
( x

1−y ,
−y
1−y , (1−y)E

)

followed by x↔ y

}∗

= +1
2

∫ 1

0
dy

{[
dΓ
dx dy

]
ȳx̄F

with (x, y, E) −→
(

y

1−x ,
−x
1−x , (1−x)E

)}∗
. (3.3)

For the case Fyx̄, where the front-end transformation is of a 4-gluon interaction, the
momentum fraction transformations are correspondingly different because the particle line
that becomes the new parent is different, and also because the front-end transformation

25In LCPT, the lightcone momentum variables p+ for transversely polarized gluons must all be positive,
whether real or virtual. This restricts the integration of y to 0 < y < 1−x for the diagrams of figure 5 and
to 0 < y < 1 for those of figure 6.

26See section 4.2 of ref. [17] or section 2.2 of ref. [19], but exchange the label x for y there. Also, one does
not need the factors of (1−x)−ε or (1−y)−ε that accompany front-end transformations in that discussion
because our diagrams here have no ultraviolet divergences and do not require dimensional regularization.

27Because of these sign changes, it was necessary in refs. [17, 19] to add absolute value signs appropriately
to expressions involving DGLAP splitting functions, such as in eq. (A.30) of ref. [17] and eqs. (A.5) and
(A.23) of ref. [19], so that the expressions for combinations of splitting functions for a diagram remained
correct after front-end transformation. The analogous factors in this paper that arise from DGLAP splitting
functions are the (ζ12, ζ13, ζ14) of (2.22), and thence the ζ(4) of (2.23). The 1−y factors in those equations
arise from the longitudinal momentum fraction of the intermediate line in the F ȳx̄ diagram, and the other
factors of x, y, and z arise from the momentum fractions of the three final-state daughters. One could make
this expression safe for any type of front-end transformation by replacing x,y,z, and 1−y by |x|, |y|, |z|, and
|1−y| respectively. The first three replacements make no difference to the expression, and 1−y → |1−y| will
not matter because all of the front-end transformations we will use keep 1−y positive.
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−x y1−

xyIx,1−y yxIx,1−y

−x y1−

−y x−y x

−1 yy

above with

xyIxy yxIxy

x x

y y

x

y

x

y

ROUTINGS

CANONICAL

Figure 16. Diagrams with infrared divergences associated with longitudinally polarized gluon
exchange. The divergences occur at either y → 1−x (top line) or y → x (bottom line).

moves two emissions (x and y) from amplitude to conjugate amplitude:28

[
dΓ
dx dy

]
Fyx̄

=

+ 1
2

∫ 1−x

0
dy

{[
dΓ
dx dy

]
F ȳx̄

with (x, y, E) −→
( −x

1−x−y ,
−y

1−x−y , (1−x−y)E
)}∗

.

(3.4)

3.2 Integrable infrared divergence from instantaneous interactions

Of all the various diagrams represented by figures 4–6, there are four particular cases
where divergences arise because the q+ of an exchanged longitudinal gluon may become
zero. Those cases are shown in figure 16, and all are virtual diagrams corresponding to
certain types of rescattering corrections to a leading-order single splitting g→gg. The loop
momentum fraction y is integrated over 0 < y < 1 in these diagrams, and the divergences
occur at y = 1−x for the two diagrams in the top line of figure 16 and at y = x for the
other two diagrams.

In order to reduce the number of things to think about, we may focus on just the
top line of figure 16. These are the divergent contributions from x̄yF and yx̄F that are
obtained by applying the relevant transformations (figure 15) to only the canonical color
routing of ȳx̄F . The other color routing of ȳx̄F corresponds to swapping x ↔ z, which,
after transformation, corresponds to swapping y ↔ 1−y in x̄yF and yx̄F .29 Since we are
integrating y over 0 < y < 1 in these particular virtual diagrams, adding in the contribution
from swapping y ↔ 1−y is equivalent to multiplying the integral of the canonical routing

28See section 4.2 of ref. [17], and in particular eq. (4.5) of that reference. The x and y in our Fyx̄ diagram
here correspond to the labels ye and xe there, respectively.

29For the transformation in (3.3) that gives x̄yF , it is easy to check algebraically that x↔ z transforms to
y ↔ 1−y. For the transformation in (3.2) that gives yx̄F , x↔ z instead transforms to x↔ 1−x. However,
x↔ 1−x on either yx̄I diagram in figure 15 results in the same diagram that y ↔ 1−y does, even without
yet integrating over y. (See also footnote 22.)
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by a factor of 2. So, we will rewrite (3.2) and (3.3) as[
dΓ
dx

]
yx̄F

= −
∫ 1

0
dy

{[
dΓ
dx dy

]canon

ȳx̄F

with (x, y, E) −→
(

x

1−y ,
−y
1−y , (1−y)E

)}
,

(3.5a)[
dΓ
dx

]
x̄yF

= +
∫ 1

0
dy

{[
dΓ
dx dy

]canon

ȳx̄F

with (x, y, E) −→
(

y

1−x ,
−x
1−x , (1−x)E

)}∗
.

(3.5b)

Comparing to the earlier versions, notice the restriction “canon” now on the ȳx̄F rates,
and correspondingly the removal of the overall factors of 1

2 . The only divergences in the
y integration are now the ones at y = 1−x, from the top line of figure 16. Individually,
each of the two diagrams in (3.5) has a 1/(1−x−y)2 divergence as y → 1−x because of the
1/(q+)2 = 1/(p+

1 + p+
2 )2 in figure 12 associated with the propagator of the longitudinally

polarized gluon.
In what follows, it will be convenient to get rid of the complex conjugation in (3.5b)

by noting that ultimately these diagrams must be added to their complex conjugates, as
noted at the bottom of figure 6. It will also be convenient to add together all the diagrams
(including the conjugates) of figure 6. These diagrams represent the 4-gluon interaction
contributions to a class of diagrams that were called “Class II” virtual diagrams in ref. [19],
and we adopt that nomenclature here for the sum. Remembering that the shaded diagram
in figure 6 is zero, we then have[

dΓ
dx

]
F, virt II

= 2 Re
{[

dΓ
dx

]
yx̄F

+
[
dΓ
dx

]
x̄yF

}
= 2 Re

∫ 1

0
dy F(x, y) (3.6a)

with

F (x, y) ≡−
{[

dΓ
dx dy

]canon

ȳx̄F

with (x, y, E) −→
(

x

1−y ,
−y
1−y , (1−y)E

)}

+
{[

dΓ
dx dy

]canon

ȳx̄F

with (x, y, E) −→
(

y

1−x ,
−x
1−x , (1−x)E

)}
. (3.6b)

Now that we’ve added the diagrams together and avoided any complex conjugation in (3.6b),
it turns out that the 1/(1−x−y)2 divergences of the two terms cancel, leaving behind a
milder 1/(1−x−y) divergence.30 To make our discussion more compact, we’ll loosely refer

30Here’s one way to see the cancellation without drilling down into the specific formula for [dΓ/dx dy]canon
ȳx̄F .

First, note that the two diagrams on the top line of figure 16 are topologically unchanged if we simultaneously
replace both y → 1−y (and so swap the two entirely-blue lines in the amplitude) and x → 1−x (and so
interchange the two daughter lines in the diagram). Moreover, if the diagrams are drawn on the cylinder
to emphasize their color routing, these changes preserve the color routing: lines that were neighbors going
around the cylinder remain neighbors after the change. So (3.5a) would have given the same result with
the alternate substitute rule (x, y, E) −→

(
1−x
y
, −(1−y)

y
, yE

)
. In the limit y → 1−x, both this and the

rule in (3.5b) for the other diagram give the same substitution (x, y, E) →
(
1,− x

1−x , (1−x)E
)
. That is,

the differences are suppressed by O(1−x−y). That means that both diagrams give the same contribution
to (3.6b) in the y → 1−x limit except for the overall sign difference there, and so they cancel, up to
corrections suppressed by one relative power of 1−x−y. We have verified numerically that the subleading
1/(1−x−y) divergence of these diagrams does not cancel.
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to this as a 1/z divergence with z ≡ 1−x−y. However, unlike the discussion of g→ggg
processes in section 2, z is not the momentum fraction of any final-state daughter of the
single splitting processes being considered here, and z need not be positive.

The nice thing about a 1/z divergence is that, since the integral
∫ 1

0 dy associated with
the loop integrals of figure 16 span both signs of z = 1−x−y, the integral

∫
dz/z will be

finite: the divergent contributions from z slightly negative will cancel those from z slightly
positive. Though the answer will be finite, the subtlety lies in figuring out what finite piece
will be left over. We will address this first formally, and then as a practical matter to allow
the y integration in (3.6a) to be performed numerically in applications.

3.2.1 Disambiguation

Other diagrams in previous work [19] (which did not include longitudinally-polarized gluon
exchange) had infrared divergences associated with one of the transversely polarized gluons
becoming soft. There, we regulated those divergences by introducing a small infrared cut-off
δ � 1 on all momentum fractions such as x, y, 1−y, etc. That’s equivalent to saying that
we insisted that p+ > (p+)min ≡ P+δ, where P is the momentum of the initial particle in
the overlapping splitting process. In LCPT, the transversely polarized gluons all propagate
forward in time with p+ > 0. But there is no restriction on the longitudinally-polarized
gluons, which have been integrated out and for which there is no forward direction of
light-cone time since they mediate instantaneous interactions. Their q+ can have either sign.
One can regulate the magnitude of q+ in a way consistent with the transversely polarized
gluons: |q+| > (p+)min = P+δ. Given that the infrared regulator δ is to be formally chosen
as arbitrarily small, that’s equivalent to regulating our net 1/z divergence with a principal
value (also known as principal part) prescription:

PV
[1
z

]
= θ(|z| − δ)

z
, (3.7)

where θ is the unit step function. In terms of iε prescriptions, the principal value (PV) can
alternatively be defined as

PV
[1
z

]
= 1

2

( 1
z − iε

+ 1
z + iε

)
= z

z2 + ε2
. (3.8)

Both (3.7) and (3.8) cut off small values of z while keeping PV[1/z] real valued. The only
difference is that one is a sharp infrared cut-off on |z| while the other is smoothed out.31

The use of principle value prescriptions for such 1/q+ divergences in lightcone gauge
had a convoluted early history [34]. Here, we rely on the more recent analysis by Chirilli,
Kovchegov and Wertepny [35, 36], which shows how various iε prescriptions for 1/q+

divergences in lightcone gauge can be understood as corresponding to different sub-gauge
choices of lightcone gauge and correspondingly to different choices of boundary conditions

31If f(z) is any function that is smooth at z=0, then both prescriptions give the same answer for integrating
PV[1/z] f(z) across z=0. If desired, they can also be made to give exactly the same (infrared regulated)
answer for integrating (PV[1/z])2 f(z) — an integral that gives 2f(0)/δ plus a finite piece as δ → 0 — by
choosing δ = 4ε/π.
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for gauge fields as x− → ±∞. Sub-gauges arise because the lightcone gauge condition
A+=0 does not by itself uniquely determine the gauge. In what they call PV sub-gauge,
the Feynman propagator is

Gµν(q) = i

q2 + iε
∆µν(q) (3.9a)

with
∆µν(q) = −

{
gµν − (qµnν + qνnµ) PV

[ 1
q · n

]}
. (3.9b)

They also explicitly check in certain examples the equivalence of calculations performed in
different sub-gauges, one of which is PV sub-gauge.

For LCPT and for our calculation, we want to separate the transverse and longitudinal
polarizations. Algebraically manipulating (3.9) into the form of (2.8) while maintaining the
prescriptions gives32

∆µν(q) = ∆µν
T (q) + ∆µν

L (q) (3.10a)

with

∆µν
T (q) =

∑
λ

εµ(λ)(q) ε
ν∗
(λ)(q), ∆µν

L (q) = nµnνq2
(

PV
[ 1
q · n

])2
(3.10b)

and (
ε+, ε−, ε

)
(λ)

=
(

0, ε(λ) · qPV
[ 1
q+

]
, ε(λ)

)
, (3.10c)

This reproduces a prescription proposed earlier by Zhang and Harindranath [37] in the
context of LCPT.33

Let’s now see a little more explicitly that our previous calculations [19] involving
only transversely polarized gluons corresponded implicitly to PV sub-gauge for Feynman
propagators, and so the longitudinally polarized gluon propagators in our current analysis
should be evaluated with the PV prescription as well. Figure 17a show an ordinary Feynman
diagram for the one-loop vertex correction to the amplitude for single splitting. In keeping
with the rest of this paper, we label lines by their momentum fractions associated with
p+. One of the lines is labeled y, which we can take as our loop integration variable. The
line highlighted by being drawn in green is then z = 1−x−y. Feynman diagrams implicitly
contain all possible time orderings of the interaction vertices, examples of which are shown
in figure 17b. In light-cone perturbation theory, time-orderings evaluate to zero if any
transversely-polarized gluon (whether real or virtual) has a negative value of p+ flowing
forward in time. If we focus on the part of the original Feynman diagram of figure 17a
that comes only from transverse polarizations, then figure 17b is a complete list of the
corresponding time-orderings in LCPT. The first time-ordering requires 0 < x < 1 and
0 < y < 1−x, which gives z = 1−x−y > 0. The second time-ordering requires 0 < x < 1
and 1−x < y < 1, which gives z = 1−x−y < 0. That’s okay because z flows backward

32In comparison to eqs. (12), (16) and (17) of ref. [36], our ∆µν is their −Dµν .
33See in particular eqs. (21) and (22) of [37] and the discussion following them. A technical point is that

Zhang and Harindranath take the boundary condition for the (A1, A2) components of the gauge field to be
A⊥(x− = +∞) = −A⊥(x− = −∞), whereas Chirilli et al. [35] find that the PV sub-gauge condition should
be the slightly more general one that ∇⊥ ·A⊥(x− = +∞) = −∇⊥ ·A⊥(x− = −∞).
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Figure 17. (a) An ordinary Feynman diagram representing a one-loop vertex correction to single
splitting g→gg, where we have highlighted the line z = 1−x−y in green. (b) The two time orderings
in LCPT for the transverse-polarization contributions to that Feynman diagram. (c) Examples of
rate diagrams that involve those time orderings of the amplitude. (Other examples just correspond
to different choices of how to time-order the splitting in the conjugate amplitude relative to the
interactions in the amplitude.) The first diagram in (c), x̄yxy, is an example of a Class I virtual
correction analyzed in ref. [19]. There, Class I diagrams must be added to their “cousins” obtained
by swapping the two daughters of the splitting, x→ 1−x. The second diagram above is the cousin
of the first, which can be seen by relabeling the loop variable y in the second diagram by y → 1−y.
We haven’t relabeled y here because that would destroy the correspondence of the label z = 1−x−y
in (c) with the labeling of the original Feynman diagram in (a).

in time for that diagram, and it is −z > 0 that flows forward in time. Figure 17c gives
two examples of time-ordered rate diagrams with the time orderings of figure 17b in the
amplitude. In the analysis of ref. [19], we took the conventional choice in LCPT of regulating
the infrared by requiring all internal and external momentum fractions, defined as flowing
forward in time, to be larger than some infrared regulator δ. This corresponds to z > δ for
the first diagram in figure 17c and −z > δ for the second. Taken together, that corresponds
to using the infrared regulator |z| > δ for the z line in the original Feynman diagram of
figure 17a. By definition, that is regularization of z → 0 with a PV prescription (3.7) and
so corresponds to working in PV sub-gauge. But then longitudinal polarizations will also
be regulated with a PV prescription, as in (3.10).34

3.2.2 Practical considerations

Neither (3.7) nor (3.8) is convenient for numerical integration, especially since the detailed
formula for F(x, y) is complicated enough to be mildly expensive to evaluate numerically.
But now note that PV(1/z) is odd in z→− z. Imagine that we changed the integration

34There is a caveat to this discussion. The propagator in (3.10) is a vacuum propagator, which does not
include medium effects. So the lessons about consistent IR regularization drawn from figure 17 reflect a
qualitative argument rather than a precise one.
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Figure 18. The shading shows, for each value of x, the maximally-sized interval of y integration
that is symmetric under (x, z)→ (x,−z), which translates to y → 2(1−x)− y. The vertical dotted
line is an example of the y points for a particular value of x and serves as a visual aid for the fact
that, within the shaded region, the y range with z < 0 has the same size as the y range with z > 0.

variables for y to z = 1−x−y in (3.6a) to get an integral of the form∫
dz f(z) PV

[1
z

]
, (3.11)

where f(z) is a continuous, non-singular function of z, corresponding to zF(x, y) in our
case. If the bounds on integration over z were symmetric about z=0, we would be able to
average the integrand with z → −z to write∫ a

−a
dz f(z) PV

[1
z

]
=
∫ a

−a
dz

f(z)− f(−z)
2z . (3.12)

The integrand on the right-hand side is finite at z=0, and so it (i) no longer needs the
PV prescription and (ii) is suitable for numerical integration. Unfortunately, our actual
integration interval is not symmetric under z→− z. We must divide the integration into
different integration regions (one symmetric around z=0 and another that avoids z=0) and
treat them differently. The shaded region of figure 18 shows the largest region of y that is
symmetric under y → 2(1−x)− y, which is the transformation that takes z → −z without
changing x. Using (3.12) for the shaded region, the integral in (3.6a) can then be rewritten
as the numerics-friendly expression

[
dΓ
dx

]
F, virt II

= 2 Re
∫ 1

0
dy


1
2
[
F(x, y) + F

(
x, 2(1−x)−y

)]
; 1−2x ≤ y ≤ 2−2x,

F(x, y) otherwise.
(3.13)

4 Conclusion

A summary of formulas for the final results of this paper is given in appendix A. It is natural
to wonder how much quantitative impact the processes of this paper (figures 4–6) will have
compared to the “nearly-complete” calculation of ref. [19]. With the tools presented so far,
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this is a somewhat ambiguous question. For example, virtual diagrams must be integrated
over y. But the same integration of the virtual diagrams of ref. [19] gives an infrared
divergence, which cannot be meaningfully compared to the non-divergent results of this
paper.35 Even if one adds together the real and virtual diagrams of ref. [19], there is still a
double-log infrared divergence. A later paper [38] will discuss how to make infrared-safe
calculations of in-medium shower development, for which the relative size of contributions
can then be examined. We leave that comparison until then.
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A Summary

Appendix A of ref. [19] gave a summary, for the “nearly-complete” calculation there, of all
rates associated with overlap effects in sequential gluon splitting. Here, we summarize how
to add in the remaining diagrams analyzed in this paper.

A.1 g → ggg rate

Eq. (A.9) of ref. [19] for the total overlap effect on real double splitting should be modified to[
∆ dΓ
dx dy

]
g→ggg

=
[
dΓ
dx dy

]
crossed

+
[
∆ dΓ
dx dy

]
seq

+
[
dΓ
dx dy

]
F
, (A.1)

where the new term is [
dΓ
dx dy

]
F

=
[
dΓ
dx dy

]
single F

+
[
dΓ
dx dy

]
(FF)

. (A.2)

A.1.1 Single F piece

The “single F” piece corresponds to the analogous 4-gluon vertex result of section 4.1 of
ref. [16] but with the substitution ζ(4) → ζ(F) derived in this paper. That has the form[

dΓ
dx dy

]
single F

= A(F)(x, y) +A(F)(1−x−y, y) +A(F)(x, 1−x−y)

+A(F)(y, x) +A(F)(y, 1−x−y) +A(F)(1−x−y, x), (A.3)
35One might try comparing the size of the y-integrands, but this is also meaningless for virtual diagrams.

We know from the discussion in section 3.2 of the original y-integrand of (3.6b) that the original integrand is
±∞ at y = 1−x. That can’t be meaningfully compared to the size of another diagram’s y-integrand because
the divergence goes away when integrated. One might look at the integrand of (3.13) instead, but the details
of that integrand depend on our arbitrary choice of exactly which region to apply z→− z averaging to. Only
the integral over y has meaning there, not the y-integrand by itself.
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where A(F)(x, y) is the result of one color routing of F ȳx̄+ ȳF x̄+ ȳx̄F (from figure 4) plus
conjugates. We’ll find it convenient later, for evaluating virtual diagrams, to split A(F) into
separate contributions from each non-zero diagram (plus its conjugate):

A(F)(x, y) ≡ AF ȳx̄(x, y) +Aȳx̄F (x, y), (A.4)

where

AF ȳx̄(x, y) ≡
∫ +∞

0
d (∆t) 2 Re (BF ȳx̄ (x, y,∆t)) , (A.5a)

Aȳx̄F (x, y) ≡
∫ +∞

0
d (∆t) 2 Re (Bȳx̄F (x, y,∆t)) , (A.5b)

BF ȳx̄(x,y,∆t) =D(F)(x̂1, x̂2, x̂3, x̂4, ζ(F),∆t) =D(F)(−1,y,1−x−y,x,ζ(F),∆t), (A.6a)

Bȳx̄F (x,y,∆t) =D(F)
(
−x̂4,−x̂3,−x̂2,−x̂1, ζ(F),∆t

)
=D(F)

(
−x,−(1−x−y),−y,1, ζ(F),∆t

)
,

(A.6b)

where ζ(F) ≡ ζ(F)(x, y). Here, we follow the notation of appendix A of ref. [19] by using
hats over (x1, x2, x3, x4) to represent our usual numbering convention (2.1):

(x̂1, x̂2, x̂3, x̂4) ≡ (−1, y, 1−x−y, x) . (A.7)

Below, the (x1, x2, x3, x4) without hats will instead generically represent whatever the
arguments of the function D are.

D(F)(x1,x2, x3, x4, ζ,∆t) =

− C2
Aα

2
sMf

16π2E
(−x1x2x3x4) ζ Ω+Ω− csc(Ω+ ∆t) csc(Ω−∆t) Yȳ

Xȳ
, (A.8)

where the low-level expressions for the symbolsMf , Ω±, Xȳ and Yȳ in terms of the arguments
(x1, x2, x3, x4,∆t) are the same as in appendices A.2.1 and A.2.2 of ref. [19].

In (A.6), the argument ζ(F) passed to D(F) is

ζ(F) = ζ(4) + i12 ζ12 − i14 ζ14, (A.9)

where

ζ12 = (x2+z2)(1+y2)
(xyz)2(1−y)3 , ζ13 = (1−y)4 + z2 + x2y2

(xyz)2(1−y)3 , ζ14 = (1−y)4 + x2 + z2y2

(xyz)2(1−y)3 ,

(A.10a)

ζ(4) = ζ12 − 2ζ13 + ζ14, (A.10b)

i12 = (1+y)(x−z)
(1−y)2 , i14 = (1+x)(z−y)

(1−x)2 . (A.10c)
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A.1.2 FF piece

The FF piece corresponds to the FF̄ diagram of figure 4 plus its complex conjugate (which
corresponds to the other time ordering, F̄F ). For the canonical color routing, the FF piece
is given by (i) the 4-gluon vertex result for A(44) in section 4.2 of ref. [16] times (ii) the
factor indicated in our (2.40). The sum over color routings is then[

dΓ
dx dy

]
(FF)

= A(FF)(x, y) +A(FF)(1−x−y, y) +A(FF)(x, 1−x−y) (A.11)

with
A(FF)(x, y) ≡

[
1 + 1

3

(
i212 + i214 − i12i14 + i12 − i14

)]
A(44)(x, y) (A.12)

and

A(44) (x,y)≡
∫ +∞

0
d(∆t) 2Re

(
B(44) (x,y,∆t)

)
, (A.13)

B(44) (x,y,∆t) =C(44) (x̂1, x̂2, x̂3, x̂4,∆t) =C(44) (−1,y,1−x−y,x,∆t) , (A.14)

C(44) =D(44)− lim
q̂→0

D(44), (A.15)

D(44) (x1,x2,x3,x4,∆t) =−3C2
Aα

2
s

16π2 Ω+Ω− csc(Ω+ ∆t)csc(Ω−∆t) . (A.16)

A.2 NLO g → gg rate

The virtual corrections to single splitting g→gg are written in appendix A.3 of ref. [19] in
terms of

[
∆dΓ
dx

]NLO

g→gg
=
([

∆dΓ
dx

]
virt I

)
+ (x→ 1−x) +

[
∆dΓ
dx

]
virt II

=
(∫ 1−x

0
dy

[
∆ dΓ
dx dy

]
virt I

)
+ (x→ 1−x) +

∫ 1

0
dy

[
∆ dΓ
dx dy

]
virt II

,

(A.17)

where the three terms are, in order, the contribution of class I diagrams, their x→1−x
cousins, and class II diagrams. Eqs. (A.53) and (A.54) of ref. [19] for the Class I and II
y-integrands should be modified to[

∆ dΓ
dx dy

]
virt I

=
[
dΓ
dx dy

]
virt Ic

+
[
∆ dΓ
dx dy

]
virt Is

+ 2 Re
[
dΓ
dx dy

]
xyyx̄

+
[
dΓ
dx dy

]
virt If

(A.18)
and [

∆ dΓ
dx dy

]
virt II

=
[
∆ dΓ
dx dy

]
virt IIs

+ 2 Re
[
dΓ
dx dy

]
xȳȳx̄

+
[
dΓ
dx dy

]
virt IIf

, (A.19)

where the new addition is the last term in each.
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A.2.1 [dΓ/dx dy]virt If

Given that [dΓ/dx dy]virt If will be integrated over 0 < y < 1−x in (A.17), there are two
equivalent ways to choose the integrand. One way is to include both color routings of
the diagrams for every value of y (the routings are related by y → 1−x−y) and write the
y-integrand in the form[

dΓ
dx dy

]
virt If

= 1
2
[
Avirt If(x, y) +Avirt If(x, 1−x−y)

]
, (A.20a)

where 1
2 is the loop symmetry factor associated with the diagrams and Avirt If is the result

for a single color routing without including any loop symmetry factor. But, because of the
y ↔ 1−x−y symmetry of (A.20a), the y integral is the same if we integrate only one color
routing but drop the loop symmetry factor, and so instead take[

dΓ
dx dy

]
virt If

= Avirt If(x, y). (A.20b)

Either way, (3.1) and (3.4) give

Avirt If(x, y) = −AF ȳx̄(y, x) +
[
AF ȳx̄( −x

1−x−y ,
−y

1−x−y )
]
E→(1−x−y)E

= −AF ȳx̄(y, x) + (1−x−y)−1/2AF ȳx̄( −x
1−x−y ,

−y
1−x−y ), (A.21)

where the last line follows from the fact that rates dΓ/dx dy are proportional to
√
q̂A/E.36

A.2.2 [dΓ/dx dy]virt IIf

Class II diagrams are integrated over 0 < y < 1 in (A.17). Analogous to (A.20), we
may write [

dΓ
dx dy

]
virt IIf

= 1
2
[
Avirt IIf(x, y) +Avirt IIf(x, 1−y)

]
(A.22a)

or [
dΓ
dx dy

]
virt IIf

= Avirt IIf(x, y). (A.22b)

The latter is equivalent to the version presented in (3.6), with Avirt IIf here representing
2 ReF . The overlines on Avirt IIf in (A.22) will represent the averaging procedure of
section 3.2.2. If we were instead content with y-integrands that had divergences requiring
implementation of a principal value prescription, we could drop the overlines, and eqs. (3.2)
and (3.3) give

Avirt IIf(x, y) = = −
[
Aȳx̄F ( x

1−y ,
−y
1−y )

]
E→(1−y)E

+
[
Aȳx̄F ( y

1−x ,
−x
1−x)

]
E→(1−x)E

= −(1−y)−1/2Aȳx̄F ( x
1−y ,

−y
1−y ) + (1−x)−1/2Aȳx̄F ( y

1−x ,
−x
1−x). (A.23a)

Following (3.13), our numerics-friendly, averaged version Avirt IIf of Avirt IIf is

Avirt IIf (x, y) ≡


1
2 [Avirt IIf (x, y) +Avirt IIf (x, 2 (1−x)−y)] ; 1−2x ≤ y ≤ 2−2x,

Avirt IIf (x, y) otherwise.
(A.24)

36See the discussion of similar examples of this scaling argument in appendices D.3 and D.5 of ref. [19].
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