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We study the holographic quantum error correcting code properties of a Sierpinski triangle-shaped
boundary subregion in AdS4=CFT3. Due to existing no-go theorems in topological quantum error
correction regarding fractal noise, this gives holographic codes a specific advantage over topological codes.
We then further argue that a boundary subregion in the shape of the Sierpinski gasket in AdS5=CFT4 does
not possess these holographic quantum error correction properties.
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I. INTRODUCTION

The exploration of gravity and quantum field theories
from an information theory perspective has had a long and
fruitful history. The study of holographic entanglement
entropy [1] eventually led to the study of holographic
quantum error correction, first defined in [2]. This develop-
ment led to a series of influential work in AdS=CFT, in
particular [3–5].
Quantum information science has been one of the most

active areas of research in the last decades. A plethora of
literature has been produced in pursuit of the physical
realization of quantum computers. The necessity for robust
information encoding that can withstand errors makes the
development of quantum error correction very important. In
this field, tremendous progress has been made in both the
development of efficient quantum error correcting codes
(QECC) and the creation of appropriate hardware candi-
dates for their physical realisation [6].
The area of topological phases of matter [7] has also been

an area of active research over the past few decades. The
combination of developments in that area and that in
quantum error correction has led to the development of
topological quantum error correcting codes [8]. While such
codes are quite efficient and powerful, a recent no-go
theorem has revealed limitations of topological quantum
error correction with regard to fractal noise [9]. Fractal

noise is a quite reasonable model for real-world exper-
imental noise, due to defects on the lattice and percolation;
see [10,11] for a detailed discussion. One of the main
theorems of [9] states,
Theorem. ZN topological order cannot survive on a

fractal embedded in a 2D Euclidean space R2.
It is therefore a natural question to ask if holographic

quantum error correction suffers from the same limitation
against fractal noise. In this paper, we answer this question
in the negative. In this article, we discuss extension of
so-called uberholography [12], a prescient study of robust-
ness of holographic QECC to fractal erasure noise in
AdS3=CFT2 to AdS4=CFT3, in particular considering the
quantum error correction properties of a boundary sub-
region in the shape of a Sierpinski triangle.
In particular, by taking a time slice in ð2þ 1Þd CFT, we

essentially have a R2 surface, and if one is able to
demonstrate bulk reconstructability of operators deep within
the bulk, then this would show that holographic QECCs do
not obey an analog to the topological QECC no-go theorem.
The organization of the paper is as follows: In Sec. II, we

give a brief background of holographic QECC, in Sec. III
we will discuss the code properties of the Sierpinski
triangle subregion, and we will conclude with some
discussion and potential future work in Sec. IV.

II. BRIEF BACKGROUND

The AdSdþ1=CFTd correspondence is the duality
between a theory of quantum gravity in dþ 1 space-time
dimensions and that of a conformal field theory living on its
boundary. Primaries in the CFT can for example be mapped
to bulk fields, using an extrapolate dictionary, and many
other entries of this holographic dictionary exist. For a
review of the AdS=CFT correspondence, refer to [13–15].
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A. Minimal surfaces and Ryu-Takayanagi formula

The Ryu-Takayanagi formula [1] relates minimal sur-
face area in the AdS bulk to entanglement entropy of
geometric subregions of the boundary CFTat leading order
is given by

SA ¼ jχAj
4GN

; ð1Þ

where χA is the minimal surface in the bulk the of the curve
∂A homologous to A on the boundary and jχAj is its area.
The Ryu-Takayanagi formula requires corrections when

the boundary subregion has sharp corners. It was found in
[16] that minimal surfaces in AdS4 with finite number
of vertices in their corresponding boundary subregions
have area

jχAj ¼
PA

a
− BA log

PA

a
−WA þ oð1Þ; ð2Þ

where a is a length-scale cutoff and PA is the perimeter of
the curve ∂A. Both WA and BA are parameters of the shape
of the region as explained in [16]. The term WA is
subleading, and thus can be neglected here, while BA is
the leading order term of B̃A, defined to be

B̃A ¼ 1

logða=PAÞ
�
jχAj −

PA

a

�
;

B̃A ¼ BA þ oð1Þ: ð3Þ

The oð1Þ terms vanish as a → 0.

B. Review of holographic codes in AdS3=CFT2

Here we will briefly review the relevant background on
holographic QECC. After the development of the general
theory of holographic QECC in [2], code properties of
holographic geometries in AdS3=CFT2 were studied in
[12]. It has been shown that bulk operators deep in the
center of AdS space can be recovered, even when the
support on the boundary region is given by a Cantor set of
measure zero. This unexpected recoverability is known as
uberholography.
As mentioned before, the boundary subregion in this

case is a Cantor set of disconnected points. The fractal
nature of the boundary subregion plays a crucial role in this
construction, and we will review precisely how this works
in this subsection.
The minimal surface of a connected region R in a 1D

boundary slice is actually the bulk geodesic χR, and its
“area” is the length of the geodesic. For a boundary region
R with length jRj, the minimal area jχRj is given by

jχRj ¼ 2L log
jRj
a

; ð4Þ

where L is the radius of curvature of the hyperbolic
geometry and a is the short-distance cutoff, that we have
encountered previously in Eq. (2).
We begin by considering a boundary region R with a

hole H, such that they are divided into three parts: two
disjoint boundary regions R1, R2, and the hole H such that

jR1j ¼ jR2j ¼
�
r
2

�
jRj; jHj ¼ ð1 − rÞjRj: ð5Þ

Now the boundary region R0 is disconnected

R0 ¼ R1 ∪ R2 ¼ RnH: ð6Þ

There are two ways to choose the bulk geodesics χ0R ¼
χR1

∪ χR2
or χ0R ¼ χR ∪ χH, with their respective entangle-

ment wedges ϵ½R0� ¼ ϵ½R1� ∪ ϵ½R2� and ϵ½R0� ¼ ϵ½R�nϵ½H�,
respectively (see Figs. 1 and 2). We will be working in the
regime where

jχR1
j þ jχR2

j > jχRj þ jχHj: ð7Þ

Saturating this bound gives us that r
2
¼ ffiffiffi

2
p

− 1. Each
component of R0 is smaller than R by r=2. Now let us
iterate making holes, until the size of each component is
reduced to the cutoff length a. Let us say, we arrived at this
configuration after m steps. This gives

a ¼
�
r
2

�
m
jRj: ð8Þ

FIG. 1. Surface χR0 ¼ χR1 ∪ χR2. Disconnected regions R1 and
R2 are drawn in red. The hole H is drawn in black. The shaded
region is the entanglement wedge ϵ½R0� ¼ ϵ½R1� ∪ ϵ½R2�.

FIG. 2. Surface χR0 ¼ χR ∪ χH . Disconnected regions R1 and
R2 are drawn in red. The hole H is drawn in black. The shaded
region is the entanglement wedge ϵ½R0� ¼ ϵ½R�nϵ½H�.
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We call the remaining region Rmin. It has 2m components
each of length a. We define the distance of the code with
operator algebra A in bulk region X to be

dðAXÞ ≤
jRminj
a

¼ 2m ¼
�jRj

a

�
α

; ð9Þ

where

α ¼ log 2
log 2=r

¼ 1

log2ð
ffiffiffi
2

p þ 1Þ ¼ 0.786; ð10Þ

so the distance is bounded above by some nα.
While uberholography gave a good characterization of

holographic codes with fractal geometries in 2D CFTs, it
remains an open question for study in the context of
holographic 3D CFTs. In particular, a further motivation
for pursuing this question is to compare the performance of
holographic and holographic-inspired codes over topologi-
cal codes, particularly in the context of the fractal noise
no-go theorem of [9], in particular, that there cannot be any
topological codes robust against fractal noise embedded on
a flat 2D plane. The ability to construct holographic codes
that do not possess this limitation is therefore of clear
interest, particularly in the context of AdS4=CFT3.

III. THE HOLOGRAPHIC SIERPINSKI TRIANGLE

The Sierpinski triangle is a fractal geometry with
Hausdorff dimension 1.585, as shown in Fig. 3.
For the case of an N-sided regular polygon of side

length l, the calculation of minimal area has some sim-
plifications [16]

PA ¼ Nl;

BA ¼ 2NbðαNÞ;

αN ¼ N − 2

N
π; ð11Þ

where bðαÞ is a regulator-independent coefficient that
depends on the opening angle α as defined in [16]. See
[17] for universality and CFT interpretation of this factor.
Consider the disconnected boundary region in Fig. 4, where
a regionH given by an equilateral triangle of side l1 (or area
Al1) has been carved out from the center of a bigger triangle
of side l0 (or area Al0), labeled R. Note that l1 ¼ l0

2
− ϵ

where ϵ > 0 is extremely small compared to l0. We will
eventually fix ϵ (to be of the order of distance cutoff a) to
satisfy the condition for error correction.
Consider the boundary subregion R0 ¼ RnH and

R0 ¼ R1 ∪ R2 ∪ R3. They represent the same boundary
subregion with different minimal surfaces in the bulk,
namely χR0

con:
¼ χR ∪ χH and χR0

disc:
¼ χR1

∪ χR2
∪ χR3

,
respectively. While one of these entanglement wedges is
disconnected, the other is connected. The minimal surface
area is the lesser of these two.
Since ϵ is very small, we consider the disconnected

wedge χR0
disc:

¼ χR1
∪ χR2

∪ χR3
has a surface area roughly

given by

jχR0 jdisc: ¼ jχR1
j þ jχR2

j þ jχR3
j

¼ 3

�
3l0
2a

− 6b

�
π

3

�
log

�
3l0
2a

��

¼ 9

2

l0
a
− 6b

�
π

3

�
log

�
27l30
8a3

�
: ð12Þ

FIG. 3. The Sierpinski triangle. The fractal is constructed by
removing triangular holes (shaded black) of decreasing size from
the big triangle. The remaining area (shaded red) is the boundary
subregion, whose measure goes to zero as m → ∞.

FIG. 4. A triangular subregionH removed from the big triangle
R, leaving three triangular subregions R1, R2, and R3 on the
boundary. R0 ¼ R1 ∪ R2 ∪ R3 is the relevant boundary subregion
of our interest. By geometric complementarity, R ¼ R0 ∪ H. In
the previous section, we denoted R (physical boundary) byΦ and
R0 (boundary subregion) by R.
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Note that in the above expression we have assumed that the
evaluated area is the same as it would be in the case ϵ ¼ 0
and it suffices for our analysis. The connected wedge
χR0

con:
¼ χR ∪ χH has a surface with area

jχR0 jcon:¼jχRjþjχHj

¼3l0
a
þ3ðl1−ϵÞ

a

−6b

�
π

3

��
log

�
3l0
a

�
þ log

�
3ðl1−ϵÞ

a

��

¼9

2

l0
a
−6b

�
π

3

�
log

�
9l20
2a2

�
−
3ϵ

a
−6b

�
π

3

�
log

�
1−

2ϵ

l0

�

¼9

2

l0
a
−6b

�
π

3

�
log

�
9l20
2a2

�
−
3ϵ

a
þ6b

�
π

3

�
2ϵ

l0
; ð13Þ

where in the last equality we have used the series expansion
log ð1þ xÞ ∼ x for x ≪ 1. The condition for reconstruct-
ability is that the connected wedge should have the minimal
area

jχRj þ jχHj ≤ jχR1
j þ jχR2

j þ jχR3
j: ð14Þ

Neglecting the ϵ=l0 term, this inequality is satisfied when

ϵ ≥ 2ab

�
π

3

�
log

3l0
4a

: ð15Þ

We notice that at leading order, the areas are equal when
ϵ ¼ 0 (This particular choice of ratios of characteristic sizes
of R and H is to leading order a phase transition in the
entanglement wedges of the Sierpinski triangle). The
comparison thus comes down to sub-leading order. We
can think of ϵ as a regulator to preserve error correction
properties.
Consider that after m such iterations, the smallest

triangle has a side of length scale a. We have removed
triangles of various side length. The smallest triangle has

lm ¼
�
1

2

�
m
l0 ¼ a; ð16Þ

where Aa is the area of the smallest triangle in the
boundary.
After m steps, we have the disconnected wedge has an

area

jχR0 jdisc: ¼ 3m
�
3l0
2ma

�
− 3m6b

�
π

3

�
log

�
3l0
2ma

�
; ð17Þ

while the area of the connected wedge is given by

jχR0 jcon: ¼ jχRjþ jχH1
jþ3jχH2

jþ32jχH3
jþ � � �þ3m−1jχHm

j

¼ jχRjþ
Xm
j¼1

3j−1jχHj
j

¼
�
3l0
a

þ
Xm
j¼1

3j−1
3l0
2ja

�
−
3ϵ

a

Xm
j¼1

3j−1

−6b

�
π

3

��
log

�
3l0
a

�
þ
Xm
j¼1

3j−1 log

�
3l0
2ja

��

−6b

�
π

3

��Xm
j¼1

3j−1 log

�
1−

2jϵ

l0

��
: ð18Þ

The construction has to satisfy the level-m analog of (14).
We notice that the first term of (17) equals the first term of
(18) as the latter is a finite GP series. The difference
between second term of (17) and third term of (18) is
equal to

−6b
�
π

3

�
log

�
1

2
m
2
ðmþ1Þ

�
3ð l0

2m
Þ

a

�1
2
ð3m−1Þ�

: ð19Þ

As we are in the regime l0=2m ≫ ϵ, we can neglect the last
term of (18) in comparison to its second term. This leaves
us with

ϵ ≥ 2ab

�
π

3

��
log

�
3l0
2ma

�
−
mðmþ 1Þ

3m
log 2

�
: ð20Þ

Dropping the second term, the critical value of ϵ for the
connected phase to dominate is

ϵ ¼ 2ab

�
π

3

�
log

�
3l0
2ma

�
: ð21Þ

As the limiting case,1 on the boundary, afterm iterations,
there are 3m triangles of side a ¼ ð1

2
Þml0 remaining. Each

such triangle has an area Aa ¼
ffiffi
3

p
4
a2. So the remaining

area is

Amin ¼ 3mAa ¼ 3m
ffiffiffi
3

p
a2

4
¼

ffiffiffi
3

p
l20

4

3m

4m
: ð22Þ

The code distance in the context of [12] is defined in
Eq. (9). Analogously in our case, the definition of distance
of the code with operator A in bulk region X is

dðAXÞ ≤
Amin

Aa
¼ 3m ¼

�
Al0

Aa

�
α

; ð23Þ

1In this limiting case, ϵ ¼ að2bðπ=3Þ log 3Þ.
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where

α ¼ log 3
log 4

¼ 1

log34
¼ 0.7925: ð24Þ

The value of α is exactly half of that of the Hausdorff
dimension. We believe that this factor 1=2 is related to the
dimensionality of the embedding space, which in this case
is 2. The fact that the connected phase is the minimal
surface for the Sierpinski triangle boundary region guar-
antees that an operator located deep in the bulk is
reconstructible even if the boundary region one has access
to is that of the Sierpinski triangle. This is an immediate
example of an instance in which the holographic quantum
error correcting code can handle fractal erasure noise,
in a way that topological QECC were proven unable to
do so in [9].

A. Sierpinski gasket as a boundary 4D CFT

The code properties of the Sierpinski triangle-shaped
boundary subregion is, however, limited to 3D CFT2 (and,
if you like, 2D CFT via uberholography). The leading term
in the expression for minimal area was a linear one, which
turned out to be equal for both candidates for the minimal
surface, paving the way for comparison at subleading order
which favored the surface χR0

con:
¼ χR ∪ χH as the minimal

surface over χR0
disc:

¼ χR1
∪ χR2

∪ χR3
. Recall that the RT

formula gives that the leading term of the minimal area in
the (dþ 1)-dimensional bulk enclosed by a D-dimensional
boundary CFT region scales as the order of co-dimension 2
of the time slice of (dþ 1)-dimensional bulk. If we
consider the Sierpinski gasket as a 4d boundary CFT, time
slices of the bulk are now four-dimensional hyperplanes
and co-dimension 2 “surfaces” of the same no longer scale
linearly. The leading order terms therefore favors the
disconnected phase, and the ability to reconstruct operators
deep in the bulk interior ceases. However, this does not
limit the code properties of other fractal geometries in
higher dimensions such as Cantor-like slicing in a special
direction or orientation as in [18].

IV. CONCLUSION

To summarize our work, we have studied the holo-
graphic QECC properties of a boundary region in the shape
of a Sierpinski triangle in AdS4=CFT3, where our boundary
region was precisely a fractal embedded in a flat two-
dimensional plane. This is relevant for mainstream quan-
tum computation because, while topological codes are the
current state of the art, holography-inspired codes seem to
have at least one advantage over them, specifically that
holographic codes can be robust against fractal noise while
topological codes cannot in three dimensions. That said, we
are working in the large N limit, which is infeasible in real
life; it is possible that subleading corrections would change
this story. We have also argued that this propertie does
not generalize to AdS5=CFT4. However, topological codes
with fractal geometries are more easily constructed in
higher dimensions, whereas holographic codes dominate
in lower dimensions. This presents an elegant conceptual
picture for when one may favor holographic or holo-
graphic-inspired QECCs over their topological cousins.
There are a few potential directions for future study.

First, one could study boundary subregions of other fractal
shapes, and ask if they also have nice bulk reconstruction
properties. Second, one can study whether other fractals in
higher dimensions have nice bulk reconstruction properties,
if they are generalized from lower dimensional analogs that
are not Sierpinski. Finally, one could build a practical
holographic-inspired QECC and run it on near-term quan-
tum hardware to experimentally demonstrate these robust-
ness properties.
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Note added.—While this article was under review, [18]
appeared where the author studied uberholography in
higher dimensions for Cantor-set like erasures.

2Note that here we ignore the trivial extension of tensoring the
Sierpinski triangle to R1, to promote them to “strips;” this would
certainly work, but is not particularly natural in fractal sense.
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