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Studying the color superconductivity (CSC) phase is important to understand the physics in the core of
the neutron stars which is the only known context where the CSC phase might appear due to the
gravitational force squeezing the matter to a sufficiently high density. We propose a simple holographic
dual description of the CSC phase transition in the realistic Yang-Mills theory with the power-law Maxwell
field. We find the CSC phase transition with the large color number in the deconfinement phase, which is
not found in the case of the usual Maxwell field, if the power parameter characterizing for the power-law
Maxwell field is sufficiently lower than one but above 1=2 and the chemical potential is above a critical
value. However, the power parameter is not arbitrary below one because when this parameter is sufficiently
far away from one it leads to the occurrence of the CSC state in the confinement phase which is not
compatible with a nonzero vacuum expectation value of the color nonsinglet operator.

DOI: 10.1103/PhysRevD.106.126021

I. INTRODUCTION

In analogy to the electron Cooper pairs in condensed
matter physics, at sufficiently high density (or the chemical
potential) and low-temperature quarks with the attractive
interaction in the color antitriplet channel are expected to
form the Cooper pairs (associated with the diquark oper-
ator) near the Fermi surface. The quark Cooper pairs are not
color singlets and hence their condensation would break
spontaneously the SUð3ÞC local gauge symmetry of quan-
tum chromodynamics (QCD) by which the gluons acquire a
mass (corresponding to color Meissner effects) through the
Higgs mechanism where the quark Cooper pairs play the
role of the Higgs particles. This phase is well known as
the color superconductivity (CSC) phase or the Higgs
phase of QCD, suggested first by the authors in [1]. For
a nice review, see [2].
The only known conditions of the density and temper-

ature where the CSC phase might appear are in the core of
the neutron stars where the matter density can reach up to
ten times of the nuclear saturation density. Therefore, the
investigation of the CSC phase is important to understand
the physics of neutron stars as well as compact stars. Here,
the effects on the observations of the neutron stars caused

by the presence of the CSC phase could allow us to resolve
the deviations between the experimental measurements and
the theoretical predictions.
Due to the asymptotic freedom, it is possible to study

the CSC phase transition at very high densities where
QCD becomes weakly coupled. Since the condensation
pattern can be exactly calculated using the perturbative
approach [3]. However, for sufficiently high densities
relevant to the real context such as the core of the neutron
stars which are the orders of the strong coupling scale,
perturbative QCD is not able to be applied although there is
the existence of the deconfined quarks. Most QCD inves-
tigations in the nonperturbative regime are numerically
performed by lattice gauge theory which is difficult due to
the sign problem of the fermion determinant.1

In the last two decades, the gauge/gravity duality or
the holographic approach has provided a powerful tool to
explore the strongly coupled quantum field theories using
the weakly coupled gravitational dual theories [8–10].
Based on this approach, a bottom-up holographic model
has been constructed to study the CSC phase transition in
the Yang-Mills (YM) theory [11] which extended the work
in [12] with considering the backreaction of the matter part
on the spacetime geometry and the work in [13] with the
complex scalar field. The holographic investigations of
the CSC phase transition have lately received attention
in the presence of the higher derivative corrections [14,15]
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1Note that, the sign problem can be avoided by restricting the
calculations to the imaginary chemical potential [4–7].

PHYSICAL REVIEW D 106, 126021 (2022)

2470-0010=2022=106(12)=126021(11) 126021-1 Published by the American Physical Society

https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.106.126021&domain=pdf&date_stamp=2022-12-23
https://doi.org/10.1103/PhysRevD.106.126021
https://doi.org/10.1103/PhysRevD.106.126021
https://doi.org/10.1103/PhysRevD.106.126021
https://doi.org/10.1103/PhysRevD.106.126021
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


and with including a dilute gas of instantons which is
introduced to study the nuclear matter [16].
It was pointed out by the authors in [11] that the CSC

phase transition can occur for Nc (where Nc is the color
number of quark) to be small. But, the CSC phase
transition could be not found in the case of Nc ≥ 2 and
hence this holographic model does not provide a gravi-
tational dual description for the CSC phase transition
of the realistic YM theory (i.e., Nc ≥ 2). This restriction
can be resolved by considering Einstein-Gauss-Bonnet
(EGB) gravity [14]. Unfortunately, in order to indicate the
CSC phase transition for Nc ≥ 2, the magnitude of the GB
coupling parameter is required to be rather large, which
leads to the violation of the causality bound of the
boundary field theory [17,18] and is beyond the region
of the classical gravity.
The goal of the present work is to construct a

holographic model with a power-law Maxwell field
which is simple but allows us to investigate the CSC
phase transition in the realistic YM theory. It should be
noted here that the power-law Maxwell electrodynamics
is motivated by the conformal invariance of the action of
the Uð1Þ gauge field in arbitrary dimensions [19] and is
a type of nonlinear electrodynamics which can lead to
the regular black hole solutions [20–29] and also are
used to study holographic superconductors [30–38]. In
Sec. II, we discuss the main obstacle in attempting to
study the CSC phase transition based on the holographic
approach and indicate a situation where this obstacle can
be avoided due to SUð3ÞC gauge symmetry of QCD
behaving as just a global symmetry. In Sec. III, we
propose the gravitational dual model of the CSC phase
transition which is given by the system of Einstein
gravity coupled minimally to the power-law Maxwell
field and a charged scalar field in the asymptotically
anti–de Sitter (AdS) spacetime. The action of the system
and the equations of motion in the geometric configu-
rations dual to the confinement and deconfinement
phases are presented in detail. The CSC phase appears
when the quark Cooper pairs have the nonzero vacuum
expectation value (VEV) or the scalar field in the
gravitational dual theory condenses around the event
horizon of the planar AdS black hole. In Sec. IV, we
point out that if the power parameter (which character-
izes for the power-law Maxwell field) is sufficiently
smaller than one then the CSC state would appear in the
deconfinement phase of the realistic YM theory as the
chemical potential is above a critical value. In Sec. V,
with the critical line associated with the CSC phase
transition found by solving numerically the equations of
motion near the critical chemical potential and the free
energy of the background configurations from comput-
ing the Euclidean on-shell action of the system, we
obtain the phase diagram in the μ − T plane. The
summary is given in the final section.

II. SUð3ÞC COLOR SYMMETRY AS A GLOBAL
SYMMETRY

The CSC phase appears when the diquark operator of the
formal form hqqi condenses, which leads to the sponta-
neous breaking of SUð3ÞC color symmetry. In fact, the hqqi
operator is colored or not gauge-invariant and hence this
has been the main obstacle for building a holographic
model of the CSC phase transition because the bulk fields
in the gravity side are always dual to the gauge-invariant
operators in the boundary field theory side. However, the
authors in Ref. [12] have pointed out a situation where
SUð3ÞC color symmetry would appear as a global or flavor
symmetry due to the fact that the gluonic degrees of
freedom are gapped by the Debye screening as well as
the effects of Landau damping and thus they are integrated
out. In this way, one can construct a holographic model of
the CSC phase transition which describes the breaking
of the global symmetries which consist of SUð3ÞC color
symmetry, the usual SUðNfÞ flavor symmetry, and Uð1ÞB
symmetry.
In the strong coupling regime of QCD which is relevant

to the core of neutron stars, a quark-gluon plasma contains
both quarks of color-electric charge and composite
scalars of color-magnetic charge. Their presence would
thus generate the Debye screening masses ðm2

EÞab and
ðm2

MÞab through the loop diagrams for the electric gluons
Aa
0 and the magnetic gluons Aa

i , respectively. The electric
and magnetic screening masses are determined as the static
limit (i.e., q0 ¼ 0 and q → 0 with ðq0;qÞ≡ q to be the
four-momentum of gluons) of the temporal and spatial
components of the gluon self-energy tensor Πμν

abðq0;qÞ,
respectively, and given as follows [39–41]

ðm2
EÞab ¼−Π00

abð0;q→ 0Þ∼ g2ðT2þμ2Þ;

ðm2
MÞab ¼

1

2
ðδij−qiqjÞΠij

abð0;q→ 0Þ∼ g2ðT2þμ2Þ; ð1Þ

where g, T, and μ are the strong coupling, the temperature
of the quark-gluon plasma, and the chemical potential,
respectively. In the regime of the CSC phase transition
where the temperature is low enough and the quark matter
density is high enough, the contribution of temperature is
negligible compared to the contribution of quark matter
density. Hence, the Debye screening masses of the electric
and magnetic gluons are in order of the gμ scale. In the
intermediate density regime of QCD, the strong coupling is
g ∼ 4π which is large, thus the superconductivity gap scale
which is estimated as tens of MeV is much lower than the
screening scale which is the hundreds of MeV. Hence,
the electric and magnetic gluons are gapped or are Debye
screened in the CSC phase which is much below the
screening scale.
It should be noted that the QCD plasma at the weak

coupling regime does not contain the composite scalars of
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color-magnetic charge [39] and since the Debye screening
mass for the magnetic gluons cannot be generated. This
means that the magnetic gluons would lead to the dominant
interaction in the momentum regime below the screening
scale gμ. However, the magnetic gluons can be gapped due
to the effects of the Landau damping [3] where their self-
energy behaves as Π ∼ g2μ2jq0j=jqj with the gap of electric
gluons to be the source for the mass of the magnetic gluons.
In summary, all gluonic degrees of freedom which are

color-electric and color-magnetic are screened at the
momentum regime below the screening scale gμ. Due to
the large separation between the screening scale and the
chemical potential scale, the gluons can be integrated out,
and as a result, quarks exist as the sole degrees of freedom
below the screening scale. On the other hand, in this
momentum regime SUð3ÞC color symmetry can be realized
as a global or a flavor symmetry.

III. GRAVITATIONAL DUAL MODEL

Before introducing a gravitational dual model which is
consistent with the CSC phase transition in the boundary
field theory, let us briefly discuss the CSC condensation
pattern which shall be considered in this work. A quark
Cooper pair or diquark operator is formed from two quarks
each of which carries the spin, color, and flavor degrees of
freedom. For the formation of scalar spin-0 condensation,
the combination of spins in the diquark operator would be
antisymmetric. As mentioned in the Introduction, in order
to form the diquark operator we need to have the attractive
interaction which appears in the color antitriplet channel.
This means that the flavor combination in the diquark
operator must be antisymmetric due to the Pauli principle
which requires the wave function of the diquark operator to
be antisymmetric under the exchange of two quarks. In the
present work, we are interested in the presence of two
lightest quark flavors (up and down quarks) participating in
the Cooper pairing, whereas the strange quark is taken to be
infinitely massive and hence it is absent. The corresponding
CSC phase is well-known as the two-flavor CSC phase [2].
In this way, the expectation value Δ of the diquark operator
is given as

Δ ¼ hqTCγ5τ2λ2qi; ð2Þ

which is antisymmetric in terms of the Dirac, color, and
flavor indices that have been dropped. Here, C≡ iγ2γ0, τ2,
and λ2 are the charge conjugation operator, the Pauli matrix,

and the Gell-Mann matrix which act in the Dirac, flavor,
and color spaces, respectively. In addition, the condensa-
tion of the diquark operator is triggered by the quark
chemical potential or quark number density associated with
the global Uð1ÞB symmetry. Therefore, in the holographic
model, we need to introduce a complex scalar field that is
dual toΔ and carries a charge corresponding to a localUð1Þ
symmetry dual to the global Uð1ÞB symmetry.
The gravitational dual model for the CSC phase tran-

sition is Einstein gravity coupled minimally to a power-law
Maxwell field and a complex scalar field in the asymp-
totically six-dimensional AdS spacetime. The action of the
system is given as follows

Sbulk ¼
1

2κ26

Z
d6x

ffiffiffiffiffiffi
−g

p ½R − 2Λþ βð−FμνFμνÞs

− jð∇ − iqAÞψ j2 −m2jψ j2�; ð3Þ

whereΛ ¼ − 10
l2 is the cosmological constant with l being the

asymptotic AdS radius, β is a constant which is considered to
be 1=4 in the present work without loss of generality, s is the
power parameter characterizing for the power-law Maxwell
field and in particular when s ¼ 1 the power-law Maxwell
electrodynamics would reduce to the usual Maxwell case,
and ψ is the complex scalar field which has the mass m and
carries the charge q under the gauge symmetry Uð1Þ. It is
important to note here that the gauge symmetryUð1Þ and the
complex scalar field in the bulk are dual to the baryon
symmetry Uð1ÞB and the diquark operator in the boundary
field theory, respectively. Therefore, the Uð1Þ charge of the
complex scalar field is expressed in terms of the color
number of quarks as q ¼ 2=Nc.
It is important to note that the four-dimensional gauge

field theory possesses a confinement scale and hence the
asymptotic behavior of spacetime geometry must manifest
a corresponding scale. In the simplest setting [13], the
gravity dual of the boundary field theory can be considered
in six dimensions rather than five dimensions where one
direction of spacetime is compactified on a circle whose
size is identified as the confinement scale. In this way, the
usually four-dimensional field theory can be obtained from
the compactification of the five-dimensional field theory on
a circle.
The equations of motion are found by varying the

action (3) with respect to the metric, vector, and scalar
fields, given by

Rμν −
1

2
gμνR −

10

l2
gμν ¼ Tμν;

∇μ½Fμνð−FρσFρσÞs−1� ¼ iq
s
½ψ�ð∇ν − iqAνÞψ − ψð∇ν þ iqAνÞψ��;

ð∇μ − iqAμÞð∇μ − iqAμÞψ ¼ m2ψ ; ð4Þ
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where the energy-momentum tensor Tμν reads

Tμν ¼
s
2
ð−FρσFρσÞs−1FμλFν

λ þ 1

2
½ð∇ν − iqAνÞψð∇μ þ iqAμÞψ� þ μ ↔ ν�

þ 1

2
gμν

�
1

4
ð−FμνFμνÞs − jð∇ − iqAÞψ j2 −m2jψ j2

�
: ð5Þ

By solving these equations of motion in the spacetime
geometries dual to the confinement and deconfinement
phases, we shall find whether or not the CSC phase
transition can appear in these phases. The CSC phase
transition appears when the scalar field condenses where
the Uð1Þ gauge symmetry is spontaneously broken. In the
canonical ensemble, the condensation of the scalar field
or the CSC phase transition is triggered by the chemical
potential and for the chemical potential above a critical
value μc the CSC phase transition would appear. In this
work, we study the CSC phase transition near the critical
chemical potential μc and since the condensate value of the
scalar field is near zero. This suggests that the backreaction
of the scalar field on the spacetime geometry can be ignored
compared to the contribution of the vector field.
The spacetime geometry which is dual to the deconfine-

ment phase is the high-temperature solution of Eq. (4)
known as the planar AdS black hole. Ansatz for the line
element of the planar AdS black hole is given as follows

ds2BH ¼ r2ð−fðrÞdt2 þ hijdxidxj þ dy2Þ þ dr2

r2fðrÞ ; ð6Þ

where hijdxidxj ¼ dx21 þ dx22 þ dx23 refers to the line
element of the 3-dimensional planar hypersurface and y
is the compactified coordinate with the circle radius Ry.
Whereas, the vector and scalar fields are described by the
following ansatz

Aμdxμ ¼ ϕðrÞdt; ψ ¼ ψðrÞ: ð7Þ

The equations of motion corresponding to the geometric
configuration of the planar AdS black hole are found as

rf0ðrÞ þ 5fðrÞ − 5þ ð2s − 1Þ2s−4ϕ0ðrÞ2s ¼ 0; ð8Þ

ϕ00ðrÞ þ 4

ð2s − 1Þrϕ
0ðrÞ − q2ψ2ðrÞϕ0ðrÞ2ð1−sÞ

2s−2sð2s − 1Þr2fðrÞϕðrÞ ¼ 0;

ð9Þ

ψ 00ðrÞ þ
�
f0ðrÞ
fðrÞ þ

6

r

�
ψ 0ðrÞ

þ 1

r2fðrÞ
�
q2ϕ2ðrÞ
r2fðrÞ −m2

�
ψðrÞ ¼ 0: ð10Þ

In order for the matter fields to behave regularly at the event
horizon, we impose the following boundary condition

ϕðrþÞ ¼ 0; ψðrþÞ ¼ r2þ
f0ðrþÞψ 0ðrþÞ

m2
: ð11Þ

In the asymptotic region r → ∞, the matter fields behave as

ϕðrÞ ¼ μ −
d̄

1
2s−1

r
5−2s
2s−1

;

ψðrÞ ¼ JC
rΔ−

þ C
rΔþ

: ð12Þ

where μ and d̄ are regarded as the baryon chemical potential
and the baryon charge density of the boundary field theory,
respectively. The overall coefficients JC and C which both
are normalizable modes are identified as the external source
and the condensate value of the diquark operator, respec-
tively. In order to guarantee that the Uð1Þ gauge symmetry
is spontaneously broken, the external source must vanish
and hence we impose a boundary condition as JC ¼ 0. The
conformal dimensions of C and JC are

Δ� ¼ 1

2

�
5�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
25þ 4m2

p �
; ð13Þ

from which we see that the squared mass of the scalar
field must satisfy the Breitenlohner-Freedman (BF)
bound [42,43] as

m2 ≥ −
25

4
: ð14Þ

Because C is identified as the condensate value of the
diquark operator, the conformal dimension of C should
be Δþ ¼ 2 × ðd − 2Þ=2 leading to Δþ ¼ 4 for the six-
dimensional case. This means that the squared mass of the
scalar field is m2 ¼ −4. In addition, we note that, from the
asymptotic expression of the scalar potential ϕðrÞ, in order
for ϕðrÞ to be finite as r → ∞, the power parameter s must
satisfy the following condition

1

2
< s <

5

2
: ð15Þ

In the limit that the chemical potential approaches the
critical value μc, we obtain
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fðrÞ¼1−
�
rþ
r

�
5

−
2s−4ð2s−1Þ2

5−2s

� ð5−2sÞμ
ð2s−1Þrþ

�
2s
�
rþ
r

�
5
�
1−

�
rþ
r

�5−2s
2s−1

�
;

ϕðrÞ¼μ

�
1−

�
rþ
r

�5−2s
2s−1

�
: ð16Þ

The Hawking temperature of the planar AdS black hole
thus is

T ¼ rþ
4π

	
5 − 2s−4ð2s − 1Þ

� ð5 − 2sÞμ
ð2s − 1Þrþ

�
2s


: ð17Þ

The non-negative condition of the Hawking temperature
leads to the condition for the ratio of the chemical potential
to the event horizon radius as

0 ≤
μ

rþ
≤
2s − 1

5 − 2s

�
80

2sð2s − 1Þ
� 1

2s

: ð18Þ

The spacetime geometry which is dual to the confine-
ment phase is the low-temperature solution of Eq. (4)
known as the AdS soliton solution2 [45] described by the
following ansatz

ds2Sol: ¼ r2ð−dt2 þ hijdxidxj þ fðrÞdy2Þ þ dr2

r2fðrÞ ; ð19Þ

where the function fðrÞ vanishes at the tip r ¼ r0 of the
AdS soliton where the canonical singularity is removed by
requiring the periodicity for the coordinate y. The equations
of motion corresponding to this geometric configuration are

rf0ðrÞ þ 5fðrÞ − 5þ ð2s − 1Þ2s−4fðrÞsϕ0ðrÞ2s ¼ 0; ð20Þ

ϕ00ðrÞ þ 1

2s − 1

�
s
f0ðrÞ
fðrÞ þ

4

r

�
ϕ0ðrÞ

−
q2ψ2ðrÞϕ0ðrÞ2ð1−sÞ

2s−2sð2s − 1Þr2fðrÞs ϕðrÞ ¼ 0; ð21Þ

ψ 00ðrÞ þ
�
f0ðrÞ
fðrÞ þ

6

r

�
ψ 0ðrÞ

þ 1

r2fðrÞ
�
q2ϕ2ðrÞ

r2
−m2

�
ψðrÞ ¼ 0: ð22Þ

The boundary condition for the matter fields is

ϕ0ðr0Þ ¼
�

q2ψ2ðr0Þ
2s−2s2r20fðr0Þs−1f0ðr0Þ

ϕðr0Þ
� 1

2s−1
; ð23Þ

ψ 0ðr0Þ ¼ −
1

r20f
0ðr0Þ

�
q2ϕ2ðr0Þ

r20
−m2

�
ψðr0Þ: ð24Þ

The asymptotic behavior of the matter fields is the same as
in Eq. (12). Near the critical chemical potential where the
value of the scalar field approaches zero, the AdS soliton
solution is determined by the line element (19) with the
function fðrÞ given as

fðrÞ ¼ 1 −
r50
r5
; r0 ¼

2

5Ry
; ð25Þ

and the potential of the Uð1Þ gauge field reads

ϕðrÞ ¼ μ ¼ constant: ð26Þ

IV. CSC PHASE TRANSITION

In this section, we will study the CSC phase transition
of the realistic YM theory in the background configurations
dual to the confinement and deconfinement phases by
examining the breaking of the BF bound and solving
numerically the equations of motion near the critical
chemical potential. We point out that the CSC phase
transition with Nc ≥ 2 in the deconfinement phase appears
above the critical chemical potential corresponding to the
condensation of the scalar field, which is not found in the
case of the usual Maxwell electrodynamics if the power
parameter s is sufficiently smaller than one. Furthermore,
the value of the power parameter s is not arbitrary below
one (but above 1=2). This is because when s is sufficiently
far away from one it leads to the condensation of the scalar
field in the confinement phase, i.e., the occurrence of the
CSC state in the confinement phase, which suggests the
breakdown of the holographic description.

A. In the deconfinement phase

In order to see that the CSC phase transition for Nc ≥ 2
can appear in the holographic model with the power-law
Maxwell field for the appropriate value of the power
parameter s, first let us study the condition which breaks
the BF bound and thus makes the condensation of the scalar
field appearing. The condition of the BF bound breaking
is given as

m2
eff < −

25

4
⇒

9

4
<

q2ϕ2ðrÞ
r2fðrÞ ≡ q2F ðz; μ̂; sÞ; ð27Þ

where m2
eff ¼ m2 − q2ϕ2ðrÞ

r2fðrÞ is the effective squared mass of

the scalar field and

2The low-temperature solution of AdS soliton was also
confirmed in the extensions of Einstein gravity, for example,
in EGB gravity [44].
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F ðz; μ̂;sÞ¼ z2ð1−z
5−2s
2s−1Þ2μ̂2

1−z5− 2s−4ð2s−1Þ2
5−2s ½ð5−2sÞμ̂ð2s−1Þ �2sz5ð1−z

5−2s
2s−1Þ

; ð28Þ

with z≡ rþ=r and μ̂≡ μ=rþ. We show the behavior of the
function F ðz; μ̂; sÞ as a function of z for various values of μ̂
and s in Fig. 1. From this figure, we realize that F ðz; μ̂; sÞ
grows with the increasing of the scaled chemical potential μ̂
and the decreasing of the power parameter s. Furthermore,
we find that the functionF ðz; μ̂; sÞ gets the maximum value
when z → 1 and at

μ̂ ¼ 2s − 1

5 − 2s

�
80

2sð2s − 1Þ
� 1

2s ≡ μ̂max: ð29Þ

From this result along with Eq. (27), we obtain an upper
bound for the color number, which depends on the power
parameter s, as

Nc <
4

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F ðz → 1; μ̂max; sÞ

p ≡ Nc;max: ð30Þ

The upper bound Nc;max for the color number of quarks
as a function of the power parameter s is depicted in Fig. 2.
We see here that Nc;max increases when decreasing s,
and Nc;max in the power-law Maxwell electrodynamics

with s<1ð>1Þ is larger(smaller) than that (Nc < 4
ffiffiffi
2

p
=3≃

1.89 [11]) in the usual Maxwell electrodynamics. In
particular, we find that the upper bound for the color
number of quarks is much larger than 2 for the appropriate
value of the power parameter s belonging to the region
1=2 < s < 1. This clearly suggests that the power-law
Maxwell electrodynamics with s < 1 can support the
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s

N
c,
m
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FIG. 2. The upper bound for the color number of quarks is
plotted in the power parameter s. The dashed black lines refer to
the case of the usual Maxwell electrodynamics.
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FIG. 1. Plots describing the behavior of F ðz; μ̂; αÞ in terms of z, μ̂, and α, where μ̂max is given in Eq. (29).
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CSC phase transition for the realistic YM theory which
has Nc ≥ 2.
In order to determine the critical chemical potential,

the critical temperature, and the slope of the critical line
Tc ¼ TcðμcÞ associated with the CSC phase transition
in the deconfinement phase, we solve numerically
Eqs. (8)–(10) by using the shooting method. The numerical
results are given in Tables I and II for Nc ¼ 2 and Nc ¼ 3,
respectively. These tables suggest that there exist the proper
values of the power parameter s which are sufficiently low
and below one (but still belonging to the physical region)
for which the CSC phase transition withNc ≥ 2 can appear.
In addition, we observe that for the event horizon radius rþ
kept fixed the critical temperature grows when the power
parameter s decreases. This means that the condensation
of the scalar field gets easier to form in the power-law
Maxwell electrodynamics with the appropriately low power
parameter.
Let us interpret why the power-law Maxwell electrody-

namics with the appropriately low power parameter can
lead to the occurrence of the CSC phase transition for
Nc ≥ 2. Recall that the CSC phase of the realistic YM
theory which corresponds to Nc ≥ 2 is not found in both
the deconfinement and the confinement phases with respect
to the holographic model which consists of the Einstein-
Maxwell system coupled to the complex scalar field [11].
When the color number of quarks increases the charge of
the complex scalar field would reduce. As a result, the
electrostatic repulsion becomes weak and since it would not
be strong enough to overcome the gravitational attraction
for the scalar hair formed. However, when we consider the
power-law Maxwell electrodynamics instead of the usual
Maxwell electrodynamics, the gravitational attraction
would become weak with the decrease of the power
parameter s. This can be seen in Fig. 3 where we observe
that with the same mass the event horizon of the planar
AdS black hole grows with the decreasing of the power

parameter s. On the other hand, the gravitational attraction
around the event horizon is sufficiently weak with the
properly low power parameter, by which the electrostatic
repulsion can overcome the gravitational attraction to allow
the formation of the scalar hair corresponding to the CSC
phase transition even with the low charge of the complex
scalar field or Nc ≥ 2.

B. In the confinement phase

We arrive at the investigation of whether or not the
CSC state or the condensation of the scalar field appears in
the confinement phase. It is easy to find a necessary
condition for the appearance of the CSC phase transition
in this phase as qμ=r0 > 1.5, which corresponds to the
breaking of the BF bound for the effective squared mass
m2

eff ¼ m2 − q2ϕ2=r2 < −25=4. Of course, in order to
determine a sufficient condition for the appearance of
the CSC phase transition in the confinement phase, we
need to solve Eq. (22) in the background configuration of
the AdS soliton determined by Eqs. (19), (25), and (26).
By solving numerically Eq. (22), we find the condition of
the chemical potential for the appearance of the CSC phase
transition in the confinement phase as μ > 1.505Nc.
However, in order to confirm that the CSC phase transition
can appear in the confinement phase when the chemical
potential is above the critical value 1.505Nc, we need to
check whether or not this critical value belongs to the
region of the confinement phase. By using the results in the
next section, we show the maximal chemical potential μmax
which the confinement phase can reach as well as the
critical chemical potential μc for the occurrence of the
CSC state in the confinement phase for various values of
the power parameter s at Nc ¼ 2 and Nc ¼ 3 in Table III.
Note that, the maximal chemical potential μmax can be
found from Eq. (34) with TðrþÞ ¼ 0. Clearly, this table
indicates that the critical chemical potential μc ¼ 3.01 and

TABLE I. The numerical values for the scaled critical chemical
potential and temperature, and the slope of the critical line Tc ¼
TcðμcÞ with various values of s at Nc ¼ 2.

s μc=rþ Tc=rþ Tc=μc

4=5 2.5413 0.0271 0.0107
3=4 2.6192 0.0696 0.0266
5=7 2.6299 0.1101 0.0418

TABLE II. The numerical values for the ratios μc=rþ, Tc=rþ,
and Tc=μc with various values of s at Nc ¼ 3.

s μc=rþ Tc=rþ Tc=μc

2=3 3.4058 0.0680 0.0200
5=8 3.4375 0.1329 0.0387
3=5 3.3839 0.1750 0.0517

s 1
s 4 5
s 3 4
s 5 7
s 2 3
s 5 8

0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

r

m

0.0

FIG. 3. The mass m of the planar AdS black hole which can be
inferred from the terms proportional to 1=r5 in Eq. (16) in terms
of the event horizon radius rþ for various values of the power
parameter s.
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μc ¼ 4.515 corresponding to Nc ¼ 2 and Nc ¼ 3, respec-
tively, are outside the confinement phase for most values of
the power parameter s under consideration. This means that
the CSC phase transition cannot occur in the confinement
phase except in the case of s ¼ 3=5 corresponding to
Nc ¼ 3. Also, we observe that the maximal chemical
potential μmax grows with the decreasing of the power
parameter s and as a result μmax would be larger than the
critical chemical potential μc at the sufficiently low values
of the power parameter s. This suggests that the CSC state
can exist even in the confinement phase which would not be
compatible with the nonzero VEV of the color nonsinglet
operator. On the other hand, the present holographic model

with sufficiently low values of the power parameter s does
not provide a suitable holographic model for the CSC phase
transition of the realistic YM theory.

V. PHASE DIAGRAM

In this section, we will obtain the phase diagram of the
present holographic model in the plane of the temperature T
and the chemical potential μ, which shows the information
about the region of T and μ where the thermodynamically
distinct phases (such as the deconfinement, confinement,
and CSC phases which we are interested in this work)
appear. In addition, the phase diagram shows the location of
the phase boundaries or the critical curves and when there is
a phase transition between the different phases.
First, we determine the phase structure which describes

the confinement and deconfinement phases, which corre-
sponds to the vanishing of the scalar field. In order to do
this, we need to compute the free energy of the AdS soliton
configuration and the planar AdS black hole configuration
from the Euclidean on-shell action of the system and then
compare them to find which one is the preferred configu-
ration. By using the general result obtained in [46], one can
write the free energy of Einstein gravity coupled minimally
to the power-law Maxwell field in the situation without the
condensation of the scalar field as

SE ¼
�
r4ðr2fÞ0

���∞
rþ

− r4f2ðr2fÞ0
���∞ − s2s−1

Z
∞

rþ
drr4ϕ0ðrÞ2s

�
4π

5r0

V3

T

¼
h
r4ðr2fÞ0

���∞
rþ

− r4f2ðr2fÞ0
���∞ − s2s−1r4ϕϕ02s−1

���∞
rþ

i 4π

5r0

V3

T
; ð31Þ

where V3 ¼
R
dx1dx2dx3 and in the second line we have

used the equation of motion for ϕðrÞ as follows

d
dr

½r4ϕ0ðrÞ2s−1� ¼ 0: ð32Þ

Then, we obtain explicitly the free energy for the planar
AdS black hole configuration and the AdS soliton con-
figuration as

ΩBH ¼ −r5þ

�
1þ 2s−4ð2s − 1Þ2

ð5 − 2sÞ
� ð5 − 2sÞμ
ð2s − 1Þrþ

�
2s
�
4π

5r0
V3;

ΩSol: ¼ −r50
4π

5r0
V3: ð33Þ

The free energy of the planar AdS black hole and AdS
soliton is the same, i.e., ΩBH ¼ ΩSol., along the critical
curve which defines the phase boundary between the
confinement and deconfinement phases. From this relation,
we find the parameter equation in terms of the event

horizon radius rþ, which determines this critical curve
in the μ − T plane as

μðrþÞ ¼
�
24−sð1 − r5þÞ
ð2s − 1Þr5−2sþ

�
1=2s�5 − 2s

2s − 1

�ð1−2sÞ=2s
;

TðrþÞ ¼
rþ
4π

�
5 −

ð5 − 2sÞ
ð2s − 1Þ

ð1 − r5þÞ
r5þ

�
; ð34Þ

where we have set r0 to be unity without loss of generality.
The confinement phase corresponds to the region in the
μ − T plane where the AdS soliton has the free energy
lower than that of the planar AdS black hole and since the
geometric configuration of the AdS soliton is thermody-
namically favored. On the contrary, the region where the
free energy of the planar AdS black hole is lower than that
of the AdS soliton represents the deconfinement phase.
From the results derived above, we can show the phase

diagram of the present holographic model for the realistic
YM theory in the μ − T plane for various values of the
power parameter s and the color number Nc in Fig. 4.

TABLE III. The numerical values for the maximal chemical
potential μmax above which the confinement phase cannot appear
and the critical chemical potential μc above which the CSC phase
transition happens for various values of the power parameter s at
Nc ¼ 2 and Nc ¼ 3.

Nc ¼ 2 Nc ¼ 3

s μmax μc s μmax μc

4=5 2.337 3.01 2=3 3.630 4.515
3=4 2.672 3.01 5=8 4.492 4.515
5=7 3.007 3.01 3=5 5.230 4.515
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The red curve refers to the critical curve corresponding to
the deconfinement/confinement phase transition. The
region below the red curve corresponds to the confinement
phase due to its gravitational dual being thermodynami-
cally preferred. The region above the red curve and the blue
line represents the (normal) deconfinement phase. The CSC
phase appears in the region of the high chemical potential
and the low temperature. Hence, the region below the blue
line which refers to the critical line associated with the CSC
phase transition represents the CSC phase. It is found that
the region of the CSC phase becomes larger when the
power parameter s decreases, which corresponds to the
growth of the slope of the blue line as seen in Tables I
and II. This suggests that the CSC phase is more stable in
the regime of the small power parameter such that it is
larger than 1=2 and it should not lead to the appearance of
the CSC state in the confinement phase. In particular, this
phase diagram shows that the present holographic model
with the power-law Maxwell field for the reasonable values
of the power parameter s can provide a gravitational dual
description for the CSC phase transition of the realistic YM
theory which appears in the deconfinement phase but not in
the confinement phase.

VI. SUMMARY

We have studied the color superconductivity (CSC)
phase transition in the realistic Yang-Mills theory (i.e.,
Nc ≥ 2 where Nc is the color number of quarks) using a
simple holographic model. This holographic model is
constructed by Einstein gravity coupled minimally to the
matter part which consists of a power-law Maxwell field
and a complex scalar field which are dual to the baryon
symmetry and the diquark operator, respectively. By
analyzing the breaking of the Breitenlohner-Freedman
bound and solving numerically the equations of motion
in the configuration of the planar AdS black hole dual to the
deconfinement phase, we have pointed out that the scalar
field of the small charge (q ≤ 1) can condense around the
event horizon of the planar AdS black hole if the power
parameter characterizing for the power-law Maxwell field
is sufficiently lower than one but above 1=2. The con-
densation of the scalar field with the small charge in the
gravitational dual theory means that the corresponding
diquark operator develops a nonzero vacuum expectation
value (VEV) and hence the CSC phase transition with the
large color number (Nc ≥ 2) appears in the deconfinement
phase, which is not found in the gravitational dual
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FIG. 4. The phase diagram is shown for various values of the power parameter s and the color number Nc. Top-left panel: s ¼ 4=5 and
Nc ¼ 2. Top-right panel: s ¼ 5=7 and Nc ¼ 2. Bottom-left panel: s ¼ 2=3 and Nc ¼ 3. Bottom-right panel: s ¼ 5=8 and Nc ¼ 3.
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description with the usual Maxwell field. Furthermore, we
have shown that the power parameter s is not arbitrary
below one (but above 1=2) because when s is sufficiently
far away from one it leads to the condensation of the scalar
field in the configuration of the AdS soliton or the nonzero
VEV of the diquark operator in the confinement phase
which would not be compatible with the nonzero VEV of
the color nonsinglet operator. Finally, we have obtained the
phase diagram in the plane of the temperature and the
chemical potential.
The current work also claims that the condensate of the

scalar field is actually easier to form for the smaller power
parameter, which has been previously indicated in the
investigation of the holographic superconductors with
the power-law Maxwell field in the probe limit [30,33]
and with the backreaction [35]. The critical values of
the temperature and chemical potential grow with the
decrease of the power parameter, as seen in Fig. 4.
However, there are main differences between these works
and the current work. First, the gravitational dual model
of the 4D usual superconductors is studied in five

dimensions. Whereas, the gravitational dual description
of the 4D color superconductors is considered in six
dimensions with one dimension compactified on a
circle S1. This is because the boundary gauge field theory
possesses a confinement scale which is identified with the
inverse radius of the S1. Second, besides studying the
effect of the power-law Maxwell field on the critical
temperature like in holographic superconductors, the
current world studies the relevant effects on the color
number of quarks (or the Uð1ÞB charge of the condensate
operator) and the critical chemical potential which are the
important parameters to trigger the CSC phase transition.
Third, unlike the holographic model of the usual super-
conductors which describes the low- and high-temper-
ature phases corresponding to the superconducting and
normal states, the holographic model of the color super-
conductor represents three different phases: they are the
confinement, normal deconfinement, and CSC phases
corresponding to the low T and μ, the high T and high μ,
and the low T and high μ, respectively.
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