
J
H
E
P
1
2
(
2
0
2
2
)
0
2
0

Published for SISSA by Springer

Received: September 14, 2022
Accepted: November 21, 2022
Published: December 5, 2022

Holographic Floquet states in low dimensions (II)

Martí Berenguer, Ana Garbayo, Javier Mas and Alfonso V. Ramallo
Departamento de Física de Partículas, Universidade de Santiago de Compostela, and
Instituto Galego de Física de Altas Enerxías (IGFAE),
E-15782 Santiago de Compostela, Spain
E-mail: marti.berenguer.mimo@usc.es, ana.garbayo.peon@usc.es,
javier.mas@usc.es, alfonso@fpaxp1.usc.es

Abstract: We continue the study in [1] of a strongly coupled (2+1)-dimensional gauge
theory subject to an external rotating electric field. The system is modelled holographically
as a D3/D5 probe intersection. We add temperature to the D3 background and analyze
the phase diagram. Also here, the conductive phase extends down to vanishing external
electric field at discrete values of the frequencies where vector meson Floquet condensates
form. For all temperatures, at given intercalated frequencies, we find new dual states that
we name Floquet suppression points where the vacuum polarization vanishes even in the
presence of an electric field. From the data we infer that these states exist both in the
conductive and insulating phases. In the massless limit we find a linear and instantaneous
conductivity law, recovering known general results in 2+1 dimensions. We also examine the
photovoltaic AC and DC current as the response to an oscillating probe electric field and
see that rising the temperature suppresses the photovoltaic Hall current. All the results
obtained carry over qualitatively unaltered to the case of D3/D7.

Keywords: AdS-CFT Correspondence, D-Branes, Gauge-Gravity Correspondence

ArXiv ePrint: 2209.03884

Open Access, c© The Authors.
Article funded by SCOAP3. https://doi.org/10.1007/JHEP12(2022)020

mailto:marti.berenguer.mimo@usc.es
mailto:ana.garbayo.peon@usc.es
mailto:javier.mas@usc.es
mailto:alfonso@fpaxp1.usc.es
https://arxiv.org/abs/2209.03884
https://doi.org/10.1007/JHEP12(2022)020


J
H
E
P
1
2
(
2
0
2
2
)
0
2
0

Contents

1 Introduction and conclusions 1

2 D3/D5 system at finite temperature 3

3 Phase space 7
3.1 Floquet suppression points 12

4 Non-linear conductivity 13

5 Photovoltaic optical conductivity 16

6 Summary and outlook 18

A Coordinates and D5-brane action 20

B Holographic dictionary 23

C Effective horizon and effective temperature 25

D Analytic solutions 27
D.1 Massless solution 27
D.2 Small mass solutions 30

E Photovoltaic conductivities 32
E.1 Masless limit 34

F Linearized Minkowski embeddings and meson spectrum 36

G Phase space structure for the D3/D7 system 38

1 Introduction and conclusions

Periodically driven systems form a separate chapter in the book of non equilibrium dynam-
ics. Much progress has been achieved both at theoretical and experimental level in the path
to control their effective long time dynamics [2–8]. This has opened the way to engineer
Hamiltonians that embody non trivial phenomena and new phases of quantum materials.
Of particular interest is the case of solutions where energy injection and dissipation bal-
ance, thereby reaching a Floquet type of non-equilibrium steady state (NESS). In a series
of previous papers, the existence of a Floquet NESS has been studied in the context of
the AdS/CFT correspondence both in the case of a D3/D7 system [9, 10], and of a D3/D5
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system [1]. In these intersections the higher dimensional flavor brane is treated as a probe
in the backgrond of a AdS5 × S5 geometry. The flavor degrees of freedom experience the
rotating external field, while they are coupled to the non abelian “gluon” vacuum acting
as a bath. The crucial ingredient that allows for the system to be solved numericallly is
the fact that, in the rotating frame, the action becomes time independent and, therefore,
all differential equations turn out to be of the ordinary type. This is a remarkable ansatz
where the technique developed in [11] can still be applied to obtain the fully non-linear one
point functions just from demanding reality of the action. In the literature, this extremely
useful IR fixing mechanism has been applied to several static configurations. For time de-
pendent sources very little is known. In spatial dimension ds = 2, and for massless charge
carriers, the current response is linear and instantaneous j(t) = σE(t) [12]. Our results are
consistent with this observation in the limit of small mass flavours.

In this paper we deal with the D3/D5 system, in which the D3- and D5-branes share
two spatial directions. The field theory dual to this brane setup is well-known and con-
sists of a supersymmetric theory with flavor hypermultiplets living in a two-dimensional
defect coupled to an ambient N = 4 four-dimensional Yang-Mills theory [13–15]. In this
work, which is a continuation of [1], we add a background temperature to the adjoint de-
grees of freedom which, therefore, are now deconfined. The nonzero temperature breaks
supersymmetry and adds charged carriers to the ones previously formed by Schwinger pair
production. These are naturally melted mesons that are present at finite temperature for
low enough quark mass. Therefore, the phenomenology is expected to yield a continuous
deformation of the case at zero temperature.

It is known that the fluctuations of the flavor brane degrees of freedom feel another
temperature, Teff , through an effective metric named open string metric. That this is a
bona fide temperature has been the subject of careful studies that examined, for example,
the universality of the fluctuation dissipation relations [16]. In most common cases the
effective temperature is larger than the bulk temperature of the gluon plasma Teff > T .
Some exceptional cases have been reported where the inequality is reversed [17]. We don’t
find such exceptional situation after scanning throughout our phase space.

The plan of the paper is the following. In section 2 we shall set up the stage and
the notation although most of the details are relegated to appendix A. The phase space is
examined in section 3. Section 4 is devoted to a detailed study of the macroscopic rotating
current generated in response to the rotating electric field. In particular, the relative
angle between them shows an interesting pattern as a function of the driving frequency Ω.
Section 5 is devoted to the study of the so called photovoltaic current, namely the response
of the Floquet NESS to an additional AC electric field that probes the modified conduction
properties of the medium as a result of the rotating electric field applied. In section 6 we
summarize our results and discuss some possible extensions of our work.

The paper is completed with some appendices containing many details and explicit
calculations which might be useful for the interested reader. In appendix A we collect
the different systems of coordinates used and the expression of the corresponding D5-
brane action. In appendix B we work out the holographic dictionary for our system.
In appendix C we analyze the effective horizon and temperature of the Floquet system.

– 2 –



J
H
E
P
1
2
(
2
0
2
2
)
0
2
0

Appendix D is devoted to the analytic solutions of the equations of motion with zero and
small quark mass, and we check explicitly the consistency of the holographic dictionary
developed in appendix B for this particular case. In appendix E we review the general
formalism to compute the photovoltaic conductivities, which we obtain analytically in
the massless limit at non-vanishing temperature. In appendix F we study the linearized
Minkowski embeddings and the calculation of the mesonic spectra at non-zero temperature.
Finally and for completeness, in appendix G we include the phase space for the D3/D7
system.

In what respects the addition of a background temperature, the take home message is
that it acts in the same direction as an increase in the module of the electric field. Hence,
many delicate phenomena related to the vicinity to critical embeddings get screened away.

2 D3/D5 system at finite temperature

In this section we will set up the stage and review the main results obtained in this study
for the D3/D5 systems. We chose to parametrize the D5 brane embeddings with an angular
coordinate function ψ(u) ∈ [0, 1] where ψ(u) = 0 corresponds to massless embeddings and
the boundary of AdS sits at u =∞. The induced metric takes the form

ds2 = gttdt
2 + gii(dx2 + dy2) + guudu

2 + gΩΩdΩ2
2 (2.1)

where dΩ2
2 is the metric of a unit two-sphere and

gtt = − u
2

R2
g2(u)
h(u) , gii = u2

R2h(u) , guu = R2
(

1
u2 + ψ′2

1− ψ2

)
, gΩΩ = R2(1− ψ2)

with
g(u) = 1− u4

h

u4 , h(u) = 1 + u4
h

u4 (2.2)

This black hole metric has a Hawking temperature

T =
√

2uh
πR2 = rh

πR2 . (2.3)

where we have written T both in terms of the isotropic coordinate u and the cartesian
coordinate r related by (A.5). At the horizon there is merely a factor rh =

√
2uh among

them (in what follows we will take R = 1). In the remaining we will parametrize background
temperatures in terms of rh/m.

We want to study the response of these systems to an external driving by a circularly
polarized electric field

~E(t) =
(
Ex(t)
Ey(t)

)
=
(

cos Ωt − sin Ωt
sin Ωt cos Ωt

)(
Ex
Ey

)
≡ O(t) ~E , (2.4)

with ~E = ~E(t = 0). To properly account for the rotation it is convenient to complexify this
field E(t) = Ex(t) + iEy(t)

E(t) = E eiΩt = −iΩAeiΩt (2.5)
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where A is the boundary value of a world-volume gauge field one-form

2π α′A(t, u) = ax(t, u) dx + ay(t, u) dy , (2.6)

The Born Infeld action reduces to
ID5
N

= −
∫
dugΩΩ

√
g2
ii|gtt|guu − (Im(ā′ȧ))2 + gii(|gtt||a′|2 − guu|ȧ|2) (2.7)

with N ≡ 4πNfTD5vol(R1,2). The complexification in (2.5) motivates to do it also at the
level of the bulk fields

a(t, u) = ax(t, u) + iay(t, u) = c(t, u)eiΩt , (2.8)

leading to the following form of the action1

ID5

N
= −

∫
dugΩΩ

√
g2

ii|gtt|guu−(Im(c̄′ċ)+ΩRe(c̄′c))2+gii(|gtt||c′|2−guu(|ċ|2 + Ω2|c|2+2ΩIm(ċc̄)))

A particular ansatz is to assume that c(t, u) = c(u). Hence ċ = 0 and the only remnant
of the rotating dynamics is the presence of the parameter Ω. To exhibit the presence of a
conserved quantity it is convenient to switch to a polar image with c(u) = b(u)eiχ(u). Then

ID5

N
= −

∫
du
√

(1− ψ2) [(u4g2 − Ω2b2) ((1− ψ2)b′2 + h(1− ψ2 + u2ψ′2)) + (1− ψ2)u4g2b2χ′2]

and the searched for conserved quantity is the one associated to the shift symmetry of χ

q ≡ Ω ∂L
∂χ′

. (2.9)

As has become the usual case when there is an electric field switched on [11], demanding
reality of the Routhian (partial Legendre transform with respect to χ)

ĨD5
N

= −
∫

du

Ωbgu2

√√√√(Ω2b2 − u4g2)
(
q2 − u4Ω2b2g2(1− ψ2)2

)(
b′2 + h+ u2hψ′2

1− ψ2

)
(2.10)

imposes that the first two terms under the square root must vanish at the same point
u = uc, which locates the so called singular shell. At once, this condition fixes both the
value of uc and that of the conserved quantity q

b0 = u4
c − u4

h

Ωu2
c

, q = (u4
c − u4

h)2

u4
c

(1− ψ2
0) , (2.11)

where b0 = b(uc), ψ0 = ψ(uc). As b0 ≥ 0 we see that uc ≥ uh and the singular shell sits
always at a larger radius than the black hole horizon. Moreover, here it is the IR data b0
what controls the position of uc(uh, b0). This is unlike the case of constant E [11]. Hence
the shape of the critical surface at constant |E| is non spherical, as can be seen in figure 1.

1Notice that, unlike the case of a constant background electric field Ax = −Et + . . . [11], in this case
there is no explicit dependence on the UV value of the source in the action. This is a notorious difference
that is at the heart of many differences among the two cases. For example the fact that the critical radius
is not only dependent on the value of |E| in our case.
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Figure 1. Left plot: shapes of the singular shells as a function of the applied electric field. The
axes are ρ = u

√
1− ψ2 and w = uψ with ψ = sin θ. The curves are the points ρ2 +w2 = uc(E,ψ0)

with ψ0 = sin θ0 the embedding angle at the singular shell. Outside the limit E → 0 the shell shape
is non spherical. Hence, unlike the case of a constant electric field, in the rotating situation we have
a non trivial dependence of uc on the mass m of the D5-brane at fixed |E|. Right plot: profiles of
different embeddings for Ω = |E| = 1. The dashed lines represent black hole embeddings. They
can be either regular (thermal), ending on the horizon, or singular, ending in a conical singularity.
The dotted line represents a critical embedding. The solid lines represent Minkowski embeddings.
The black hole and pseudo-horizon are shown by the black (inner) and gray (outer) lines.

There are three types of embeddings in place now. First of all, we find the Minkowski
embeddings, which do not intersect the singular shell. They end up closing smoothly at
a value of u = u0 while ψ = 1. With black hole (BH) embeddings we will generically
denote solutions that intersect the singular shell. This accounts for the fact that for a
world-volume observer the singular shell acts as an event horizon, inducing thermal effects
through Schwinger pair production. For this reason, we will term interchangeably singular
shell and effective horizon.

Black hole embeddings can be further subdivided into two classes, thermal and conical.
The first ones hit the bulk black hole horizon, while the second ones close up at ψ = 1 with
a conical singularity, most likely a reflection of the sink of energy pumped by the electric
field in a conducting albeit non-dissipative system. These conical black hole embeddings
are the remnant of the ones that were studied in [1] at zero temperature. For a constant
electric field they were analyzed in [18, 19].

As a technical remark, notice that, in order to solve numerically for the black hole em-
beddings, boundary conditions must be placed at the singular shell. The first derivatives
are then not free but commanded by regularity (see eqs. (A.16), (A.17) and (A.18)). In
contrast, we could place boundary conditions at the background horizon for the embed-
ding function ψ and the module b, but not for the phase χ since this function diverges
logarithmically as log(u − uh) (see eq. (A.21)). Starting from the effective horizon, then,
one can integrate either outwards or inwards and this is how the thermal and/or conical
embeddings are completed.
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Figure 2. Left plot: effective temperature for different BH embeddings labelled by the insertion
angle at the effective horizon ψ0 = ψ(uc). Right plot: effective temperature as we vary Ω/m at
fixed |E|/m2. In both cases, the divergence in Teff arises as the curves come close to the critical
embeddings. In both plots, the lowest dashed line in black signals the background temperature.

As mentioned before, and explained in appendix C, the critical radius uc signals the
position of an event horizon in the induced open string metric which governs the dynamics
of the worlsheet fluctuations. Associated with it, we find an effective temperature

Teff = 2uc h(uc) − Ωb′(uc)
2π b(uc)χ′(uc)

. (2.12)

As in the vast majority of the situations encountered in the literature, here we also
find that Teff > T as far as we have been able to scan, as shown in figure 2.

As usual, the UV asymptotic analysis establishes the holographic dictionary. Near the
UV boundary u→∞, the fields ψ(u), b(u), χ(u) behave as

ψ(u) = m

u
+ C
u2 + . . . (2.13)

c(u) = A+ j

u
+ . . . = b(u)eiχ(u) , (2.14)

with A = iE/Ω. From where we can read off the 1-point functions C and j for the chiral
condensate and the electric current respectively.

The relation between E, j, m and C and the electric field EYM(t), the electric current
JYM(t), quark mass mq and quark condensate 〈Om〉 in the boundary theory are

EYM(t) =

√
λ

2π2 e
iΩ tE , JYM(t) = Nf Nc

π2 eiΩ t j , (2.15)

mq =

√
λ

2π2 m, 〈Om〉 = −Nf Nc

π2 C , (2.16)

where λ = g2
YMNc is the ’t Hooft coupling of the N = 4 theory. Using this asymptotics,

the integration constant in (2.11) acquires the meaning of a Joule heating

q = Ω ρ4

L
Im(c̄ c′) = ~j · ~E . (2.17)
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Only black hole embeddings have a non zero value for this quantity. The stationarity
of the background metric upon this energy injection can only be understood as a transient
effect due to the imbalance Nf/Nc ∼ 0 that is present in the probe limit. In the presence
of a black hole in the bulk, the long time effect of a non-negligible backreaction would be
a slow increase in the horizon radius.

An important remark for later use is the fact that both the worldvolume electric field
and the black hole horizon add up their effects of bending the brane in the IR towards the
origin r → 0. This will mean that as we increase the temperature we will find black hole
embeddings with milder electric fields.

The following is a scaling symmetry of the lagrangian L → α2L and the boundary
conditions

t→ t/α , u→ αu , w → αw , b→ αb , χ→ χ ,

Ω→ αΩ , E → α2E , j → α2 j , ψ → ψ , (2.18)
m→ αm , C → α2 C , q → α4 q , T → αT , Teff → αTeff .

By choosing α = 1/m in (2.18) we can make m = 1 and deal with the remaining quantities
in units of (the appropriate powers of) m.

3 Phase space

The standard lore in flavor branes is that Minkowski (black hole) embeddings are dual to
insulating (conducting) phases of the quantum system. In the case of a rotating electric
field, we must be more careful. Actually, two types of currents emerge. Black hole em-
beddings carry dissipating currents because of the presence of fundamental carriers. The
external driving has to supply energy in order to maintain the stationary rotating current.

For Minkowski embeddings j is a polarization current. In analogy with the case of
D3/D7 [10], we interpret this polarization as a coherent alignement of the vector meson
vacuum fluctuations parallel to the electric field. The polarization current is the time
derivative of the polarization and rotates at right angles with the electric field, signalling
zero Joule heating, hence not dissipating any energy. This conservative aspect allows for
the possibility to have non-zero persistent current even in the limit of vanishing driving
field. As we will see, there exists a dual possibility, namely, the dynamical cancellation of
the polarizability of the vacuum at discrete frequencies.

In figure 3 we show how the background temperature affects the splitting of the phase
space into the two types of embeddings. For a given temperature, points on the corre-
sponding curve represent critical embeddings, pictured in dashed black on the right plot
in figure 1. Roughly speaking, points above such curves correspond to black hole embed-
dings, whereas those below are Minkowski. However, close to the lines, the situation can
be multivalued and we can find both types of embeddings in the near vicinity. The lobed
structure was already present at zero temperature [1, 10].

We can observe that the effect of increasing the temperature is a depletion of the height
of the lobes with rising rh, until they fully dissappear beyond some temperature. Let us
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Figure 3. Electric field and current of the critical embeddings versus driving frequency, for different
values of rh in D3/D5. The frequencies for which |E| vanishes are the critical frequencies Ωc of
the vector meson Floquet condensates. The regions of black hole embeddings between lobes, above
such critical points, are termed wedges in the text. In the right plot we show the value of the
current along the curve of critical embeddings. We observe points with |j| = 0 somewhere close to
the maxima of the lobes in the left plot. We will term these points Floquet suppression points, and
will study them in detail in section 3.1.

pause to describe the origin of this damping effect. We choose to measure dimensionful
quantities in units of the quark mass. In particular, the curves above are drawn each one
for a fixed value of rh/m. Remember that both the electric field and the temperature
tend to bend the probe brane towards the origin in the IR. Let us fix a mass m = 1 for
concreteness. Then, for a small value of rh we can still switch on and fine tune the electric
field to make the embedding bend enough so as to touch the critical surface. As rh grows,
this supplemental field needed becomes less and less, which accounts for the drop in the
lobe structure to be seen on the plots in figure 3. Finally, there is a maximum value for
rh/m = 0.8897 beyond which all the embeddings are of black hole type for any value of
|E| and Ω.

Figure 4 unfolds the fine structure in the vicinity of the vector meson Floquet conden-
sates. The left (right) plots show the values of the current |j|/m2 (the condensate C) as
a function of the applied electric field |E|/m2 for different values of the rotating speed Ω.
From top to bottom, the temperature increases parametrized by rh/m =

√
2uh/m. The

upper case, with rh/m = 0.5 is almost indistinguishable from the case with rh/m = 0 = T

studied in [1, 10]. Points on the continuous (dashed) lines are for black hole (Minkowski)
embeddings. From the lower left corner all curves start at the Minkowski solution with
|j| = |E| = 0 (no singular shell). For a small value of Ω the behaviour is as shown in
the blue curves with Ω = 1.2. As the electric field increases a non-dissipative polarization
current builds up along the dashed portion of the blue curves. At some point the curve
becomes multivalued, the prelude of a presumably discontinuous phase transition to a black
hole configuration (a point on the continuous curve segment upwards) where a dissipative
conduction current is allowed. The nature and exact ocurrence of this transition is beyond
the reach of equilibrium thermodynamics where free energy evaluation is enough.

Rising the frequency Ω all the curves get displaced towards their left and, at some value
Ωc, that depends on rh/m, contacts the axis |E| = 0 at a nonzero value for both |j| > 0 (and
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Figure 4. The dashed curves represent the insulator (Minkowski) phase and the solid curves the
conductive (BH) phase (beware the opposite code with respecto to [1]) . Electric current |j|/m2 and
condensate C/m2 versus electric field for rh/m = 0.5, 0.7 and 0.84, from top to bottom. The driving
frequency is fixed to some Ω/m < Ωc/m (blue), Ω/m = Ωc/m (green), Ωc/m < Ω/m < Ωm/m

(pink) and Ω/m = Ωm/m (red). We show that E can only vanish for j 6= 0 for Minkowski
embeddings with Ωc ≤ Ω ≤ Ωmeson.

also C 6= 0) (green curves). Precise computation reveals the contact point to correspond to
a critical embedding. Further increase in Ω makes this contact point slide down the vertical
axis, now inside the Minkowski branch. Eventually, it reaches zero, merging again with the
trivial Minkowski embedding with |E| = |j| = 0. All the embeddings having |j| 6= 0 with
|E| = 0 build the manifold of vector meson Floquet condensates [10].

When rh/m reaches 0.84 we start seeing an interference between the two horizons
as they come close together. The effect is a multivaluedness in the curve of black hole
embeddings that precludes the monotonic growth of |j| and C with |E| that is seen at

– 9 –



J
H
E
P
1
2
(
2
0
2
2
)
0
2
0

0.8449 0.8459

0.000 0.005 0.010 0.015 0.020 0.025 0.030
0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.8449 0.8459

0.000 0.005 0.010 0.015 0.020 0.025 0.030
-0.20

-0.18

-0.16

-0.14

-0.12

-0.10

0.00 0.02 0.04 0.06 0.08 0.10
0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.00 0.02 0.04 0.06 0.08
-0.20

-0.18

-0.16

-0.14

-0.12

-0.10

-0.08

-0.06

Figure 5. Electric current and condensate versus electric field for Ω/m = 1. The continuous lines
represent BH embeddings, while the dashed ones are the Minkowski embeddings. The upper plots
show that for rh/m around 0.845, we start getting E/m2 = 0 for BH embeddings. The lower plots
are the full curves for the rh/m = 0.8459 case. Notice that the electric field increases again, to
recover the limit |j| = σ|E|.

lower temperatures. In all cases, in the large field regime, the Ohmic behaviour |j| = σ|E|
with constant σ is reached. However, in the small interval rh/m ∈ (0.84, 0.8897), this
regime is not approached monotonocally, and we find a multivaluedness of |j| and C as
functions of |E|. This looks similar to the multivaluedness encountered in [20] within the
superconducting phase. We, however, encounter this multivaluedness in the conducting
phase (the normal phase there). In figure 5, we see the interference effect between the
two nearby horizons is so effective that a trivial configuration with |j| = |E| = 0 is again
attained, but now inside the branch of black hole embeddings.

In figure 6 we have promoted the list of frequencies in each of the plots in figure 4 to a
third Ω axis, where the associated curves are sections of a 3D surface. On the bottom plane
|E| = 0 the surfaces intersect in a curve which is the full manifold of vector meson Floquet
condensates. The curve interpolates between two endpoints. On one end, |j| = 0, and we
find the frequencies corresponding exactly to the vector meson masses i.e. the fluctuations
in the probe brane worldvolume gauge field [21]. We have checked this in appendix F (see
figure 13 for the first three meson masses). The other end, with |j| > 0, corresponds to a
critical embedding. Turning on rh causes an overall shift of this curve towards lower values
of Ω, which can be inferred from the movement of the extreme points as shown on the
lower right plot in figure 6.
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Figure 6. Top: 3D development of the lobed curves in figure 3 in the vicinity of the first critical
point, with an extra Ω axis, for rh/m = 0.5 (left) and rh/m = 0.84 (right). Magenta (green)
surfaces belong to the Minkowski (BH) phase. Beware the difference in vertical scales. The purple
or blue dots are Minkowski embeddings and the green or red ones BH embeddings. The gray thick
lines represent the |E| = 0 vector meson Floquet condensates. Lower left: vertical view of the
upper left plot where the gray lines in the upper left plot have been graphed for three different
temperatures. Lower right: movement of the two extreme points in the curve as a function of rh.
They are the critical embedding and the first meson mass frequency respectively. We see that the
effect of the background temperature is mild (less than 10%) until the value rh/m ∼ 0.8 is reached.

On general grounds, the influence of the temperature on the results at rh = 0 is small
until we approach the maximum temperature rh/m = 0.8897, hence, when the lobes in
figures 3 are very small. Regarding the upper plots in figure 6, observe how the manifold
of black hole embeddings folds down for the right plot rh/m = 0.85 in contrast with the
monotonic growth on the left one, at rh/m = 0.5. This is precisely the multivaluedness
remarked for higher temperatures inside the branch of BH embeddings.

To finish this section, let us comment on the possibility of accurately locating the
first order phase transitions where the phase space curves become multivalued. The usual
prescription of comparing the free energies is valid in thermodynamical equilibrium. The
usual holographic prescription that proposes the euclidean gravitational action for such a
construct is not working properly in the present context of a non-equilibrium steady state
(see [20] for similar concerns and [22] for a review on the topic). A more sophisticated
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approach using techniques taylored for non equilibrium open systems as applied to the
holographic context is an interesting project to carry out also here. Eventually, an exact
dynamical simulation with a slowly varying |E|/m2 should be the right thing to do.

3.1 Floquet suppression points

In figure 3, on the right plot, we already mentioned the presence of points within the line
of critical embeddings where the current vanishes |j| = 0 even in the presence of nonzero
electric field. They roughly coincide with the points where the electric field becomes max-
imal within the same family. We will term these points Floquet suppression points and
the corresponding states Floquet-suppressed states. As we will show, the existence of these
points extends to the Minkowski embeddings and, in a sense to be explained in the next
section, also to the black hole embeddings. Focusing on critical and Minkowksi embed-
dings, we have already mentioned that the current has its origin in the polarizability, π̃, of
the vacuum, P = π̃E , with P = 〈ψ̄(γx+ iγy)ψ〉 [10]. Hence J = Ṗ = iΩπ̃E and a vanishing
value of J = 0 implies π̃ = 0, i.e. the polarizability is dynamically suppressed.

This suppression of the vacuum polarizability for certain frequencies is similar to well
known (and searched for) dynamical effects in other examples of Floquet engineering.
For example, in periodically driven lattices, hopping between neighbouring sites, although
present in the bare hamiltonian, can be completely suppressed by tuning the ratio of fre-
quency to amplitude, leading to induced dynamical localization (see [2, 6, 7] for references).

Figure 4 is built by scanning frequencies Ω ∈ (1.2, 1.7), i.e., around the point of the first
vector meson Floquet condensate. In figure 7 we show, on the upper left plot, the similar
curves setting instead Ω ∈ (2.3, 2.7), that is, in a small interval around the first Floquet
suppression point. The result exhibits a remarkable similarity, but with |j|/m2 and |E|/m2

axes exchanged. Indeed the symmetry is not exact, as can be seen by comparing the curves
in the lower left plots in figures 6 and 7. These are respectively the curves of vector meson
Floquet condensates and Floquet suppression points. End points on the lower axis can be
obtained in both cases by studying the linearized fluctuations of the world-volume gauge
field subject to the boundary conditions |E| = 0 and |j| = 0 respectively. At zero temper-
ature this calculation can be performed analytically giving (see [1] eqs. (C.2) and (C.3))

|E| = 0 → Ωn = 2
√(

n+ 1
2

)(
n+ 2

2

)
= 1.732, 3.873, . . .

|j| = 0 → Ωk = 2
√
k (k + 1) = 2.828, 4.899, . . .

Upon rising the temperature, rh > 0, these quantities get shifted downwards, as shown
on the lower right plots in figures 6 and 7. The (almost) symmetry between vector meson
Floquet condensates and Floquet suppression points is highlighted on the top right plot of
figure 7, where both manifolds have been included within the same 3D development.

It is worth mentioning that the existence of these Floquet suppression points is not
restricted to the D3/D5 system, hence is not apparently linked to the dimensionality. For
completeness we devote appendix G to the twin version of this section in the context of
a D3/D7 scenario. Apart from the discrepancy in the precise numerical values, the global
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Figure 7. Top: on the left, plots of |j|/m2 vs. |E|/m2 where we exchanged the axes to make
apparent the striking similarity with the plots in figure 4. On the right, 3D plot where the range
of Ω has been extended to cover the first vector meson Floquet condensate (grey curve at |E| = 0)
as well as the first Floquet suppressed condensate (brown curve at |j| = 0). Bottom: the left plot
shows view of the |j| = 0 plane of the upper plots. The suppressing effect of the temperature is
apparent. The right plot is the downshift in Ω of the two extreme points (orange and violet) in the
plot above this, as a function of rh/m.

picture is the same. For example, in figure 14 we reproduce the lobe structure for the
D3/D7 system, which is analogous to the one found in figure 3 for D3/D5. Also the
(|j|/m2, |E|/m2) curves in figure 15 are very similar counterparts of the ones in figures 4
and 7.

4 Non-linear conductivity

The relation between the current vector and the electric field vector defines a rotating
current (RC) conductivity2

j = σ̃RCE (4.1)

2Notice that in the rotating frame we write σ̃RC as we are dealing here with a single Fourier com-
ponent Ω of the rotational time dependence. In general, in the lab frame, we would write instead
J (t) =

∫
dτσRC(τ)E(t− τ). Also the use of complex instead of vector notation is implicit.

– 13 –



J
H
E
P
1
2
(
2
0
2
2
)
0
2
0

0.5

0.7

0.84

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35

1

2

3

4

0.05

0.08

0.12

1.0 1.5 2.0 2.5 3.0
0

1

2

3

4

Figure 8. Modulus of the non-linear conductivity γ = |σ̃RC | as a function of |E|/m2 for fixed
Ω/m = 1.2 (left plot) or as a function of Ω/m for fixed values of |E|/m2 (right plot). For large
|E|/m2 the curves asymptote to the value γ = 1.

where σ̃RC(Ω, |E|) is a complex number which is, itself, a non-linear function of |E| (by
rotational symmetry) and Ω. Writting

σ̃RC = γeiδ

the modulus γ is the non-linear conductivity whose value is plotted in figure 8. The phase
δ encodes the angle between the instantaneous vectors ~j = (jx, jy) and ~E = (Ex, Ey). This
is why we will refer to δ as the angle, even if we use complex instead of vector notation.
For a given |E| this relative angle controls the Joule heating (2.17)

q = γ|E|2 cos δ .

Its microscopic origin is unclear although we will make an attempt to put forward a con-
sistent picture after we have collected all the bits an pieces.

For Minkowski embeddings ~j and ~E are perpendicular and q = 0. This is consistent
with the picture of the polarization of the meson condensate into dipoles aligned with the
electric field. It leaves two possibilities for δ = ±π/2. In ref. [10] only the positive sign was
considered, as it is natural to think that the polarization and the electric field are parallel
vectors. We will show here that the existence of both signs is a natural consequence of the
presence of Floquet suppression points.

In figure 9 we observe the behaviour of the relative angle δ as we scan embeddings along
the horizontal lines of constant |E| while increasing Ω, as shown in the right plot. As usual,
BH (Minkowski) embeddings belong to solid (dashed) segments. On the left plot, using
the same color coding, we can see the value of the angle, δ, as we move along these sets of
solutions. Notice the jumps δ = π/2 → −π/2 that occur within the dashed segment, i.e.
for Minkowski embeddings. They seem to reflect a discontinuous transition but this is not
the case. Indeed, looking at the right plot in figure 8 we see that, precisely at those points,
we find a vanishing value for the module of the polarization current γ = 0⇒ |j| = 0. The
corresponding Ω frequencies have been signalled with a dot on the right plot in figure 9.
Joining all such Floquet suppression points yields the green dashed curve which is, precisely,
the same curve represented in the lower left plot of figure 7, also in (solid) green.
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Figure 9. Continuous lines are black hole embeddings, whereas dashed lines are Minkowski (with
a slight vertical offset for clarity). Left: relative angle δ for different embeddings at various fixed
values of the electric field and with rh/m = 0.7 for varying Ω/m. Right: this is a zoom of the
first lobe region in figure 3, where the color code for constant |E|/m2 lines corresponds to the ones
on the left plot. The dots indicate the frequencies where the angle δ either becomes zero in the
BH segments, or flips sign in the Minkowski segments. In this later case, joining all the points
gives the dashed green curve. The fact that this curve of Minkowski embeddings exits the lower
lobe is related to the spiralling multivaluedness of the phase space curves in the vicinity of the
critical embeddings. We have added another (dimmed green) lobed curve with higher temperature
rh/m = 0.8 to show that the effect of rising the temperature is similar to that produced by increasing
the electric field |E|/m2.

In summary, the transition δ = π/2 → −π/2 occurs through a Floquet-suppressed
state where the polarizability π̃ vanishes and transits smoothly from positive to negative.
This is remarkable as it states that, for ample intervals in the range of driving frequencies
Ω, the meson condensate is polarized antiparallel to the applied electric field!

Looking back to the left plot in figure 9 we notice that the opposite transition δ =
−π/2→ +π/2 is not discontinuous. It occurs through a sequence of black hole embeddings
that interpolate between those values along a curve that crosses smoothly the axis δ = 0
with finite slope. A look at the right plot in figure 8 reveals that, in contrast, at those
points γ stays strictly positive.

Putting all the information together the interpretation we find most plausible is as
follows: in general, the total current will be an admixture j = jcon + jpol of conduction
(dissipative) and a polarization (conservative) currents [23, 24]. The precise contribution
of each component is controlled by the driving frequency Ω and by |E|. The conduction
component jcon, embodied by deconfined charged carriers, is parallel to the applied electric
field. The polarizarion component jpol, as explained above, is perpendicular. The vector
sum of these two components gives j and E a relative phase angle δ.

Changing Ω at fixed |E|/m2, like on the left plot in figure 9, we find that jpol vanishes
at given frequencies Ω, thereby flipping δ = ±π/2 → ∓π/2. In the gapped (Minkowski
phase) only this component of the current is present. In the gapless (BH) phase, both
components generically contribute. We interpret the points where δ = 0 as precisely
signalling that, there also, jpol = 0. Thereby the total current becomes parallel to the
electric field. This is the reason why the transition in δ is continuous in the BH phase
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(solid segments). If this pictures makes sense, the conclusion is that we also have Floquet
suppression points within the BH phase. It is just that in the BH phase this vanishing is
masked by the conduction component j = jcon + 0. In summary, all the dots in figure 8
and 9 correspond to Floquet suppressed states. As we approach the boundaries of these
segments, the conduction component disappears jcon → 0, and the polarization component
survives making j = jpol and E mutually perpendicular again.

For large enough |E|/m2 we always stay within the phase of BH embeddings, and the
(solid) curves smoothly relax down to the asymptotic regime where δ = 0. We interpret
this as the vanishing of the jpol component in this limit. This is the same effect we get
for large temperature T/m� 1 as both are indistinguishable from the limit of small mass
m→ 0.

In appendix D.1 we prove exactly this fact, σ̃RC = 1, for massless flavors. This implies
that, in this case, the response is both instantaneous and linear. We make contact and
fully agree here with the results in [12]. In a sense, the claim there is stronger as it applies
to any time dependence of a linearly polarized electric field Ex(t) at the boundary. Here,
on one side, we go to a rotational polarization ansatz and, moreover, in appendix D.2 we
prove this result to hold also at linearized order in a small mass δm. Linearity of the
response entails that it should also extend to arbitrary two dimensional time dependent
electric fields ~E(t) at linear order in small masses.

5 Photovoltaic optical conductivity

The Floquet engineering of an induced Hall effect is termed usually photovoltaic Hall
effect [25]. In [9], following the proposal in [26], the photovoltaic optical response was
obtained for massless charge carriers in the D3/D7 model and an optical Hall current was
found. We extended this study in [1] to massive flavors in the D3/D5 model, and observed
an intricate behaviour in the wedge region between the lobes in figure 3, with multiple
resonance peaks present. The physics in this wedge is presumably controlled by the vector
meson Floquet condensate at zero temperature, that signals the presence of a quantum
phase transition. In the present work, first, we would like to see how the presence of a
temperature affects those results.

The results are contained in the plots shown in figure 10. The curves represent the
absortion spectrum σxx(ω) and the Hall conductivity σxy(ω). The background rotating
electric field has been fixed to |E|/m2 = 0.1. Its frequency has been set to the first critical
frequency Ωc(rh) which decreases with the temperature as seen in the lower right plot of
figure 6. The band in which these values lie for the chosen temperatures has been signalled
by a vertical band in pink. The curves for σxx and σxy show a smooth deformation of the
ones in [1] (figure 10) for the same value of |E|/m2.

Succintly stated, the temperature in the gluon bath, in general destroys the AC Hall
optical conductivity, and hence, also the DC Hall conductivity. Again, the effect of the
temperature is similar to the one caused by the increase in electric field. Namely, the
conductivity peaks get roughened and lowered. In a sense, both agents, the temperature
and the electric field act in parallel by enhancing the amount of deconfined charge carriers
in the medium.
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Figure 10. Top: AC conductivities for four values of rh at their corresponding Ωc(rh), for E/m2 =
0.1. The pink band marks the range where the four values of Ωc(rh) belong. The main peak is close
to this region. Bottom: variation with the temperature of the maximum value of the real part of
σxx and σxy for E/m2 = 0.1

The effect becomes more pronounced beyond some temperature rh/m ∼ 0.5, as shown
in the lower plots of figure 10. In the large temperature limit, rh →∞, all conductivities,
both AC and DC tend towards σxx = 1 , σxy = 0 (see figure 11). This result is the same
we obtained for the rotating current conductivity σ̃RC in the massless limit. Since in this
case the electric field is linearly polarized, rather than circularly, we see this as a further
evidence in favor of the fact that the response will be Ohmic and instantaneous for an
arbitrary time dependence of the electric field in the plane j(t) = σE(t).

A peculiar observation is that the frequencies ω of highest peaks in the absortion
spectrum Re(σxx) slightly deviate above the one of the driving ω ' Ω (within the vertical
band in pink). This was also observed in [1] (figure 10) where the drift is seen to be
enhanced with increasing |E|. We could not offer any explanation to this. Here we can see
that there is a very similar shift in the driving frequencies Ω of the Floquet suppression
points inside the BH phase (solid segments) in figure 9 with increasing |E| towards the
right. We have tried to make sense of this qualitative coincidence but could not find an
exact numerical agreement.
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Figure 11. DC conductivities as functions of |E|/m2 for different values of rh/m at Ω/m = 1. At
high temperatures the conductivity tensor tends towards the identity σxx = 1 and σxy = 0.

6 Summary and outlook

This paper pursues, along the line of previous works [1, 10], the study of holographic
Floquet flavour systems driven by an external rotating electric field. We focus on the
D3/D5 system but we find that most of the results are qualitatively robust and shared by
the D3/D7 setup. We have sharpened our findings in [1] in several directions.

First, we studied the effects of having the system heated at some non-zero temperature.
In this case, the dual geometry has two types of horizons: the usual event horizon of the
closed string geometry in the bulk, and the effective horizon of the open string metric
on the brane. Respectively, we can associate two temperatures to them: the Hawking
temperature T of the background (see (2.3)) and the effective one Teff written in (2.12)
experienced by the worldsheet degrees of freedom. We have scanned throughout all our
phase space and checked that Teff > T .

The main effect of the background temperature is the addition of deconfined charged
carriers to the system. Such carriers add to the ones produced by the electric field through
the Schwinger mechanism of dielectric breakdown. We show that one of the main results
in previous works, namely, the presence of vector meson Floquet condensates, persists at
finite temperature, signalling the robustness of this non-perturbative effect. The lobbed
structure of the line of critical embeddings is also found here, but gets depleted in height
and is completely washed away for high enough values of the temperature, namely, for a
radius horizon rh/m ≥ 0.8897 in units of the quark mass (see figure 3).

At high temperatures, some interesting effects occur when the background and effective
horizons come close together. These include a multi-valuedness that resemble a secondary
phase transition within the conductive black hole phase (figure 4). Also new solutions with
vanishing |E| = |j| = 0 appear within this phase (figure 5).

Secondly, we have remarked the relevance of the so called Floquet suppression points.
These states were missed in previous analysis but are common to both D3/D5 and D3/D7
systems both at zero and finite temperature. We have shown that the phase portrait very
close to these points is strikingly similar to the one in the vicinity of the vector meson
Floquet condensates, up to an exchange of j with E. This calls for a deeper study in
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search for a sounder duality. From the physical point of view, these new points exhibit a
dynamical suppression of the vacuum polarizability. It could be attributed to a dynamical
screening of the effective dipole charge of the meson fluctuations at strong coupling and
for precise frequencies. It bears resemblance to similar effects in the realm of Floquet
condensed matter systems where, for example, hopping terms can be seen to vanish at fined
tuned frequencies of the driving. This is the type of effects that make Floquet driving an
appealing paradigm in the search for mechanisms that could help in suppressing quantum
decoherence.

Thirdly, we have also pursued the analysis initiated in [1] concerning the non-linear
rotating conductivity in section 4. The relative phase (angle) between j and E has an
interesting information that we interpret in terms of a possible variable admixture of two
types of currents: rotating polarization and charge flow. The polarization current is the
only one present in the Minkowski phase while both are present in the BH states. The
global picture that emerges from the analysis, shows that the Floquet suppressed states are
points where the polarizability of the vacuum switches smoothly from positive to negative.
This is remarkable as it states that, for ample intervals in the range of driving frequencies,
Ω, the meson condensate is polarized antiparallel to the applied electric field! Again here,
this result is amongst the class of remarkable effects that one can find in the context
of Floquet engineering [7] of condensed matter systems. For example, it is worth citing
ref. [27], where paramagnetism can be turned into diamagnetism under a strong driving in
the Rabi model coupled to a heat bath.

In the limit of large electric field, and/or large temperature, we agree with the results
in [12]. In this limit the polarization rotating current gets suppressed, jpol(t)→ 0, whereas
the conduction currect satisfies an Ohmic instantaneous response for an arbitrary frequency
of the rotating driving j(t) ∼ jcon(t) = σE(t) with σ a real constant. Linearity suggests the
possibility of this being also true for any electric field time dependence in 2+1 dimensions.

Last but not least, we have examined the optical AC and DC conductivities in the
presence of a driving. The interesting pattern with peaks found in [1] deep inside the
wedges between the lobes in phase space still exists for low to moderate temperatures, but
gets dissolved as soon as the height of the lobes is depleted at high temperature. The
highest peaks shift with growing |E| and stay close to the position of the (also drifting)
Floquet suppression points. However we haven’t found exact numerical agreement, so this
stays a qualitative observation. We also find agreement with the predictions in [12] in the
limit of small mass.

Our work could be continued along several directions. One clear option would be to
add chemical potential and/or magnetic components to the gauge field in order to explore
the complete phase space of the D3-D5 model. To verify the universality of our results we
could consider the ABJM model [28] driven by a rotating electric field. This last model
has a rich topological structure and is dual to a (2 + 1)-dimensional conformal field theory.
The flavor branes in this case are D6-branes [29, 30] (the thermodynamics of these flavor
branes has been studied in [31]). Another direction worth pursueing is the analysis of the
effects of backreaction for a large number of flavor branes. Interestingly, backreacted D3-D5
backgrounds have been constructed in [32–35] using the smearing approximation reviewed
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in [36]. One could also study the driving generated by moving the brane periodically in time
(i.e. oscillating or rotating). This type of configurations were considered in [37, 38], and
are the natural setup to find resonances that could be interpreted as Floquet condensates
of other type of mesons, like scalar mesons.

Finally, another aspect that deserves further attention is the actual nature of the phase
transition. It can be triggered by an admixture of both temperature and/or electric field.
While the multi-valuedness of the state curves in figure 4 suggest an area law for the
transition point, the actual location it is not consistent for the (|j|/m2, |E|/m2) and the
(C, |E|/m2) curves. This points to the difficulties, out of equilibrium, in defining a bona
fide free energy from which the 1-point functions are derived [20]. Techniques developed
specifically for open non equilibrium steady states should be used instead. In particular,
it would be very interesting to apply the Schwinger-Keldysh approach of [39, 40] to these
systems in order to calculate properties of the corresponding steady states like equilibrium
of phases and phase transitions.
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A Coordinates and D5-brane action

The ten-dimensional black hole metric generated by a stack of D3-branes is:

ds2
10 =

(
r

R

)2(
− f(r) dt2 + dx2

3

)
+
(
R

r

)2( dr2

f(r) + r2 dΩ2
5

)
, (A.1)

where R is the anti-de Sitter radius, dΩ2
5 is the line element of a unit five-sphere and f(r)

is a blackening function given by:

f(r) = 1−
(
rh
r

)4
, (A.2)

where the horizon radius rh is related to the black hole temperature as:

T = rh
πR2 . (A.3)

Let us now rewrite the line element (A.1) in a coordinate system more convenient for our
purposes. First of all, we split dΩ2

5 as:

dΩ2
5 = dθ2 + cos2 θ dΩ2

2 + sin2 θ dΩ̂2
2 , (A.4)
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where dΩ2
2 and dΩ̂2

2 are line elements of two two-spheres. Moreover, let us introduce the
so-called isotropic coordinate u:

u2 = r2

2

1 +

√
1− r4

h

r4

 , (A.5)

with the horizon sitting at uh = rh/
√

2. We also define

ψ = sin θ . (A.6)

Then, the metric (A.1) becomes:

ds2
10 = u2

R2

(
−g(u)2

h(u) dt
2 + h(u)dx2

3

)
+ R2

u2 du
2 +R2

(
dψ2

1− ψ2 + (1− ψ2)dΩ2
2 + ψ2dΩ̂2

2

)
,

(A.7)
where g(u) and h(u) are the functions:

g(u) = 1− u4
h

u4 , h(u) = 1 + u4
h

u4 . (A.8)

The action of the probe brane is given by the DBI action

ID5 = −NfT5

∫
d6ξ

√
− det

(
g6 + 2πα′F

)
, (A.9)

where T5 is the tension of the D5-brane, g6 is the six-dimensional induced metric on the
worldvolume of the D5-brane and F = dA is the worldvolume gauge field strength.

Let us embed the D5-brane in such a way that one of the cartesian coordinates is
constant and the brane sits at fixed point of the second two-sphere with ψ = ψ(u). Then,
the induced metric becomes:

ds2
6 = u2

R2

(
−g

2(u)
h(u) dt

2 + h(u)dx2
2

)
+R2

(
1
u2 + ψ′2

1− ψ2

)
du2 +R2(1− ψ2)dΩ2

2 . (A.10)

Let us write down explicitly the action of the probe D5-brane. For simplicity in what
follows we will take R = 1. When F = dA and the one-form A is given by the ansatz (2.6),
the DBI action can be written as:

ID5
N

= −
∫
duL , (A.11)

where N ≡ 4πNfTD5vol(R1,2) and the lagrangian density L is given by

L =
√

(1− ψ2) [(u4g2 − Ω2b2) ((1− ψ2)b′2 + h(1− ψ2 + u2ψ′2)) + (1− ψ2)u4g2b2χ′2] .
(A.12)

In (A.12) the phase χ(u) only appears through its derivative χ′(u). So a conserved
quantity, q, can be defined as

q ≡ Ω ∂L
∂χ′

= χ′
u4
(

1− u4
h
u4

)2
Ω b2(1− ψ2)2

L(ψ,ψ′, b, b′, χ′) = (u4
c − u4

h)2

u4
c

(1− ψ2
0) (A.13)
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where the last equality is the one obtained by imposing reality of the Routhian action (2.10)
at the singular shell. Therefore, it is a cyclic variable that can be written in terms of the
other functions as

χ′ = q

u2 b g(u)

√
h(u) + b′2 + u2h(u)ψ′ 2

1− ψ2

√
Ω2b2 − u4g(u)2√

q2 − u4Ω2b2g(u)2(1− ψ2)2 , (A.14)

where q is the constant of motion defined in (2.9). Near the UV boundary, the fields ψ(u),
b(u), χ(u) behave as

ψ(u) = m

u
+ C
u2 +O(u−4) ,

b(u)eiχ(u) = iE

Ω + j

u
+O(u−2) . (A.15)

At the singular shell, the fields ψ(u), b(u), χ(u) can be written as

ψ(u) = ψ0 + ψ1(u− uc) + . . . ,

b(u) = b0 + b1(u− uc) + . . . , (A.16)
χ(u) = χ0 + χ1(u− uc) + . . . ,

where ψ0 = ψ(u = uc), b0 = b(u = uc), χ0 = χ(u = uc) (χ0 can be set to 0). The
coefficients χ1, ψ1 and b1 are fixed by the equations of motion, and are given by

χ1 = Ω
g(uc)u3

c

√√
C(1 + C)

[
2Ω2C2 + 1

2 (Ω2 + 4h(uc)u2
c)
]
− 1

2C
[
(3 + 4C)Ω2 + 4h(uc)u2

c

]
,

ψ1 = 1
2h(uc)u2

c

(
BC −

√
A(1 + C)

)
, (A.17)

b1 =− Ω
uc

(1
2 + C −

√
C(1 + C)

)
,

where the constants A, B, C are given by

A = (1− ψ2
0)h(uc)

[
Ω2 + 4h(uc)u2

c

]
,

B = 2ψ0g(uc)uc , (A.18)

C = A

B2 .

The Minkowski embeddings close off smoothly above the horizon at some u0 > uc. At
u0 we can write

ψ(u) = 1− 3(u4
0 + u4

h)(u8
0 + u8

h − u4
0(2u4

h + Ω2b20))
u0(u4

0 − u4
h)(3(u8

0 + u8
h) + u4

0(2u4
h − Ω2b20))

(u− u0) ,

b(u) = b0 −
b0u0Ω2(u4

0 + u4
h)2

(u4
0 − u4

h)(3(u8
0 + u8

h) + u4
0(2u4

h − Ω2b20))
(u− u0) (A.19)
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where now b0 = b(u = u0). BH embeddings and Minkowski embeddings are separated by
the critical solution, for which u0 → uc. It can be expanded as

ψ(u) = 1− 4(u4
c + u4

h) + Ω2u2
c

2u2
c(u4

c + u4
h))

(u− uc)2 ,

b(u) = u4
c − u4

h

Ωu2
c

− Ω
2uc

(u− uc) . (A.20)

Finally, suppose we would like to fix boundary conditions at the background black hole
horizon. Setting

ψ(u) = ψBH0 + ψBH1 (u− uh) + . . .

b(u) = bBH0 + bBH1 (u− uh) + . . .

we can insert this expansion into (A.14) and find

χ′(u) = Ω
4uh

√
2 + (bBH1 )2 + 2u2

h(ψBH1 )2

1− (ψBH0 )2
1

u− uh
+O(u− uh)0 + . . . (A.21)

which exhibits a logarithmic divergence of χ(u) close to the background black hole horizon.

B Holographic dictionary

Let us begin by writting the euclidean on-shell action as

Ibulk =
∫ umax

umin
du L(ψ,ψ′, c, c′, c̄, c̄′) (B.1)

where

L =

√√√√(1− ψ2)
([

u4g(u)2|c′|2 − Ω2<(cc̄′)2
](

1− ψ2
)

+ h(u)
[
u4g(u)2 − Ω2|c|2

](
1− ψ2 + u2ψ′2

))
(B.2)

with primes denoting derivatives with respect to the radial coordinate u and umin = uc (u0)
for BH (Minkowski) embeddings. In (B.1) we have absorbed the factors corresponding to
the integrations over the worldsheet coordinates different from the holographic coordinate
u. Evaluating this action with the UV expansion (2.14) we find, for large u,

Ibulk ∼
∫ umax

umin
du

(
u2 − m2

2

)
(B.3)

which is divergent when umax →∞. Here umin = uh (u0) for BH (Minkowski) embeddings.
The electric field does not introduce any new divergences, so the counterterms are [41]

L1 = −1
3
√
γ

L2 = 1
2
√
γ arcsin2 ψ

(B.4)
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where γ is the determinant of the induced metric at some regulator surface u = umax

√
γ = u3

maxg(umax)
√
h(umax) = u3

max

(
1− u4

h

u4
max

)√
1 + u4

h

u4
max

(B.5)

Then, evaluating the boundary contribution of L1 + L2, we get the boundary action Ibdry
with the UV expansion

Ibdry = u3
max

(
1− u4

h

u4
max

)√
1 + u4

h

u4
max

(
−1

3 + 1
2 arcsin2 ψ

)

= −u
3
max
3 + m2

2 umax +m C . (B.6)

For convenience, rewrite

u3
max =

∫ umax

umin
3u2du+ u3

min , umax =
∫ umax

umin
du+ umin .

Then the total action I = Ibulk + Ibdry can be written as

I =
∫ umax

umin
du

[
L(u)− u2 + m2

2

]
− u3

min
3 + m2

2 umin +m C . (B.7)

Let us consider the variations of this action. On shell, the variation of the bulk part
on shell gives only boundary contributions

δIbulk =
[
∂L
∂ψ′

δψ + ∂L
∂c′

δc+ ∂L
∂c̄′

δc̄

] ∣∣∣∣umax

umin

.

Let us insert the Taylor expansions (2.13)(2.14) around both umax and umin[
∂L
∂ψ′

δψ + ∂L
∂c′

δc+ ∂L
∂c̄′

δc̄

] ∣∣∣∣umax

= −mδC − 2Cδm−mumax δm−~j · δ ~A+O(u−1
max) ,[

∂L
∂ψ′

δψ + ∂L
∂c′

δc+ ∂L
∂c̄′

δc̄

] ∣∣∣∣
umin

= − qΩδχ0 , (B.8)

where we have written the contribution at umin in its most compact form, i.e. in terms of
the phase χ0 at the horizon.

Moreover, the variation of the boundary term (B.6) can be immediately obtained

δIbdry = mumax δm + mδC + C δm (B.9)

Then, the variation of I becomes:

δI = −Cδm−~j · δ ~A − q

Ωδχ0 . (B.10)

Basically there are two choices in the literature for the IR cutoff, umin = uh (the back-
ground horizon) or umin = uc, the critical surface. The problem with the first choice is that
the phase χ diverges logaritmically as log(u−uh). This is the counterpart of the divergence
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Figure 12. On-shell Euclidean action for different values of the electric field. Solid (dashed) lines
correspond to BH (Minkowski) embeddings.

in Ax that appears in the case of a constant electric field in the x direction [23]. The sec-
ond choice gives an IR regulator that has been considered by several authors [19, 42, 43].
Adhering to this second option, since χ is well defined in all its range, and is so up to a
global shift, we can always arrange its variation to vanish at the horizon δχ0 = 0. With
this convention, we get

δI = δIbulk + δIbdry = −Cδm−~j · δ ~A . (B.11)

This expression confirms the consistency of the holographic dictionary for our model,
that is, that the 1-point functions C and ~j are obtained from the functional variation of
the on-shell action with respect to the sources m and ~A. This has been checked explic-
itly for the analytic massless solution in appendix D. By considering a family of solutions
{ψ(u), c(u), c̄(u)}, parametrized by ψ0, the insertion angle at the singular shell, and ad-
justing c(uc), c̄(uc) such as to keep |E|/m2 constant at the boundary we can integrate
I(ψ0) = −

∫ ψ0
0

[
C(ψ)m′(ψ) +~j(ψ) · ~A′(ψ)

]
dψ and obtain the plots as shown in figure 12.

These plots coincide with the direct evaluation of the Euclidean action in this family
of solutions. We see that only for very weak electric field does the curve look like the
typical one of first order phase transitions. However as soon as |E|/m2 increases we find a
behaviour that departs from the typical swallow tail curve. This is not cured if we extend
the domain of u until umin = uh. We see that the problems appear in the black hole
(unstable) branch. This casts doubt on the interpretation of the euclidean on shell action
as a free energy. In particular the disappearance of the cusp would imply a negative value
of the entropy (see appendix C in [44]).

C Effective horizon and effective temperature

Let hab be the induced six-dimensional metric and Fab the worldvolume gauge field. The
effective open string metric γab is defined as

γab = hab + (2πα′)2FacFbd hcd . (C.1)
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In order to write the form of this metric for our ansatz when the embedding is parameterized
as a function ψ = ψ(u), let us define the function F (u) as:

F (u) ≡
(
u2 g2 − Ω2 |c|2

u2

) 1
h
, (C.2)

and the complex one-forms e± as:

e± = e∓iΩt(dx± idy) . (C.3)

Then, we have

γab dξ
a dξb =−F (u) dt2 +

[
1
u2 + ψ′ 2

1− ψ2 + |c
′|2

u2 h

]
du2 + 2

uh
Im
(
c c̄′
)
dtdu+ (C.4)

+1
4

[ 1
u2 + ψ′ 2

1− ψ2

]−1
(e−c′ + e+c̄

′)2 + Ω2

4
h

u2 g2 (e−c+ e+c̄)2 + h2 F (u)
g2 e+e− ,

where c = b eiχ is the complexified field potential in the rotating frame. In order to
diagonalize the (t, u) part of the metric (C.4), let us define new coordinates (τ, u∗) as

dτ = dt − A(u) du , du∗ = B(u) du , (C.5)

where A(u) and B(u) are given by:

A(u) = Ω b2 χ′

u2 hF
, B(u) = L

u2 h (1− ψ2)F , (C.6)

and L is the lagrangian density (A.12). In these new coordinates the effective open string
metric takes the form:

γab dξ
a dξb = F (u) (−dτ2 + du2

∗) + 1
4

[ 1
u2 + ψ′ 2

1− ψ2

]−1
(e−c′ + e+c̄

′)2 +

+Ω2

4
h

u2 g2 (e−c+ e+c̄)2 + h2 F (u)
g2 e+e− . (C.7)

The function F (u) vanishes at u = uc (where |c| = (u4
c − u4

h)/(Ωu2
c) = b0). Thus, u = uc

is an event horizon for the effective metric. The corresponding Hawking temperature can
be obtained from the surface curvature at u = uc, namely:

Teff = − γ′tt
4π γtu

∣∣∣∣
u=uc

. (C.8)

From the values of γtt and γtu found above, we can readily demonstrate that:

Teff = 2uc h(uc) − Ωb1
2π b0 χ1

= Ω
2π χ1 uc g(uc)

[
2h(uc) −

Ω b1
uc

]
, (C.9)

where b0, b1 and χ1 are the coefficients defined in (A.16) for black hole embeddings.

– 26 –



J
H
E
P
1
2
(
2
0
2
2
)
0
2
0

D Analytic solutions

When the mass parameter m is zero or small it is possible to find analytic solutions of the
equations of motion. These solutions are much easier to find in the angular coordinates
(r, θ) defined in (A.1) and (A.6) with θ = θ(r). It is straightforward to prove that the
lagrangian density with this parameterization is:

L = cos2 θ√
r4 − r4

h

√(
r4 − r4

h − Ω2b2
) ((

r4 − r4
h

)
(b′2 + r2θ′2) + r4)+ b2

(
r4 − r4

h

)2
χ′2 . (D.1)

Moreover, the cyclic coordinate χ is now related to θ(r) and b(r) as:

χ′(r) =
q
√
r4 − r4

h − Ω2b2
√(

r4 − r4
h

)
(b′2 + r2θ′2) + r4

b
(
r4 − r4

h

)√
b2 Ω2 (r4 − r4

h

)
cos4 θ − q2

. (D.2)

The Routhian that is obtained after eliminating χ′ from L is:

R =

√(
r4 − r4

h

)
(b′2 + r2θ′2) + r4

Ω b
(
r4 − r4

h

) √
r4 − r4

h − Ω2b2
√

Ω2b2
(
r4 − r4

h

)
cos4 θ − q2 . (D.3)

The tortoise coordinates in this (τ, r∗) parameterization are defined as

dτ = dt − Aθ(r) dr , dr∗ = Bθ(r) dr , (D.4)

where Aθ(r) and Bθ(r) are the following functions:

Aθ(r) = Ω b2χ′

r4 − r4
h − b2Ω2 , Bθ(r) = L

cos2 θ
(
r4 − r4

h − b2Ω2) , (D.5)

with L being the lagrangian density (D.1). In terms of (τ, r∗) the (t, r) part of the effective
metric takes the form

r4 − r4
h − b2Ω2

r2 (−dτ2 + dr2
∗ ) , (D.6)

which means that, indeed, these new coordinates are tortoise coordinates for the effective
open string metric.

D.1 Massless solution

Let us now consider a massless embedding with θ = 0. The Routhian (D.3) for this case
takes the form:

R0 =

√(
r4 − r4

h

)
b′2 + r4

√[
Ω2b2 − r4 + r4

h

] [
Ω2b2

(
r4 − r4

h

)
− q2]

Ωb
(
r4 − r4

h

) . (D.7)

Both factors in the second square root in (D.7) must vanish simultaneously at the pseudo-
horizon rc in order to keep the Routhian real. From this condition, we get:

b20 = q

Ω2 = r4
c − r4

h

Ω2 , (D.8)
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where, in the second step, we have used that q = r4
c − r4

h for the massless embeddings.
Actually, one can verify from the equation of motion of R0 that b = b0 is a solution of
this equation in which b is constant. Moreover, plugging b = b0 into the right-hand side
of (D.2), we get that the phase χ(r) in this massless case satisfies

χ′m=0 = Ω r2

r4 − r4
h

= Ω
r2 f(r) . (D.9)

In order to write explicitly the function χm=0(r), let as define a new function Λ(x) as:

Λ(x) ≡ log x− 1
x+ 1 − 2 arccotx , dΛ

dx
= 4x2

x4 − 1 . (D.10)

One has:
χm=0(r) = Ω

4rh
Λ(r/rh) , (D.11)

where we have fixed the integration constant in such a way that Λ(x) → 0 for x → ∞
(Λ(x) ≈ −4/x for large x). Therefore, the complexified gauge potential c(r) = b0 e

iχm=0(r)

in the rotating wave frame is:

c(r) =

√
r4
c − r4

h

Ω e
iΩ
4rh

Λ(r/rh)
. (D.12)

By expanding the right-hand side of (D.12) for large r and comparing the result with (2.14),
we get the electric field E and the current j, namely:

E = j = −i
√
r4
c − r4

h = −i√q . (D.13)

Thus, E and j are parallel and equal, which corresponds to γxx = 1 and γxy = 0 in the
conductivity tensor. Using (2.15) it is easy to derive the correctly normalised physical
conductivity, relating the physical electric field and the physical current, as

σ(Ω) =
√

2NfNc

π
√
λ

.

Up to a convention factor of
√

2 this result matches the one obtained in [11], (see eq. (5.8)),
were the observation is made that this conductivity is nothing else than 1/g2 in terms of
the effective defect field theory gauge coupling on the D5-brane. This normalisation should
affect all the conductivities obtained previously in this paper. Importantly, our result also
agrees with the findings in [12] in that the response of the system is not only linear, but
instantaneous.

The effective temperature in angular coordinates is given by:

Teff = 1
2π

2 r3
c − b0 b1 Ω2

Ω b20 χ1
, (D.14)

where b1 = b′(r = rc) and χ1 = χ′(r = rc). In the massless solution found above b1 = 0
and the value of χ1 can be read from (D.9) by taking r = rc. We get:

Teff = rc
π

=
(
q + r4

h

) 1
4

π
. (D.15)
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We can now insert the massless solution into the renormalized action I and check our
general equation (B.10). Indeed, for a massless solution, the renormalized euclidean action
can be written as:

I(m = 0) = J (rc) −
r3
c

3 , (D.16)

where J (rc) is the following integral in the r coordinate:

J (rc) =
∫ ∞
rc

dr r2
(√

1− Ω2

r2 f
|c|2 + r2|c′|2 − Ω2

r2
h

(Re(c̄c ′))2 − 1
)
. (D.17)

By using the explicit form (D.12) of the complexified gauge potential c(r) for the massless
solution, one can easily demonstrate that the integral J (rc) vanishes on-shell. Therefore,
the renormalized on-shell action in this case is simply:

I(m = 0)
∣∣∣
on-shell

= − r
3
c

3 . (D.18)

Let us now make use of this last expression to verify our general formula for the variation
of the on-shell action in this massless case. In terms of the complexified gauge potential at
the UV, the general variation of the renormalized on-shell action for m = 0 takes the form:

δI(m = 0)
∣∣∣
on-shell

= −1
2 j̄ δcuv(rc) −

1
2 j δc̄uv(rc) −

q

Ω δχ0(rc) . (D.19)

Notice that we have included the variation of the phase χ at r = rc, which is non-zero with
the conventions used in this appendix.3 It is now straightforward to find the values of cuv
and χ0 for the solution (D.12), namely:

cuv =

√
r4
c − r4

h

Ω , χ0(rc) = Ω
4rh

Λ(rc/rh) . (D.21)

Their contribution to the right-hand side of (D.19) is

− 1
2 j̄ δcuv(rc) −

1
2 j δc̄uv(rc) = 0 , δχ0(rc) = Ω

r4
c − r4

h

r2
c δrc , (D.22)

where we used the value of j displayed in (D.13). Taking into account that q = r4
c − r4

h,
we get:

δI(m = 0)
∣∣∣
on-shell

= − qΩ δχ0(rc) = −r2
c δrc , (D.23)

which is, indeed, the first variation of (D.18).
3Alternatively, we could have integrated (D.9) by imposing the vanishing of the phase χ at r = rc. The

complexified gauge potential in this case would be:

c(r) =
√
r4

c − r4
h

Ω e
iΩ
4rh

[
Λ(r/rh)−Λ(rc/rh)

]
. (D.20)

With this convention the last term in (D.19) does not contribute to the variation of the on-shell action.
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D.2 Small mass solutions

Let us now consider small mass solutions in which b(r) and θ(r) are given by:

b(r) = b0 + β(r) , θ(r) = λ(r) , (D.24)

where the functions β(r) and λ(r) are small. At first order in these functions, they satisfy
the following linear equations of motion:

d

dr

[
(r4 f − q)λ′

]
+ 2r2λ = 0 ,

d

dr

[
r4 f − q
r2 β′

]
+ 4r2Ω2

r4 f − q
β = 0 , (D.25)

which can be written as:

(r4 − r4
c )λ′′ + 4r3 λ′ + 2r2 λ = 0 ,

r2(r4 − r4
c )β′′ + 2r(r4 + r4

c )β′ + 4Ω2 r6

r4 − r4
c

β = 0 . (D.26)

These equations are equivalent to those solved in appendix B of [1] and, therefore, we
can just adapt the results in [1] to our case. Let us start by writing the general solution
for the differential equation satisfied by λ(r):

λ(r) = c1 F

(1
4 ,

1
2 ; 3

4 ; r
4

r4
c

)
+ c2 r F

(1
2 ,

3
4 ; 5

4 ; r
4

r4
c

)
, (D.27)

where c1 and c2 are constants. Imposing regularity conditions as in [1], we find that the
integration constants c1 and c2 must satisfy the relation:

c1
c2

= −rc4

[
Γ
(1

4
)

Γ
(3

4
)]2

= −rc4

√
2 Γ
(

5
4

)
[
Γ
(3

4
)]3 (D.28)

Let us write the UV behavior of θ(r) as:

θ(r) ≈ m

r
+ C
r2 + · · · , (r →∞) , (D.29)

where m and C are the mass and condensate parameters respectively. They are related to
c1 and c2 as:

m = rc c1
Γ
(3

4
)

Γ
(1

4
)

√
2π

= rc c1

C = −r3
c c2

Γ
(5

4
)

Γ
(
− 1

4
)

√
2π

= r3
c c2 . (D.30)

It follows that C and m are linearly related in this small mass solutions:

C = −rc

[
2 Γ
(3

4
)

Γ
(1

4
) ]2

m. (D.31)
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Moreover, the function θ(r) can be written as:

θ(r) = m

rc
F

(1
4 ,

1
2 ; 3

4 ; r
4

r4
c

)
+ C
r3
c

r F

(1
2 ,

3
4 ; 5

4 ; r
4

r4
c

)
. (D.32)

Let us next look at the equation satisfied by the gauge field perturbation β(r) in the
system (D.26). Its general solution is:

β(r) = d exp
[
− iΩ

2rc
Λ(r/rc)

]
+ d̄ exp

[
iΩ
2rc

Λ(r/rc)
]
, (D.33)

where d is a complex constant. It is interesting to find the solution for the complex potential
c = beiχ. For the massless solution c(r) takes the value:

c0(r) = b0 e
iχm=0(r) = b0 e

iΩ
4rh

Λ(r/rh)
. (D.34)

Let us denote
δc(r) ≡ c(r)− c0(r) . (D.35)

This function satisfies the following differential equation at linear order:

r(r4 − r4
c )(r4 − r4

h)2δc′′ + 2(r4 − r4
h)
[
r8 + (r4

c − r4
h)r3(r + iΩ) − r4

cr
4
h

]
δc′+

+r5Ω
[
Ωr4 + (r4

c − 2r4
h)Ω− 4i(r4

c − r4
h)r
]
δc = 0 (D.36)

Instead of trying to solve directly this equation we notice that δc, at first order, can be
written as:

δc = ei χm=0(r) (β + i b0 δχ
)
, (D.37)

where δχ(r) = χ(r)− χm=0(r). The equation satisfied by δχ(r) is rather simple, namely:

δ χ ′ = − 2 r2 Ω
b0 (r4 − r4

c )
β , (D.38)

and can be readily integrated:

δχ(r) = − id
b0

exp
[
− iΩ

2rc
Λ(r/rc)

]
+ id̄

b0
exp

[
iΩ
2rc

Λ(r/rc)
]

+ ϕ , (D.39)

where ϕ is a constant. Plugging (D.33) and (D.39) into (D.37), we obtain:

δc(r) = A exp
[
i
Ω
4

( 1
rh

Λ(r/rh) − 2
rc

Λ(r/rc)
)]

+ B exp
[
iΩ
4rh

Λ(r/rh)
]
, (D.40)

where A = 2d and B = iϕΩ

√
r4
c − r4

h. To proceed further we have to impose a regularity
condition to the general solution (D.40). With this purpose let us write δc(r) in terms of
the tortoise coordinates (D.4) for the open string metric. In this massless case it is easy
to demonstrate that (D.4) can be integrated to give the following relation between the
tortoise coordinates (τ, r∗) and our original coordinates (t, r):

τ = t + 1
4rh

Λ
(
r

rh

)
− r∗ , r∗ = 1

4rc
Λ
(
r

rc

)
. (D.41)
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The new radial coordinate r∗ varies from r∗ = −∞ at the pseudohorizon to r∗ = 0 at the
UV boundary. Actually, one can prove that in these regions it can be related to r as

r∗ = −1
r

+O(r−5) , (r →∞) , r∗ ∼
1

4rc
log(r − rc) , (r → rc) . (D.42)

Let us next consider the time-dependent gauge potential δa(r, t), given by:

δa(r, t) = δc(r) eiΩ t . (D.43)

By combining (D.40) and (D.41) it straightforward to prove that δa can be written in terms
of (τ, r∗) simply as:

δa(τ, r∗) = AeiΩ(τ−r∗) + B eiΩ(τ+r∗) . (D.44)

We next impose an infalling boundary condition, which amounts to select the solutions
with A = 0 in (D.44. Therefore, the regular solutions we are looking for are:

δa(τ, r∗) = B eiΩ(τ+r∗) . (D.45)

Equivalently, δc(r) is given by:

δc(r) = B exp
[
iΩ
4rh

Λ(r/rh)
]
. (D.46)

We can now read off the electric field and current from the asymptotic behaviour of δc,
namely:

δc(r) ≈ B − iΩB
r

+ · · · , (r →∞) . (D.47)

Thus, we have
δE = δj = −iΩB , (D.48)

which means that the equality of E and j of the massless solution is mantained at first
order in these small mass solutions.

E Photovoltaic conductivities

In order to study the photovoltaic current of the model the proposal in [26] is to analyze
the response of our system to an additional linearly polarized electric field on top of the
circularly driven background (2.4). In vector cartesian notation, the total electric field
is now

~E(t) = O(t) ~E + ~ε(t) = O(t) ~E + ~ε e−iω t , (E.1)

where ε is a constant vector such that |~ε| � | ~E|. We want to extract the effective conduc-
tivities that arise from the effect of this perturbation on the current. The perturbation of
the electric field will also mean a change in the gauge potential ~a+δ~a, so that c(r) develops
a time dependent perturbation

~a (t, r) + δ~a (t, r) = O(t)
(
~c (r) + δ~c (t, r)

)
. (E.2)
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Now the bulk gauge potential ~a (t, r) + δ~a (t, r) has to match the full electric field at the
boundary

~a(t, r =∞) + δ~a(t, r =∞) = − 1
Ω O(t) ε ~E − i

ω
~ε e−iω t . (E.3)

Since the fluctuations of the gauge field will also couple to the embedding functions θ(r)→
θ(r) + δθ(t, r) we will be dealing with a 3 component vector of fluctuations δ~ξ(t, ρ) =
(δcx, δcy, δθ). The general formalism to study these fluctuations has been developed in [1],
following the analysis of [9] for the massless D3-D7 system. In this appendix we will
summarize this method. First of all, let us write the perturbed equations in terms of the
tortoise coordinates (τ, r∗) defined in (D.4). We get:(

∂2
τ − ∂2

r∗ + A(r) ∂τ + B(r) ∂r∗ + C(r)
)
δ~ξ = 0 , (E.4)

where A, B and C are 3× 3 matrices which at the pseudohorizon r = rc satisfy

A(r = rc) = −B(r = rc) ≡ Ac C(r = rc) = 0 . (E.5)

Thus, in this limit, which correspond to r∗ → −∞, the fluctuation equation (E.4) becomes(
∂2
τ − ∂2

r∗

)
δ~ξ + Ac

(
∂τ − ∂r∗

)
δ~ξ = 0 , (E.6)

whose general solution takes the form

δ~ξ = ~f(τ + r∗) + e−Ac r∗ ~g(τ − r∗) . (E.7)

We will impose that ~g = 0, which selects the ingoing wave boundary condition at the
pseudohorizon. Let us next look at the UV boundary condition (E.3). First of all, we
rewrite the rotation matrix O(t) as:

O(t) = M+e
iΩt + M−e

−iΩt , (E.8)

where
M± = 1

2

(
1 ±i
∓i 1

)
. (E.9)

Then, defininig the frequencies ω± = ω ± Ω, the boundary UV condition of δ~c can be
written as

δ~c(t, r =∞) = − i
ω

(
M+e

−iω+t + M−e
−iω−t

)
~ε . (E.10)

Let us assume that δ~c (t, r) and δθ (t, r) oscillate with frequencies ω±

δ~c (t, r) = ~β+(r) e−iω+t + ~β−(r) e−iω−t , δθ(t, r) = γ+(r)e−iω+t + γ−(r)e−iω−t . (E.11)

Then, our system of equations (E.4) for the fluctuations becomes[
d2

dr2
∗
−B(r) d

dr∗
+ ω2

± + iω±A(r)−C(r)
]
~ξ± = 0 . (E.12)
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Let us write the boundary expansions for the fields in the form

δ~c(t, r) ≈ δ~c(0)(t) + δ~c(1)(t)
r

+ . . . , ~β±(r) = ~β
(0)
± +

~β
(1)
±
r

+ . . . . (E.13)

Plugging these expansions in (E.11) we get

δ~c(0)(t) = ~β
(0)
+ e−iω+t + ~β

(0)
− e−iω−t , δ~c(1)(t) = ~β

(1)
+ e−iω+t + ~β

(1)
− e−iω−t . (E.14)

Comparing the first of these equations with (E.10) we conclude that

~β
(0)
± = − i

ω
M±~ε . (E.15)

The subleading vectors ~β(1)
± determine the variation of the current δ ~J (t) = O(t) δ~c(1)(t),

namely:

δ ~J (t) = e−iω t
(
M+ ~β

(1)
+ + M− ~β

(1)
− + M+ ~β

(1)
− e2 iΩ t + M− ~β

(1)
+ e−2 iΩ t

)
. (E.16)

For a regular solution the vectors ~β(1)
± and ~β

(0)
± are related. Let us write this relation as

~β
(1)
± = X± ~β(0)

± = − i
ω

X±M±~ε , (E.17)

where X± are 2 × 2 matrices that, in general, must be determined numerically (see [1]
for details). Plugging (E.17) into (E.16) a get a relation between the current δJ and the
applied electric field ~ε

δ ~J =
[
σ(ω) e−iω t + σ+(ω) e−i(ω+2Ω) t + σ−(ω) e−i(ω−2Ω) t

]
~ε , (E.18)

where σ(ω), σ+(ω) and σ−(ω) are the conductivity matrices corresponding to the frequen-
cies ω, ω + 2Ω and ω − 2Ω, given by:

σ(ω) = − i
ω

(M+X+M+ + M−X−M−) ,

σ+(ω) = − i
ω

M−X−M+ , (E.19)

σ−(ω) = − i
ω

M+X+M− .

E.1 Masless limit

In the massless case the fluctuations of the embedding function decouple from those of
the gauge field δ~c. Therefore, since we are interested in computing conductivities, we can
concentrate in studying the equations for δcx and δcy. In order to write these equations in
a more convenient form, let us define the following differential operators

O1 ≡ ∂2
t + (r4 − r4

h)2(r4
c − r4)

ρ4(r4
c + r4 − 2r4

h)
∂2
r −

2(r4 − r4
h)(r4

c − r4
h)

r2(r4
c + r4 − 2r4

h)
∂t∂r +

4r(r4
c − r4

h)
(r4
c + r4 − 2r4

h)
∂t −

2(r4 − r4
h)2(r4

c + r4)
r5(r4

c + r4 − 2r4
h)

∂r ,

O2 ≡ −2∂t + 2(r4 − r4
h)(r4

c − r4
h)

ρ2(r4
c + r4 − 2r4

h)
∂r + 4r(r4 − r4

h)
r4
c + r4 − 2r4

h

. (E.20)
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Then, one can show that δcx and δcy satisfy the following system of coupled second-order
differential equations(

O1 − Ω2) δcx + ΩO2 δcy = 0 ,
(
O1 − Ω2) δcy − ΩO2 δcx = 0 . (E.21)

To decouple these equations, let us consider the following complex combinations of δcx
and δcy

η(t, r) ≡ δcx(t, r) + iδcy(t, r) , η̃(t, r) ≡ δcx(t, r) − iδcy(t, r) . (E.22)

Notice that η̃ is not the complex conjugate of η since δcx and δcy are not necessarily real.
It is straightforward to verify that the equations for η and η̃ are indeed decoupled and
given by (

O1 − Ω2) η − iΩO2 η = 0 ,
(
O1 − Ω2) η̃ + iΩO2 η̃ = 0 . (E.23)

Let us now separate variables as

η(t, r) = β(r) e−iω t , η̃(t, r) = β̃(r) e−iω t , (E.24)

for some frequency ω. Then, we obtain the following differential equations for β:

r(r4 − r4
c )(r4 − r4

h)2β′′ =−2(r4 − r4
h)
[
r8 − r4

cr
4
h + r4(r4

c − r4
h)− ir3(r4

c − r4
h)(ω − Ω)

]
β′−

−r5(ω − Ω)
[
4ir(r4

c − r4
h) + r4(ω − Ω) + (r4

c − 2r4
h)(ω − Ω)

]
β .

(E.25)

The equation for β̃ is the same, but with (ω + Ω) instead of (ω − Ω). Then, remarkably,
one can find the following general solutions

β(r) = e
i Ω−ω

4rh
Λ
(

r
rh

) [
A+B e−i

Ω−ω
2rc

Λ
(

r
rc

)]
,

β̃(r) = e
−i Ω+ω

4rh
Λ
(

r
rh

) [
Ã+ B̃ ei

Ω+ω
2rc

Λ
(

r
rc

)]
, (E.26)

where Λ is the function defined in (D.10) and A, B, Ã and B̃ are complex constants which
are determined by imposing boundary conditions both at the IR and UV. First of all, we
write the solutions we found in terms of the tortoise coordinates (τ, r∗) of (D.41). Actually,
by inspecting the expression of η obtained from (E.26) one easily demonstrates that, in
terms of the tortoise variables, it can be simply written as

η(τ, r∗) = e
Ω

4rh
Λ
(

r
rh

) [
Ae−iω(τ+r∗) + B e−2iΩ r∗ e−iω(τ−r∗)

]
(E.27)

It is now clear that η(τ, r∗) is the superposition of ingoing and outgoing waves at the
pseudohorizon. The infalling regularity condition requires that B vanishes. Then, writing
η in our original (t, r) coordinates, we have

η(t, r) = Ae
−i ω−Ω

4rh
Λ
(

r
rh

)
e−iω t . (E.28)
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We can proceed similarly with η̃ and conclude that we should require that B̃ = 0. Therefore

η̃(t, r) = Ã e
−i ω+Ω

4rh
Λ
(

r
rh

)
e−iω t . (E.29)

Therefore, we obtain that the fluctuations δcx and δcy regular at the pseudohorizon are

δcx(t, r) = 1
2
[
Ae
−i ω−Ω

4rh
Λ
(

r
rh

)
+ Ã e

−i ω+Ω
4rh

Λ
(

r
rh

) ]
e−iω t ,

δcy(t, r) = 1
2i
[
Ae
−i ω−Ω

4rh
Λ
(

r
rh

)
− Ã e

−i ω+Ω
4rh

Λ
(

r
rh

) ]
e−iω t . (E.30)

Let us now impose the boundary conditions at the UV. To fulfil the UV boundary con-
dition (E.10) we sum two solutions of the form (E.30) with frequencies ω+ = ω + Ω and
ω− = ω − Ω. Let A± and Ã± denote the constants in (E.30) with frequency ω±. From
the leading UV terms we get that, in order to satisfy the boundary condition (E.15), the
constants A± and Ã± must be related to εx and εy as:

A+ = − i
ω

(
εx + iεy) , Ã− = − i

ω

(
εx − iεy) , Ã+ = A− = 0 . (E.31)

Moreover, from the analysis of the subleading UV terms we conclude that
~β

(1)
± = M±~ε . (E.32)

By comparing (E.32) and (E.17), we get that the matrices X± are given by:

X± = iω I . (E.33)

Plugging these X± matrices in (E.20), we obtain the conductivity matrices in these massless
case, namely

σ(ω) = I , σ+(ω) = σ−(ω) = 0 , (E.34)
which is exactly the same result as the one found in [1] at zero temperature. As in the case
of the non-linear current, here also the result confirms the expectations put forward in [12].

F Linearized Minkowski embeddings and meson spectrum

To study Minkowski embeddings is rather convenient to use cartesian coordinates (ρ, w),
defined as:

ρ = u cos θ, w = u sin θ , (F.1)
where u is the isotropic coordinate defined in (A.5) and θ is the angle of (A.4). In these
coordinates the embeddings are parameterized by functions w = w(ρ) and the effective
lagrangian is given by

L∼ ρ2

(ρ2 + w2)3

[(
ρ2 + w2)2 (u4

h −
(
ρ2 + w2)2)2

|c′|2 − Ω2
(
ρ2 + w2

)4
Re{cc̄′}2 +

+
((
ρ2 + w2)2+ u4

h

)(
w′2+1

)((
u4
h −

(
ρ2+ w2)2)2− Ω2

(
ρ2+ w2

)2
|c|2
)]1/2

, (F.2)

where uh = rh/
√

2 and now the primes denote derivatives with respect to ρ. Let us con-
sider the case in which the gauge field c(ρ) vanishes, and let w̃ = w̃(ρ) denote the Minkowski
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Figure 13. Ω/m variation with rh/m. The right figure shows the endpoint of the curves. Both of
them are bivaluated between rh/m = 0.8855 to rh = 0.8897, and stop for rh/m = 0.8855.

embedding function in such case. It can be obtained by solving the equation of motion of
the Lagrange density L̃ = L(c = 0)

L̃ ∼
ρ2(u4

h − (ρ2 + w̃)2)
(ρ2 + w̃2)3

√[
(ρ2 + w̃2)2 + u2

h

] [
w̃ ′ 2 + 1

]
. (F.3)

Let us next suppose that we perturb around the c = 0 solution by making c → δc and
w → w̃ + δw in the equations of motion derived from the Lagrangian density (F.2). It is
easy to see that, at first order in the variations, the equation for δc reads

∂ρ

 ρ2
(
u4
h −

(
ρ2 + w̃2)2)

(ρ2 + w̃2)
√(

(ρ2 + w̃2)2 + u4
h

)
(w̃ ′ 2 + 1)

δc′

+

+
ρ2Ω2

√(
(ρ2 + w̃2)2 + u4

h

)
(ρ2 + w̃2)

(
u4
h − (ρ2 + w̃2)2

)√
w̃ ′ 2 + 1

δc = 0 . (F.4)

To obtain the resonant frequencies of the mesonic Floquet condensates we integrate (F.4)
and find the solutions that are regular at ρ = 0 and such that E = 0 when we reach
j = 0 after each critical driving frequency Ωc/m (see the lower plot in figure 6). This last
condition is only possible when the frequency Ω/m takes values in a discrete set (which
depends on the horizon radius rh). For rh/m = 0, i.e. at zero temperature, this sequence
of frequencies can be obtained analytically and is given by [1]

Ω
m

∣∣∣
T=0

= 2
√(

n+ 1
2

)(
n+ 3

2

)
, (n = 0, 1, 2, · · · ) , (F.5)

which are just the masses of the vector mesons of the supersymmetric D3-D5 model [45].
For rh/m 6= 0 the masses of these mesonic states decrease as rh/m grows. At some value of
rh/m the y cease to exist (see figure 13), as the mere Minkowski embedding themselves do
(see section 3). This behavior is dual to the meson melting phenomenon, as discussed in [44].
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Figure 14. Electric field and current of the critical embeddings versus driving frequency, for
different values of rh in the D3/D7 system. The structure is mainly the same as the one found for
the D3/D5 case. Here the maximum temperature for the Minkowski embeddings is slightly higher,
while the height of the lobes is suppressed faster as one increases the driving frequency.

2.4

2.6828

2.75

2.8283

0.00 0.01 0.02 0.03 0.04 0.05
0.0

0.1

0.2

0.3

0.4

3.7

3.95

4.05

4.159

0.00 0.01 0.02 0.03 0.04 0.05 0.06
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Figure 15. Electric current |j|/m3 versus electric field |E|/m2 for rh/m = 0.001. The solid curves
represent the insulator (Minkowski) phase and the dashed curves the conductive (BH) phase. The
driving frequency is fixed to some Ω/m < Ωc/m (blue), Ω/m = Ωc/m (green), Ωc/m < Ω/m <

Ωm/m (pink) and Ω/m = Ωm/m (red). The curves the left, with Ω ∼ 2.68 scan the region close to
the Floquet vector meson condensates and were obtained in [10]. On the right, for Ω ∼ 3.95 we do
the same around the first Floquet suppression point.

G Phase space structure for the D3/D7 system

It is worth mentioning that the existence of these Floquet suppression points is not re-
stricted to the D3/D5 system. In figure 14 we reproduce the lobe structure for the D3/D7
system, which is analogous to the one found in figure 3 for D3/D5. The rh → 0 limit for
the electric field plot coincides, of course, with the one studied in [10].

We find again a set of points where the induced current vanishes while the electric
field is close to its maximum value within the lobe. This seems to indicate the presence of
a range of frequencies for which, in Minkowski embeddings, |j| = 0 with |E| 6= 0, ranging
from the critical frequency of the current Ωc,j (c stands for critical) up to son maximum
value Ωm,j (m stands form meson).

The analytic computation of Ωm,j in the T = 0 limit of the D3/D7 system is more
complicated than the one corresponding to the D3/D5 intersection but it can, however, be
obtained numerically. We have found that the Floquet suppression points first appear for
Ω/m ∈ (3.950, 4.159), and plotted in figure 15 the modulus of the current and the electric
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field for frequencies close or within that range. As anticipated, the similarity with the
structure studied in [10] is quite obvious, and thus we conclude that a 3D diagram as that
of figure 7 is also found when studying D3/D7 branes.
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