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1 Introduction

The low-energy physics of QCD at zero temperature is largely determined by two non-
perturbative phenomena, namely spontaneous chiral symmetry breaking and confinement.
The spontaneous breaking of chiral symmetry in the limit of massless quarks and the
associated appearance of massless Goldstone bosons explain the lightness of pions for
physical quark masses and their low-energy dynamics. The origin of confinement can be
seen instead in the opposite infinite-mass, “quenched” (pure gauge) limit, where a linearly
rising quark-antiquark potential forces quarks to be confined inside hadrons.

At finite temperature, confinement in SU(3) pure gauge theory is signalled by a divergent
quark free energy, inferred from the vanishing of the Polyakov loop expectation value, which
is in turn a consequence of the centre symmetry of the theory being unbroken. For finite
quark masses this symmetry is explicitly broken but only mildly, and confinement persists
at low temperatures, signalled by a disordered Polyakov loop in typical gauge configurations,
resulting in a small expectation value of the Polyakov loop. At low temperatures also
the effects of the spontaneous breaking of chiral symmetry in the massless limit are still
clearly present.

At higher temperatures QCD undergoes a rapid but analytic crossover to a phase where
chiral symmetry is approximately restored, and centre symmetry is spontaneously broken
(on top of the explicit breaking mentioned above) with the Polyakov loop getting ordered,
and quarks and gluons are liberated in the quark-gluon plasma [1, 2]. Despite the very
different origin of chiral symmetry breaking and confinement, both chiral and confining
properties change dramatically at the transition. A similar situation is found quite generally
in gauge theories at finite temperature [3–10], with deconfinement always leading to a “more
chirally symmetric” system, but the reasons for this behaviour are still not fully understood.

The QCD crossover is characterised also by another drastic change, that of the locali-
sation properties of the low-lying modes of the Euclidean Dirac operator. In fact, while
delocalised in the low-temperature phase, these modes become spatially localised on the
scale of the inverse temperature in the high-temperature phase [11–20]. More precisely,
above the transition temperature the low modes are localised up to a critical point, λc, in
the spectrum, known as “mobility edge”, beyond which they are again delocalised.1 For
a recent comprehensive review of localisation in gauge theories, the interested reader can
consult ref. [21].

The relation between localisation and deconfinement has been extensively studied in
QCD and QCD-like gauge theories in recent years. These studies have shown that these two
phenomena are indeed intimately connected, with localised modes appearing exactly at the
critical point when the phase transition is a genuine (i.e., non-analytic) transition [22–31].
A qualitative understanding of this connection is provided by the “sea/islands” picture
of localisation [17, 21, 26, 32, 33], according to which the “islands” of fluctuations in the
“sea” of ordered Polyakov loops in the deconfined phase provide “energetically” favourable
regions where the low Dirac eigenmodes can localise. This is possible since the ordering of

1Localised modes are most likely found also in the deep ultraviolet region of the spectrum (see footnote 22),
which, however, has no physical relevance.
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the Polyakov loop around 1 opens a pseudogap in the spectrum, which is then populated by
a low but finite density of localised modes. Numerical evidence for the sea/islands picture
has been provided in refs. [17, 19, 20, 30]. Remarkably, the existence of an ordered phase
is all that is required for this mechanism to be at work, so that one expects localisation
of low Dirac modes to appear in the deconfined phase of a generic gauge theory. This
has been so far confirmed in a variety of different gauge theories [22–31], supporting the
existence of a very close relation between deconfinement and the localisation properties of
low Dirac modes.

The connection with chiral symmetry breaking has received instead less attention in
recent years, despite being the original motivation for the study of localisation in gauge
theories at finite temperature [13, 14]. As is well known, chiral symmetry breaking is related
to the accumulation of near-zero Dirac modes [34]. In the “disordered medium scenario” [35]
this is explained in terms of the mixing of topological zero modes of the Dirac operator
caused by the overlapping of instantons and anti-instantons. While the “unperturbed” zero
modes are localised at finite temperature, they become delocalised after mixing, with their
eigenvalues broadening into a finite band around zero. It has been observed, however, that
in the high-temperature phase the low modes of topological origin are not sufficient to
quantitatively explain the amount of localised modes [17, 36]. The disordered medium
scenario cannot therefore fully account for localised low modes, as is made clear by the fact
that these are found also in theories without instantons [24, 30]. Nonetheless, topological
modes are very likely to play an important role, complementing the sea/islands picture
discussed above (see ref. [36]).

It is clear, in any case, that the low-lying eigenvalues of the Dirac operator and the
corresponding eigenvectors are sensitive both to confinement and chiral symmetry breaking.
The study of localisation could then lead not only to a better understanding of these two
phenomena individually, but also to clarify their connection, with localisation possibly
providing the mechanism through which deconfinement improves the chiral symmetry
properties of gauge systems with fermions.

The appearance of localised modes in the spectrum of the Dirac operator becomes
somewhat less surprising if one notices its formal analogy with the Hamiltonian of a
disordered system. Such systems are known to display eigenmode localisation since the
seminal work of Anderson [37], and have been intensely studied in the condensed-matter
community for more than sixty years (see refs. [38–43] for a review). In fact, −i /D can be
interpreted exactly as the Hamiltonian of a quantum system in the background of random
gauge fields, fluctuating according to the distribution determined by the path-integral
integration measure. With this insight, the critical features of localisation observed at
the mobility edge [44–47] are understood as a consequence of universality, and of suitable
symmetry considerations. On the other hand, the appearance of localised modes at the
band centre (i.e., near zero) only in the high-temperature phase is surprising, calling for an
explanation that is qualitatively provided by the sea/islands picture mentioned above.

The formal analogy with disordered systems, however, does not translate directly into
an analogy between physical phenomena observed on its gauge theory side and on its
condensed matter side. The reason for this is that, while energy levels and eigenvectors of a
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Hamiltonian have a direct physical meaning in condensed matter systems, it is not so for
the Dirac eigenmodes in gauge theories, where observables are obtained only after summing
over all the modes. The properties of individual points, and perhaps even of regions of the
Dirac spectrum, are then difficult to connect to phenomenology. A notable exception to
this state of affairs is the chiral limit of massless quarks, where only near-zero modes have
physical relevance. This is famously exemplified by the Banks-Casher relation [34], stating
that the chiral condensate is proportional to the density of near-zero Dirac modes in the
chiral limit. It is then possible that in this limit the localisation properties of near-zero
modes have clear observable consequences.

The investigation of this issue is made more pressing by the known consequences of
localisation for the Goldstone excitations associated with the spontaneous breaking of a
continuous symmetry [48] also at finite temperature [49–53]. It has been known for a long
time that localisation can lead to the disappearance of Goldstone modes in non-relativistic
disordered systems [54]. This phenomenon has been rediscovered more recently in the
context of relativistic lattice gauge theories at zero temperature [55], although for an
unphysical system, namely quenched SU(3) gauge theory with Wilson fermions, where
it explains the disappearance of Goldstone bosons in the supercritical region outside the
Aoki phase [56]. Localisation and the fate of quasi-particle Goldstone excitations in finite-
temperature gauge theories have been studied only recently in refs. [57, 58], reaching similar
conclusions: the presence of a finite density of localised near-zero modes possibly leads to
the disappearance of Goldstone excitations from the spectrum of the theory.

In the absence of concrete models where localised near-zero modes are explicitly shown to
be sufficiently dense, the results of refs. [57, 58] would probably be only of academic interest,
closing a loophole in the proofs of Goldstone’s theorem at zero and finite temperature.
There are, however, interesting results that could make them more than simply a curiosity.
The most intriguing one is the peak of localised near-zero modes in QCD right above
the pseudocritical temperature, observed on the lattice studying overlap spectra in the
background of HISQ configurations for near-physical quark masses [59]. While localisation
properties have not been studied further, this peak has been observed to persist also
at lower-than-physical light-quark masses [60–63]. This peak is usually ascribed to the
topological modes mentioned above, and it is argued [59–61, 64] that it should shrink in
the chiral limit as topological excitations become a non-interacting gas, so that its effects
disappear except for what concerns the anomalous U(1)A symmetry. However, it is not
clear what mechanism should lead to instantons and anti-instantons forming a free gas in
the chiral limit, and the evidence for the suggested behaviour of the peak is not conclusive.
While there is no conclusive evidence for the peak surviving as a finite peak either, the
possibility should not be excluded at this stage that a finite density of localised near-zero
modes is found in the chiral limit.

Another interesting finding is the presence of two separate phase transitions in SU(3)
gauge theory with Nf = 2 flavours of massless adjoint quarks [5, 6]. In this theory a
deconfining transition at temperature Tdec separates a low-temperature, confining phase
where chiral symmetry is broken by a non-zero chiral condensate, and an intermediate,
deconfined phase where chiral symmetry is still broken but the chiral condensate is reduced.
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A second transition at a higher temperature Tχ > Tdec separates this phase from the
high-temperature, deconfined and chirally-restored phase. In the intermediate phase one
surely finds a finite density of near-zero modes via the Banks-Casher relation; since this
phase is deconfined, the sea/islands picture suggests that these modes will be localised,
but no more or less direct evidence of this exists. Moreover, the results of refs. [5, 6]
are consistent with the presence of massless Goldstone excitations. It is possible that,
as a consequence of the relatively small volumes employed in those studies, localisation
and its consequences could not manifest yet, and so larger volumes would be needed to
make conclusive statements. However, if confirmed in larger volumes, their results do not
contradict the analysis of refs. [57, 58], and a detailed study of correlation functions would
be needed to test quantitatively the scenarios proposed there.

Although the basic approach is very similar to that of refs. [54, 55], the argument
of refs. [57, 58] requires to deal with a certain number of technical complications, mostly
originating in the loss of full O(4) invariance at finite temperature. While these complications
can be overcome, they were discussed only briefly in refs. [54, 55], not to obscure the main
points. In this paper I present the argument in full depth, providing details on the various
aspects of the calculation. Before being able to discuss the fate of Goldstone quasi-particles,
a few intermediate results need to be derived, that I believe are of interest in their own
right. These include:

• a “Euclidean” derivation of Goldstone’s theorem at finite temperature, and a generali-
sation thereof, in the case of broken non-singlet axial flavour symmetry, based on the
corresponding Ward-Takahashi identities;

• the possible appearance in the chiral limit of a 1/m divergence in the pseudoscalar-
pseudoscalar correlator, where m is the quark mass, in the presence of a finite density
of localised near-zero modes;

• the renormalisation of the spectral correlators appearing in the mode decomposition
of the pseudoscalar-pseudoscalar correlator, and the related proof that the ratio
λc/m between the mobility edge and the quark mass is a renormalisation-group
invariant quantity.

After a brief review of finite-temperature quantum field theory in section 2, and of gauge
theories in section 3, the alternative proof of Goldstone’s theorem at finite temperature is
discussed in section 4. The study of the pseudoscalar-pseudoscalar correlator is reported
in section 5, including the renormalisation of the spectral correlators and of the mobility
edge, and the fate of Goldstone excitations in the presence of localised modes. Conclusions
and discussion of future studies are found in section 6. To improve readability, most of the
technical details are relegated to appendices A to H, which include: details on analyticity and
reality properties of Euclidean correlation functions (appendix A); derivation of non-singlet
axial Ward-Takahashi identities (appendix B) and their renormalisation (appendix C);
another “Euclidean” proof of Goldstone’s theorem at finite temperature in coordinate
space (appendix D); details about the pseudoscalar-pseudoscalar correlator calculation, in
particular estimates of the contribution of exponentially localised modes (appendix E),
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the study of the chiral limit (appendix F) and the renormalisation of the corresponding
spectral correlators (appendix G), and the discussion of a bound on their large-distance
behaviour (appendix H).

2 Finite-temperature quantum field theory

In this section I review a few relevant aspects of quantum field theory at finite temperature,
mostly to set the notation. See, e.g., refs. [53, 65–71] for further details. The expectation
value of an observable O for a system in thermal equilibrium at temperature T = 1/β is
obtained as follows from the density matrix of the canonical ensemble,

〈〈Ô〉〉β = lim
V→∞

〈〈Ô〉〉β,V ≡ lim
V→∞

Tr e−βĤV Ô
Tr e−βĤV

, (2.1)

where ĤV is the finite-volume Hamiltonian, and the volume V of the system is eventually
sent to infinity in the thermodynamic limit. Here a caret denotes operators acting on the
(zero-temperature) Hilbert space of the system, and Tr the trace over this space.

For (possibly composite) local bosonic field operators φ̂1,2(x), x = (t, ~x), one defines
the thermal (real-time) two-point correlation functions

G
(+)
φ1φ2

(t, ~x) ≡ 〈〈φ̂1(t, ~x)φ̂2(0)〉〉β ≡ lim
V→∞

〈〈eitĤV φ̂1(0, ~x)e−itĤV φ̂2(0)〉〉β,V ,

G
(−)
φ1φ2

(t, ~x) ≡ 〈〈φ̂2(0)φ̂1(t, ~x)〉〉β ≡ lim
V→∞

〈〈φ̂2(0)eitĤV φ̂1(0, ~x)e−itĤV 〉〉β,V .
(2.2)

Throughout this paper, an arrow denotes collectively the three spatial components of a
four-vector. Here and everywhere else in this paper, the temporal evolution of φ̂1,2(t, ~x) in
the infinite-volume limit (also for complex time argument) is understood in the sense of the
weak limit of HV implied by eq. (2.2). Under suitable convergence conditions on the infinite-
volume limit of the temporal evolution, the correlation functions eq. (2.2) satisfy [72] the
KMS condition [73, 74]. Together with the relativistic locality condition, [φ̂i(x), φ̂j(y)] = 0
for spacelike Minkowski separation (x − y)2 < 0, this implies that G(±)

φ1φ2
(t, ~x) are the

boundary values of an analytic function Gφ1φ2(z, ~x), analytic in the cut complex plane
D ≡ C\{z | |Re z| ≥ |~x|, Im z = nβ, n ∈ Z}, and furthermore periodic in the imaginary
z direction with period β, Gφ1φ2(z + inβ, ~x) = Gφ1φ2(z, ~x) (see refs. [53, 67–69]). The
correlation functions G(±)

φ1φ2
(t, ~x) for t ∈ R are then recovered as

G
(+)
φ1φ2

(t, ~x) = Gφ1φ2(t− iε, ~x) ,

G
(−)
φ1φ2

(t, ~x) = Gφ1φ2(t+ iε, ~x) = Gφ1φ2(t− i(β − ε), ~x) ,
(2.3)

where the limit ε→ 0+ at the end of the calculation is understood.
In particular, G(±)

φ1φ2
can be obtained by analytic continuation from the Euclidean

correlation function Gφ1φ2(t, ~x),

Gφ1φ2(t, ~x) ≡ 〈〈θ(t)φ̂1(−it, ~x)φ̂2(0) + θ(−t)φ̂2(0)φ̂1(−it, ~x)〉〉β
≡ 〈〈T{φ̂E1(t, ~x)φ̂E2(0)}〉〉β ,

(2.4)

– 5 –
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where φ̂E1,2(t, ~x) ≡ φ̂1,2(−it, ~x), and T stands for time-ordering in Euclidean (imaginary)
time t. This function is the restriction to real z of Gφ1φ2(z, ~x) = Gφ1φ2(−iz, ~x), analytic in
the cut complex plane iD, and periodic in the real direction, Gφ1φ2(z + nβ, ~x) = Gφ1φ2(z, ~x).
One then has

G
(+)
φ1φ2

(t, ~x) = Gφ1φ2(ε+ it, ~x) , G
(−)
φ1φ2

(t, ~x) = Gφ1φ2(−ε+ it, ~x) . (2.5)

In particular, the thermal expectation value of the commutator [φ̂1(x), φ̂2(0)] equals the
discontinuity of Gφ1φ2 along the imaginary axis (corresponding to real time),

〈〈[φ̂1(t, ~x), φ̂2(0)]〉〉β = G
(+)
φ1φ2

(t, ~x)−G(−)
φ1φ2

(t, ~x) = Gφ1φ2(ε+ it, ~x)− Gφ1φ2(−ε+ it, ~x)

= Gφ1φ2(ε+ it, ~x)− Gφ1φ2(β − ε+ it, ~x) ,
(2.6)

where t ∈ R and the second line follows from periodicity. As a further consequence of
periodicity in Euclidean time, Gφ1φ2(t, ~x) with t ∈ R can be written as a mixed Fourier
sum/Fourier transform as follows,

Gφ1φ2(t, ~x) = 1
β

∑
n

∫
d3k

(2π)3 e
−i(ωnt+~k·~x)G̃φ1φ2(ωn, ~k) , (2.7)

where ωn are the bosonic Matsubara frequencies, ωn = 2πn
β , n ∈ Z, and

G̃φ1φ2(ωn, ~k) ≡
∫ β

0
dt

∫
d3x ei(ωnt+

~k·~x)Gφ1φ2(t, ~x) ≡
∫
β
d4x ei(ωnt+

~k·~x)Gφ1φ2(t, ~x) , (2.8)

with the subscript β denoting compactification of the temporal direction.
A central role in this paper is played by the spectral function,

ρ̃φ1φ2(ω,~k) ≡
∫
d4x ei(ωt−

~k·~x)〈〈
[
φ̂1(t, ~x), φ̂2(0)

]
〉〉β

=
∫
d4x ei(ωt−

~k·~x) (Gφ1φ2(ε+ it, ~x)− Gφ1φ2(−ε+ it, ~x)) ,
(2.9)

and by the closely related retarded and advanced propagators,

r̃φ1φ2(ω,~k) ≡ i
∫
d4x ei(ωt−

~k·~x)θ(t)〈〈
[
φ̂1(t, ~x), φ̂2(0)

]
〉〉β ,

ãφ1φ2

(
ω,~k

)
≡ −i

∫
d4x ei(ωt−~k·~x)θ (−t) 〈〈

[
φ̂1(t, ~x), φ̂2(0)

]
〉〉β .

(2.10)

These are the boundary values of analytic functions, analytic respectively for Imω > 0 and
Imω < 0, from which one obtains the spectral function as follows,

ρ̃φ1φ2(ω,~k) = −i
(
r̃φ1φ2

(
ω + iε,~k

)
− ãφ1φ2

(
ω − iε,~k

))
. (2.11)

More directly, one can use the analytic continuation relations between the retarded and
advanced propagators and the Fourier coefficients of the Euclidean correlator, G̃φ1φ2(ωn,~k),
to reconstruct r̃φ1φ2 and ãφ1φ2 , and so ρ̃φ1φ2 , by analytic interpolation in the sense of
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Carlson’s theorem, under reasonable hypotheses of moderate asymptotic growth in the
complex time variable [68, 69]. For n 6= 0 one has [68–71]

G̃φ1φ2

(
ωn, ~k

)
=


r̃φ1φ2

(
iωn,−~k

)
, n > 0 ,

ãφ1φ2

(
iωn,−~k

)
, n < 0 .

(2.12)

These results apply also to the case n = 0 if the spectral function is regular at the origin. If
instead there is a transport peak, i.e., if

ρ̃φ1φ2

(
ω,~k

)
= 2πAφ1φ2

(
~k
)
ωδ (ω) +Bφ1φ2

(
ω,~k

)
, (2.13)

with Bφ1φ2 regular at ω = 0, one has [70, 71]

G̃φ1φ2

(
0, ~k

)
− r̃φ1φ2

(
iε,−~k

)
= G̃φ1φ2

(
0,~k

)
− ãφ1φ2

(
−iε,−~k

)
= Aφ1φ2

(
−~k
)
. (2.14)

Further details are given in appendix A.
Time-ordered Euclidean field correlators at finite temperature can be expressed in

terms of a path integral (see, e.g., refs. [65, 66]),

〈〈T
{
φ̂E1 (x1) . . . φ̂En (xn)

}
〉〉β = 〈φ1 (x1) . . .φn (xn)〉β ≡

∫
β [Dχ] e−SE [χ]φ1 [χ(x1)] . . .φn [χ(xn)]∫

β [Dχ] e−SE [χ] ,

(2.15)
where SE is a suitable Euclidean action, and the path integration

∫
β[Dχ] is over sets of

bosonic (c-number) and fermionic (Grassmann) field variables that are respectively periodic
or antiperiodic in the time direction. Thermal correlation functions are then reconstructed
by means of analytic continuation in the time coordinate according to eq. (2.5).

In the axiomatic setting, the analyticity properties of the real-time correlation functions
follow from the general properties expected of quantum fields, and so the properties of the
imaginary-time correlators are a consequence of the basic assumptions (see, e.g., ref. [68]).
If one instead takes the Euclidean theory defined by eq. (2.15) as the starting point, these
properties become necessary conditions that the theory must satisfy in order to be able to
ultimately obtain a local relativistic quantum field theory. An example is discussed below
in section 4.2.

3 Gauge theories with Dirac fermions

In this section I briefly describe gauge theories with Dirac fermions quantised in the
path-integral approach. The discussion is quite general, and applies to four-dimensional
gauge theories of compact Lie groups, minimally coupled to Nf degenerate “flavours” of
Dirac fermions of mass m, transforming in some representation of the group, at finite
temperature and in the imaginary-time formalism. The fermionic part of the Euclidean
action is SF =

∫
β d

4xLF, with LF the following Euclidean Lagrangean density,

LF = ψ̄( /D +m)ψ , /D = γµDµ , Dµ = ∂µ + igBµ . (3.1)

Here ψ and ψ̄ denote collectively two independent sets of Grassmann variables ψfηc(x)
and ψ̄fηc(x), with flavour index f = 1, . . . , Nf , “Dirac” index η = 1, . . . , 4, and “colour”
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index c = 1, . . . , Nc corresponding to the gauge group representation. In eq. (3.1) and in
the following, summation over the suppressed discrete indices, as well as over repeated
explicit indices, is understood, unless explicitly stated otherwise. The (generally non-
Abelian) Hermitean gauge fields Bµ(x) = B†µ(x) read Bµ = Ba

µT
a, with Ba

µ real fields and
T a = T a† a set of Nc×Nc matrices providing a representation of the gauge group generators.
Both Bµ and the Dirac operator /D in the background of the gauge field act trivially on
flavour space. The Euclidean Hermitean gamma matrices γµ = γ†µ, µ = 1, . . . , 4, satisfy
the anticommutation relations {γµ, γν} = 2δµν ; the fifth gamma matrix γ5 ≡ −γ1γ2γ3γ4
satisfies γ5 = γ†5, γ2

5 = 1, and {γ5, γµ} = 0.
Expectation values are formally defined in terms of a path integral as

〈O〉β ≡ Z−1
β

∫
β

[
DB

]
e−SG

[
B
] ∫

β

[
Dψ

][
Dψ̄

]
e−SF

[
ψ,ψ̄,B

]
O
[
ψ, ψ̄, B

]
,

Zβ ≡
∫
β

[
DB

]
e−SG

[
B
] ∫

β

[
Dψ

][
Dψ̄

]
e−SF[ψ,ψ̄,B] .

(3.2)

Following for definiteness the Faddeev-Popov-DeWitt gauge-invariant approach as in ref. [75],
SG is the gauge part of the action, including the usual Yang-Mills action and a gauge-fixing
term, while the Faddeev-Popov determinant necessary to restore gauge invariance is included
in the integration measure

∫
β [DB].2 Here the subscript β denotes the periodicity condition

Bµ(β, ~x) = Bµ(0, ~x) to be imposed on the gauge fields. Integration over the fermion fields
is done in the sense of Berezin integration of Grassmann variables, over field configurations
satisfying the antiperiodicity conditions ψ(β, ~x) = −ψ(0, ~x) and ψ̄(β, ~x) = −ψ̄(0, ~x), denoted
again by the subscript β. Since the fermionic action is quadratic, one formally has∫

β

[
Dψ

][
Dψ̄

]
e−SF

[
ψ,ψ̄,B

]
= Det

(
/D[B] +m

)
, (3.3)

where Det denotes the functional determinant, and the dependence on the gauge fields has
been made explicit. In general, after integrating out the fermion fields one is left with

〈O〉β = Z−1
β

∫
β
[DB] e−SG[B]Det( /D[B] +m)OG[B] ≡ 〈OG〉β ,

OG
[
B
]
≡
(
Det

(
/D
[
B
]

+m
))−1

∫
β

[
Dψ

][
Dψ̄

]
e−SF

[
ψ,ψ̄,B

]
O
[
ψ, ψ̄, B

]
,

(3.4)

with OG built out of gauge fields and of fermionic propagators in a fixed gauge-field
background, ( /D[B] +m)−1.

3.1 Dirac eigenmodes and localisation

The eigenmodes of the Euclidean Dirac operator play an essential role in this paper. The
Dirac operator is anti-Hermitean, with purely imaginary eigenvalues. At finite temperature

2Strictly speaking, the gauge-invariant continuum integration measure is not well defined beyond pertur-
bation theory due to the existence of Gribov copies [76, 77]. This issue is dealt with by first formulating
the theory in a gauge-invariant way on a lattice and taking eventually the continuum limit. The symbol∫
β
[DB] should then be understood as a shorthand for this procedure. Here I prefer to avoid the technical

complications of the lattice formulation for the sake of clarity, as they pose no obstacle to the development
of the main argument (see section 3.5 for further comments).
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and in a finite spatial box of volume V , imposing periodic spatial boundary conditions on
the gauge fields to preserve translation invariance, these eigenvalues form a discrete set
{iλn}, λn ∈ R, with corresponding eigenvectors ψn, /Dψn = iλnψn, obeying antiperiodic
boundary conditions in the temporal direction and periodic boundary conditions in the
spatial directions. Since the Dirac operator is trivial in flavour space, one treats the
eigenmodes as carrying only Dirac and colour indices on top of the spacetime coordinate,
ψn = ψn ηc(x). For future utility I introduce the following notation,

(ψn′(x),Γψn(x)) ≡
∑

η′,c′,η,c

ψn′ η′c′(x)∗Γη′c′ ηcψn ηc(x) , ‖ψn(x)‖2 ≡ (ψn(x), ψn(x)) ,

(3.5)
i.e., the scalar product (·, ·) is restricted to Dirac and colour space, while the coordinate
x is kept fixed. Throughout this paper I will always assume that Dirac modes have been
orthonormalised, i.e., ∫

β
d4x (ψn′(x), ψn(x)) = δn′n . (3.6)

Due to the chiral property {γ5, /D} = 0, nonzero eigenvalues appear in pairs ±iλn, with
corresponding eigenvectors ψn and γ5ψn.3 Moreover, one can choose the zero modes ψn0 ,
/Dψn0 = 0, to have definite chirality, i.e., to obey γ5ψn0 = ξn0ψn0 with ξn0 = ±1. For
the fermionic determinant, eq. (3.3), one formally has in terms of the Dirac eigenvalues
Det( /D+m) = ∏

n(iλn +m)Nf = mN0Nf
∏
n,λn>0(λ2

n +m2)Nf , with N0 the number of exact
zero modes.

Up to an unimportant factor of i, /D[B] for a fixed background field can be seen as the
Hamiltonian of a four-dimensional quantum-mechanical system evolving in an additional,
fictitious time. This system is effectively three-dimensional due to the compactification of the
temporal direction. Moreover, for purely fermionic observables O the corresponding OG in
eq. (3.4) can be expressed in terms of the eigenvalues and eigenvectors of this Hamiltonian,
with the remaining integration being in practice a (gauge-invariant) average over the
background gauge fields. This is formally identical to the ensemble average of a disordered
system with (Hermitean) Hamiltonian −i /D[B] with energy levels λn[B] and eigenvectors
ψn[B], with gauge field configurations providing different realisations of disorder, distributed
according to the probability distribution determined by the path-integral measure after
fermions have been integrated out, eq. (3.4).

It is well known that for disordered systems the eigenmodes can become localised, as
was first realised by Anderson in his seminal paper [37]. Typically, localised and delocalised
modes are found in disjoint spectral regions, separated by so-called mobility edges where
a second-order phase transition takes place, known as Anderson transition. The subject
of Anderson localisation and Anderson transitions has been and still is a very active area
of research in condensed matter physics (see refs. [38–43] for a review), and has recently
become of interest also in high-energy physics after the observation of localised modes in
the high-temperature phase of gauge theories on the lattice [11–33, 36, 44–47].

3In case of degenerate eigenvalues one can always choose suitable eigenvectors that satisfy this relation.
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For the purposes of this paper, very little information is needed about localisation,
besides the generic characterisation of localised and delocalised modes. Qualitatively,
localised modes are supported essentially only in a finite spatial region whose size remains
basically unchanged as the system size is increased. Delocalised modes, instead, extend
over the whole system and keep spreading out as the system size grows, although not
necessarily at the same rate. More precisely, the localisation properties of modes in a given
spectral region are determined quantitatively by the scaling with the volume of the inverse
participation ratio,

IPRn =
∫
β
d4x ‖ψn(x)‖4 , (3.7)

averaged over gauge configurations (i.e., realisations of disorder). Notice that since γ2
5 = 1,

one has that ‖ψn(x)‖2 = ‖γ5ψn(x)‖2, and so ψn and γ5ψn have the same IPR. Working in
a box of fixed temporal size β and varying spatial volume V , if modes in the given spectral
region are typically non-negligible only in a spatial region of size O(V α) one finds

IPR ∼ V α (V −α)2 = V −α (3.8)

where the exponent α is the fractal dimension of the modes.4 For localised modes α = 0,
while delocalised modes have 0 < α ≤ 1.5

3.2 Flavour symmetries and Ward-Takahashi identities

Besides local gauge symmetry, the fermionic action is manifestly invariant under a set
of spacetime symmetries, namely translations, spatial rotations, and reflections through
the hyperplanes orthogonal to the temporal and spatial directions. In the context of
the Faddeev-Popov-De Witt approach, these are manifest also in the gauge action if
one uses a covariant gauge, such as Lorenz gauge. The fermionic action also enjoys
flavour symmetries related to transformations in the internal flavour space. In particular,
the fermionic Lagrangean is invariant under a group of U(Nf ) = U(1)B × SU(Nf )V
transformations, where U(1)B corresponds to a common change of phase of all the different
flavours, and SU(Nf )V corresponds to special unitary rotations of the flavour components.
For massless fermions, m = 0, the two chiral components of the fermionic fields are decoupled,
and the symmetry is further enhanced to the chiral symmetry U(Nf )L × U(Nf )R =
U(1)B × U(1)A × SU(Nf )L × SU(Nf )R. The SU(Nf )L × SU(Nf )R factor contains the
subgroups of SU(Nf )V (vector) and SU(Nf )A (axial) transformations, given respectively by

ψ → eiαat
a
ψ , ψ̄ → ψ̄e−iαat

a
, αa ∈ R , (3.9)

ψ → eiβat
aγ5ψ , ψ̄ → ψ̄eiβat

aγ5 , βa ∈ R , (3.10)
4While other definitions of fractal dimension can be adopted (e.g., the “infrared dimension” of refs. [78–80]),

it is the one obtained from the IPR that turns out to be important for our purposes (see section 5.2).
5Since

1 =
∣∣∣∣∫
β

d4x ‖ψn(x)‖2
∣∣∣∣2 ≤ ∫

β

d4x ‖ψn(x)‖4
∫
β

d4x 1 = βV · IPRn ,

one necessarily has 1− α ≥ 0. In the condensed matter literature the term “delocalised” is usually reserved
to the case α = 1, while modes with 0 < α < 1 are called “critical”. For our purposes there is no need to
distinguish these two cases (see section 5.2).
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where ta, a = 1, . . . N2
f − 1 are the Hermitean and traceless generators of SU(Nf ), obeying

[ta, tb] = ifabctc with totally antisymmetric and real structure constants fabc. Normalisation
is chosen so that fabcfabd = Nfδ

cd and tr tatb = 1
2δ
ab. The U(1)B and SU(Nf )V symmetries

are expected not to break spontaneously, also in the massless limit [81]. Spontaneous
breaking of the SU(Nf )A symmetry is instead possible. The U(1)A symmetry is known to
be anomalous [82, 83] due to non-invariance of the functional integration measure [84, 85]
and will not be considered in this paper.

The symmetry under the transformations eq. (3.10) implies an infinite set of Ward-
Takahashi identities [86, 87]. Their derivation is rather standard, and is briefly reviewed
for completeness in appendix B for the case at hand; here I only report the results, which
are also not new (see, e.g., ref. [88] for Nf = 2). Defining the infinitesimal, x-dependent
transformation

δAψ(x) = iεa(x)taγ5ψ(x) , δAψ̄(x) = iεa(x)ψ̄(x)taγ5 , (3.11)

one obtains for any observable O the identity〈(
−∂µAaµ(x) + 2mP a(x)

)
O
〉
β

=
〈
−i δAO
δεa(x)

〉
β

, (3.12)

where Aaµ are the flavour non-singlet axial-vector currents, and P a are the flavour non-singlet
pseudoscalar densities,

Aaµ(x) ≡ ψ̄(x)γµγ5t
aψ(x) , P a(x) ≡ ψ̄(x)γ5t

aψ(x) . (3.13)

Of particular interest here is the case O = P b(y). A straightforward calculation leads to

− ∂µ〈Aaµ(x)P b(0)〉β + 2m〈P a(x)P b(0)〉β = δ(4)(x)δabΣ , (3.14)

where Σ is the chiral condensate, defined by 〈ψ̄fψg〉β ≡ δfgΣ, which follows from vector
flavour symmetry. The four-dimensional Dirac delta in eq. (3.14) is understood to be
periodic in time,

δ(4)(x) = δP (t)δ(3)(~x) , δP (t) =
∞∑

n=−∞
δ(t− nβ) . (3.15)

Exploiting vector flavour symmetry further, one finds

〈Aaµ(x)P b(0)〉β ≡ δabGAP µ(x) , 〈P a(x)P b(0)〉β ≡ δabGPP (x) , (3.16)

and eq. (3.14) can be recast as

− ∂µGAP µ(x) + 2mGPP (x) = δ(4)(x)Σ . (3.17)

The momentum-space version of this identity, obtained through a Fourier transform [see
eq. (2.8)], reads

iωnG̃AP 4
(
ωn,~k

)
+ i~k · ~̃GAP

(
ωn, ~k

)
+ 2mG̃PP

(
ωn, ~k

)
= Σ . (3.18)
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3.3 Time-reflection symmetry

The fermionic action is invariant under the following “time reflection” transformation,

ψ (t, ~x)→ γ4γ5ψ (β − t, ~x) , ψ̄ (t, ~x)→ ψ̄ (β − t, ~x) γ5γ4 ,

Bµ (t, ~x)→ ζµBµ (β − t, ~x) ,
(3.19)

with ζ4 = −1 and ζ1,2,3 = 1. No summation over µ is implied here and in the following equa-
tions. Using the Faddeev-Popov-De Witt procedure in a covariant gauge, the gauge action
is also invariant under the transformation eq. (3.19), so this leaves the full action invariant.
Under time reflection one has for the pseudoscalar densities and axial-vector currents

P a(t, ~x)→ −P a(β − t, ~x) , Aaµ(t, ~x)→ −ζµAaµ(β − t, ~x) . (3.20)

For the correlators GAP µ and GPP [see eq. (3.16)] one then finds

GAP µ(t, ~x) = ζµ〈Aaµ(β − t, ~x)P a(β,~0)〉β = ζµ〈Aaµ(β − t, ~x)P a(0,~0)〉β = ζµGAP µ(β − t, ~x) ,
(3.21)

GPP (t, ~x) = 〈P a(β − t, ~x)P a(β,~0)〉β = 〈P a(β − t, ~x)P a(0,~0)〉β = GPP (β − t, ~x) ,
(3.22)

where antiperiodicity of ψ and ψ̄ has been used to replace P a(β,~0) → P a(0,~0), and no
summation over a is implied. The symmetry properties of the coordinate-space correlators
translate into the following relations for the momentum-space correlators,

G̃AP µ(ωn,~k) = ζµG̃AP µ(−ωn,~k) , G̃PP (ωn, ~k) = G̃PP (−ωn, ~k) . (3.23)

3.4 Analytic continuation

Since they will be used repeatedly, it is convenient to summarise the relevant analytic
continuation relations needed to reconstruct the real-time, Minkowskian thermal expectation
values from the imaginary-time, Euclidean correlation functions. The relevant Minkowskian
operators are the axial-vector current and pseudoscalar density operators,

Âaµ(x) ≡ ¯̂
ψ(x)γ̃µγ̃5t

aψ̂(x) , P̂ a(x) ≡ ¯̂
ψ(x)γ̃5t

aψ̂(x) . (3.24)

Here γ̃µ, µ = 0, . . . , 3 are the Minkowskian gamma matrices, obeying {γ̃µ, γ̃ν} = 2ηµν
with ηµν = diag(1,−1,−1,−1), and γ̃5 = iγ̃0γ̃1γ̃2γ̃3. These are related with the Euclidean
gamma matrices γµ and γ5 as γ4 = γ̃0, γj = −iγ̃j , and γ5 = γ̃5. In eq. (3.24), ¯̂

ψ = ψ̂†γ̃0, as
usual. Using the general analytic continuation relation eq. (2.5), one finds that Euclidean
and Minkowskian two-point correlation functions are related as follows,

〈〈Âa0(t, ~x)P̂ a(0)〉〉β = GAP 4(ε+ it, ~x) , 〈〈P̂ a(0)Âa0(t, ~x)〉〉β = GAP 4(−ε+ it, ~x) ,
〈〈Âaj(t, ~x)P̂ a(0)〉〉β = iGAP j(ε+ it, ~x) , 〈〈P̂ a(0)Âaj(t, ~x)〉〉β = iGAP j(−ε+ it, ~x) ,
〈〈P̂ a(t, ~x)P̂ a(0)〉〉β = GPP (ε+ it, ~x) , 〈〈P̂ a(0)P̂ a(t, ~x)〉〉β = GPP (−ε+ it, ~x) .

(3.25)
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Here and in the rest of this subsection no summation over the flavour index a is implied.
Of particular interest is the reconstruction of the spectral function, eq. (2.9), through that
of the retarded and advanced propagators, eq. (2.10). In this work I need the spectral
functions ρ̃A0aPa and ρ̃PaPa , that are independent of a thanks to vector flavour invariance.
For brevity I will denote them as follows,

c̃
(
ω,~k

)
≡ ρ̃A0aPa

(
ω,~k

)
, c̃P

(
ω,~k

)
≡ ρ̃PaPa

(
ω,~k

)
. (3.26)

These spectral functions can be obtained by analytic continuation using directly eq. (3.25)
[see eq. (2.9)], or from the retarded and advanced propagators, which in turn can be
reconstructed by analytic interpolation from the Fourier coefficients of the Euclidean
correlator [68, 69]. Setting for brevity (µ = 0, . . . , 3)

r̃µ
(
ω,~k

)
≡ r̃AµaPa

(
ω,~k

)
, ãµ

(
ω,~k

)
≡ ãAµaPa

(
ω,~k

)
,

r̃P
(
ω,~k

)
≡ r̃PaPa

(
ω,~k

)
, ãP

(
ω,~k

)
≡ ãPaPa

(
ω,~k

)
,

(3.27)

one has from eq. (2.12) that for n 6= 0

G̃AP 4
(
ωn,~k

)
= r̃0

(
iωn,−~k

)
, n > 0 , G̃AP 4

(
ωn, ~k

)
= ã0

(
iωn,−~k

)
, n < 0 ,

iG̃AP j
(
ωn,~k

)
= r̃j

(
iωn,−~k

)
, n > 0 , iG̃AP j

(
ωn, ~k

)
= ãj

(
iωn,−~k

)
, n < 0 ,

G̃PP
(
ωn,~k

)
= r̃P

(
iωn,−~k

)
, n > 0 , G̃PP

(
ωn, ~k

)
= ãP

(
iωn,−~k

)
, n < 0 .

(3.28)
These relations hold also for n = 0 if a transport peak is absent.

3.5 Regularisation and renormalisation

The discussion so far has been entirely formal, ignoring the ill-defined nature of path
integrals. As is well known, these require a suitable regularisation to become mathematically
well defined, and an appropriate renormalisation procedure to remove the divergences
appearing when the regularisation is removed. Since regularisation usually breaks some
of the symmetries, their recovery after renormalisation is carried out is not guaranteed
in the general case, and this can spoil the formal results discussed above. In particular,
Ward-Takahashi identities will be violated in the regulated theory if the regularisation
breaks the corresponding symmetry, and it is not obvious that they can be recovered in the
same form after renormalisation.

Before drawing any conclusion from the symmetry properties discussed in the previous
subsections, it is important to make sure that they can be enforced in the finite, renormalised
theory. The best way to enforce a symmetry is obviously to choose a regularisation that does
not break it, in which case renormalisation will not spoil it. The best known non-perturbative
regularisation of path integrals is the lattice regularisation (see, e.g., refs. [89–91]), which
is especially convenient when dealing with gauge theories, since it allows one to mantain
manifest gauge invariance. In the lattice approach, the formal functional integral is replaced
with a well-defined finite-dimensional integral over fields defined only on the discrete elements
of a finite lattice, eventually taking the limits of infinite volume and zero lattice spacing.
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This approach clearly breaks most of the spacetime symmetry; using a hypercubic lattice
with periodic boundary conditions one can still retain symmetry under translations by
multiples of the lattice spacing, a discrete subgroup of the SO(4) group, and reflections [so
that eqs. (3.21) and (3.22) hold also in the regulated theory]. Nonetheless, for asymptotically
free theories it is widely believed, and supported by a vast amount of numerical evidence,
that a continuum limit exists (after a suitable renormalisation procedure) where spacetime
symmetries are fully restored.

While vector flavour symmetry can be implemented exactly on the lattice, the axial
flavour symmetry is problematic due to the known difficulties of implementing exact chiral
symmetry for Dirac operators discretised on the lattice [92–94]. Nonetheless, for lattice Dirac
operators satisfying the Ginsparg-Wilson relation [95], such as the fixed-point action [96, 97],
domain-wall fermions [98, 99], and overlap fermions [100–103], one has an exact chiral-
type symmetry that holds on any finite lattice [104], and that reduces to the usual chiral
symmetry in the formal continuum limit. This implies exact Ward-Takahashi identities for
suitably defined lattice currents and densities, that hold for any lattice spacing and tend
to the continuum identities as the spacing goes to zero [104–107], and guarantee that the
desired symmetry can be enforced in the renormalised theory. In particular, renormalised
continuum correlation functions will satisfy the continuum Ward-Takahashi identities — of
course, assuming that such a limit exists.

Taking the continuum limit and the associated restoration of spacetime symmetries for
granted, one can use the continuum Ward-Takahashi identities as fully meaningful relations
between renormalised quantities, and ignore where they came from. This will suffice for the
discussion of the finite-temperature version of Goldstone’s theorem in section 4. On the
other hand, when studying the pseudoscalar-pseudoscalar correlator in detail in section 5
one has to keep track of the effects of renormalisation. Instead of dealing with the technical
complications of the lattice approach, it is simpler to discuss the issue of renormalisation
directly in the continuum limit. In fact, if this limit exists, then a renormalised theory with
the desired symmetries can also be obtained directly in the continuum, starting from a
regularised theory where the representation of fermionic observables in terms of sums over
the eigenmodes of the continuum Dirac operator is cut off symmetrically at some ultraviolet
scale Λ.6 Ward-Takahashi identities are not exact anymore in this case, but their violations
should disappear after appropriate renormalisation and removal of the cutoff.

A detailed discussion of the renormalisation issues related to the Ward-Takahashi
identity eq. (3.14), in continuum language, is provided in appendix C. As mentioned above,
using Ginsparg-Wilson fermions [95] in the lattice regularisation of the theory one can use
the lattice Ward-Takahashi identities implied by the exact lattice chiral symmetry [104] to
show nonperturbatively [105] that m renormalises only multiplicatively; that the composite
operators Aaµ require no renormalisation after the usual mass and coupling renormalisations
have been carried out; and that the multiplicative renormalisation constants ZP and ZS of
the non-singlet pseudoscalar and singlet scalar densities satisfy ZP = ZS = Z−1

m with Zm
the mass renormalisation constant. Combined with the properties of bilinear correlators

6A suitable regularisation of the integration over gauge fields is also required. However, this does not
affect the argument.
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under the “R5-parity” transformation [108], the lattice chiral symmetry implies that all
additive divergent contact terms drop from the lattice analogue of eq. (3.14) in the chiral
limit. Based on the argument given above, it is then safe to use the continuum identity
eq. (3.14) in its regularised version to discuss renormalisation issues in a simpler continuum
language. After renormalisation, eq. (3.14) in its renormalised version can be used as the
starting point for an alternative derivation of the finite temperature version of Goldstone’s
theorem [49–53]. While renormalisation is an essential part of the construction of the theory
itself, and deserves a careful discussion as such, it will become clear that it plays a limited
role in the arguments of this paper concerning the chiral limit, which is in fact dominated
by the low-end, infrared part of the Dirac spectrum.

4 Goldstone’s theorem at finite temperature

In this section I discuss an alternative derivation of the finite temperature analogue of
Goldstone’s theorem [49–53], including a slight but useful generalisation, based on the
Ward-Takahashi identity eq. (3.14). In this section all Euclidean quantities are understood
to be renormalised.

4.1 Review of the standard derivation

For quantum field theories at finite temperature, the analogue of Goldstone’s theorem [48]
proved in refs. [49–52] states that the spontaneous breaking of a continuous symmetry
in a theory invariant under spatial translations leads to a gapless spectrum of “quasi-
particle” excitations (see ref. [53] for a detailed discussion and a full list of references). A
heuristic proof of this “Goldstone’s theorem at finite temperature” is based on the following
observations. Let Ĵµ be the conserved Noether current associated with the symmetry,
∂µĴ

µ = 0, and let
Q̂V (t) ≡

∫
V
d3x Ĵ0(t, ~x) , (4.1)

be the corresponding charge, regularised by restricting spatial integration to a finite volume
V . If a nonzero expectation value is found for the commutator

lim
V→∞

〈〈
[
iQ̂V (0), Ô

]
〉〉β = b 6= 0 , (4.2)

for some local observable O, then current conservation and relativistic locality imply

lim
V→∞

〈〈
[
iQ̂V (t), Ô

]
〉〉β = b , ∀t . (4.3)

Taking the Fourier transform (in the sense of distributions) of eq. (4.3) one then finds

lim
~k→0

iρ̃J0O

(
ω,~k

)
= lim

~k→0

∫
d4x ei(ωt−~k·~x)〈〈

[
iĴ0 (t, ~x) , Ô

]
〉〉β = 2πbδ(ω) , (4.4)

from which one infers the existence of massless quasi-particle excitations, i.e., such that
their energy vanishes and their lifetime becomes infinite in the zero-momentum limit.7 I
will refer to these as Goldstone excitations or quasi-particles throughout this paper.

7The same conclusions hold more generally for non-relativistic systems, replacing the requirement of
relativistic locality with Swieca’s condition [51] for the commutator of the spatial part of the current with
the relevant observable (see ref. [53]).
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In the case at hand, the relevant symmetry is the non-singlet axial part of chiral symme-
try. After analytic continuation to Minkowski spacetime, eq. (3.12) expresses conservation of
the non-singlet axial currents Âaµ in the chiral limit m→ 0, under the usual assumption that
the second term on the left-hand side can be dropped. Equations (3.14) and (3.17) further
show that axial flavour symmetry is spontaneously broken, in the sense of eq. (4.2), if Σ 6= 0.
In fact, integrating eq. (3.17) in the m→ 0 limit over space and over the infinitesimal time
interval [−ε, ε] one gets as ε→ 0,

Σ∗ = −
∫
d3x [GAP 4 (ε, ~x)− GAP 4 (−ε, ~x)] =

∫
d3x 〈〈

[
iÂa0(0, ~x), iP̂ a(0)

]
〉〉β , (4.5)

where no summation over a is implied and Σ∗ is the chiral condensate in the chiral limit.
Here I used continuity of

∫
d3x ~∇· ~GAP (t, ~x) at t = 0,8 and the analytic continuation relations

eq. (3.25). Clearly, eq. (4.5) is nothing but eq. (4.2) at t = 0 with Q̂V (0) =
∫
V d

3x Âa0(0, ~x)
the finite-volume axial charge and Ô = iP̂ a(0). One can now use current conservation and
relativistic locality to complete the argument, obtaining eq. (4.4) with −c̃ [see eq. (3.26)] on
the left-hand side, and b = Σ∗ on the right-hand side, and infer the existence of pseudoscalar
Goldstone quasi-particles, i.e., “quasi-pions” [see eq. (4.20) below].

The standard argument outlined above makes essential use of current conservation as
an operator equation to infer eq. (4.3) from eq. (4.2). In the following I discuss a more
direct argument that requires only knowledge of the Ward-Takahashi identity eq. (3.14)
in its energy-momentum-space form, eq. (3.18), works directly with Euclidean quantities,
and allows for a simple but useful generalisation. This argument has been presented
briefly in ref. [57]; here I provide a more detailed discussion. In appendix D I discuss the
coordinate-space version of the argument, which is new. Of course, appropriate analyticity
conditions must be satisfied in order to be able to reconstruct the physical, Minkowskian
correlation functions. Moreover, a suitable regularity condition must also be satisfied to
guarantee relativistic locality of the reconstructed theory. This regularity condition plays
an important role and will be discussed next.

4.2 Regularity condition

In this subsection I “reverse-engineer” a condition that has to be imposed on ~̃GAP in order to
obtain the desired locality properties of quantum field theory in Minkowski space. Starting
from the relativistic locality condition, [ ~̂Aa(x), P̂ b(0)] = 0 for x2 < 0, one finds (in the sense
of distributions) that

lim
k→0

~k ·
∫
d3xe−i

~k·~x〈〈
[
~̂
Aa (t,~x) , P̂ b (0)

]
〉〉β = lim

k→0
i

∫
d3x

{
~∇e−i~k·~x

}
·〈〈
[
~̂
Aa (t,~x) , P̂ b (0)

]
〉〉β

= lim
k→0

i

∫
d3x ~∇·

{
e−i

~k·~x〈〈
[
~̂
Aa (t,~x) , P̂ b (0)

]
〉〉β
}
−i
∫
d3xe−i

~k·~x ~∇·〈〈
[
~̂
Aa (t,~x) , P̂ b (0)

]
〉〉β

=−i
∫
d3x ~∇·〈〈

[
~̂
Aa (t,~x) , P̂ b (0)

]
〉〉β = 0 ,

(4.6)
8This follows from

∫
d3x ~∇ · ~GAP (t, ~x) = limR→∞

∫
∂BR

d2~Σ · ~GAP (t, ~x), with BR the ball of radius R and
d2~Σ the corresponding infinitesimal surface element oriented outwards, and from continuity in t of ~GAP (t, ~x)
for t < |~x| (see section 2). It is assumed that ~GAP (t, ~x) vanishes sufficiently fast at spatial infinity (at least
like |~x|−2) so that the surface integral is convergent (but not necessarily zero).
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since the first term on the second line and the term on the third line vanish due to finiteness
of the support of the commutator at fixed t.9 This holds independently of the quark mass
m, and should be true in particular in the chiral limit if one is to obtain a decent quantum
field theory. In this limit, the final equality implies the time-independence of the regularised
charge commutator if the Noether current is conserved, so that eq. (4.3) follows from
eq. (4.2) (see the discussion in ref. [53], section 15.2.II).

To work out the implications of eq. (4.6) in the Euclidean setting, one uses the relations
eq. (3.28) between the retarded and advanced propagators r̃j and ãj and the Euclidean
correlator G̃AP j . Plugging them into eq. (4.6), one finds (n > 0, no summation over a)

lim
~k→0

~k ·~̃GAP
(
ω±n,~k

)
=± lim

~k→0
~k ·
∫ ∞
−∞

dtθ (±t)e−ω±nt
∫
d3xei

~k·~x〈〈
[
~̂
Aa (t,~x) , P̂ a (0)

]
〉〉β

=±
∫ ∞
−∞

dtθ (±t)e−ωn|t| lim
~k→0

~k ·
∫
d3xei

~k·~x〈〈
[
~̂
Aa (t,~x) , P̂ a(0)

]
〉〉β = 0 ,

(4.7)
where the exchange of the limit ~k → 0 and integration over t is justified by the exponential
damping factor. From the Euclidean perspective, this is a necessary condition that the
Euclidean correlators must obey in order to reconstruct a decent Minkowskian theory. I
then assume that ~̃GAP obeys the regularity condition ~k · ~̃GAP (ωn, ~k)→ 0 as ~k → 0 for n 6= 0.

4.3 Euclidean proof of Goldstone’s theorem in momentum space

To obtain a Euclidean proof of Goldstone’s theorem at finite temperature, one starts from
the Ward-Takahashi identity in energy-momentum-space eq. (3.18). Setting

R(x) ≡ 2mGPP (x) , R̃
(
ωn, ~k

)
≡ 2mG̃PP

(
ωn,~k

)
, (4.8)

this identity becomes

iωnG̃AP 4
(
ωn, ~k

)
+ i~k · ~̃GAP

(
ωn,~k

)
+ R̃

(
ωn,~k

)
= Σ . (4.9)

The symmetry properties eq. (3.23) imply that G̃AP 4(ωn,~k) = −G̃AP 4(−ωn,~k), so in
particular G̃AP 4(0,~k) = 0, while the regularity condition eq. (4.7) requires ~k ·~̃GAP (ωn, ~k)→ 0
as ~k → 0 for n 6= 0 (also in the chiral limit). Notice also R̃(−ωn, ~k) = R̃(ωn, ~k). One then
obtains from eq. (4.9)

i~k · ~̃GAP
(
0, ~k

)
+ R̃

(
0,~k

)
= Σ , (4.10)

lim
~k→0

{
iωnG̃AP 4

(
ωn, ~k

)
+ R̃

(
ωn, ~k

)}
= Σ , n 6= 0 . (4.11)

It is usually (although perhaps implicitly) assumed that the pseudoscalar-pseudoscalar
correlator is sufficiently regular as a function of m in the chiral limit, so that R̃(ωn, ~k)→ 0

9More formally, after smearing over t with a function of compact support h(t), the quantity ~C(~x ) =∫
dt h(t)〈〈[ ~̂Aa(t, ~x), P̂ a(0)]〉〉β is a distribution in ~x of compact support, and so by the Paley-Wiener theorem

for distributions its Fourier transform ~̃
C(~k) =

∫
d3x e−i

~k·~x ~C(~x ) is an entire function, so that ~k · ~̃C(~k)→ 0
as ~k → 0 follows.
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as m → 0. I will refer to this as the standard scenario. As I show below in section 5,
this may not be the case if a finite density of localised near-zero Dirac modes is present.
More precisely, in the presence of localised near-zero modes the pseudoscalar-pseudoscalar
correlator can develop a 1/m divergence, that exactly cancels out the factor of m and leaves
behind a finite R̃ in the chiral limit. I will refer to this as the non-standard scenario.

Denoting by a subscript ∗ the quantities obtained in the chiral limit, taking now m→ 0
in eq. (4.9) followed by ~k → 0 one obtains in full generality

i~k · ~̃GAP ∗
(
0,~k

)
+ R̃∗

(
0,~k

)
= Σ∗ , (4.12)

lim
~k→0

{
iωnG̃AP 4 ∗

(
ωn,~k

)
+ R̃∗

(
ωn,~k

)}
= Σ∗ , n 6= 0 . (4.13)

Exploiting rotation invariance, one finds from the equation for zero Matsubara frequency,
eq. (4.12), that

~̃GAP ∗
(
0, ~k

)
= −i~k

Σ∗ − R̃∗
(
0, ~k

)
~k2

 →
~k→0
−i
(
Σ∗ − R̃∗

(
0,~0
)) ~k

~k2
, (4.14)

and so it follows that ~̃GAP ∗(0, ~k) has a pole at ~k = 0 if Σ∗ − R̃∗(0,~0) 6= 0, so in particular
in the standard scenario, where R̃∗(0,~0) = 0, if Σ∗ 6= 0. However, the existence of this
pole does not imply a priori that massless Goldstone quasi-particles are present. This is
different from the zero-temperature case, where one would find G̃AP µ ∗ ∝ pµ/p2 due to O(4)
invariance. In that case, after analytic continuation (p4, ~p )→ (−ip0, ~p ) to Minkowski space
one finds a pole at (p0)2 − ~p 2 = 0 in the axial-vector-pseudoscalar correlator, which directly
implies the presence of massless particles in the spectrum. At finite temperature full O(4)
invariance is lost, and the connection with the spectrum is encoded in the axial-vector-
pseudoscalar spectral function, whose reconstruction requires the analytic interpolation
of the discrete Fourier components of the Euclidean correlator. The presence of a pole in
~̃GAP ∗ at zero frequency is therefore by itself not sufficient to infer the relevant properties of
the spectral function at zero frequency.

To make progress one needs to exploit eq. (4.13). To this end, one sets

G∗ (ωn) ≡ lim
~k→0
G̃AP 4 ∗

(
ωn, ~k

)
, R∗ (ωn) ≡ lim

~k→0
R̃∗

(
ωn, ~k

)
, (4.15)

and using eq. (4.13) one finds

G∗(ωn) = Σ∗ − R∗(ωn)
iωn

, n 6= 0 , (4.16)

while G∗(0) = 0. It is instructive to discuss first the standard scenario in which R̃∗ vanishes
and so R∗ = 0. In this case eq. (4.16) entirely determines G∗(ωn), up to the value of Σ∗. It
is then easy to obtain its unique analytic interpolation (in the sense of Carlson’s theorem)
to a function Ḡ∗(Ω) of a complex variable Ω ∈ C, and reconstruct the relevant Minkowskian
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quantities by analytic continuation [68, 69]. One finds10

Ḡ∗(Ω) = Σ∗
iΩ , (4.17)

which is analytic in the whole complex plane except for a pole at Ω = 0. This is enough to
reconstruct the spectral function in the zero-momentum limit. In fact, using eq. (3.28), one
sees that the interpolation eq. (4.17) for Im Ω > 0 and Im Ω < 0 corresponds respectively
to the retarded and advance propagators r̃0 and ã0 in the chiral and zero-momentum limit,

lim
~k→0

r̃0
∗

(
Ω, ~k

)
= Σ∗

Ω for Im Ω > 0 , lim
~k→0

ã0
∗

(
Ω,~k

)
= Σ∗

Ω for Im Ω < 0 . (4.18)

Since the spectral density is given by

ic̃
(
ω,~k

)
= r̃0

(
ω + iε,~k

)
− ã0

(
ω − iε,~k

)
, ω ∈ R , (4.19)

one finds in the chiral limit

lim
~k→0

ic̃∗(ω,~k) = Σ∗
ω + iε

− Σ∗
ω − iε

= −2πiΣ∗δ(ω) , (4.20)

and so if Σ∗ 6= 0 one finds massless Goldstone excitations in the spectrum. This com-
pletes this alternative proof of Goldstone’s theorem at finite temperature under the usual
assumptions on the symmetry breaking term.

In the non-standard scenario where R̃∗ 6= 0, Ḡ∗(Ω) is not fully determined, but one
can still use eq. (4.16) to relate it with the analytic interpolation of R∗(ωn), which will be
denoted with R̄∗(Ω). One finds

Ḡ∗(Ω) = Σ∗ − R̄∗(Ω)
iΩ . (4.21)

Using eq. (4.19) and the well known result 1
ω±iε = PV 1

ω ∓ iπδ(ω), together with the
symmetry property R̄∗(−Ω) = R̄∗(Ω) that follows from eq. (3.23) by analytic continuation,
one finds for the spectral function in the chiral limit

lim
~k→0

ic̃∗(ω,~k) = Ḡ∗(ε− iω)− Ḡ∗(−ε− iω)

= −iπδ(ω)
[
2Σ∗ − R̄∗(ε)− R̄∗(−ε)

]
− PV 1

ω

[
R̄∗(ε− iω)− R̄∗(−ε− iω)

]
= −i2πδ(ω)

[
Σ∗ − R̄∗(ε)

]
− PV 1

ω

[
R̄∗(ε− iω)− R̄∗(ε+ iω)

]
.

(4.22)
The quantity in the second square bracket on the right-hand side of eq. (4.22) is manifestly
antisymmetric, so that one can drop the principal-value prescription. To discuss its

10Formally, one defines F (Ω) = Σ
iΩ − Ḡ∗(Ω), Ω 6= 0, and F (0) = 0, and looks for analytic interpolations

Ḡ∗(Ω) obeying eq. (4.16) ∀n 6= 0. This function obeys F (ωn) = 0 ∀n, and Carlson’s theorem implies that
its unique interpolation analytic in the upper half of the complex plane is F (Ω) ≡ 0, which further extends
uniquely to F (Ω) ≡ 0 on the whole complex plane. This leads to eq. (4.17). Notice that limΩ→0 Ḡ∗(Ω) 6=
G∗(0) = 0.
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regularity properties it is convenient to express it in terms of the pseudoscalar spectral
function. Recalling eq. (3.28), one sees that

R̄∗ (ε− iω) = lim
~k→0

lim
m→0

2mr̃P
(
iε+ ω,−~k

)
,

R̄∗ (−ε− iω) = lim
~k→0

lim
m→0

2mãP
(
−iε+ ω,−~k

)
,

(4.23)

and so

R̄∗ (ε− iω)− R̄∗ (−ε− iω) = lim
~k→0

i

∫
d4x ei(ωt−~k·~x) lim

m→0
2m〈〈

[
P̂ a (t, ~x) , P̂ a (0)

]
〉〉β

= i lim
~k→0

lim
m→0

2mc̃P
(
ω,~k

)
.

(4.24)

In the last passage it is assumed that the chiral limit can be exchanged with the Fourier
transform at finite ~k.

The pseudoscalar spectral function at ~k = 0 is an antisymmetric function of ω [see
eq. (A.18) in appendix A], expected to be regular at ω = 0 and so vanishing at least like
ω (see ref. [71]). Moreover, no transport peak ∝ ωδ(ω) is expected in the pseudoscalar
channel. These expectations are supported both by analytic perturbative results (also in
the chiral limit) and by numerical lattice calculations [109–111]. It is then reasonable to
assume that the transport peak is absent, and that c̃P is regular at ω = 0, and remains so
as m→ 0.11 Under these assumptions one finds from eq. (2.14)

R̄∗ (ε) = lim
~k→0

lim
m→0

2mr̃P
(
iε,−~k

)
= lim

~k→0
lim
m→0

2mG̃PP
(
0, ~k

)
= lim

~k→0
R̃∗

(
0,~k

)
= R∗(0) ,

(4.25)
so that eq. (4.22) reduces to

lim
~k→0

ic̃∗
(
ω,~k

)
= −2πiδ (ω) [Σ∗ − R∗ (0)]− 1

ω

[
R̄∗ (ε− iω)− R̄∗ (ε+ iω)

]
, (4.26)

with the second term regular as ω → 0.12 Only the first term affects the presence of massless
Goldstone excitations in the spectrum, which exist if Σ∗ − R∗(0) 6= 0. This completes the
proof of the generalised Goldstone’s theorem at finite temperature in the presence of a
nonzero R∗(0).

It is worth commenting on the result above, especially in relation with the usual
Goldstone’s theorem at finite temperature. As already discussed above, a nonzero R∗(0)
can only appear if the pseudoscalar-pseudoscalar correlator develops a 1/m divergence as
m→ 0, cancelling out the factor of m appearing in the Ward-Takahashi identity and leaving
a finite contribution in the chiral limit. This mechanism is reminiscent of the formation of

11These assumptions can be weakened. The effects of a transport peak can be taken into account, see
footnote 12. Concerning the behaviour at ω = 0, it is sufficient to assume that c̃P has an integrable
singularity, which can further be demanded only in the relevant chiral and zero-momentum limits.

12In the presence of a transport peak c̃P (ω,~k)|tp = 2πAPP (~k)ωδ(ω), the principal value prescription must
be kept in eq. (4.26), and since PV 1

ω
ωδ(ω) = ω2

ω2+ε2 δ(ω) = 0 one finds no contribution to c̃∗(ω,~k → 0) from the
second term. Setting A∗ = lim~k→0 limm→0 2mAPP (~k), from eq. (2.14) it follows limε→0 R̄∗(ε) = R∗(0)−A∗,
and so the delta term is changed to −2πiδ(ω)[Σ∗ − R∗(0) + A∗].
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anomalies, although here one is sensitive to the infrared rather than the ultraviolet regime
of the theory. For this reason, I will refer to a nonzero R∗(0) as an anomalous remnant.

It is clear from eq. (4.26) that in principle R∗(0) could cancel Σ∗, so that in spite of
the apparent spontaneous breaking of a continuous symmetry by a nonzero expectation
value of an order parameter one would find no Goldstone excitations, as one would expect
from the usual Goldstone’s theorem at finite temperature. However, an anomalous remnant
radically modifies the usual Ward-Takahashi identity in the chiral limit, signalling that the
non-singlet axial currents are not conserved in this limit. More precisely, the anomalous
remnant makes the non-singlet axial flavour symmetry explicitly broken even in the chiral
limit. As a consequence, one evades Goldstone’s theorem at finite temperature, since this has
current conservation as one of its main hypotheses. The presence of massless quasi-particle
excitations is not guaranteed by a nonzero condensate alone, and it is rather the difference
between the amount of spontaneous breaking, measured by Σ∗, and of explicit breaking,
measured by R∗(0), that determines the fate of Goldstone excitations.13

It is interesting to notice that the presence of a pole at zero spatial momentum in
the correlator ~̃GAP (0,~k) is after all sufficient to infer the existence of massless Goldstone
excitations. In fact, the residue at this pole equals Σ∗ − R̃∗(0,~0) = Σ∗ − R∗(0) up to a
constant factor [see eq. (4.14)], so that the pole is present if and only if a Dirac-delta term
is present in the axial-vector-pseudoscalar spectral function.

As a final remark, I mention that one can extend the calculation done above to the case
of finite fermion mass without any difficulty. For the singular part of the spectral function
c̃(ω,~k) one finds

lim
~k→0

ic̃
(
ω,~k

)
|sing = −2πiδ(ω)[Σ− R(0)] , (4.27)

analogously to eq. (4.26). At finite quark mass one generally finds a nonzero R(0) =
lim~k→0 R̃(0,~k) =

∫
d4x 2mGPP (x) = 2mχπ, where χπ is the pseudoscalar susceptibility, and

a nonvanishing condensate Σ. However, one can show that at finite m

Σ = R(0) = 2mχπ , (4.28)

and so the singular part of c̃ vanishes and no massless quasi-particle excitation appears, as
one expects when m 6= 0. This requires one to show that there is no pole in ~̃GAP (0,~k) at
~k = 0 [see eq. (4.10)]. Equivalently, one notices that eq. (4.28) is just the usual integrated
Ward-Takahashi identity relating the chiral condensate and the pseudoscalar susceptibility,
which holds if one can drop the boundary term when integrating eq. (3.17) over spacetime.
Both the absence of a pole and the vanishing of the boundary term follow if ~GAP (x) falls
off sufficiently fast at large distances. This can be shown to be the case. An argument by
Vafa and Witten [81, 112] establishes an exponential bound on the two-point correlation
function of any flavour non-singlet gauge-invariant local operator, at any nonzero m in
theories with a positive path-integral measure. This applies in particular to the axial-vector
currents Aaµ, and to the finite-temperature gauge theories considered here. Using the

13I show below in section 5.7 that |Σ∗| − |R∗(0)| = −(Σ∗ − R∗(0)) ≥ 0.
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Ward-Takahashi identity

∂µ〈Aaµ(x)Abν(0)〉β = 2m〈P a(x)Abν(0)〉β = 2mδabGAP ν(x) , (4.29)

obtained by setting O = Abν(0) in eq. (3.12), this implies an exponential bound on ~GAP ,
and so the desired result follows.14 Notice that if Σ∗ 6= 0, eq. (4.28) implies a divergent
pseudoscalar susceptibility in the chiral limit, and a finite limit for R(0)→ Σ∗ as m→ 0.
This limit in general does not coincide with R∗(0), which is obtained by taking first the
chiral limit followed by the zero-momentum limit [see comment before eq. (4.12)], since the
two limits generally do not commute. While the localisation properties of Dirac modes play
no role in establishing the integrated Ward-Takahashi identity eq. (4.28), I will show below
in section 5 that they are crucial in the determination of R∗(0).

5 Pseudoscalar correlator in the chiral limit

As discussed in the previous section, it is usually assumed that the contribution R [see
eq. (4.8)] of the pseudoscalar-pseudoscalar correlator to the non-singlet axial Ward-Takahashi
identity eq. (3.14) vanishes in the chiral limit. As anticipated, I argue now that this is
not the case if a finite density of localised modes is found near the origin of the Dirac
spectrum: under certain technical conditions, such modes lead to the development of a 1/m
infrared divergence, that compensates the factor of m and thus gives a finite contribution
to the Ward-Takahashi identity also in the chiral limit. As discussed above at the end of
section 4.3, this leads to an anomalous remnant R∗(0) [see eq. (4.15)] that competes with
the chiral condensate to determine the fate of Goldstone excitations.

In this section I initially work with “bare”, unrenormalised quantities (denoted by a
subscript B), appearing in a suitably regularised version of the path integral, eq. (3.2).
This could be, e.g., a lattice regularisation with Ginsparg-Wilson fermions [95–103], that
guarantees control over the chiral properties of the theory [104–107]. However, as explained
in section 3.5, it is justified to work directly in the continuum, which allows for a simpler
and clearer treatment of the main issues, without having to deal with the technicalities of
the lattice approach.

The starting point is the decomposition of the bare pseudoscalar correlator 〈P aB(x)P bB(0)〉β
in terms of the eigenmodes of the Dirac operator. For infrared (IR) regularisation purposes
one works in a finite spatial volume V , imposing periodic boundary conditions in the spatial
directions. Antiperiodic boundary conditions are imposed instead in the (compact) time
direction due to the antiperiodicity condition on fermion fields, see section 3. In this setting
the spectrum of /D becomes discrete, and so the eigenvalues iλn and the corresponding
eigenvectors ψn will be labeled by an index n taking integer values. Moreover, as discussed
above in section 3.5, for ultraviolet (UV) regularisation purposes one cuts off the spectrum
at some scale Λ, including in the mode decompositions only modes with |λn| ≤ Λ. Cutting
off modes in this way makes the chiral condensate and the relevant correlation functions

14In fact, the bound of ref. [81] is easily extended to the two-point function of any pair of flavour non-singlet
local bilinear operators like Aaµ and P a, so it applies directly to ~GAP (x).
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finite, introducing violations in the Ward-Takahashi identity that, however, disappear as
Λ → ∞. These violations, as well as UV divergences, are of no concern here, since they
originate in the UV part of the Dirac spectrum, while in the chiral limit only the low-end,
IR part of the spectrum plays a role, as will become clear below. Nonetheless, in spite of
the fact that they have no physical effect, UV modes should be carefully handled to obtain
physically meaningful, renormalised quantities.

5.1 Mode decomposition

A straightforward calculation gives the following result for the pseudoscalar-pseudoscalar
correlator expressed in terms of Dirac modes,

− 〈P aB(x)P bB(0)〉β = lim
V→∞

δab

2

〈∑
n,n′

Oγ5
n′n(x)Oγ5

nn′(0)
(iλn +mB)(iλn′ +mB)

〉
β

≡ −δabGPP B(x) . (5.1)

Here and in the following equations, only expectation values of functionals OG[BB] of the
(bare) gauge fields appear. In eq. (5.1) mB denotes the bare fermion mass, and tr denotes
the trace over Dirac and colour indices. The dependence of GPP B on mB and on the
temperature T = 1/β is left implicit. Moreover [see eq. (3.5)],

OΓ
n′n(x) ≡ (ψn′(x),Γψn(x)) . (5.2)

In this paper I will be concerned only with Γ = 1, γ5, in which case the following proper-
ties hold,

OΓ
−n′−n(x) = OΓ

n′n(x) , OΓ
n′n(x)∗ = OΓ

nn′(x) , OΓ
−n′n(x) = Oγ5Γ

n′n (x) , (5.3)

where the notation −n indicates that the mode ψ−n ≡ γ5ψn is involved. As mentioned
above, the sums over modes in eq. (5.1), as well as the product in the determinant
Det( /D +m) = ∏

n(iλn +m)Nf appearing in eq. (3.4), are restricted to |λn| ≤ Λ.
Taking into account the symmetry of the spectrum, the relation between eigenvectors

implied by the chiral property discussed in section 3.1, and the properties eq. (5.3), one can
recast eq. (5.1) as

− GPP B(x) = lim
V→∞

1
2

∫ Λ

−Λ
dλ

∫ Λ

−Λ
dλ′

(m2
B − λλ′)C

γ5
V,Λ(λ, λ′;x;mB)

(λ2 +m2
B)(λ′ 2 +m2

B) , (5.4)

where I introduced the spectral correlators

CΓ
V,Λ(λ, λ′;x;mB) ≡

〈∑
n,n′

δ(λ− λn)δ(λ′ − λn′)Re
{
OΓ
n′n(x)OΓ

nn′(0)
}〉

β

, (5.5)
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and made explicit their dependence on the bare fermion mass, the volume, and the UV
regulator. It is convenient to separate the cases λn = ±λn′ from the rest, and set15

CΓ
s V,Λ(λ;x;mB) ≡

〈∑
n

δ(λ− λn)OΓ
nn(x)OΓ

nn(0)
〉
β

,

C̄ Γ
V,Λ(λ, λ′;x;mB) ≡

〈 ∑
n,n′

n 6=±n′

δ(λ− λn)δ(λ′ − λn′)Re
{
OΓ
n′n(x)OΓ

nn′(0)
}〉

β

,
(5.6)

in terms of which one has

Cγ5
V,Λ(λ, λ′;x;mB) = δ(λ+ λ′)C1

s V,Λ(λ;x;mB) + δ(λ− λ′)Cγ5
s V,Λ(λ;x;mB)

+ C̄ γ5
V,Λ(λ, λ′;x;mB) .

(5.7)

In the language of random Hamiltonians (see section 3.1), the quantities defined in eqs. (5.5)
and (5.6) are a type of Green’s functions measuring the correlation between eigenmodes.
Using eq. (5.3) one finds the following symmetry relations,

C̄ Γ
V,Λ(−λ,−λ′;x;mB) = C̄ Γ

V,Λ(λ, λ′;x;mB) , C̄ Γ
V,Λ(λ′, λ;x;mB) = C̄ Γ

V,Λ(λ, λ′;x;mB) ,
C̄ Γ
V,Λ(−λ, λ′;x;mB) = C̄ γ5Γ

V,Λ (λ, λ′;x;mB) , CΓ
s V,Λ(−λ;x;mB) = CΓ

s V,Λ(λ;x;mB) .
(5.8)

As they hold in any volume, these relations will hold also in the thermodynamic limit V →∞.

5.2 Large-volume limit

In this subsection I discuss the large-volume limit of the spectral correlators, and show that
here the localisation properties of the Dirac eigenmodes play a crucial role: while they do
not affect the large-volume behaviour of C̄ Γ

V,Λ, they strongly affect whether CΓ
s V,Λ survives

the infinite-volume limit or not.
In order to see how the localisation properties of the modes affect their contribution to

the spectral correlators, eq. (5.6), notice first the exact bounds

|OΓ
n′n(x)|2 = |(ψn′(x),Γψn(x))|2 ≤ ‖Γ‖2‖ψn′(x)‖2 ‖ψn(x)‖2 , (5.9)

where the matrix norm ‖Γ‖ = 1 for Γ = 1, γ5, and∣∣∣〈OΓ
n′n(x)OΓ

nn′(0)〉β
∣∣∣ ≤ 〈∣∣∣OΓ

n′n(x)
∣∣∣ ∣∣∣OΓ

nn′(0)
∣∣∣〉β

≤ ‖Γ‖2〈‖ψn′(x)‖ ‖ψn(x)‖ ‖ψn′(0)‖ ‖ψn(0)‖〉β

≤ ‖Γ‖2
√
〈‖ψn′(x)‖2 ‖ψn(x)‖2〉β

√
〈‖ψn′(0)‖2 ‖ψn(0)‖2〉β

= ‖Γ‖2〈‖ψn′(x)‖2 ‖ψn(x)‖2〉β .

(5.10)

15Strictly speaking, in the definition of C̄ Γ
V,Λ the condition n 6= ±n′ should read λn 6= ±λn′ , while

contributions from distinct but exactly degenerate modes, λn = λn′ with n 6= n′, should be included in
CΓ
s V,Λ. However, zero modes do not contribute in the thermodynamic limit (see below), and degenerate

nonzero modes are expected to appear only on a set of configurations of zero measure, and can be ignored.
See footnote 20 for further comments.
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These follow from the Cauchy-Schwarz inequality, on the third line applied to the expectation
value 〈. . .〉β which is defined by a path-integral with positive-definite integration measure.
Translation invariance is used in the last passage. In a first approximation, one can treat
these bounds more loosely as estimates of the magnitude of OΓ

n′n and their correlation
functions, in order to obtain the volume dependence of the individual contributions to
eq. (5.6). While these estimates should be supplemented by suitable factors in order to take
into account the dependence on Γ and, more importantly, on the correlation between modes
n and n′ and on the distance between 0 and x, they should suffice if all one is interested in
is their volume dependence.

Consider first the case n 6= ±n′. If modes n near λ have fractal dimension α(λ), i.e.,
are mostly supported in regions whose size scales like V α(λ), then ‖ψn(x)‖2 ∼ V −α(λ) inside
the supporting region while being negligible outside. Translation invariance implies that the
probability of finding a given spacetime point inside the support of the mode is V α(λ)/V .
Finally, the correlation between modes is expected to decrease as |λn − λn′ | increases, and
so it will be small for most pairs of modes. One can then estimate

〈‖ψn′(x)‖2 ‖ψn(x)‖2〉β ∼
(

1
V α(λ′)

V α(λ′)

V

)(
1

V α(λ)
V α(λ)

V

)
= 1
V 2 , (5.11)

irrespectively of the localisation properties of the modes. From the last line in eq. (5.10)
one then estimates ∣∣∣〈OΓ

n′n(x)OΓ
nn′(0)〉β

∣∣∣ ∼ 1
V 2 . (5.12)

Since C̄ Γ
V,Λ involves a double sum over modes, and since the number of modes per unit

spectral interval typically scales like the volume,16 one has O(V 2) contributions of order
O(1/V 2). One then expects C̄ Γ

Λ (λ, λ′;x;mB) ≡ limV→∞ C̄
Γ
V,Λ(λ, λ′;x;mB) to be nonzero

as long as both spectral densities ρB(λ) and ρB(λ′) are nonzero, independently of the
localisation properties of modes near λ and λ′. The bare spectral density is defined as

ρB,V (λ) ≡ 1
βV

〈∑′

n

δ(λ− λn)
〉
β

, ρB(λ) ≡ lim
V→∞

ρB,V (λ) , (5.13)

with ρB,V the bare spectral density in a finite volume. Here ∑′n denotes the sum over
nonzero modes only. Exact zero modes are explicitly excluded even though they would not
contribute in the thermodynamic limit, since their number scales only like N0 ∼

√
V at

large volume. As a further consequence, since the estimate eq. (5.12) applies in particular
to pairs of distinct zero modes, and pairs of a zero and a nonzero mode, one finds that
the corresponding total contributions scale respectively like V/V 2 and V

√
V /V 2, and so

contributions involving zero modes can be dropped from C̄ Γ
V,Λ in eq. (5.6).

The situation is different in the case n = ±n′, where correlations cannot be neglected.
Using the last line in eq. (5.10), one can estimate for modes near λ that∣∣∣〈OΓ

nn(x)OΓ
nn(0)〉β

∣∣∣ ∼ 〈‖ψn(x)‖4〉β = 1
βV
〈IPRn〉β ∼

1
V V α(λ) , (5.14)

16The case in which the growth is faster than O(V ), leading to points in the spectrum where the spectral
density has an integrable singularity in the infinite-volume limit (van Hove singularity), is not considered
here.
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where translation invariance was used. Since a single sum over modes appears in CΓ
s V,Λ,

there are O(V ) such contributions in any spectral region with a finite density of modes,
and so one expects CΓ

s V,Λ(λ;x)→ 0 in the large-volume limit except if modes near λ are
localised, in which case one expects to find a finite value. Equation (5.14) can be turned
into a rigorous bound showing that CΓ

s V,Λ(λ;x) vanishes in the large-volume limit if the
fractal dimension of modes near λ is nonzero, i.e., if they are delocalised. From the last line
in eq. (5.10), in fact, one has17

|CΓ
s V,Λ(λ;x;mB)| ≤

〈∑
n

δ(λ− λn)|OΓ
nn(x)||OΓ

nn(0)|
〉
β

≤
〈∑

n

δ(λ− λn)‖ψn(x)‖4
〉
β

= 1
βV

〈∑
n

δ(λ− λn)IPRn

〉
β

= ρB,V (λ)IPRV (λ) + δ(λ)N0
βV

IPR0
V ,

(5.15)
where I used translation invariance, and where

IPRV (λ) ≡ 1
βV ρB,V (λ)

〈∑′

n

δ(λ−λn)IPRn

〉
β

, IPR0
V ≡

1
N0

〈 ∑
n0

λn0=0

IPRn0

〉
β

, (5.16)

is the average IPR computed locally in the spectrum.18 Assuming that modes have fractal
dimension α(λ) near λ, one has IPRV (λ) ∼ V −α(λ). If modes are delocalised near λ 6= 0,
i.e., α(λ) > 0, one finds that CΓ

s V,Λ vanishes in the thermodynamic limit. On the other
hand, if modes are localised then α(λ) = 0 and CΓ

s V,Λ need not vanish, and as shown above
one expects that it does not.19 One then expects CΓ

loc Λ ≡ limV→∞C
Γ
s V,Λ to be finite where

a finite density of localised modes is present and only there, as signalled by the subscript
“loc”. An explicit calculation shows that this is the case (see section 5.6 below). Notice that
since the last term in eq. (5.15) scales like

√
V /V , exact zero modes give no contribution to

CΓ
s V,Λ in the thermodynamic limit independently of their localisation properties.20

Summarising, in the thermodynamic limit one finds that C̄ Γ
Λ is nonzero where the

spectral density is nonzero, while CΓ
loc Λ is nonzero only in spectral regions where modes are

17The Dirac deltas in eq. (5.15) can be handled rigorously, without changing the result, by integrating first
over small intervals around λ, λ′, using then eq. (5.10), and finally taking the limit of infinitesimal intervals.

18The dependence of IPRV on Λ and mB is irrelevant here and has been suppressed. In computing
IPR0

V one should average over the degenerate zero-mode subspace using the procedure of ref. [30], treating
separately the two chiralities, but this would not change the fact that zero modes do not contribute here
(see below).

19While capturing correctly the overall volume dependence, the simple estimate eq. (5.14) entirely misses the
x-dependence of the spectral correlators. Taking localisation literally, one would find

∣∣〈OΓ
nn(x)OΓ

nn(0)〉β
∣∣ ∼ 1

`3

for spatial separation smaller than the typical localisation length `, and zero otherwise. A more precise
analysis is carried out in appendix E using a more realistic exponential envelope of localised modes, that
leads to expect an exponential suppression in |~x| rather than strictly finite support.

20Exactly degenerate but distinct nonzero modes could also contribute to CΓ
s V,Λ. For these modes

the estimate eq. (5.12) applies so that their contribution is suppressed like NdegV/V
2 = NdegV

−1 in the
thermodynamic limit, with Ndeg their typical (possibly λ-dependent) degeneracy, unless they are strongly
spatially correlated. In this case, the estimate eq. (5.14) applies instead, leading to a total contribution
of order NdegV

−α. These modes can then be relevant only if localised, strongly spatially correlated, and
appearing on a set of configurations of finite measure. This seems very unlikely to happen.
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localised.21 In the infinite-volume limit eq. (5.4) then reduces to

−GPP B (x) =
∫ Λ

0
dλ

(
C1

loc Λ (λ;x;mB)
λ2 +m2

B

+
(
m2
B − λ2)Cγ5

loc Λ (λ;x;mB)(
λ2 +m2

B

)2
)

+ 1
2

∫ Λ

−Λ
dλ

∫ Λ

−Λ
dλ′

(
m2
B − λλ′

)
C̄γ5

Λ (λ, λ′;x;mB)(
λ2 +m2

B

) (
λ′ 2 +m2

B

) ,

(5.17)

having used the symmetry relations eq. (5.8).

5.3 Renormalisation

The bare pseudoscalar-pseudoscalar correlator needs to be suitably renormalised before
the UV cutoff Λ is removed. As discussed in detail in appendix C, both additive and
multiplicative renormalisation are required, and the renormalised pseudoscalar-pseudoscalar
correlator reads

GPP (x) = lim
Λ→∞

Z2
m [GPP B(x)− CTPP (x)] , (5.18)

where CTPP (x) are divergent contact terms and Zm is the mass renormalisation constant,
with the renormalised mass defined as mB = Zmm. Divergent contact terms originate from
large Dirac eigenvalues in eq. (5.17). However, they are polynomial in the fermion mass
and so drop from R in the chiral limit, and therefore can essentially be ignored as far as
the Ward-Takahashi identity, eqs. (3.14) and (3.17), is concerned. More generally, all the
contributions to R coming from large eigenvalues vanish in the chiral limit, including any
finite term remaining after the subtraction procedure, since they yield at most a constant
term in the pseudoscalar-pseudoscalar correlator as m→ 0. Multiplicative renormalisation,
on the other hand, is required also in the chiral limit. To identify the divergent contact
terms, one splits the integrals in eq. (5.17) at a suitably chosen m-independent subtraction
scale. To disentangle additive and multiplicative divergences, it is convenient to work with
renormalised spectral correlators. This also allows one to see more clearly how the remaining
finite terms behave in the chiral limit.

The procedure is most easily illustrated in the case of the chiral condensate. The bare
chiral condensate ΣB is obtained from the spectral density, eq. (5.13), via the Banks-Casher
relation [34],

− ΣB =
∫ Λ

0
dλ ρB(λ,mB) 2mB

λ2 +m2
B

. (5.19)

Here the dependence of ρB on the bare mass has been made explicit. The spectral density
grows like λ3 at large λ, thus leading to quadratic and logarithmic additive divergences,
which originate from the mixing of the scalar density with the identity operator (see
appendix C). A possible renormalisation scheme to take care of them is the following (see,
e.g, ref. [113]). One splits the integral at some (mass-independent) subtraction scale µB,

21As pointed out in section 3, localised and delocalised modes usually do not coexist in the same spectral
region. However, the qualitative estimate given above under eq. (5.16) does not depend on this non-
coexistence assumption. If for some system one could separate localised and delocalised modes in a given
spectral region and define the density ρloc(λ) of localised modes, then CΓ

loc Λ would be nonzero where ρloc 6= 0.
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and for λ > µB one expands the denominator in powers of m2
B/λ

2, obtaining

−ΣB =
∫ µB

0
dλ ρB(λ,mB) 2mB

λ2 +m2
B

+
∫ Λ

µB

dλ ρB(λ,mB) 2m5
B

λ4(λ2 +m2
B)

+
∫ Λ

µB

dλ ρB(λ,mB)
(

2mB

λ2 −
2m3

B

λ4

)
= Σ(1)

B + Σ(2)
B .

(5.20)

The integrals on the first line, that define Σ(1)
B , are formally convergent as Λ→∞, i.e., if

one ignores that the bare spectral density is also Λ-dependent, and furthermore are made
finite by multiplicative renormalisation. In fact, multiplying by Zm one finds after a change
of variables

ZmΣ(1)
B =

∫ µB
Zm

0
dλZmρB (Zmλ,Zmm) 2m

λ2+m2 +
∫ Λ

Zm

µB
Zm

dλZmρB (Zmλ,Zmm) 2m5

λ4 (λ2+m2) .

(5.21)
As it was shown in refs. [114, 115], the quantity

ρ(λ,m) ≡ lim
Λ→∞

ZmρB(Zmλ, Zmm) (5.22)

is finite, and so eq. (5.21) has a finite limit as Λ→∞ if µ ≡ µB/Zm is kept fixed. Notice
that since Zm depends on Λ only logarithmically, the (bare) subtraction scale µB = Zmµ

has to depend logarithmically on the cutoff, while Λ/Zm still diverges as Λ→∞. The terms
on the second line of eq. (5.20), that define Σ(2)

B , remain divergent also after multiplication
by Zm, and need to be subtracted. One then defines the renormalised condensate as

−Σ ≡ lim
Λ→∞

−ZmΣ(1)
B =

∫ µ

0
dλ ρ(λ,m) 2m

λ2 +m2 +
∫ ∞
µ

dλ ρ(λ,m) 2m5

λ4(λ2 +m2) .

(5.23)
The second term is at least of order O(m5) and vanishes in the chiral limit. For the first
term one finds instead the well-known result [34]

−Σ∗ = lim
m→0

ρ(0,m)
∫ µ

m

0
dz

2
1 + z2 + lim

m→0

∫ µ

0
dλ

2mf(λ)
λ2 +m2 = πρ(0, 0) , (5.24)

where ρ(0,m) ≡ limλ→0 ρ(λ,m) and ρ(0, 0) ≡ limm→0 ρ(0,m), and where f(λ) = ρ(λ,m)−
ρ(0,m) is assumed to vanish at least as fast as some power law as λ→ 0, i.e., λ−γf(λ)→ 0
as λ → 0 for some γ > 0. In fact, in this case, the second term in eq. (5.24) is of order
at most m

1
2N for some sufficiently large N such that 2Nγ > 1, as shown in appendix F

[see eq. (F.6)].
The same procedure can now be repeated for the pseudoscalar-pseudoscalar correlator.

In this case, after splitting the integrals and multiplying by the renormalisation constant
Z2
m, one finds

GPP B(x) =
2∑

i,j=1
G(ij)
PP B(x) , (5.25)

– 28 –



J
H
E
P
1
2
(
2
0
2
2
)
1
0
3

with

−Z2
mG

(ij)
PP B (x) = δij

∫
Ii

dλ
ZmC

1
loc Λ (Zmλ;x;Zmm)

λ2 +m2

+ δij

∫
Ii

dλ

(
m2 − λ2)ZmCγ5

loc Λ (Zmλ;x;Zmm)
(λ2 +m2)2

+
∫
Ii

dλ

∫
Ij

dλ′
(
m2 + λλ′

)
Z2
mC̄

1
Λ (Zmλ, Zmλ′;x;Zmm)

(λ2 +m2) (λ′ 2 +m2)

+
∫
Ii

dλ

∫
Ij

dλ′
(
m2 − λλ′

)
Z2
mC̄

γ5
Λ (Zmλ, Zmλ′;x;Zmm)

(λ2 +m2) (λ′ 2 +m2) ,

(5.26)

where I1 = [0, µ] and I2 = [µ,Λ/Zm]. Here the properties eq. (5.8) have been used to restrict
the double integral on the second line of eq. (5.17) to the positive part of the spectrum. It
is clear that additive divergences can originate only from G(12)

PP B, G
(21)
PP B, and G

(22)
PP B. The

symmetry of the integrand under λ↔ λ′ implies G(12)
PP B = G(21)

PP B . Using an argument similar
to that of refs. [114, 115], I show in appendix G that the functions

CΓ
loc(λ;x;m) ≡ lim

Λ→∞
ZmC

Γ
loc Λ(Zmλ;x;Zmm) ,

C̄ Γ(λ, λ′;x;m) ≡ lim
Λ→∞

Z2
mC̄

Γ
Λ (Zmλ, Zmλ′;x;Zmm) ,

(5.27)

are renormalised, finite quantities. This makes G(11)
PP ≡ limΛ→∞ Z

2
mG

(11)
PP B finite in the

large-Λ limit. It remains only to identify and subtract the additively divergent contributions
to G(12)

PP B and G(22)
PP B. For the purposes of this paper this need not be done explicitly: all

that matters is that the remaining finite terms stay finite also in the chiral limit, which is
easy to show. Details are provided in appendix F. One then concludes that

Z2
m

(
G(12)
PP B(x) + G(21)

PP B(x) + G(22)
PP B(x)

)
= Z2

mCTPP (x) + F (x;m) + . . . , (5.28)

with omitted terms vanishing as Λ → ∞, and F a finite Λ-independent quantity that
remains finite also as m → 0. One has then GPP = G(11)

PP + F , and for the quantity of
interest, namely R∗ = limm→0R [see eq. (4.8)] one finds R∗ = limm→0 2mG(11)

PP , and the
following spectral representation,

−R∗(x) = lim
m→0

2m
∫ µ

0
dλ

(
C1

loc(λ;x;m)
λ2 +m2 + (m2 − λ2)Cγ5

loc(λ;x;m)
(λ2 +m2)2

)

+ 2m
∫ µ

0
dλ

∫ µ

0
dλ′

(m2 + λλ′)C̄1(λ, λ′;x;m) + (m2 − λλ′)C̄γ5(λ, λ′;x;m)
(λ2 +m2)(λ′ 2 +m2) .

(5.29)

5.4 Renormalisation of the mobility edge

The result eq. (5.27) has an important consequence for the renormalisation properties
of the mobility edges. As discussed above in section 5.2, the unrenormalised spectral
correlators CΓ

loc Λ(λ;x;mB) have support only in disjoint regions where modes are localised,
separated by mobility edges λ(i)

cB from regions where modes are instead delocalised. Since
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renormalisation consists only in a multiplicative factor and a rescaling of λ and mB, the
support of CΓ

loc(λ;x;m) is still made of disjoint regions delimited by the renormalised
mobility edges λ(i)

c = limΛ→∞ Z
−1
m λ

(i)
cB . In other words, the mobility edges renormalise like

the fermion mass, so that the ratios λ(i)
cB/mB are renormalisation-group-invariant quantities

free from UV divergences, i.e., the equality

λ
(i)
cB

mB
= λ

(i)
c

m
+ o(Λ0) (5.30)

holds up to corrections that vanish as the UV regulator is removed. This had been suggested
before [18], and was supported by numerical results on the lattice [18, 31], but had not been
proved yet. Details are provided in appendix G.

5.5 Chiral limit

The final step in order to obtain R∗ is to determine the behaviour of the various terms
appearing in eq. (5.29) as m→ 0. To proceed it is necessary to make assumptions about
the position of the mobility edge(s), if present. It is assumed from now on that modes are
localised in the range [0, Zmλc] in the UV-regulated theory, and so in the range [0, λc] of
the “renormalised” spectrum, with λc = λc(m) the renormalised mobility edge. It is also
assumed that, if other regions with localised modes are present, then these are found above
some renormalised lower mobility edge λ′c and remain separated from λ = 0 in the chiral
limit.22 With these assumptions, eq. (5.29) becomes

R∗(x) = R(1)
∗ (x) +R(2)

∗ (x) +R(3)
∗ (x) , (5.31)

where

−R(1)
∗ (x) = lim

m→0
2m

∫ λc

0
dλ

(
C1

loc(λ;x;m)
λ2 +m2 + (m2 − λ2)Cγ5

loc(λ;x;m)
(λ2 +m2)2

)
(5.32)

and23

−R(2)
∗ (x) = lim

m→0
2m

∫ µ

λ′c

dλ

(
C1

loc(λ;x;m)
λ2 +m2 + (m2 − λ2)Cγ5

loc(λ;x;m)
(λ2 +m2)2

)
(5.33)

receive contributions only from localised modes, while

−R(3)
∗ (x) = lim

m→0
2m

∫ µ

0
dλ

∫ µ

0
dλ′

(m2 + λλ′)C̄1(λ, λ′;x;m) + (m2 − λλ′)C̄γ5(λ, λ′;x;m)
(λ2 +m2)(λ′ 2 +m2)

(5.34)
22Localised modes have been observed at the high end (|λ| > λ′c) of the spectrum of staggered fermions in

pure gauge Z2 gauge theory in 2+1 dimensions on the lattice [30], and it is likely that this feature is found
also in other theories. However, these are ultraviolet modes that should not affect the continuum physics. In
particular, it is unlikely that λ′c reaches down to the origin in the chiral limit.

23The upper limit of integration is set to µ for generality, and does not mean that modes are localised in
the whole interval [λ′c, µ].
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receives contributions from both localised and delocalised modes. It is shown in appendix F
that in the chiral limit the integrals appearing in R(1)

∗ , eq. (5.32), behave as follows as
functions of m,∫ λc

0
dλ

C1
loc(λ;x;m)
λ2 +m2 = 1

m

(
arctan

(
λc
m

)
C1

loc(0;x; 0) + o(m0)
)
,

∫ λc

0
dλ

(m2 − λ2)Cγ5
loc(λ;x;m)

(λ2 +m2)2 = 1
m

 λc
m

1 + λ2
c

m2

Cγ5
loc(0;x; 0) + o(m0)

 ,

(5.35)

so possibly diverging like 1/m and leading to a finite R∗, while the integrals appearing
in R(2,3)

∗ tend to constants in the chiral limit, and so give no contribution to R∗. These
results are valid under the rather mild technical assumptions that finite limits exist for the
spectral correlators as λ→ 0 and/or λ′ → 0, and that such limits are approached at least
as fast as some power law, and moreover that the resulting quantities have a finite limit as
m→ 0. One then obtains the main result of this subsection,

−R∗(x) = πξC1
loc(0;x; 0) + ηCγ5

loc(0;x; 0) , (5.36)

where
ξ ≡ 2

π
arctan κ , η ≡ 2κ

1 + κ2 , κ ≡ lim
m→0

λc(m)
m

. (5.37)

Notice that κ is renormalisation-group invariant. Notice also that CΓ
loc(0;x; 0) are obtained

using the following order of limits, starting from the bare, finite-volume spectral correlators,

CΓ
loc(0;x; 0) = lim

m→0
lim
λ→0

lim
Λ→∞

lim
V→∞

ZmC
Γ
s V,Λ(Zmλ;x;ZmmB) . (5.38)

Finally, notice that the subtraction scale µ does not affect the final result, as it should be.
Assuming that CΓ

loc(0;x; 0) is nonzero in the chiral limit, there are three possible
scenarios depending on how the mobility edge scales with m in the chiral limit.

(i). If λc vanishes faster than m, then κ → 0. In this case one finds R∗ = 0, so that
the presence of localised near-zero modes does not affect the Ward-Takahashi identity
eq. (3.14). If λc ∼ mδ+1, then κ ∼ mδ, and (i-a) if δ ≥ 1, the pseudoscalar-pseudoscalar
correlator remains finite in the chiral limit, while (i-b) if 0 < δ < 1 it develops an infrared
divergence 1/m1−δ.24

(ii). If λc vanishes as fast as m, then κ→ constant. In this case the pseudoscalar-pseudo-
scalar correlator develops an infrared divergence 1/m, and one finds R∗ 6= 0. One finds for
the coefficient of the first term πξ < π, and the second term is finite.

(iii). If λc vanishes more slowly than m, including not vanishing at all,25 then κ → ∞.
Also in this case the pseudoscalar-pseudoscalar correlator develops an infrared divergence
1/m, and one finds R∗ 6= 0. The coefficient of the first term is maximal and equal to π in
this case, while the second term vanishes.

24If δ ≥ 1, no divergence can appear in the terms omitted in eq. (5.35), which are subleading as long as
δ > 0, see eq. (F.17) and subsequent discussion in appendix F.

25The quite unlikely case of λc diverging in the chiral limit is contained in case (iii). In fact, below some
value of m one would find λc > µ, and so λc would be replaced by the cutoff µ in the calculations above.
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5.6 Anomalous remnant

The anomalous remnant R∗(0) is obtained by integrating R∗(x) over Euclidean spacetime.
If one can exchange the order of integration and of the sequence of limits appearing in
eq. (5.38), then the calculation is straightforward. Set

−R∗(0) = −
∫
β
d4xR∗(x) = πξI1

∗ + ηIγ5
∗ , (5.39)

where [see eqs. (5.6) and (5.27)]

IΓ
∗ =

∫
β
d4x lim

m→0
lim
λ→0

CΓ
loc(λ;x;m)

=
∫
β
d4x lim

m→0
lim
λ→0

lim
Λ→∞

lim
V→∞

Zm
∑
n

〈
δ(Zmλ− λn)OΓ

nn(x)OΓ
nn(0)

〉
β
,

(5.40)

and denote Lim ≡ limm→0 limλ→0 limΛ→∞ limV→∞. Under the interchangeability assump-
tion made above one finds

I1
∗ = LimZm

∑
n

〈
δ(Zmλ− λn)

∫
β
d4xO1

nn(x)O1
nn(0)

〉
β

= LimZm
∑
n

〈
δ(Zmλ− λn)O1

nn(0)
〉
β

= LimZm
1
βV

∑
n

〈δ(Zmλ− λn)〉β

= LimZmρB,V (Zmλ, Zmm) = lim
m→0

lim
λ→0

lim
Λ→∞

ZmρB(Zmλ, Zmm)

= lim
m→0

lim
λ→0

ρ(λ,m) = lim
m→0

ρ(0,m) = ρ(0, 0) ,

(5.41)

where
∫
β d

4xO1
n′n(x) = δn′n was used [see eq. (3.6)] and exact zero modes were dropped, while

Iγ5
∗ = LimZm

∑
n

〈
δ(Zmλ− λn)

∫
β
d4xOγ5

nn(x)Oγ5
nn(0)

〉
β

= 0 , (5.42)

since
∫
β d

4xOγ5
n′n(x) =

∫
β d

4xO1
n′−n(x) = δn′−n. In conclusion,

− R∗(0) = πξρ(0, 0) . (5.43)

This is the main result of this section: in the presence of a finite density of localised near-zero
modes, and if ξ 6= 0, one finds a nonvanishing anomalous remnant R∗(0).

Of course, one can consider the spacetime integral in eq. (5.40) also away from the
chiral and zero-eigenvalue limits. Under the assumption that the other limits can be suitably
interchanged, the calculation above shows that

IΓ(λ;m) =
∫
β
d4xCΓ

loc(λ;x;m) = δΓ,1ρ(λ,m) , (5.44)

if α(λ) = 0, and zero otherwise, and so C1
loc must be nonzero in the presence of a finite

density of localised modes, as anticipated in section 5.2.
The result eq. (5.43) crucially depends on the possibility of integrating over spacetime

before taking the various limits. For localised modes this is justified as follows.
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• In the finite-volume and UV-regularised theory (e.g., on a finite lattice), the mode sum
is over a finite number of modes, and can certainly be exchanged with integration.

• Averaging over gauge fields in the regularised setting should cause no problem. For
example, in the lattice regularisation the discretised gauge field is represented in terms
of link variables which are elements of the gauge group. Averaging then consists in a
multiple compact Haar integral over the gauge group, that can certainly be exchanged
with spacetime integration, i.e., with summation over lattice sites.

• The infinite-volume limit and the removal of the UV cutoff are difficult to control
analytically. Nonetheless, it is expected that at finite fermion mass the pseudoscalar-
pseudoscalar correlator is bounded exponentially as a function of |~x| (or at least by
some integrable function), independently of the localisation properties of the modes,26

uniformly in V and Λ. This is confirmed by numerical experience on the lattice (see,
e.g., ref. [116]). One can then use the dominated convergence theorem (see, e.g.,
ref. [117]) to justify exchanging integration with these limits.

• The crucial step is the chiral limit. In this limit, the exponential (or, more generally,
integrable) bound mentioned above may be lost. This is what one expects if near-zero
modes, which are the only ones of physical relevance, are delocalised: indeed, in
the standard scenario (R∗ = 0) the finite-temperature Goldstone theorem leads to
massless pseudoscalar excitations and a non-integrable algebraic decay 1/|~x| of the
pseudoscalar-pseudoscalar correlator. On the other hand, for localised modes an
integrable bound is expected to be inherited by the correlator from the modes, and
one can use again dominated convergence to justify the exchange of integration and
chiral limit. A more detailed argument showing that the 1/m-divergent part of the
pseudoscalar-pseudoscalar correlator should inherit the fast decay properties of the
localised near-zero modes from the spectral correlators is provided in appendix H.

As a final remark, notice that integration over spacetime is equivalent to the zero-
momentum limit of the Fourier transform. This is not expected to commute with the chiral
limit in general: for example, it does not if massless Goldstone bosons are present. These
limits should, however, commute if near-zero modes are localised.

5.7 Fate of Goldstone excitations

The main result of the previous subsection, eq. (5.43), can now be used to discuss the fate
of Goldstone excitations in the chiral limit of the theory. The singular part in the spectral
function, eq. (4.26), reads

lim
~k→0

c̃∗(ω,~k)|singular = −2πδ(ω)[Σ∗ − R∗(0)] = 2πδ(ω)ρ(0, 0)(1− ξ) , (5.45)

26For localised modes this is shown below in appendix E. For delocalised modes, averaging over gauge
fields leads to destructive interference effects among modes, and one expects an exponential decay of the
correlator.
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where I have used the Banks-Casher relation [34] in the chiral limit, Σ∗ = −πρ(0, 0).
Notice that the coefficient of the Dirac delta is larger than or equal to 0. There are three
possible scenarios, corresponding to scenarios (i)–(iii) for the behaviour of the pseudoscalar
correlator.

(i). If λc vanishes faster than m, then ξ = 0, and the presence of massless quasi-particles
depends exclusively on ρ(0, 0) being non-zero. This is identical to the standard scenario
encountered in the usual finite-temperature Goldstone’s theorem.

(ii). If λc vanishes as fast as m, then 0 < ξ < 1, and massless quasi-particles are present if
ρ(0, 0) 6= 0. This is similar to the standard scenario, although the coefficient of the singular
term is reduced. This results in a reduction of the residue −i[Σ∗−R∗(0)] = 2πiρ(0, 0)(1− ξ)
of the pole at zero momentum in ~̃GAP (0, ~k) [see eq. (4.14)].

(iii). If λc vanishes more slowly than m, including if it remains finite, then ξ = 1 and
Goldstone excitations disappear from the spectrum, even if the spectral density is finite at
the origin.27

6 Conclusions and outlook

Besides its connection with deconfinement, supported by an increasing amount of evidence,
the physical consequences of the localisation of low Dirac modes in high-temperature gauge
theories [13, 14, 16–33, 36, 44–47] have so far remained quite elusive. In this paper I have
discussed the effects of a finite density of localised near-zero modes in the chiral limit on the
pseudoscalar-pseudoscalar correlator and on the massless Goldstone excitations expected
from Goldstone’s theorem at finite temperature [49–53]. These effects were discussed first
in refs. [57, 58], of which this work is the completion, including a number of technical
details omitted there. In summary, the main result is that if a finite density of localised
near-zero modes is present in the chiral limit, and if the corresponding mobility edge
vanishes more slowly than the fermion mass, then no massless excitation are found in this
limit, in contrast with one’s expectations from Goldstone’s theorem. If the mobility edge
vanishes as fast as the fermion mass, massless excitations are present but the coefficient of
the corresponding delta-function term in the axial-vector-pseudoscalar spectral function is
reduced. To my knowledge, these are so far the only direct (although in the chiral limit)
physical consequences of localisation of Dirac modes that have been found.

The argument presented here and, in shortened form, in refs. [57, 58], requires a number
of intermediate results that I believe are valuable for their own sake:

• a proof and an extension of Goldstone’s theorem at finite temperature, in the case
of the non-singlet axial flavour symmetry of gauge theories with massless fermions,
based on the corresponding Ward-Takahashi identity in Euclidean space;

27If localised and delocalised modes coexist in the same spectral region (see footnote 21), then ρ(0, 0)
should be replaced by the density of localised near-zero modes, ρloc(0, 0) < ρ(0, 0), in eq. (5.43); and ξ should
be replaced by ξ ρloc(0,0)

ρ(0,0) < 1 in eq. (5.45) and in the discussion above. Notice that Goldstone excitations
cannot disappear in this case.
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• a detailed calculation of the contribution of localised modes to the pseudoscalar-pseudo-
scalar correlator, showing that they can lead to a 1/m divergence in the fermion mass
if the mobility edge, λc, vanishes as fast as or more slowly than m;

• a proof of the renormalisation-group-invariance of the mobility edge in units of the
fermion mass, λc/m.

The extension of Goldstone’s theorem at finite temperature closes a loophole in the
usual proof (see refs. [49–53]), related to the possibility that the relevant symmetry remains
effectively explicitly broken in the chiral limit. In this case the axial flavour symmetry
remains not conserved even in the chiral limit, and the usual Goldstone’s theorem at finite
temperature is evaded. There is therefore no contradiction between this theorem and
the possible disappearance of massless excitations mentioned above, in spite of the chiral
condensate being nonzero due to the presence of a finite density of near-zero modes.

A term explicitly breaking the symmetry, referred to as the anomalous remnant in this
paper, is present in the relevant Ward-Takahashi identity in the chiral limit if near-zero
modes are localised and have a finite spectral density, and if their mobility edge does not
vanish faster than the fermion mass m. This results, in a manner similar to the formation
of anomalies, from the cancellation of the symmetry-breaking parameter m in the Ward-
Takahashi identity against a 1/m divergence in the pseudoscalar-pseudoscalar correlator.
This is the origin of the effects discussed above on the massless Goldstone modes that are
usually expected in the chiral limit.

The renormalisation-group-invariance of the ratio of the mobility edge and the fermion
mass was suggested in ref. [18], and is supported by numerical evidence in lattice QCD
(also at finite imaginary chemical potential) showing that this ratio has limited sensitivity
to the lattice spacing [18, 31]. The proof presented here puts this on firmer ground, and
further supports the fact that localisation of the low Dirac modes is a genuine physical
effect in Euclidean spacetime, and not a lattice artefact.

The main result of this paper would be of more limited interest if one could prove
that localised modes must not be present in the chiral limit, lest one violates some general
property expected of a decent quantum field theory at finite temperature. Nonetheless,
in this case it could be reversed to show that no 1/m divergence should appear in the
pseudoscalar-pseudoscalar correlator, and that the massless Goldstone modes cannot be
removed if a nonzero condensate is present. However, I am not aware of any general property
of finite-temperature quantum field theory in contrast with the assumption of localised
near-zero modes in the chiral limit.

The most pessimistic scenario, from the theoretical point of view, is that while not
violating any general principle, localised near-zero modes are in practice not found in any
useful model. It is then important to follow up on the interesting clues about the possible
realisation of such a scenario, found in Nf = 2 massless adjoint QCD [5, 6] and, most
importantly, in QCD towards the chiral limit [59–61].

The connection between localisation and disappearance of Goldstone modes has been
known for a long time in condensed matter physics [54], and for quite some time in zero-
temperature lattice field theory as well, although in an unphysical setup [55] (see also
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ref. [58]). The mechanism behind this connection is the same in those cases and in finite-
temperature quantum field theory, and boils down to how the susceptibility appearing in
the integrated version of a suitable Ward-Takahashi identity blows up in the limit in which
the symmetry-breaking parameter is sent to zero. In the case at hand this is the non-singlet
pseudoscalar susceptibility, which diverges like 1/m in the chiral limit. However, in the
usual case where low Dirac modes are delocalised this happens only after the spacetime
integration that connects the susceptibility to the pseudoscalar-pseudoscalar correlator.
Instead, if low Dirac modes are localised the 1/m divegence is already present in the
correlator before spacetime integration. This mechanism is identical to the one already
discussed in refs. [54, 55]. The major differences between refs. [54, 55] and this work and
refs. [57, 58] are on the one hand technical, due to the reduced amount of symmetry in
finite-temperature quantum field theory in the imaginary-time formulation stemming from
the presence of a compactified direction; and on the other hand of practical relevance (in
principle. . . ), as this work is concerned with physically more realistic theories.

In this respect, it would be interesting to work out the consequences for the finite-mass
theory of the realisation of a non-standard scenario in the chiral limit, with Goldstone
modes removed or at least modified by the presence of localised modes. This would require
to preliminarily understand what kind of finite-temperature transition one would find in
the chiral limit, separating a low-temperature phase where low modes are delocalised from
a phase at higher temperature where they are localised, but with a finite density on both
sides of the transition.28 What follows is largely speculative.

Although it may seem natural to expect that the mobility edge is vanishingly small
at such a transition, it is not necessarily so, as displayed by SU(3) pure gauge theory
where a finite mobility edge appears at the transition in the trivial Polyakov-loop sector
(see ref. [118]). This may be a consequence of the first-order nature of the transition.
Results at the first-order reconfinement transition in trace-deformed SU(3) gauge theory
at high temperature are also compatible with a finite mobility edge at the transition [29].
Independently of this, the order of the chiral transition is determined by the behaviour of
the chiral condensate rather than that of the mobility edge. In this respect, the radical
change in the nature of the low modes would more naturally suggest a finite discontinuity
in the condensate, and so a first-order transition, but a continuous behaviour cannot be
excluded. In any case, the fact that the anomalous remnant is identically zero in one phase
and nonzero in the other indicates the presence of a non-analyticity in the partition function
(as a function of an extended set of variables including a suitable chemical potential), and
so that the phase transition is genuine. This is the case as long as a nonzero anomalous
remnant appears, irrespectively of whether it is able to remove the Goldstone excitations
from the spectrum or not.

It would be interesting to study how localisation of finitely-dense low modes could be
included in the theoretical analysis of phase transitions in gauge systems, extending the

28One should mention the claim of refs. [78, 79] that modes in the immediate vicinity of the origin are
critical, i.e., with nontrivial localisation properties, rather than localised, in high-temperature SU(3) pure
gauge theory probed with overlap fermions. However, this claim has still to be fully confirmed by a finite
size scaling analysis, and it is unclear how it would affect the opposite, chiral limit of massless fermions.
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standard analysis of ref. [119]. This predicts a second-order chiral transition for Nf = 2
and a first-order one for Nf ≥ 3 (see, however, the recent analysis of ref. [120] claiming the
possibility of a continuous phase transition also in this case). According to the standard
lore, isolated first-order points are not expected, and a line of first-order transitions should
reach out from zero mass to a critical endpoint at some nonzero fermion mass where the
transition is second order. However, no second-order endpoint has been observed so far
for Nf = 3, and there are recent claims that no such critical endpoint is present up to
Nf = 6 flavours of light fermions [121]. The inclusion of localisation effects may lead to
revise one’s expectations.

A transition from delocalised to localised finitely-dense near-zero modes could be
followed by a second transition at a higher temperature, where the density of near-zero
modes goes to zero and chiral symmetry gets fully restored. This kind of scenario would
fit what is known about Nf = 2 massless adjoint QCD [5, 6]: one would find Goldstone
modes being “weakened” at the deconfinement transition by the formation of an anomalous
remnant [like in scenario (ii) discussed in section 5.7], and then gradually disappearing from
the spectrum until full restoration at higher temperature. It is also possible that extending
the study of refs. [5, 6] to larger volumes the effects of localised near-zero modes become
fully visible, and Goldstone modes get entirely removed from the spectrum at deconfinement
[scenario (iii) in section 5.7]. In either case, if something similar happened with massless
fundamental fermions, then the fact that in QCD (approximate) deconfinement and chiral
restoration take place together in the same relatively narrow temperature range would
be a consequence of the “blurring” of the two separate sharp transitions into a single
analytic crossover.

Whether any of the non-standard scenarios discussed in this paper applies to QCD
depends on the behaviour of the finite peak of near-zero localised modes observed at near-
physical quark masses [59]. Such a peak is known to be present in pure gauge theory [36],
and so in the limit of large quark masses; and to survive at the lower-than-physical quark
masses investigated so far (although localisation properties were not studied) [60–63]. If it
survived the chiral limit, this peak would then be a common feature in the whole quark mass
range, most likely appearing at the same temperature where near-zero modes first become
localised. This is the case in pure gauge theory, where this temperature also coincides with
the deconfinement temperature [22, 23]. Moreover, if the peak consisted of localised modes
all the way to the chiral limit, then the temperature at which it appears there would mark a
genuine phase transition, distinct from the chiral transition, even if the peak had a vanishing
width in this limit (as long as this does not vanish too fast with m). This would naturally,
albeit unexpectedly, suggest to identify the deconfinement transition in the presence of
dynamical fermions as the transition to localised near-zero modes. Presumably, for any
finite quark mass the near-zero peak disappears at some sufficiently high temperature,
corresponding to a second pseudocritical temperature above the crossover one for physical
masses. In the chiral limit, this should extrapolate to the critical temperature of a second
transition, where the near-zero peak disappears and chiral symmetry is restored.

The crucial question is whether or not the two transitions coincide in the chiral limit. If
they do, then localisation of near-zero modes and chiral restoration take place at the same
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temperature, and no peak of localised near-zero modes ever forms at m = 0. This would
fit with the disordered medium scenario of ref. [35], according to which the accumulation
of Dirac eigenvalues near the origin takes place together with the delocalisation of the
corresponding eigenmodes. If the two transitions do not coincide, an intermediate phase
would appear where chiral symmetry is broken and Goldstone excitations are weakened
or absent altogether. Obviously, this is possible only if the temperature where near-zero
modes localise is below the chiral transition temperature. A recent estimate of the latter
is T 0

c ' 132 MeV [122], obtained by extrapolating observables to zero light-quark mass
according to O(4) scaling. This suggests the presence of massless Goldstone modes below
T 0
c , which can be reconciled with the presence of an intermediate phase in the chiral

limit if scenario (ii) with weakened Goldstone excitations is realised. On the other hand,
the localisation temperature is known only at the physical point, where it is obtained
by extrapolation from higher temperatures [18]. While the result clearly falls within the
crossover range, somewhere above the position of the peak of the chiral susceptibility,
the accuracy of the extrapolation is not fully under control. To this end, it would be
interesting to improve on the results of ref. [18] and determine the temperature at which
localisation appears by a direct study near the crossover at physical and lower-than-physical
quark masses.

It should be noted that the existence of an intermediate phase in QCD, between the
crossover temperature and a (much) higher one, has been suggested several times in the
literature, although with various different motivations (see, e.g., refs. [123, 124] and the
discussion in ref. [125]). It would be interesting to investigate what happens to the near-zero
peak at the higher temperatures where the conjectured intermediate phase should end.

Acknowledgments

I thank A. Portelli for getting me interested in the issue of localisation in the chiral limit,
C. Bonati, M. D’Elia, S. D. Katz, D. Nógrádi, A. Pásztor, and Zs. Szép for useful discussions,
G. Morchio and F. Strocchi for correspondence, and T. G. Kovács for discussions and for a
careful reading of the manuscript. I also thank an anonymous referee for helpful suggestions.
This work is partially supported by the NKFIH grant KKP-126769.

A Analyticity and reality properties of two-point functions

In this appendix I provide further details on the analytic continuation of two-point functions
and on their reality properties.

Analytic continuation relations. The analytic continuation relations, eqs. (2.12)
and (2.14), between the Fourier coefficients of the Euclidean correlator, eq. (2.8), and
the retarded and advanced propagators, eq. (2.10), can be obtained following the approach
of ref. [68] based on the deformation of the integration path of a suitable complex integral.
One defines the integrals

I≷
(
ω,~k

)
≡ i

∫
C≷
dz

∫
d3x ei(ωz−~k·~x)Gφ1φ2 (z, ~x) , (A.1)
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Figure 1. Integration paths in eq. (A.1).

for Imω ≷ 0, respectively, where the paths C≷ are shown in figure 1. The contribution of
the paths along the imaginary direction at large |Re z| are suppressed exponentially as the
paths are pushed to infinity and so can be discarded. Independently of ω, the paths can be
shrunk to run close to the real axis, leading to

I>
(
ω,~k

)
= r̃φ1φ2

(
ω,~k

)
, Imω > 0 ; I<

(
ω,~k

)
= ãφ1φ2

(
ω,~k

)
, Imω < 0 .

(A.2)
On the other hand, for the special values ω = iωn, n 6= 0, one finds that thanks to periodicity
the contributions from the paths reaching to infinity cancel each other out, so that

I>
(
iωn, ~k

)
= G̃φ1φ2

(
ωn,−~k

)
, n > 0 ; I<

(
iωn, ~k

)
= G̃φ1φ2

(
ωn,−~k

)
, n < 0 .

(A.3)
Comparing eqs. (A.2) and (A.3), one obtains eq. (2.12), as in ref. [68]. The case n = 0,
instead, was not discussed in detail there. In this case one starts from I>(iε,~k ) and
I<(−iε,~k ), eventually taking ε→ 0. One finds

I≷
(
±iε,~k

)
=
∫ β

2

−β2
dτ

∫
d3x e−i

~k·~xGφ1φ2 (−iτ, ~x)

− εβ
∫
d4x θ (±t) e∓εte−i~k·~xGφ1φ2

(
t− iβ2 , ~x

)
,

(A.4)

up to terms that vanish in the limit ε→ 0, and so

lim
ε→0

I≷
(
±iε,~k

)
= G̃φ1φ2

(
0,−~k

)
−A(±)

φ1φ2

(
~k
)
, (A.5)

where
A

(±)
φ1φ2

(
~k
)
≡ lim

t→±∞
β

∫
d3x e−i

~k·~xGφ1φ2

(
t− iβ2 , ~x

)
, (A.6)

assuming that this quantity is finite.
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Transport peak. As discussed in refs. [70, 71], A(±)
φ1φ2

in eq. (A.5) can be identified with
the coefficient of the transport peak. If ρ̃φ1φ2/ω has a Dirac delta singularity at the origin
[see eq. (2.13)],

ρ̃φ1φ2

(
ω,~k

)
= 2πAφ1φ2

(
~k
)
ωδ (ω) +Bφ1φ2

(
ω,~k

)
, (A.7)

with Bφ1φ2 regular, one finds29

G̃φ1φ2

(
0,−~k

)
− r̃φ1φ2

(
iε,~k

)
= G̃φ1φ2

(
0,−~k

)
− ãφ1φ2

(
−iε,~k

)
= Aφ1φ2

(
~k
)
, (A.8)

where the limit ε → 0 is understood, so that Aφ1φ2 = A
(+)
φ1φ2

= A
(−)
φ1φ2

. Notice that if
the Euclidean fields φE1,2 corresponding to φ1,2 have simple transformation properties
under time-reflection (see section 3.3), φE1,2(t, ~x) → ς1,2φE1,2(β − t, ~x), ς1,2 = ±1, then
A

(±)
φ1φ2

(~k) = ς1ς2A
(∓)
φ1φ2

(~k), and so a transport peak can only be present if ς1ς2 = 1.

Reality of Euclidean correlators. The correlators GAP µ(t, ~x) and GPP (t, ~x), and more
generally the Euclidean correlation function of an arbitrary number of non-singlet axial-
vector and pseudoscalar densities, are real functions. To see this, consider the generat-
ing functional

ZA,P
[
j
]
≡
∫
β

[
Dψ

][
Dψ̄

]
e
−
∫
β
d4x ψ̄K

[
j
]
ψ
, K

[
j
]
≡ /D +m1 + jaAµγµγ5t

a + jaPγ5t
a ,

(A.9)
where j denotes collectively the set of real sources jaAµ(x) and jaP (x). Performing the
Grassmann integral one obtains

ZA,P [j] = DetK[j] . (A.10)

Since K[j]† = γ5K[j]γ5, one finds that ZA,P [j] is real,

ZA,P [j]∗ = (DetK [j])∗ = DetK [j]† = DetK [j] = ZA,P [j] . (A.11)

Taking functional derivatives with respect to the currents, setting j = 0, and averaging over
gauge fields as in eq. (3.2),30 the claimed result follows. This formal derivation holds also in
a regularised, lattice version of the theory as long as the discretised Dirac operator satisfies
the γ5-Hermiticity property γ5 /Dγ5 = /D

†.

Reality properties of thermal expectation values. A consequence of the reality
property discussed above is that the analytic extensions31 of GAP µ and GPP in the complex-
t plane satisfy the Schwarz reflection principle, i.e.,

GAP µ(z∗, ~x) = GAP µ(z, ~x)∗ , GPP (z∗, ~x) = GPP (z, ~x)∗ . (A.12)
29While only the result for the retarded propagator is discussed in refs. [70, 71], the one for the advanced

propagator can be obtained by a simple extension of the calculation.
30In Lorenz gauge, the gauge action and integration measure are manifestly real.
31While contact terms may be present in the Euclidean correlation functions, it is understood that they

are not involved in the process of analytic continuation.
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This can be combined with the symmetry properties and the periodicity of the correlators
as follows. Setting z = ε − it, one finds, using the analytic extension of the relation
eq. (3.21), that

GAP µ(ε+ it, ~x)∗ = GAP µ(ε− it, ~x) = ζµGAP µ(β − ε+ it, ~x) = ζµGAP µ(−ε+ it, ~x) .
(A.13)

Using the analytic continuation relations eq. (3.25), one sees that these are relations
between the real-time correlation functions of the axial-vector and pseudoscalar Minkowskian
operators, that can be summarised as

〈〈Âaµ(t, ~x)iP̂ b(0)〉〉∗β = 〈〈iP̂ b(0)Âaµ(t, ~x)〉〉β . (A.14)

Similarly, using eq. (3.22), one finds

GPP (ε+ it, ~x)∗ = GPP (ε− it, ~x) = GPP (β − ε+ it, ~x) = GPP (−ε+ it, ~x) , (A.15)

and, using again eq. (3.25),

〈〈P̂ a(t, ~x)P̂ b(0)〉〉∗β = 〈〈P̂ b(0)P̂ a(t, ~x)〉〉β . (A.16)

Equations (A.14) and (A.16) imply

〈〈
[
Âaµ (t, ~x) , P̂ b (0)

]
〉〉∗β = 〈〈

[
Âaµ (t, ~x) , P̂ b (0)

]
〉〉β ,

〈〈
[
P̂ a (t, ~x) , P̂ b (0)

]
〉〉∗β = −〈〈

[
P̂ a (t, ~x) , P̂ b (0)

]
〉〉β ,

(A.17)

for the thermal expectation values of the commutators, and in turn

c̃
(
ω,~k

)∗
= ρ̃A0aPa

(
ω,~k

)∗
= ρ̃A0aPa

(
−ω,−~k

)
= c̃

(
−ω,−~k

)
,

c̃P
(
ω,~k

)∗
= ρ̃PaPa

(
ω,~k

)∗
= −ρ̃PaPa

(
−ω,−~k

)
= −c̃P

(
−ω,−~k

)
,

(A.18)

for the relevant spectral functions [see eq. (3.26)].

B Non-singlet axial Ward-Takahashi identities

In this appendix I review the derivation of the non-singlet axial Ward-Takahashi identities.
In general, Ward-Takahashi identities are obtained observing that a change of integration
variables in the path integral trivially leaves the result unchanged, and applying this
observation to a change of variables through the infinitesimal form of some continuous
symmetry but with x-dependent parameters.

In the case at hand, one upgrades the infinitesimal form of the non-singlet axial
symmetry transformations, eq. (3.10), to the x-dependent transformations ψ → ψ + δAψ

and ψ̄ → ψ̄ + δAψ̄, with

δAψ(x) = iεa(x)taγ5ψ(x) , δAψ̄(x) = iεa(x)ψ̄(x)taγ5 , (B.1)
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with infinitesimal εa(x). Since the functional integration measure is invariant thanks to
tr ta = 0, one obtains for any observable O

〈δAO〉β = 〈OδASF〉β , δASF = i

∫
β
d4x εa(x)

(
−∂µAaµ(x) + 2mP a(x)

)
, (B.2)

with Aaµ the flavour non-singlet axial-vector currents, and P a the flavour non-singlet
pseudoscalar densities, defined in eq. (3.13). Since εa(x) is infinitesimal but otherwise
arbitrary, one finds eq. (3.12),

〈(
−∂µAaµ(x) + 2mP a(x)

)
O
〉
β

=
〈
−i δAO
δεa(x)

〉
β

. (B.3)

In the case O = P b(y), a straightforward calculation shows that

− iδAP
b(y)

δεa(x) = δ(4)(x− y)
(

1
Nf

δabS(y) + dabcSc(y)
)
, (B.4)

where the flavour singlet and flavour non-singlet scalar densities S and Sa read

S(x) ≡ ψ̄(x)ψ(x) , Sa(x) ≡ ψ̄(x)taψ(x) , (B.5)

with the totally symmetric symbol dabc defined through{
ta, tb

}
= 1
Nf

δab + dabctc . (B.6)

The four-dimensional Dirac delta in eq. (B.4) is periodic in time, see eq. (3.15). Invariance
under vector flavour transformations implies that

〈ψ̄f1(0)ψf2(0)〉β ≡ δf1f2Σ , (B.7)

with Σ the chiral condensate, and so

〈S(0)〉β = NfΣ , 〈Sa(0)〉β = 0 . (B.8)

One then finds the Ward-Takahashi identity eq. (3.14),

− ∂µ〈Aaµ(x)P b(0)〉β + 2m〈P a(x)P b(0)〉β = δ(4)(x)δabΣ . (B.9)

Further exploiting vector flavour invariance, one has

〈Aaµ(x)P b(0)〉β ≡ δabGAP µ(x) , 〈P a(x)P b(0)〉β ≡ δabGPP (x) , (B.10)

and so eqs. (3.17) and (3.18) follow,

− ∂µGAP µ (x) + 2mGPP (x) = δ(4) (x) Σ , (B.11)

iωnG̃AP 4
(
ωn,~k

)
+ i~k · ~̃GAP

(
ωn, ~k

)
+ 2mG̃PP

(
ωn, ~k

)
= Σ . (B.12)
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For future utility one defines also the flavour non-singlet vector currents, V a
µ , as

V a
µ (x) ≡ ψ̄(x)γµtaψ(x) . (B.13)

Identities involving O = Abν(y), V b
ν (y), see eqs. (4.29) and (C.1), are obtained using

− iδAA
b
ν(y)

δεa(x) = −δ(4)(x− y)ifabcV c
ν (y) , −iδAV

b
ν (y)

δεa(x) = −δ(4)(x− y)ifabcAcν(y) . (B.14)

In particular, eq. (4.29) follows since 〈V c
ν 〉β = 0 due to vector flavour symmetry (or to

rotation and reflection symmetries).
A second set of Ward-Takahashi identities is obtained starting from the vector symmetry

transformations eq. (3.9). Changing variables according to ψ → ψ+ δV ψ and ψ̄ → ψ̄+ δV ψ̄,
with

δV ψ(x) = iεa(x)taψ(x) , δV ψ̄(x) = −iεa(x)ψ̄(x)ta , (B.15)

since the functional integration measure is invariant one obtains for any observable O

〈δVO〉β = 〈OδV SF〉β , δV SF = i

∫
β
d4x εa(x)

(
−∂µV a

µ (x)
)
. (B.16)

Since εa(x) is infinitesimal but otherwise arbitrary, one finds

〈−∂µV a
µ (x)O〉β =

〈
−i δVO
δεa(x)

〉
β

. (B.17)

C Renormalisation of the Ward-Takahashi identity

In this appendix I exploit the Ward-Takahashi identities eq. (B.3) [eq. (3.12)] to discuss
the renormalisation of the relevant composite operators. The point of view is that ex-
plained in section 3.5: correlation functions are regularised by cutting off their Dirac mode
decomposition at some UV cutoff Λ, which leads to violations of the Ward-Takahashi
identities that nonetheless will vanish as Λ→∞. This is guaranteed by the existence of
chiral-symmetry-respecting regularisations. One can then use the Ward-Takahashi identities
to constrain and relate the various UV divergences. Since UV divergences are the same at
zero and nonzero temperature (see, e.g., [126–128]), renormalisation of the zero-temperature
theory is sufficient to make the finite-temperature theory finite as well. In what follows
T = 0, i.e., β =∞, unless specified otherwise. The line of reasoning is standard (see, e.g.,
refs. [105, 129]). It is assumed that the usual mass and coupling constant multiplicative
renormalisations (additive mass renormalisation being forbidden by chiral symmetry) have
already been carried out. In particular, the bare mass mB and the renormalised mass m
are related by mB = Zmm.

Multiplicative renormalisation. In the vector identities eq. (B.17), with O an arbitrary
string of renormalised fundamental fields, one finds on the right-hand side only a sum of
finite contact terms, and so the divergence ∂µV a

Bµ of the bare vector currents is finite. Since
V a
Bµ cannot mix with other operators of equal or lower dimension for symmetry reasons, the

– 43 –



J
H
E
P
1
2
(
2
0
2
2
)
1
0
3

renormalised currents are simply V a
Bµ = ZV V

a
µ , and finiteness of ∂µV a

Bµ implies finiteness of
ZV , that can be set to ZV = 1. In general, vector flavour invariance implies independence
of the flavour index a, and SO(4) invariance implies independence of µ.

The bare non-singlet axial currents AaBµ and non-singlet pseudoscalar densities P aB,
appearing in the axial Ward-Takahashi identities eq. (B.3), cannot mix with other operators,
again due to symmetry reasons, so only multiplicative renormalisation may be required.
Additive divergences, however, can still appear on the left-hand side of the identities in
the form of contact terms at x = 0. These are discussed below in the case of interest. Let
AaBµ = ZAA

a
µ and P aB = ZPP

a relate the bare and the renormalised axial-vector currents
and pseudoscalar densities. Using eq. (B.3) with O a string of fundamental fields, finiteness
of the contact terms on the right-hand side implies that Z−1

A ZmZP is finite and can be set
to 1. Alternatively, one could use eq. (B.9) at x 6= 0 to obtain the same result. Taking
instead O = V b

Bν(y)AcBρ(z), one finds the following identity for the renormalised fields,

Z2
A〈
(
−∂µAaµ(x) + 2mP a(x)

)
V b
ν (y)Acρ(z)〉β

= −Z2
Aδ

(4)(x− y)ifabd〈Adν(y)Acρ(z)〉β − δ(4)(x− z)ifacd〈V b
ν (y)V d

ρ (z)〉β ,
(C.1)

valid for generic β and in particular for β =∞. Taking y 6= z and integrating in x over a
domain containing z but not y, one finds a finite right-hand side, which implies that ZA
must be finite, and can be set to 1. One then concludes ZV = ZA = ZmZP = 1.

Contact terms. Renormalisation of the Ward-Takahashi identity eq. (B.9) requires also
the subtraction of divergent contact terms at x = 0. In general (at least in perturbation
theory), UV divergences must be polynomial in m as a consequence of locality. Dimensional
analysis and the symmetries of the theory then constrain the divergent contact terms
δabCTAP and δabCTPP , appearing respectively in 〈AaBµ(x)P bB(0)〉 and 〈P aB(x)P bB(0)〉, to be
of the following form,

CTAP (x) = ∂µδ
(4)(x)mKAP ,

CTPP (x) =
(
δ(4)(x)

(
Λ2K

(1)
PP +m2K

(2)
PP

)
+�δ(4)(x)K(3)

PP

)
,

(C.2)

with KAP , K(1,2,3)
PP dimensionless quantities, depending logarithmically on Λ. Since the

pseudoscalar-pseudoscalar correlator appears multiplied by m, all these contact terms drop
from eq. (B.9) in the chiral limit. The spacetime and flavour structure are determined by
SO(4) and reflection invariance, and by the unbroken vector flavour symmetry, respectively.
The dependence on m is dictated by the fact that a “R5-parity” transformation [108],

ψ → γ5ψ , ψ̄ → −ψ̄γ5 , (C.3)

which is an element of the non-anomalous SU(Nf )V × SU(Nf )A symmetry group in the
chiral limit, is equivalent to changing the sign of the fermion mass. This requires the
expectation value of operators that are even (respectively odd) under R5-parity to be even
(respectively odd) under m→ −m. Since the axial currents are odd while the pseudoscalar
densities are even, the mass dependence in eq. (C.2) follows.

The contact term on the right-hand side of eq. (B.9) is proportional to the chiral
condensate, i.e., the expectation value of the scalar density. This operator can mix with
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the identity operator, and so requires both additive and multiplicative renormalisation,
SB = ZSS + Z11. The divergent part of the mixing coefficient, Z1, is determined by the
same type of argument used above to be of the form

Z1 = Nf

(
mΛ2K

(1)
S +m3K

(2)
S

)
, (C.4)

with dimensionless coefficients K(1,2)
S (again depending logarithmically on Λ), since the

scalar density is odd under R5-parity. Also these terms drop from eq. (B.9) in the chiral
limit, while matching the two sides at finite m one finds the relations KAP = 2K(3)

PP ,
2K(1)

PP = K
(1)
S , and 2K(2)

PP = K
(2)
S .

Renormalised correlation functions. Defining now the fully renormalised correlation
functions and chiral condensate via

ZAZPGAP µ(x)δab = ZAZP 〈Aaµ(x)P b(0)〉β = 〈AaBµ(x)P bB(0)〉β − δabCTAP (x) ,

Z2
PGPP (x)δab = Z2

P 〈P a(x)P b(0)〉β = 〈P aB(x)P bB(0)〉β − δabCTPP (x) ,

ZSΣ = 1
Nf

ZS〈S(0)〉β = 1
Nf

(〈SB(0)〉β − Z1) ,

(C.5)

one can use again the Ward-Takahashi identity to fix the multiplicative renormalisation
constant ZS . After renormalisation and integration over spacetime, one finds from eq. (B.9)

ZmZ
2
P 2m

∫
β
d4x 〈P a(x)P b(0)〉β = δabZSΣ , (C.6)

since for finite m the integral of the divergence of the axial currents gives zero contribution.
One then concludes ZS = ZP = Z−1

m .
It should be noted that subleading terms in the regularised bare chiral condensate

1
Nf
〈SB(0)〉β, that vanish as Λ → ∞, could conspire with the UV divergences in ZS to

give a finite contribution, generating further finite but more singular contact terms on the
right-hand side of eq. (B.9). However, the only other possible term allowed by locality,
SO(4) invariance, behaviour under R5-parity and dimensional analysis is m�δ(4)(x), which
vanishes in the chiral limit and is therefore irrelevant for the purposes of this paper.32

D Euclidean Goldstone theorem in coordinate space

In this appendix I give another proof of Goldstone’s theorem at finite temperature, based
on the Ward-Takahashi identity eq. (3.14) [eq. (B.9)], obtained by working in coordinate
space. To this end, one defines the integrated correlation functions

Q(t) ≡ lim
V→∞

∫
V
d3xGAP 4(t, ~x) ,

B(t) ≡ lim
V→∞

∫
V
d3x ~∇ · ~GAP (t, ~x) = lim

V→∞

∫
∂V
d2~Σ · ~GAP (t, ~x) , (D.1)

P(t) ≡ lim
V→∞

∫
V
d3x 2mGPP (t, ~x) = lim

V→∞

∫
V
d3xR(t, ~x) .

32At finite m, in momentum space this term becomes simply m(ω2 + ~k 2) and so vanishes in the limit of
zero frequency and zero spatial momentum.

– 45 –



J
H
E
P
1
2
(
2
0
2
2
)
1
0
3

An infrared cutoff is imposed on the spatial integral in the form of a finite volume V with
boundary ∂V (with outward-oriented infinitesimal surface element d2~Σ), which is removed
only at the end of the calculation. In particular, in the chiral limit this is done after the
limit m→ 0 has already been taken. Notice that this is only a cutoff on the integral and
not on the full theory, which is defined in infinite volume. Integrating eq. (B.9) over space
one finds

− ∂tQ(t)− B(t) + P(t) = δP (t)Σ , (D.2)

where the periodic Dirac delta is defined in eq. (3.15).

Continuity properties of the integrated correlators. To proceed further one needs
to discuss first the continuity properties at t = 0 of the integrated correlators, eq. (D.1).
Here the symmetry properties of the Euclidean correlators under time reflection, eqs. (3.21)
and (3.22), are used. For ~x 6= ~0, GAP µ(z, ~x) is analytic for complex z = t− iτ also for t = 0
if |τ | < |~x|, so in particular GAP µ(t, ~x) is continuous at t = 0. For GAP 4 at t = 0 one finds

GAP 4(0, ~x) = −GAP 4(β, ~x) . (D.3)

Combining eq. (D.3) with periodicity one concludes GAP 4(0, ~x) = 0 for ~x 6= ~0, while for
~x = ~0 this does not follow since continuity at t = 0 is not guaranteed. In general then Q(t)
satisfies Q(β − t) = −Q(t) but need not be continuous at t = 0. On the other hand, GAP µ
is continuous (in fact, analytic) at t = β

2 for any ~x, and so

GAP 4
(
β
2 , ~x

)
= −GAP 4

(
β
2 , ~x

)
= 0 , Q

(
β
2

)
= −Q

(
β
2

)
= 0 . (D.4)

For the spatial components ~GAP , eq. (3.21) and periodicity imply ~GAP (t, ~x) = ~GAP (β−t, ~x) =
~GAP (−t, ~x) for all ~x, which already follows from continuity for ~x 6= 0. If the limits for
t→ 0± exist also for ~x = ~0, then ~GAP (t,~0) must be continuous at t = 0.

More interestingly, and independently of time-reflection symmetry, if ~GAP vanishes
sufficiently fast at spatial infinity then B(t) is continuous at t = 0, since the point ~x = ~0 is
not involved in the integral. Moreover, as a consequence of the regularity condition eq. (4.7)
discussed in section 4.2, one finds that B(t) is constant in (Euclidean) time. In fact, B(t) is
obtained by summing ~k · ~̃GAP over Matsubara frequencies and taking the limit ~k → 0 [see
eq. (2.7)],

B (t) = lim
~k→0

1
β

∑
n

e−iωnt
(
−i~k

)
· ~̃GAP

(
ωn,~k

)
= − i

β
lim
~k→0

~k · ~̃GAP
(
0,~k

)
, (D.5)

which is time-independent. Notice that for ω0 = 0 there is no requirement from eq. (4.7),
so that B(t) = B need not be zero in general.

Finally, eq. (3.22) implies that GPP (t, ~x) is continuous at t = 0 for ~x 6= ~0, and also for
~x = 0 if the limits t→ 0± exist, like for ~GAP . The quantity P(t) may not be continuous at
t = 0 if GPP is divergent at x = 0, but for our purposes it suffices to assume that at t = 0 it
develops at most an integrable singularity in t.
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Chiral limit. The properties discussed above are expected to hold also in the chiral limit.
In particular, as in section 4.2, it is assumed that the regularity condition holds as V →∞
in the spatial integral (i.e., ~k → 0 in momentum space) also after the chiral limit has been
taken. Taking now the chiral limit in the integrated Ward-Takahashi identity, eq. (D.2),
one finds

−∂tQ∗(t)− B∗ + P∗(t) = δP (t)Σ∗ , (D.6)

where I used eq. (D.5), and all quantities are computed in the chiral limit (taken before
V → ∞ in the integral), as denoted by the subscript ∗. Further integrating over time
between β

2 and t ∈ (0, β), and using Q(β2 ) = 0 following from antisymmetry [see eq. (D.4)],
one finds

Q∗(t) = −B∗ ·
(
t− β

2

)
+
∫ t

β
2

dt′ P∗(t′) , t ∈ (0, β) . (D.7)

This is then repeated periodically as Q∗(t+ nβ) = Q∗(t), ∀n ∈ Z.
The value of B∗ is determined by the contact term at t = 0 in eq. (D.6). Integrating this

equation in an infinitesimal neighbourhood [−ε, ε] of t = 0, using the property Q∗(−t) =
Q∗(β − t) = −Q∗(t) which follows from periodicity and antisymmetry under temporal
reflection, and using integrability of P∗ at t = 0, one finds

lim
ε→0
−[Q∗(ε)−Q∗(−ε)] = lim

ε→0
−2Q∗(ε) = Σ∗ . (D.8)

One the other hand, using the solution eq. (D.7) and the property P∗(t) = P∗(β − t)
one obtains

− Σ∗ = lim
ε→0

2Q∗(ε) = B∗β + 2
∫ 0

β
2

dt′ P∗(t′) = B∗β − 2
∫ β

0
dt′ P∗(t′) ≡ B∗β − Ξ∗ . (D.9)

Plugging this into eq. (D.7) one finally obtains

Q∗(t) = −(Σ∗ − Ξ∗)
(
t

β
− 1

2

)
+
∫ t

β
2

dt′ P∗(t′) , t ∈ (0, β) . (D.10)

In the standard case P∗ = 0, the resulting function manifestly satisfies the analyticity,
continuity and bounded-growth hypotheses of the reconstruction theorem of real-time Green
functions discussed in ref. [69]. This will hold also if P∗ 6= 0 under reasonable analyticity
and bounded-growth assumptions for this quantity.

Analytic continuation. The analytic continuation required to obtain the spectral func-
tion is most clearly done exploiting again the antisymmetry of Q, extended by analytic
continuation. One finds

Q∗(ε+ it)−Q∗(−ε+ it) = Q∗(ε+ it) + Q∗(ε− it)

= −(Σ∗ − Ξ∗) +
∫ ε+it

β
2

dt′ P∗(t′) +
∫ ε−it

β
2

dt′ P∗(t′) ,
(D.11)

where the complex paths appearing in the last two terms are chosen to run along the real t′
axis from β

2 to ε, and then on the axis z = ε+ it′ in the positive or negative t′ direction. If
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P∗(z) is free of singularities for Re z ∈ (0, β), then the analytic continuation is unambiguous
in this strip. Exploiting the symmetry properties of P∗, one finds for the last two terms
in eq. (D.11)∫ ε+it

β
2

dt′ P∗(t′) +
∫ ε−it

β
2

dt′ P∗(t′) = −Ξ∗ + i

∫ t

0
dt′

[
P∗(ε+ it′)− P∗(ε− it′)

]
= −Ξ∗ + i

∫ t

0
dt′

[
P∗(ε+ it′)− P∗(−ε+ it′)

]
= −Ξ∗ + i

∫ t

0
dt′ Λ∗(t′) ,

(D.12)

where [recall eq. (3.25)]

Λ∗(t) ≡ P∗(ε+ it′)− P∗(−ε+ it′) = lim
V→∞

∫
V
d3x lim

m→0
2m〈〈

[
P̂ a(t, ~x), P̂ a(0)

]
〉〉β . (D.13)

One then obtains [recall again eq. (3.25)]

Q∗(ε+ it)−Q∗(−ε+ it) = lim
V→∞

∫
V
d3x lim

m→0
〈〈
[
Â0a(t′, ~x), P̂ a(0)

]
〉〉β

= −Σ∗ + i

∫ t

0
dt′ Λ∗(t′) .

(D.14)

In the standard case P∗ = 0 (i.e., R∗ = 0, or no 1/m divergence in the pseudoscalar-
pseudoscalar correlator), it is easy to see that the axial-vector-pseudoscalar spectral function
contains a Dirac-delta term proportional to Σ∗:

lim
~k→0

c̃∗
(
ω,~k

)
= lim

V→∞

∫
dt

∫
V
d3x eiωt lim

m→0
〈〈
[
Â0a(t, ~x), P̂ a(0)

]
〉〉β = −2πΣ∗δ(ω) . (D.15)

In the case P∗ 6= 0, one still generally finds a Dirac-delta contribution to the spectral
function, whose coefficient depends on the large-time behaviour of the integral in eq. (D.14).
This can be related back to the Euclidean correlator by means of a path deformation
argument analogous to the one used in ref. [68] and above in appendix A. Consider

I =
∫
C>
dz P∗(iz) , (D.16)

where the path C> is shown in figure 1. Shrinking the path towards the imaginary axis
one finds

I = i

∫ ∞
0

dt [P∗(ε+ it)− P∗(−ε+ it)] = i

∫ ∞
0

dtΛ∗(t) . (D.17)

On the other hand, periodicity implies that the integrals on the parts of the path reaching
to infinity cancel each other out, and so

I =
∫ β

2

−β2
dtP∗(t) =

∫ β

0
dtP∗(t) = Ξ∗ , (D.18)

assuming that P∗(z) vanishes for Im z →∞, so that the part of C> at large Im z does not
contribute. Then

lim
t→+∞

Q∗(ε+ it)−Q∗(−ε+ it) = −(Σ∗ − Ξ∗) , (D.19)
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and by antisymmetry

lim
t→−∞

Q∗(ε+ it)−Q∗(−ε+ it) = − lim
t→+∞

Q∗(−ε+ it)−Q∗(ε+ it) = −(Σ∗ − Ξ∗) . (D.20)

Isolating the contribution of the constant large-|t| behaviour one concludes that

lim
~k→0

c̃∗
(
ω,~k

)
= lim

V→∞

∫
dt

∫
V
d3x eiωt lim

m→0
〈〈
[
Â0a(t, ~x), P̂ a(0)

]
〉〉β

= −2π(Σ∗ − Ξ∗)δ(ω) + less singular .
(D.21)

Since Ξ∗ = R∗(0) in the notation of section 4.3 [see eqs. (4.8) and (4.15)], the result eq. (4.26)
is reproduced.

If P∗(z) has a finite nonzero limit as Im z → ∞, then under suitable boundedness
conditions in the strips Re z ∈ (0, β2 ] and Re z ∈ [−β

2 , 0), the limits limτ→∞ P∗(±t + iτ),
t ∈ (0, β2 ], are independent of t due to the Phragmén-Lindelöf theorem (see, e.g., ref. [130]),
and they also do not depend on the sign due to periodicity fixing limτ→∞ P∗(−β

2 + iτ) =
limτ→∞ P∗(β2 + iτ). One then finds an extra contribution to I, corresponding to the effect
of a transport peak in the spectral density [see eq. (A.6) and following discussion, and
footnote 12],

I − Ξ∗ = −βP∗
(
β
2 + i∞

)
= −β

∫
d3x lim

m→0
2mGPP

(
β
2 + i∞

)
= − lim

~k→0
lim
m→0

2mAPP
(
~k
)

= −A∗ ,
(D.22)

and so lim~k→0 c̃∗
(
ω,~k

)
|singular = −2π (Σ∗ − Ξ∗ +A∗) δ (ω) (see footnote 12).

E Exponentially localised modes

In this appendix I repeat the large-volume estimate of the contributions of localised modes
to CΓ

s V,Λ done in section 5.2, using the more accurate characterisation of localised modes
as exponentially decreasing in space, rather than strictly confined in a finite region. This
improves over the x-independent estimate eq. (5.14), showing that an exponential decay at
large separation is to be expected.

Assume that localised modes are bounded by an envelope that exponentially decays in
space starting from some localisation centre ~x0n,

‖ψn(x)‖2 ≤ Kn

`3n
e−
|~x−~x0n|
`n , (E.1)

with `n the localisation length of the mode, and Kn a positive constant. Using the bound
[see the second line of eq. (5.10)]∣∣∣〈OΓ

nn(x)OΓ
nn(0)〉β

∣∣∣ ≤ 〈∣∣∣OΓ
nn(x)

∣∣∣ ∣∣∣OΓ
nn(0)

∣∣∣〉β ≤ 〈‖ψn(x)‖2‖ψn(0)‖2〉β

= 1
βV

∫
β
d4y 〈‖ψn(x+ y)‖2‖ψn(y)‖2〉β ,

(E.2)
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where in the last passage I used translation invariance, together with eq. (E.1), one finds

∣∣∣〈OΓ
nn(x)OΓ

nn(0)〉β
∣∣∣ ≤ 1

βV

∫
β
d4y

〈
K2
n

`6n
e−
|~x+~y−~x0n|+|~y−~x0n|

`n

〉
β

= 1
V
〈K2

nR(~x, `n)〉β , (E.3)

where

R(~x, `) ≡ 1
`6

∫
d3y e−

|~x+~y|+|~y|
` . (E.4)

An explicit calculation shows that

R(~x, `) = π

`3
e−
|~x|
`

(
1 + |~x|

`
+ 1

3
|~x|2

`2

)
. (E.5)

One then qualitatively expects an exponential suppression of the spectral correlators at
large distance.

Under the further assumption that the support of the local probability distribution of
the localisation length at a given point in the spectrum is bounded from above by some
ξ(λ), and if Kn is also locally bounded by some K(λ), then since

∂

∂`

1
`3
e−
|~x|
`

(
1 + |~x|

`
+ 1

3
|~x|2

`2

)
= 1

3`4 e
− |~x|

`

(
|~x|3

`3
− 2 |~x|

2

`2
− 9 |~x|

`
− 9

)
, (E.6)

which is positive for |~x| ≥ c0`, c0 ' 4.466, one obtains the exponential bound

∣∣∣∣∣∣
〈∑

n

δ(λ− λn)OΓ
nn(x)OΓ

nn(0)
〉
β

∣∣∣∣∣∣ ≤ ρB,V (λ)πK(λ)2

ξ(λ)3 e
− |~x|
ξ(λ)

(
1 + |~x|

ξ(λ) + 1
3
|~x|2

ξ(λ)2

)
,

(E.7)
valid at large |~x| ≥ c0ξ(λ).

F Pseudoscalar-pseudoscalar correlator in the chiral limit

In this appendix I discuss the evaluation of the various contributions to the pseudoscalar-
pseudoscalar correlator in the chiral limit. For the contributions involving large eigenvalues,
I show that independently of the subtraction procedure employed to deal with additive
divergences, the remaining finite contributions as Λ → ∞ stay finite also as m → 0. I
then identify what contributions from the small eigenvalues can lead to a finite R∗ in the
chiral limit.

It is assumed that finite limits exist as the argument λ of the spectral correlators CΓ
loc,

and either or both of the arguments λ, λ′ of the spectral correlators C̄Γ, tend to zero. It is
also assumed that such limits are approached at least as fast as some power law. Finally, it
is assumed that the limit m→ 0 of the spectral correlators is well defined.
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Bounds on spectral integrals. The following inequalities are used to derive bounds on
the asymptotic m-dependence of the relevant spectral integrals as m→ 0,∣∣∣∣∫ µ

0
dλ

f(λ)
λ2 +m2

∣∣∣∣ ≤ ( π

2m

)1− 1
2N
(∫ µ

0
dλ
|f(λ)|2N

λ2 +m2

) 1
2N

, (F.1)

∣∣∣∣∫ µ

0
dλ

f(λ)
(λ2 +m2)2

∣∣∣∣ ≤ ( 1
2µm2 + π

4m3

)1− 1
2N
(∫ µ

0
dλ
|f(λ)|2N

(λ2 +m2)2

) 1
2N

, (F.2)

as well as ∣∣∣∣ ∫ µ

0
dλ

∫ µ

0
dλ′

F (λ, λ′)
(λ2 +m2)(λ′ 2 +m2)

∣∣∣∣
≤
(
π

2m

)2
(
1− 1

2N
) (∫ µ

0
dλ

∫ µ

0
dλ′

|F (λ, λ′)|2N

(λ2 +m2)(λ′ 2 +m2)

) 1
2N

,

(F.3)

whereN is an arbitrary non-negative integer number. These inequalities follow from repeated
application of the Cauchy-Schwarz inequality, and from the following elementary results,∫ µ

0
dλ

1
λ2 +m2 = 1

m
arctan µ

m
≤ π

2m ,∫ µ

0
dλ

1
(λ2 +m2)2 = 1

2m2

(
µ

µ2 +m2 + 1
m

arctan µ

m

)
≤ 1

2m3

(
π

2 + m

µ

)
.

(F.4)

As an example, eq. (F.1) is obtained by noticing that the case N = 0 is obvious, and using
the Cauchy-Schwarz inequality to show that(∫ µ

0
dλ
|f(λ)|2N

λ2 +m2

) 1
2N

≤

(∫ µ

0
dλ
|f(λ)|2N+1

λ2 +m2

) 1
2 (∫ µ

0
dλ

1
λ2 +m2

) 1
2


1

2N

≤
(
π

2m

) 1
2N+1

(∫ µ

0
dλ
|f(λ)|2N+1

λ2 +m2

) 1
2N+1

,

(F.5)

from which the result follows since 1− 2−N + 2−(N+1) = 1− 2−(N+1).
Let now f(λ) vanish at least as fast as λγ for λ→ 0, i.e., limλ→0 λ

−γf(λ) <∞, with
γ > 0. Using eq. (F.1), one finds∣∣∣∣∫ µ

0
dλ

mf(λ)
λ2 +m2

∣∣∣∣ ≤ m( π

2m

)1− 1
2N
(∫ µ

0
dλ
|f(λ)|2N

λ2 +m2

) 1
2N

≤ m
1

2N

(
π

2

)1− 1
2N
(∫ µ

0
dλ
|f(λ)|2N

λ2

) 1
2N

= o(1) ,

(F.6)

if N is chosen such that 2Nγ > 1, so that the last integral is convergent. Similarly, using
eq. (F.2), one finds∣∣∣∣∣

∫ µ

0
dλ

m3f(λ)
(λ2 +m2)2

∣∣∣∣∣ ≤ m3
( 1

2µm2 + π

4m3

)1− 1
2N
(∫ µ

0
dλ
|f(λ)|2N

(λ2 +m2)2

) 1
2N

≤ m
3

2N

(
m

2µ + π

4

)1− 1
2N
(∫ µ

0
dλ
|f(λ)|2N

λ4

) 1
2N

= o(1) ,

(F.7)
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provided 2Nγ > 3. Finally, for F (λ, λ′) vanishing at least as fast as λγ (respectively λγ′)
for λ→ 0 (respectively λ′ → 0), using eq. (F.3) one finds
∣∣∣∣ ∫ µ

0
dλ

∫ µ

0
dλ′

m2F (λ, λ′)
(λ2 +m2)(λ′ 2 +m2)

∣∣∣∣
≤ m

1
2N−1

(
π

2

)2
(
1− 1

2N
) (∫ µ

0
dλ

∫ µ

0
dλ′

|F (λ, λ′)|2N

(λ2 +m2)(λ′ 2 +m2)

) 1
2N

≤ m
1

2N−1

(
π

2

)2
(
1− 1

2N
) (∫ µ

0
dλ

∫ µ

0
dλ′
|F (λ, λ′)|2N

λ2λ′ 2

) 1
2N

= o(1) ,

(F.8)

provided 2N min(γ, γ′) > 1.

Large-λ contributions. Additive divergences originating from the large-eigenvalue re-
gion appear in G(12)

PP B, G
(21)
PP B, and G

(22)
PP B. These are removed by subtracting the leading

contributions from the factors (λ2 +m2)−1 and (λ′ 2 +m2)−1 appearing in eq. (5.26) when
the integration range is I2 = [µ,Λ/Zm]. One has

1
λ2 +m2 =

(
N−1∑
n=0

(−1)n m2n

λ2(n+1)

)
+

(
−m2)N

λ2N (λ2 +m2) ,
(F.9)

with the case of no subtraction corresponding to setting N = 0. This shows that terms
more suppressed in λ2 contain higher powers of m2, and that the remainder is suppressed
by powers of m2 as well. For sufficiently large N the integral containing the remainder is
convergent. Independently of the specific procedure employed to subtract the divergent
part, the remaining finite contributions coming from the N leading terms in the expansion
eq. (F.9) are then suppressed by powers of m, and can produce at most a constant term
in the chiral limit. One similarly shows that the same holds true for the contribution of
the remainders. It is assumed that the residual m dependence of the remaining integrals
through the spectral correlators is regular, with finite limits as m→ 0.33

To show this in detail, for G(12)
PP B = G(21)

PP B one writes

−Z2
mG

(12)
PP B =

N−1∑
n=0

(−1)nm2n
∫ µ

0
dλ

∫ Λ
Zm

µ
dλ′

m2C̄+(λ, λ′;x;m) + λλ′C̄−(λ, λ′;x;m)
(λ2 +m2)λ′ 2(n+1)

+m2N
∫ µ

0
dλ

∫ ∞
µ

dλ′
m2C̄+(λ, λ′;x;m) + λλ′C̄−(λ, λ′;x;m)

(λ2 +m2)(λ′ 2 +m2)λ′ 2N ,

(F.10)
where I set C̄± ≡ C̄1 ± C̄γ5 , and terms that vanish as Λ → ∞ have been omitted. The
integral over λ′ in the first N terms is divergent as Λ → ∞, but it does not introduce
any further mass dependence besides that of the spectral correlators, which is assumed to
be sufficiently regular. The further mass dependence introduced by the integral over λ is

33More precisely, the requirement is that the coefficients of the expansion of Z2
mG

(ij)
PP B in powers of Λ and

of nested logarithms of Λ/µ (including negative powers) remain finite as m→ 0.
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harmless, since∣∣∣∣∣
∫ µ

0
dλ

∫ Λ
Zm

µ
dλ′

m2C̄+(λ, λ′;x;m) + λλ′C̄−(λ, λ′;x;m)
(λ2 +m2)λ′ 2(n+1)

∣∣∣∣∣
≤
∫ µ

0
dλ

∫ Λ
Zm

µ
dλ′
|C̄+(λ, λ′;x;m)|

λ′ 2(n+1) +
∫ µ

0
dλ

∫ Λ
Zm

µ
dλ′
|C̄−(λ, λ′;x;m)|

λλ′ 2n−1 ,

(F.11)

where the integral over λ in the second term on the second line is convergent, since one
has C̄−(0, λ′;x;m) = 0 [see eq. (5.8)], and since it is assumed that the limit λ → 0 is
reached at least as fast as some power law. These contributions have then a regular, at most
O(1) chiral limit.34 This must hold separately for the divergent and finite parts, whose
contributions to Z2

mG
(12)
PP B are then constant or suppressed by powers of m in the chiral

limit. The exact same argument with n→ N works for the remainder term, since one can
bound (λ′ 2 +m2)−1 ≤ λ′ −2.

For G(22)
PP B, one splits G(22)

PP B = G(22),1
PP B + G(22),2

PP B , with

−Z2
mG

(22),1
PP B =

N−1∑
n=0

(−1)nm2n
∫ Λ

Zm

µ
dλ

(
C1

loc(λ;x;m)
λ2(n+1) + (m2 − λ2)Cγ5

loc(λ;x;m)
λ2(n+1)(λ2 +m2)

)

+m2N
∫ ∞
µ

dλ

(
C1

loc(λ;x;m)
λ2N (λ2 +m2) + (m2 − λ2)Cγ5

loc(λ;x;m)
λ2N (λ2 +m2)2

)
,

(F.12)

where I expanded only one power of (λ2 +m2)−1 in the second term under the integrals, and

−Z2
mG

(22),2
PP B =

N−1∑
n=0

N−1∑
n′=0

(−1)n+n′m2(n+n′)
∫ Λ

Zm

µ
dλ

∫ Λ
Zm

µ
dλ′

W (λ, λ′;x;m)
λ2(n+1)λ′ 2(n′+1)

+
N−1∑
n=0

(−1)nm2n
∫ Λ

Zm

µ
dλ

∫ Λ
Zm

µ
dλ′

W (λ, λ′;x;m) +W (λ′, λ;x;m)
λ2(n+1)(λ′ 2 +m2)λ′ 2N

+m4N
∫ ∞
µ

dλ

∫ ∞
µ

dλ′
W (λ, λ′;x;m)

(λ2 +m2)(λ′ 2 +m2)λ2Nλ′ 2N
,

(F.13)

where I set W = m2C̄+ + λλ′C̄− for brevity and exploited the symmetry under λ ↔ λ′

of the spectral correlators. Terms that vanish as Λ →∞ are again ignored. In principle
different choices of N may be needed for the two contributions from localised modes; the
generalisation is straightforward. Clearly, all integrals are convergent (at finite Λ) if one lets
m→ 0 in the denominators, and so O(1) in the chiral limit. This holds for divergent and
finite parts separately, whose contributions to Z2

mG
(22)
PP B are then constant or suppressed by

powers of m in the chiral limit. One then concludes that, after subtraction of the divergent
parts and multiplicative renormalisation, the contributions of G(12)

PP B , G
(21)
PP B, and G

(22)
PP B to

the renormalised pseudoscalar-pseudoscalar correlator tend to a constant in the chiral limit
[see eq. (5.28)].

Notice that for finite m, the finite parts in the subtraction terms used for GPP should
be matched with those employed in the renormalisation of the chiral condensate and of

34One can actually show that the contribution from C̄+ is O(m).
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GAP µ, in order to ensure that the Ward-Takahashi identity eq. (B.9) [eq. (3.14)] holds after
renormalisation. This also determines how far in the expansion eq. (F.9) one has to go. In
any case, these finite terms remain finite also as m→ 0 and so are irrelevant for the chiral
limit of R = 2mGPP .

Small-λ contributions. I now discuss the contributions of small eigenvalues (|λ| ≤ µ)
to R∗ under the assumptions of section 5.5, see eq. (5.31). In this case one finds three types
of contributions. The first contribution, eq. (5.32), comes from localised near-zero modes.
One sets

CΓ
loc(λ;x;m) = CΓ

loc(0;x;m) +
(
CΓ

loc(λ;x;m)− CΓ
loc(0;x;m)

)
= C1

loc(0;x;m) + fΓ(λ;x;m) ,
(F.14)

and assuming that fΓ vanishes at least as fast as some power law as λ→ 0, one finds∫ λc

0
dλ

C1
loc(λ;x;m)
λ2 +m2 = C1

loc(0;x;m)
∫ λc

0
dλ

1
λ2 +m2 + 1

m

∫ λc

0
dλ

mf1(λ;x;m)
λ2 +m2

= C1
loc(0;x;m) 1

m
arctan λc

m
+ o(1/m) ,

(F.15)

having used eq. (F.6), and∫ λc

0
dλ

(m2 − λ2)Cγ5
loc(λ;x;m)

(λ2 +m2)2 = Cγ5
loc(0;x;m)

∫ λc

0
dλ

m2 − λ2

(λ2 +m2)2

− 1
m

∫ λc

0
dλ

mfγ5(λ;x;m)
λ2 +m2 + 2

m

∫ λc

0
dλ

m3fγ5(λ;x;m)
(λ2 +m2)2

= Cγ5
loc(0;x;m) 1

m

λc
m

1 + λ2
c

m2

+ o(1/m) ,

(F.16)
having used eq. (F.7). The o(1/m) estimate for the behaviour of the omitted terms is
correct even if λc is not finite but vanishes in the chiral limit. In fact, since the omitted
terms are already o(1/m) if λc is treated as an independent variable, then taking into
account its dependence on m can only make them less divergent, as they involve integrals
that vanish as λc → 0. This means that they cannot produce a divergence as strong as or
stronger than 1/m in any case, and a contribution to R∗ can only come from the explicitly
computed terms.

On the other hand, if λc → 0 as m → 0, it is not guaranteed that these terms are
actually the leading terms for the pseudoscalar-pseudoscalar correlator. In general, for
λ ∈ [0, λc] one can bound |fΓ| ≤ aΓλ

τΓ , for some aΓ independent of m for sufficiently small
m and some τΓ > 0. One has∣∣∣∣∣

∫ λc

0
dλ

mf1(λ;x;m)
λ2 +m2

∣∣∣∣∣ ≤ a1
τ1 + 1λ

τ1
c

λc
m
,∣∣∣∣∣

∫ λc

0
dλ

(m2 − λ2)mfγ5(λ;x;m)
(λ2 +m2)2

∣∣∣∣∣ ≤ aγ5

τγ5 + 1λ
τγ5
c
λc
m

(
1 + λ2

c

m2

)
,

(F.17)

and so if λc vanishes and λc/m vanishes or remains constant, one has that the omitted
terms are actually o(λc/m2), and so negligible compared to the explicitly computed ones.

– 54 –



J
H
E
P
1
2
(
2
0
2
2
)
1
0
3

If instead λc/m diverges in the chiral limit, the first term in eq. (F.15) is precisely O(1/m),
and so the omitted terms are surely subleading. The first term in eq. (F.16), instead,
diverges only like 1/λc in this case, and so more slowly than 1/m, thus not contributing to
R∗. While an explicit estimate shows that the omitted terms may actually be leading in
eq. (F.16), they are nonetheless inconsequential for R∗, and for the qualitative fact that
the pseudoscalar-pseudoscalar correlator diverges as m→ 0, as this follows already from
the explicitly computed term.

The second contribution, eq. (5.32), is from localised modes separated from the origin
of the spectrum. One easily finds∣∣∣∣∣

∫ µ

λ′c

dλ

(
C1

loc(λ;x;m)
λ2 +m2 + (m2 − λ2)Cγ5

loc(λ;x;m)
(λ2 +m2)2

)∣∣∣∣∣ ≤ 2
∫ µ

λ′c

dλ
C1

loc(λ;x;m)
λ2 , (F.18)

which is at most O(1) under the assumption that λ′c remains separated from the origin
in the chiral limit. This follows from |Cγ5

loc| ≤ C1
loc, which is a consequence of the bound

eq. (5.9). Therefore, these modes cannot contribute to R∗.
Finally, the third contribution, eq. (5.32), comes from both localised and delocalised

modes. One sets

C̄ Γ(λ, λ′;x;m) = c(x;m) + f(λ;x;m) + f(λ′;x;m) + FΓ(λ, λ′;x;m) ,
c(x;m) = C̄ Γ(0, 0;x;m) ,

f(λ;x;m) = C̄ Γ(λ, 0;x;m)− C̄ Γ(0, 0;x;m) = C̄ Γ(0, λ;x;m)− C̄ Γ(0, 0;x;m) ,
FΓ(λ, λ′;x;m) = C̄ Γ(λ, λ′;x;m)− f(λ)− f(λ′) ,

(F.19)
where c and f do not depend on the choice of Γ due to eq. (5.8), and again it is assumed
that the limits of vanishing λ or λ′ are approached at least as fast as some power law. One
then finds∫ µ

0
dλ

∫ µ

0
dλ′

(m2+λλ′)C̄1(λ,λ′;x;m)+(m2−λλ′)C̄γ5(λ,λ′;x;m)
(λ2+m2)(λ′2+m2) = I0+I1+I++I− ,

(F.20)
where

I0 = 2 c(x;m)
(∫ µ

0
dλ

m

λ2 +m2

)2
= 2 C̄1(0, 0;x;m)

(
arctan µ

m

)2
, (F.21)

is obtained explicitly and is O(1),

I1 = 4
∫ µ

0
dλ

m

λ2 +m2

∫ µ

0
dλ′

mf(λ′;x;m)
λ′ 2 +m2 = 4 arctan µ

m
· o(1) = o(1) , (F.22)

having used eq. (F.6)

I+ =
∫ µ

0
dλ

∫ µ

0
dλ′

m2 (F 1(λ, λ′;x;m) + F γ5(λ, λ′;x;m)
)

(λ2 +m2)(λ′ 2 +m2) = o(1) , (F.23)

having used eq. (F.8), and

I− =
∫ µ

0
dλ

∫ µ

0
dλ′

λλ′
(
F 1(λ, λ′;x;m)− F γ5(λ, λ′;x;m)

)
(λ2 +m2)(λ′ 2 +m2) = O(1) , (F.24)
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since

F 1(λ, λ′;x;m)− F γ5(λ, λ′;x;m) = C̄1(λ, λ′;x;m)− C̄γ5(λ, λ′;x;m) , (F.25)

and so the integral remains convergent if one sets m = 0 in the denominator. Also in this
case there is no contribution to R∗.

G Renormalisation of the spectral correlators

In this appendix I show that the renormalised spectral correlators [see eqs. (5.5) and (5.27)],

CΓ(λ, λ′;x;m) ≡ lim
Λ→∞

lim
V→∞

Z2
mC

Γ
Λ, V (Zmλ, Zmλ′;x;Zmm) , Γ = 1, γ5 , (G.1)

are finite functions of λ, λ′, and of the renormalised mass m (and of x). The proof follows
closely the strategy of refs. [114, 115], and relies on the renormalisation properties of the
so-called density chain correlation functions. As mentioned in appendix C, renormalisation
properties at finite temperature are identical to those of the zero-temperature theory.

Density chain correlation functions. In a partially quenched gauge theory with 2N̄f

extra pairs of “valence” fermion fields ψi, ψ̄i, i = 1, . . . , 2N̄f , and corresponding 2N̄f

pseudofermion fields exactly cancelling out their contribution to the fermionic determinant,
all with the same mass as the original Nf fermions, one defines the (bare) density operators

XΓ
ij B ≡ ψ̄i(x)Γψj(x) , Γ = 1, γ5 , i, j = 1, . . . , 2N̄f . (G.2)

These composite fields renormalise in the standard way, i.e., for i 6= j,

XΓ
ij B(x) = ZΓXij(x) , (G.3)

with flavour-independent renormalisation constants ZΓ that can be taken equal to those
obtained in the N̄f = 0 case [131], i.e., Z1 = ZS and Zγ5 = ZP . In a regularisation that
preserves (some form of) chiral symmetry, one further has ZS = ZP = Z−1

m , so ZΓ = Z−1
m .

As shown in refs. [114, 115, 132, 133], the density-chain correlation functions,

X Γ1...Γn(x1, . . . , xn−1) ≡ 〈XΓ1
n1B(x1)XΓ2

12B(x2) . . . XΓn−1
n−2n−1B(xn−1)XΓn

n−1nB(0)〉β , (G.4)

renormalise multiplicatively, i.e.,

Z−1
Γ1
. . . Z−1

Γn X Γ1...Γn(x1, . . . , xn−1) = (Zm)nX Γ1...Γn(x1, . . . , xn−1) (G.5)

is a renormalised quantity after the usual mass and coupling renormalisation. Moreover,
their short-distance singularities when the xi get close to each other or to 0 are integrable
if n ≥ 5.

Spectral correlators from density chain correlation functions. The relevant density-
chain correlation functions for the problem at hand are the bare quantities

MΓ
`1`2 B(x;mB) ≡

∫
d4x1 . . .

∫
d4x2(`1+`2)+1 δ

(4)(x− x2`2+1)

×X

2`2︷ ︸︸ ︷
γ5...γ5 Γ

2`1︷ ︸︸ ︷
γ5...γ5 Γ(x1, . . . , x2(`1+`2)+1) ,

(G.6)
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defined in a finite volume and in the UV-regularised theory, and their renormalised counter-
partsMΓ

`1`2
,

MΓ
`1`2(x;m) = lim

Λ→∞
lim
V→∞

Z2(`1+`2+1)
m MΓ

`1`2 B(x;Zmm) . (G.7)

In a finite volume the Dirac spectrum is discrete, and one can use the decomposition of the
quark propagator in Dirac eigenmodes to get with a straightforward calculation35

MΓ
`1`2 B(x;mB) = −

∫ Λ

−Λ
dλ

∫ Λ

−Λ
dλ′

(m2
B − λλ′)CΓ

V,Λ(λ, λ′;x;mB)
(λ2 +m2

B)1+`1(λ′ 2 +m2
B)1+`2

. (G.8)

Here CΓ
V,Λ is computed in the partially quenched theory with N̄f = `1 + `2 + 1, but since it

is obtained by averaging the Dirac spectrum over gauge configurations only, and since the
weight of a configuration is independent of N̄f due to partial quenching, one obtains the
same result as in the standard (N̄f = 0) theory. One can then vary the number of extra
valence quarks as demanded by the left-hand side of eq. (G.8) in order to freely vary `1,2,
without changing CΓ

V,Λ appearing on the right-hand side.
Next, one defines the resolvents,

RΓ
r B(z, z′;x;mB) ≡

∫
dλ

∫
dλ′

(m2
B − λλ′)CΓ

V,Λ(λ, λ′;x;mB)
(λ2 +m2

B)r(λ′ 2 +m2
B)r

1
λ2 +m2

B − z
1

λ′ 2 +m2
B − z′

.

(G.9)
These functions are analytic in z and z′ in the entire complex plane, except for cuts at
|Re z|, |Re z′| ≥ mB. The integer r may have to be set to a nonzero value to guarantee
convergence at large λ, λ′, and to avoid non-integrable short distance singularities. It is
simple to show that CΓ

V,Λ(λ, λ′;x;mB) can be recovered from the following discontinuity of
the resolvents,

DΓ
r B(λ, λ′;x;mB) ≡ lim

ε→0

∑
σ,σ′=±1

σσ′RΓ
r B

(
m2
B + λ2 + iσε,m2

B + λ′ 2 + iσ′ε;x;mB

)
.

(G.10)
One has explicitly for λλ′ ≥ 0

CΓ
V,Λ(λ, λ′;x;mB) = F−r (λ, λ′;x;mB)DΓ(λ, λ′;x;mB)

+ F+
r (λ, λ′;x;mB)Dγ5Γ(λ, λ′;x;mB) ,

(G.11)

with

F±r (λ, λ′;x;mB) = − 1
8π2m2

B

(
λ2 +m2

B

)r (
λ′ 2 +m2

B

)r (
λλ′ ±m2

B

)
. (G.12)

The case λλ′ < 0 is obtained using the symmetry property CΓ
V,Λ(−λ, λ′) = Cγ5Γ

V,Λ(λ, λ′),
eq. (5.8). Expanding the resolvent in powers of z, z′ one finds

RΓ
r B(z, z′;x;mB) =

∞∑
`,`′=0

z`z′ `
′MΓ

r+` r+`′B(x;mB) , (G.13)

35The exchange of the order of the various integrals has been justified in section 5.6.
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and using eq. (G.7) one finds that the quantity

RΓ
r

(
ζ, ζ ′;x;m

)
≡ lim

Λ→∞
lim
V→∞

Z2(2r+1)
m RΓ

r B

(
Z2
mζ, Z

2
mζ
′;x;Zmm

)
=
∑
`,`′=0

ζ`ζ ′ `
′MΓ

r+` r+`′ (x;m) (G.14)

is a finite function of ζ, ζ ′, and m. Since the number of density operators 2(2r+ `+ `′+1) ≥
4r + 1, r = 1 suffices to ensure the absence of non-integrable short-distance singularities.
Equation (G.1) then follows from eqs. (G.10)–(G.12) and (G.14).

Renormalisation of the mobility edge. In the mode-sum representation of CΓ, it is
convenient to separate the contribution from λn = ±λn′ from the rest and write36 [see
eqs. (5.6) and (5.7)]

CΓ
V,Λ(λ, λ′;x;mB) = δ(λ− λ′)CΓ

s V,Λ(λ;x;mB) + δ(λ+ λ′)Cγ5Γ
s V,Λ(λ;x;mB)

+ C̄Γ
V,Λ(λ, λ′;x;mB) ,

(G.15)

with

CΓ
s V,Λ(λ;x;mB) ≡

〈∑
n

δ(λ− λn)OΓ
nn(x)OΓ

nn(0)
〉
β

,

C̄Γ
V,Λ(λ, λ′;x;mB) ≡

〈 ∑
n,n′

n 6=±n′

δ(λ− λn)δ(λ′ − λn′)OΓ
n′n(x)OΓ

nn′(0)
〉
β

,
(G.16)

with C̄Γ
V,Λ regular as λ→ ±λ′. Using eq. (G.1) one finds

CΓ(λ, λ′;x;m) = lim
Λ→∞

lim
V→∞

{
δ(λ− λ′)ZmCΓ

s V,Λ(Zmλ;x;Zmm)

+ δ(λ+ λ′)ZmCγ5Γ
s V,Λ(Zmλ;x;Zmm)

+ Z2
mC̄

Γ
V,Λ(Zmλ, Zmλ′;x;Zmm)

}
≡ δ(λ− λ′)CΓ

loc(λ;x;m) + δ(λ+ λ′)Cγ5Γ
loc (λ;x;m) + C̄Γ(λ, λ′;x;m) ,

(G.17)
with each term on the right-hand side separately finite due their different degree of singularity
for λ→ ±λ′.

In eq. (G.17) the results of section 5.2 have been used, that show that CΓ
loc has support

only in spectral regions where modes are localised. These are separated by mobility edges
λ

(i)
cB (i = 1, . . .) from regions where modes are delocalised. The renormalisation properties

of CΓ
loc then imply that λ(i)

c ≡ Z−1
m λ

(i)
cB are finite, renormalised quantities. Formally, the

unrenormalised spectral correlator in infinite volume, CΓ
loc Λ(λ;x;mB), reads

CΓ
loc Λ(λ;x;mB) =

∑
i

χ
I

(i)
B

(λ)fΓ
(i) Λ(λ;x;mB) , (G.18)

36Accidental degeneracies of eigenvalues can be ignored. See footnotes 15 and 20.
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with χ
I

(i)
B

the characteristic functions of the disjoint spectral regions I(i)
B = [λ(2i+1)

cB , λ
(2i+2)
cB ]

(i = 0, . . .) where modes are localised, delimited by the lower and upper mobility edges
λ

(2i+1)
cB and λ(2i+2)

cB . After renormalisation

CΓ
loc(λ;x;m) = lim

Λ→∞

∑
i

χ
I

(i)
B

(Zmλ)ZmfΓ
(i) Λ(Zmλ;x;Zmm)

= lim
Λ→∞

∑
i

χ
Z−1
m I

(i)
B

(λ)ZmfΓ
(i) Λ(Zmλ;x;Zmm) ,

(G.19)

and finiteness of the left-hand side requires that the quantities

fΓ
(i)(λ;x;m) = lim

Λ→∞
Zmf

Γ
(i) Λ(Zmλ;x;Zmm) (G.20)

are finite for each i, since they have disjoint support. More importantly, it also implies that
the renormalised spectral regions

I(i) ≡
[
λ(2i+1)
c , λ(2i+2)

c

]
= lim

Λ→∞
Z−1
m I

(i)
B = lim

Λ→∞

[
Z−1
m λ

(2i+1)
cB , Z−1

m λ
(2i+2)
cB

]
(G.21)

are delimited by finite renormalised mobility edges λ(i)
c ≡ limΛ→∞ Z

−1
m λ

(i)
cB . In other words,

the mobility edges renormalise like the fermion mass, so that λ(i)
cB/mB are renormalisation-

group-invariant quantities, up to terms that vanish as Λ→∞.

H Bound for localised modes

In this appendix I argue that the 1/m-divergent part of the pseudoscalar-pseudoscalar
correlator, that originates from localised near-zero modes and leads to a finite P∗ in chiral
limit, is expected to have fast decay properties at large spatial distance, that allow to
interchange spacetime integration and chiral limit. Since∣∣∣∣∣

∫ λc

0
dλ

(
(m2 − λ2)Cγ5

loc(λ;x;m)
(λ2 +m2)2

)∣∣∣∣∣ ≤
∫ λc

0
dλ

C1
loc(λ;x;m)
λ2 +m2 , (H.1)

it suffices to check the contribution of the spectral correlator C1
loc. It is reasonable to assume

that it decays exponentially with the spatial distance, up to power-law corrections that
do not affect the following argument (see appendix E). Since the temporal direction is
compact, one could maximise the right-hand side of eq. (H.1) over time. However, since I
am only interested in justifying the exchange of chiral limit and spacetime integration, and
integration over time causes no problem there, it suffices and is practically more convenient
to integrate over time. One then considers

Cloc(~x;m) ≡
∫ λc

0
dλ

2m
λ2 +m2 Lloc(λ; ~x;m) , Lloc(λ; ~x;m) ≡

∫ β

0
dtC1

loc(λ;x;m) ,
(H.2)

from which R∗(0) is obtained as follows,

R∗(0) =
∫
d3x lim

m→0
Cloc(~x;m) . (H.3)
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I now assume that Lloc takes the following form,

Lloc(λ; ~x;m) = A(λ)e−
|~x|
ξ(λ) , (H.4)

where ξ(λ) is a λ-dependent (and possibly m-dependent) correlation length. As discussed
in section 5.6, interchanging spacetime integration and the various limits is expected to be
justified at finite fermion mass, and in this case using eq. (5.44) one finds that

ρ(λ,m) =
∫
β
d4xC1

loc(λ;x;m) =
∫
d3xLloc(λ; ~x;m) = A(λ)8πξ(λ)3 , (H.5)

and so
Cloc(~x;m) =

∫ λc

0
dλ ρ(λ,m) 2m

λ2 +m2
1

8πξ(λ)3 e
− |~x|
ξ(λ) . (H.6)

Equation (H.6) is expected to provide at least a qualitative understanding of how the
localisation properties of the modes are transferred to the correlator.

Further assumptions are needed to proceed. I consider first the case of a maximal
correlation length. Since

∂

∂ξ

1
ξ3 e
− |~x|

ξ = 1
ξ4 e
− |~x|

ξ

( |~x|
ξ
− 3

)
, (H.7)

if ξ(λ) ≤ ξmax for λ ∈ [0, λc] (at least for sufficiently small m), then for |~x| ≥ 3ξmax one has

Cloc(~x;m) ≤ 1
8πξ3

max
e
− |~x|
ξmax

∫ λc

0
dλ ρ(λ,m) 2m

λ2 +m2 →m→0

ρ(0; 0)
4πξ3

max
e
− |~x|
ξmax arctan λc

m . (H.8)

In this case, the fast decay of eq. (H.8) allows one to use the dominated convergence theorem
to justify interchanging spacetime integration and chiral limit.

On the other hand, since the localisation length diverges at the mobility edge [38–43],
one could find that also ξ(λ) diverges. As an alternative possibility, I now assume that

ξ(λ) = ξ0
∣∣∣1− λ

λc

∣∣∣−ν , (H.9)

with ν a suitable exponent, which could be, e.g., the localisation length critical exponent
appropriate for the symmetry class of the Dirac operator for the given gauge group [134]. I
also assume that ξ0 remains finite in the chiral limit: in this way, even if λc → 0, it still makes
sense to speak of localised modes at the origin. Notice that while the localisation length of
the localised modes ψn diverges at λc, the correlation length of 〈‖ψn(x)‖2‖ψn(0)‖2〉β could
remain finite, due to other long-distance effects related to the averaging over gauge fields;
and if it diverges, an algebraic decay is expected at criticality [41]. Using eq. (H.9) should
then lead at least to an upper bound on the large-distance behaviour of Cloc.37

37It should also be noted that the localisation length, characterising the exponential fall-off of localised
modes and diverging at the Anderson transition, is in general different from the typical size of a localised
mode (see, e.g., ref. [40]), and so even assuming that eq. (H.9) holds, it is not clear what exponent one
should use. However, this does not affect the qualitative features of the following argument.
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Working under the assumption eq. (H.9), if λc remains finite or vanishes more slowly
than m, so that λc/m→∞ as m→ 0, one can change variables to λ = mz and write

Cloc(~x;m) = 1
4πξ3

0

∫ λc
m

0
dz ρ(mz,m)

∣∣∣1− m
λc
z
∣∣∣ν

z2 + 1 e
− |~x|
ξ0

∣∣1− m
λc
z
∣∣ν →
m→0

ρ(0, 0)
8ξ3

0
e
− |~x|
ξ0 , (H.10)

and so Cloc can again be bounded exponentially in |~x|, uniformly in m for sufficiently
small m, and dominated convergence allows one to exchange chiral limit and spacetime
integration. On the other hand, setting χ = (|~x|/ξ0)1/ν , one can generally change variables
to λ = λc(1− z/χ) to write

Cloc(~x;m) = λc
m

1
4πξ3

0

(
ξ0
|~x|

)3+ 1
ν
∫ χ

0
dz

ρ
(
λc
(
1− z

χ

)
,m
)

1 + λ2
c

m2

(
1− z

χ

)2 z3νe−z
ν

≤ λc
m

ρmax
4π|~x|3

(
ξ0
|~x|

) 1
ν
∫ χ

0
dz z3νe−z

ν ≤ λc
m

ρmax
4π|~x|3

(
ξ0
|~x|

) 1
ν 1
ν

Γ
(

3 + 1
ν

)
,

(H.11)

where ρmax is a bound on the mode density in the spectral region of localised modes for
small mass. The bound is integrable (at large distances) in three spatial dimensions, and
so, if λc/m does not diverge, it can be used to invoke dominated convergence.

While only qualitative, the estimates above are quite robust under refinements. For
example, adding power corrections (|~x|/ξ)k to the exponential behaviour of the spectral
correlator only modifies the large-|~x| behaviour of Cloc by similar power corrections (|~x|/ξ0)k
in eq. (H.8) (at sufficiently large distance) and in eq. (H.10). In eq. (H.11), instead, it only
modifies the integrand in the last passage, and so the numerical prefactor, but not the
large-|~x| behaviour of Cloc. The exchange of chiral limit and spacetime integration seems
then justified in the calculation of the anomalous remnant R∗(0) originating from localised
near-zero modes.

It is worth commenting on how eqs. (H.10) and (H.11) compare with the scenarios
discussed in section 5.5. Equation (H.11) leads one to expect that if λc/m vanishes in the
chiral limit, so does Cloc. One would then expect no anomalous remnant, in agreement
with what was stated above in section 5.5 for scenario (i). Moreover, eq. (H.11) shows that
if λc/m vanishes faster than m, then one expects the pseudoscalar correlator to be regular
in the chiral limit, as in scenario (i-a), while if it vanishes more slowly than m one expects
a divergent correlator, as in scenario (i-b). If λc/m remains constant in the chiral limit,
corresponding to scenario (ii), then eq. (H.11) still allows to bound Cloc with an algebraic but
integrable decay |~x|−3− 1

ν instead of an exponential one in the chiral limit. This may actually
be the qualitative behaviour of the correlator in this case, and so a distinguishing feature
for scenario (ii) as compared to the standard scenario, if the correlation length diverges at
the mobility edge. This is clearly speculative at this stage, and a better understanding of
the spectral correlators is required to make a definite statement. Finally, scenario (iii) is
covered by eq. (H.10), showing that an exponential bound should be expected.
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