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1 Introduction and results summary

While current observations indicate that we live in a 4-dimensional (4d) spacetime, string
theory, as a candidate for a fundamental theory of nature, rather advocates 10 dimensions.
A standard scenario to accommodate this situation is to consider the corresponding 6 extra
space dimensions to be compact and small, allowing them to be so far undetected. From
the string theory perspective, it remains a natural question to ask: why 4 dimensions [1]?
In this paper, we will consider a d-dimensional extended spacetime, 3 ≤ d ≤ 10, and 10− d
extra dimensions gathered in a compact manifoldM10−d, and we will provide first hints at
a preference for d = 4.

Beyond its dimension, another important characteristic of our spacetime is its geometry:
our universe is currently observed to be in accelerated expansion, and this is also suspected to
have happened in its early days, during a so-called inflation phase. A possibly corresponding
geometry would be a d-dimensional de Sitter spacetime, for us with d = 4, with a cosmological
constant Λd responsible for the accelerated expansion. Another option is a slight deviation
thereof, namely a quasi-de Sitter spacetime, that we now explain. A standard effective
cosmological model in d dimensions, d ≥ 3, is given as follows. It involves gravity and
minimally coupled scalar fields ϕi, subject to a scalar potential V , as described by the
following action

S =
∫

ddx
√
|gd|

(
M2
p

2 Rd −
1
2gij∂µϕ

i∂µϕj − V
)
, (1.1)

with the reduced d-dimensional Planck mass Mp, and the field space metric gij . A solution
to this model with a de Sitter spacetime is a critical point of the potential, ∇V = 0, such
that ϕi have no kinetic energy, and Λd = V

M2
p

= d−2
2d Rd > 0. A quasi-de Sitter solution is

a slight deviation: V > 0, the slope of the potential |∇V | is small, and fields are rolling.
Is it possible to obtain such an effective model with such solutions from string theory?
For our universe, we are interested in d = 4, but since there is a priori no preference for
this dimension, we investigate in this paper the possibility of finding (quasi-) de Sitter
solutions across dimensions. Such an investigation is actually part of the swampland
program [2, 3], which aims at characterising all that can be obtained from string theory.
From the swampland perspective, all dimensions d, with 3 ≤ d ≤ 10,1 should be treated on
equal footing, and one is then entitled to ask whether (quasi-) de Sitter solutions can be
obtained from string theory for any dimension d.

A partial answer is that it is notoriously difficult to find such solutions in a well-
controlled model from string theory. In the swampland program, this has a led to propose
the so-called de Sitter conjecture [4–10]: it claims a systematic obstruction to such solutions
(in models (1.1) coming from string theory) in the form of an inequality

|∇V | ≥ c

Mp
V , (1.2)

where c ∼ O(1). Indeed, |∇V | obeying (1.2) cannot vanish, and cannot even be small.
Although mostly tested in d = 4 [11], together with the difficulties met by constructions of

1Note that d = 3 is nevertheless debated, as discussed in section 5.1.
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d = 4 de Sitter solutions, the conjecture is a priori valid in all d ≥ 3. The inequality (1.2) is
nowadays believed to hold only in the asymptotics of field space. It is for instance the case
for the most refined version of this conjecture, the Trans-Planckian Censorship Conjecture
(TCC) [10], which in addition provides the following d-dependent lower bound on c

TCC bound: c ≥ c0 = 2√
(d− 1)(d− 2)

. (1.3)

In this paper, we will test this quantitative bound thanks to a study in all dimensions d ≥ 3.
Note that if this bound had to be obeyed in our universe, much more involved cosmological
models would then be required [12–15].

We investigate in this work the possibility of finding solutions with a d-dimensional
(quasi-) de Sitter spacetime, in compactifications of 10d string theory. We do so restricting
to classical string backgrounds: this simple setting is easier to control, compared to other
approaches requiring perturbative or non-perturbative contributions [16–20]. Let us report
already that we will observe many constraints or even exclusions of quasi-de Sitter solutions
in higher dimensions d > 4, and other, non-classical approaches may as well face related
difficulties; in particular, we are not aware of any attempt to obtain such solutions in d > 4
using these other approaches. It would be interesting to extend the present analysis to
these less perturbative settings. However, another motivation for focusing on the classical
string regime is that it should correspond to the asymptotics of the effective field space,
where the inequality (1.2) is thought to be valid. It is thus the right setting to test the de
Sitter swampland conjecture and the TCC, as we will do.

Classical string backgrounds with a d-dimensional de Sitter spacetime, in short clas-
sical de Sitter solutions, are usually searched for in compactifications of 10d type IIA/B
supergravities. Forbidding a de Sitter solution in supergravity, as we will do here with the
derivation of no-go theorems, is sufficient to exclude a classical de Sitter string background.
The converse is however not true: whenever a de Sitter solution of 10d supergravity is
found, as recently done most extensively in [21, 22] for d = 4, one still has to verify that the
solution is in the classical string regime, justifying the approximation to 10d supergravity.
This last check turns out to fail in the d = 4 examples where it has been attempted [23, 24].
While general arguments for such failure (in d = 4) have been put forward [25–27], consis-
tently with the de Sitter conjecture, it remains an open issue whether classical de Sitter
solutions exist.

Together with type IIA/B supergravities, we allow here for Dp-branes and orientifold Op-
planes, collectively called sources. In a classical compactification, one could in principle allow
for other objects, namely NS5-branes or Kaluza-Klein monopoles, as well as anti-Dp-branes.
We do not include those for various reasons, some being presented in the Introduction
of [22], the main reason being simplicity and control. Let us add that while Op are typically
introduced to circumvent the Maldacena-Nuñez no-go theorem [28], having together anti-Dp

would break supersymmetry in the effective theory, which might be phenomenologically
undesired.2 In any case, it would be interesting to study whether the constraints obtained

2Another technical point is that the contribution of Op/Dp is the same in Bianchi identities and Einstein
equations, two 10d equations used in establishing no-go theorems, while it is not the case for Op and anti-Dp,
making then the analysis technically more involved.
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here with only Op/Dp, in particular in higher dimensions d > 4, can be extended when
including other possible objects. Another restriction of our analysis is that we consider
smeared Op/Dp, going together with having a constant background dilaton and no warp
factor: we believe however that it should be possible to extend our results beyond this
(common) ansatz [29]. Note that our compactification is not more restricted (see section 2.1):
in particular, we allow for (d-dimensional) spacetime-filling fluxes, fluxes are not taken
constant and we do not impose any restriction on the compact manifoldM10−d.

In this context, there exist many works on classical de Sitter solutions, either searching
for them or constraining them, and we refer to [26] for a review, and [30] for a recent
attempted exhaustive reference list.3 Given the difficulties in finding these solutions,
many no-go theorems have been established, reviewed e.g. in [11, 26, 32], constraining
the necessary manifold properties, the fluxes and Op/Dp contents, leading eventually to
successful supergravity configurations listed in [21]. No-go theorems can be established
in two ways. A first one is to combine 10d equations of motion and Bianchi identities to
reach, upon some assumption, an inequality Rd ≤ 0: this forbids a de Sitter solution. A
second way is to use a d-dimensional effective theory of the type (1.1), and obtain, upon
assumptions, an inequality of the type

a V +
∑
i

bi ϕ
i∂ϕiV ≤ 0 , (1.4)

with a > 0, ∃ bi 6= 0. This forbids in the same way de Sitter critical points, and it can
typically be matched with an inequality Rd ≤ 0 obtained in 10d. The advantage of the
d-dimensional derivation is that the inequality (1.4) forbids as well quasi-de Sitter solutions,
as we explain in more detail in section 3.4 and 4.2. Indeed, (1.4) can typically be rewritten
in the form (1.2), allowing eventually to deduce a value for c. In this paper, we will extend
well-known d = 4 no-go theorems to arbitrary d dimensions, 3 ≤ d ≤ 10, with a few novelties
related to this extension. While most results on no-go theorems are known in d = 4, let us
mention the pioneering paper [33] on such extensions to d dimensions: we reproduce and
extend here the results obtained there, as detailed in section 3.

We first derive no-go theorems in arbitrary d using 10d equations in section 2.2, and
then do the same in section 4.2 with an effective d-dimensional theory derived in section 4.1.
In section 3, we make a concrete use of these no-go theorems in each dimension d: given
that the flux and source content in higher d is limited, some assumptions get automatically
satisfied. This is even more true when restricting in section 3.2 to supersymmetry-preserving
Op/Dp source configurations. As summarized in section 3.3, we eventually exclude any
de Sitter solution in d ≥ 7, leaving only a few options in d = 6, 5 (see table 1, 2, 3), and
much more in d = 4, 3. We argue in addition why, according to Conjecture 1 of [26] and
4 of [21], there should not be any such solution in d = 6, 5, hinting at d ≤ 4 if not d = 4.
These results are straightforwardly extended to an exclusion of quasi-de Sitter solutions
in section 3.4.

3Let us also mention the recent work [31] which considers de Sitter solutions in higher dimensions,
allowing however for non-compact extra dimensions.
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The d-dimensional derivations of the no-go theorems in section 4.2 allow to obtain
a value for c associated to each no-go theorem. While such an extensive analysis had
been carried out in [11] in d = 4, we obtain here a d-dependent c value, allowing a proper
comparison to the expression of the TCC bound (1.3). Our results are summarized and
discussed in section 5. Remarkably, as displayed in table 4 and figure 2, we obtain that
the TCC bound is perfectly verified in d ≥ 4, with several saturation cases, namely all
those that already gave saturation in d = 4. This is a non-trivial check of the TCC
bound (1.3), since there is a priori no reason for this precise expression to be reproduced in
all dimensions d by supergravity no-go theorems. This result is however consistent with
the swampland perspective and conjectures. We refer to section 5.1 for a more extensive
discussion. In that section, we discuss as well an interesting result in d = 3: a newly
derived no-go theorem (2.26) or (4.41) leads to a c value that is lower than the TCC bound.
This is the only violation we know of this bound. It is probably related to peculiarities of
gravity in d = 3, as we comment on in section 5.1. Having established the TCC bound
on more solid grounds for all d ≥ 4 with the no-go theorem derivations, we compare it in
section 5.2 to other d-dependent proposals that appeared in the literature, in particular
that of [34]. We also discuss in section 5.2 the related swampland distance conjecture and
its rate λ, more precisely tentative d-dependent expressions for its lower bound. We finally
comment in section 5.3 and appendix A on an asymptotic upper bound on |∇V |V , required
to ensure cosmic accelerated expansion. We verify that this upper bound only holds upon
some assumptions, which might as well be violated. Such a violation suggests different
cosmological scenarios still allowing for accelerated expansion. Those could be particularly
interesting if the TCC bound should hold true.

2 10-dimensional derivations

We present in section 2.1 the general compactification ansatz to be used, from 10-dimensional
type IIA/B supergravities towards a d-dimensional maximally symmetric spacetime, with
3 ≤ d ≤ 10. We also provide a few 10d equations of motion. Using those, we then derive
in section 2.2 no-go theorems on the existence of solutions with a d-dimensional de Sitter
spacetime. These no-go theorems are, most of the time, extensions of known ones in
d = 4, with a few novelties for d = 3 or for sources of multiple dimensionalities. They
will be reproduced and extended in section 4 with a d-dimensional approach, forbidding in
addition quasi-de Sitter solutions, upon the same assumptions. We will use these no-go
theorems in section 3 to concretely constrain or even exclude (quasi-) de Sitter solutions for
each dimension d.

2.1 Conventions, compactification ansatz and 10d equations

We start with 10-dimensional (10d) type IIA/B supergravities, together with Dp-branes and
orientifold Op-planes, collectively called sources; we follow conventions of [29, appendix A].
We consider a compactification on a (10− d)-dimensional compact manifoldM10−d, to a
d-dimensional maximally symmetric spacetime. We restrict ourselves to d ≥ 3. We use
a signature (−,+, . . . ,+) for the 10- and d-dimensional spacetimes. Let us specify the
corresponding compactification ansatz of the 10d fields.

– 4 –
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To preserve d-dimensional Lorentz invariance (or maximal symmetry), we consider
space-filling Op/Dp sources, requiring d − 1 ≤ p ≤ 9. Op/Dp sources are gathered by
dimensionality p, and for each of those in sets of parallel sources (i.e. placed along the
same dimensions) labeled by I. Their contributions to the equations are denoted T (p)I

10 , and
T

(p)
10 = ∑

I T
(p)I
10 , T10 = ∑

p T
(p)
10 = TMNg

MN with 10d indices M,N ; we refer to [26, 35]
for related conventions. The 10d RR fluxes are denoted F 10

q , 0 ≤ q ≤ 5, with the on-
shell condition F 10

5 = − ∗10 F
10
5 , |F 10

5 |2 = 0. The 10d NSNS flux is H10. The internal
(alongM10−d) fluxes, denoted Fq and H, are taken to depend only on internal coordinates.
Lorentz invariance in the external dimensions only allows for spacetime-filling fluxes: those
are denoted F dq and Hd, and are non-zero for q ≥ d, or d = 3 for the H-flux; we have
F d0 = F d1 = F d2 = 0 here. One then has F 10

q = F dq + Fq, and similarly for H10. Before
specifying also the ansatz for the metric and dilaton, let us give more details on spacetime-
filling fluxes.

By definition, F dq for q ≥ d is along the d-dimensional volume form vold, leaving q − d
legs along the 10−d internal dimensions. One then introduces “fake” internal fluxes denoted
F10−q, such that ∗10−dF10−q captures these remaining internal q − d legs. More precisely,
the internal F10−q, H7 are introduced as follows

F dq ≡ (−1)[ q+1
2 ] ∗10 F10−q = (−1)[ q+1

2 ](−1)(10−q)d vold ∧ ∗10−dF10−q , (2.1)

Hd ≡ ∗10H7 = (−1)d vold ∧ ∗10−dH7 ,

where the sign can be chosen freely, and follows here [29]; [·] denotes the integer part.
This convention is consistent for F5 and the anti-self duality: one verifies indeed that
F 10

5 = − ∗10 F5 + F5 satisfies F 10
5 = − ∗10 F

10
5 . For q < d, one has F dq = F10−q = 0, and for

d > 3, Hd = H7 = 0. Finally, one gets the following squares

|F 10
q |2 = |Fq|2 − |F10−q|2 , |H10|2 = |H|2 − |H7|2 , (2.2)

using the signature.
Let us add a word on p = 9 sources. Using a democratic formalism, O9/D9 would be

electric sources of a C10 potential. Since the latter does not admit a field strength in 10d,
it has no kinetic term, so it does not carry any propagating degree of freedom. Avoiding a
singular propagator, in particular in type I string theory, then requires the sum of O9/D9
charges to vanish [36]. One can also see that the equation of motion for C10, starting from
the O9/D9 world-volume actions, requires this charge cancelation. Equivalently, the Bianchi
identity sourced by O9/D9 does not contain any admissible magnetic flux, thus requiring
again this cancelation,4 which means

T
(9)
10 = 0 . (2.3)

This observation implies in our framework that one cannot have O9 without D9 and
vice-versa; this will play an important role in section 3.

4We thank T. Wrase for this remark.
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Without more specifications, we now provide a few useful equations of motion. To start
with, the dilaton equation of motion is given by (see e.g. [35, section 6])

2R10 + eφ
∑
p

T
(p)
10

p+ 1 − |H|
2 + |H7|2 + 8

(
∆φ− |∂φ|2

)
= 0 . (2.4)

The 10d Einstein equations are given e.g. in [29, appendix A]. Their trace-reversed version
is given as follows for type IIA

RMN = 1
4H

10
MPQH

10
N
PQ+ e2φ

2

(
F2 MPF2 N

P + 1
3!F

10
4 MPQRF

10
4 N

PQR
)

(2.5)

+ eφ

2 TMN−2∇M∂Nφ

+ gMN

16
(
−eφT10−2|H|2+2|H7|2+e2φ

(
|F0|2−|F2|2−3|F4|2+3|F6|2

)
−4∆φ+8|∂φ|2

)
and for type IIB

RMN = 1
4H

10
MPQH

10
N
PQ+ e2φ

2

(
F1 MF1 N+ 1

2!F
10
3 MPQF

10
3 N

PQ+ 1
2·4!F

10
5 MPQRSF

10
5 N

PQRS
)

+ eφ

2 TMN−2∇M∂Nφ (2.6)

+ gMN

16
(
−eφT10−2|H|2+2|H7|2−2e2φ(|F3|2−|F7|2)−4∆φ+8|∂φ|2

)
where we developed the squares of 10d fluxes as explained above. The 10d Einstein trace
is then

4R10 + eφ

2 T10 − |H|2 + |H7|2 −
e2φ

2

7∑
q=0

(5− q)|Fq|2 − 20|∂φ|2 + 18∆φ = 0 . (2.7)

Let us now be more specific on our compactification ansatz for the metric and dilaton.
We consider the 10d spacetime to be a direct product, in particular we consider no warp
factor in the following 10d metric

ds2
10 = gµν(x)dxµdxnu + gmn(y)dymdyn , (2.8)

where µ, ν = 0, . . . , d− 1, m,n = d, . . . , 9. Accordingly, we consider smeared sources and
a constant dilaton, with gs = eφ. We nevertheless believe, following e.g. [29, 37], that the
results obtained here can be generalized beyond these restrictions.

Using notations reviewed in [26], we express the source energy momentum tensor TMN

as TAB = eMAe
N
BTMN in “flat” indices, using an orthonormal coframe. The metric (2.8)

leads to a decomposition into the d-dimensional α, β, and the (10− d)-dimensional internal
directions {a‖I

, a⊥I
} parallel or transverse to each source set I, as follows

TAB = δαAδ
β
B Tαβ +

∑
p,I

δ
a‖I
A δ

b‖I
B T

(p)I

a‖I b‖I
(2.9)

with Tαβ = ηαβ
∑
p

T
(p)
10

p+ 1 , T
(p)I

a‖I b‖I
= δa‖I b‖I

T
(p)I
10
p+ 1 ,

– 6 –
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while for each set I, Ta⊥I
b⊥I

= eMA⊥I
eNB⊥I

TMN = 0. Note that we have not restricted
ourselves to group manifolds, nor considered constant fluxes.

From this ansatz, and using (2.5), (2.6), we obtain the d-dimensional Einstein equations

Rµν = gµν
16

(
gs
∑
p

T
(p)
10

p+ 1(7− p)− 2|H|2 − 6|H7|2 + g2
s

(
|F0|2 − |F2|2 − 3|F4|2 − 5|F6|2

))

Rµν = gµν
16

(
gs
∑
p

T
(p)
10

p+ 1(7− p)− 2|H|2 − 6|H7|2 − g2
s

(
2|F3|2 + 4|F5|2 + 6|F7|2

))
(2.10)

where we used that 1/(q − 1)! F 10
q µP ...QF

10
q ν

P ...Q = −gµν |F10−q|2.
We deduce the d-dimensional Einstein trace, that we give together with the dilaton

equation of motion (2.4) and the 10d Einstein trace (2.7) for our ansatz in type IIA/B

2R10 + gs
∑
p

T
(p)
10

p+ 1 − |H|
2 + |H7|2 = 0 (2.11)

4R10 + gs
2 T10 − |H|2 + |H7|2 −

g2
s

2

7∑
q=0

(5− q)|Fq|2 = 0 (2.12)

Rd = d

16

gs∑
p

7− p
p+ 1 T

(p)
10 − 2|H|2 − 6|H7|2 + g2

s

7∑
q=0

(1− q)|Fq|2
 (2.13)

The only explicit dependency on the dimension d is in the latter. The admissible fluxes and
sources, i.e. non-zero ones, depend implicitly on this dimension. These three equations will
be key in the following derivations.

2.2 No-go theorems in arbitrary dimension d

We combine in the following the three equations (2.11), (2.12) and (2.13) to reach, upon
assumptions, an obstruction for having Rd > 0. We get this way a no-go theorem against
a solution with a d-dimensional de Sitter spacetime. We mostly generalize derivations
of [29, 35] in d = 4 to arbitrary dimension d ≥ 3.

2.2.1 Extension of Maldacena-Nuñez

Thanks to the dilaton equation of motion (2.11), we eliminate the contribution of the Ricci
scalar R10 in the 10d Einstein trace (2.12) towards

gs
∑
p

p− 3
p+ 1T

(p)
10 + 2|H|2 − 2|H7|2 − g2

s

7∑
q=0

(5− q)|Fq|2 = 0 , (2.14)

and use this result in (2.13) to eliminate the H-flux. We obtain

Rd = d

4

gs∑
p

T
(p)
10

p+ 1 − g
2
s

7∑
q=0
|Fq|2 − 2|H7|2

 . (2.15)

– 7 –
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This provides an extension of the Maldacena-Nuñez no-go theorem [28] to arbitrary dimen-
sion d ≥ 3, and to sources of any (possibly multiple) dimensionalities. We formulate it here
with the following requirement

De Sitter solutions require T (p)
10 > 0 for some p. (2.16)

This is typically achieved by including Op, whose contribution should dominate that of Dp.

2.2.2 No-go for p = 7, 8, 9, or p = 4, 5, 6 with F6−p = 0, or p = 2 with H = 0

This no-go theorem was derived in 4d in [38] and in 10d in [29], for d = 4. It considers
sources of single dimensionality p (possibly intersecting, i.e. in different sets). So we restrict
here to a single p, giving T10 = T

(p)
10 , and we recall that p ≥ d− 1. We first combine (2.11)

with (2.12) to eliminate T10, and get

(
−2R10 + |H|2 − |H7|2

)
(p− 3) + 2

(
|H|2 − |H7|2

)
− g2

s

7∑
q=0

(5− q)|Fq|2 = 0 . (2.17)

Similarly, we combine (2.11) with (2.15) to eliminate T10, resulting in
(

2 + 4
d

)
Rd = −2R10−d − g2

s

7∑
q=0
|Fq|2 + |H|2 − 3|H7|2 . (2.18)

We now multiply (2.18) by (p− 3), insert (2.17) and get

4(p− 3)
d

Rd = g2
s

7∑
q=0

(8− p− q)|Fq|2 − 2|H|2 + 2(4− p)|H7|2 . (2.19)

This extends [29, (3.3)] to arbitrary dimension d ≥ 3. More explicitly in IIA/B, we obtain

4(p− 3)
d

Rd = g2
s

(
(8− p)|F0|2 + (6− p)|F2|2 + (4− p)|F4|2 + (2− p)|F6|2

)
− 2|H|2 + 2(4− p)|H7|2

4(p− 3)
d

Rd = g2
s

(
(7− p)|F1|2 + (5− p)|F3|2 + (3− p)|F5|2 + (1− p)|F7|2

)
− 2|H|2 + 2(4− p)|H7|2

We first conclude for p = 7, 8 or 9

There is no de Sitter solution for p = 7, 8 or 9 in any d ≥ 3. (2.20)

We turn to p = 4, 5 or 6 as follows

• p = 6: evaluating equation (2.19), we get (as in [29, 39] for d = 4)

12
d
Rd = g2

s

(
2|F0|2 − 2|F4|2 − 4|F6|2

)
− 2|H|2 − 4|H7|2 . (2.21)

For de Sitter, one needs F0 6= 0.
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• p = 5: evaluating equation (2.19), we get (as in [29] for d = 4)

8
d
Rd = g2

s

(
2|F1|2 − 2|F5|2 − 4|F7|2

)
− 2|H|2 − 2|H7|2 . (2.22)

For de Sitter, one needs F1 6= 0.

• p = 4: evaluating equation (2.19), we get (as in [29, 40] for d = 4)

4
d
Rd = g2

s

(
4|F0|2 + 2|F2|2 − 2|F6|2

)
− 2|H|2 . (2.23)

For de Sitter, one needs a priori F0 6= 0 or F2 6= 0. As pointed-out in [32], when
having only p = 4 sources, the F0 Bianchi identity imposes a constant F0, and the O4
projection then implies F0 = 0. So we deduce the only requirement of F2 6= 0.

We conclude (for a single p ≥ d− 1)

There is no de Sitter solution for p = 4, 5 or 6 in any d ≥ 3 with F6−p = 0. (2.24)

Nothing can be said for p = 3, but a different no-go theorem can be seen for p = 2 (which
occurs only for d = 3)

• p = 2: evaluating equation (2.19), we get

− 4
d
Rd = g2

s

(
6|F0|2 + 4|F2|2 + 2|F4|2

)
− 2|H|2 + 4|H7|2 . (2.25)

For de Sitter, one needs H 6= 0, meaning

There is no de Sitter solution for p = 2 in d = 3 with H = 0. (2.26)

Up to our knowledge, this is a new result, which will play an important role in the
next sections.

Let us finally extend the derivation of (2.19) to multiple dimensionalities p, p′. Pro-
ceeding similarly, we obtain the expression

4(p− 3)
d

Rd = g2
s

7∑
q=0

(8−p−q)|Fq|2−2|H|2 +2(4−p)|H7|2 +gs
∑
p′ 6=p

p− p′

p′ + 1T
(p′)
10 . (2.27)

2.2.3 Positive or vanishing internal curvature R10−d

This no-go theorem was derived in 4d in [38] and in 10d in [29], for d = 4. It is mentioned
for arbitrary d in [33]. This no-go is again about sources of single dimensionality p, to which
we restrict ourselves. We combine (2.18) and (2.19) to eliminate the |H|2 term

d+ p− 1
d

Rd = −R10−d + g2
s

4

7∑
q=0

(6− p− q)|Fq|2 + 1− p
2 |H7|2 . (2.28)
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More explicitly, we obtain in IIA and IIB

d+ p− 1
d

Rd = −R10−d + g2
s

4
(
(6− p)|F0|2 + (4− p)|F2|2 + (2− p)|F4|2 − p|F6|2

)
+ 1− p

2 |H7|2

d+ p− 1
d

Rd = −R10−d + g2
s

4
(
(5− p)|F1|2 + (3− p)|F3|2 + (1− p)|F5|2 − (1 + p)|F7|2

)
+ 1− p

2 |H7|2

We conclude (for a single p ≥ d− 1)

There is no de Sitter solution for p ≥ 4 in any d ≥ 3 with R10−d ≥ 0. (2.29)

For p = 4, this result requires the above argumentation on the F0 flux.

2.2.4 No-go for p = d− 1

We follow and extend the derivation in [29] to arbitrary d ≥ 3. This no-go theorem is at first
about sources of a single dimensionality p, with p being the minimal one, namely p = d− 1.
In that case, all internal dimensions are transverse to the sources: vol⊥ = vol10−d. The
sourced Bianchi identity

dF8−p −H ∧ F6−p = εp
T10
p+ 1vol⊥ , εp = (−1)p+1(−1)[

9−p
2 ] , (2.30)

can be reformulated as in [29, 35] by projecting on this volume, towards the scalar expression

2gs
T10
p+ 1 = − |∗10−dH + εpgsF6−p|2 + |H|2 + g2

s |F6−p|2 + 2εpgs (dF8−p) (2.31)

where dF8−p = (dF8−p) vol10−d.
Before using (2.31), we consider the combination of (2.14) and −(p+ 1) 4

d (2.15) for a
single p

− (p+ 1)4
d
Rd = −4gs

T10
p+ 1 + 2|H|2 + 2p|H7|2 + g2

s

7∑
q=0

(p+ q − 4)|Fq|2 . (2.32)

It can be rewritten as follows, for any 2 ≤ p ≤ 9, keeping in mind that Fq = 0 for
q < 0 or q > 7

Rd = − d

2 (p+ 1)

(
− 2gs

T10
p+ 1 + |H|2 + p|H7|2 + g2

s

(
− |F2−p|2 + |F6−p|2 + 2|F8−p|2

+ 3|F10−p|2 + 4|F12−p|2 + 5|F14−p|2 + 6|F16−p|2
))

. (2.33)

Combined with (2.31), we obtain

Rd =− d

2(p+1)

(
−2gsεp (dF8−p)+|∗10−dH+εpgsF6−p|2+p|H7|2 (2.34)

+g2
s

(
−|F2−p|2+2|F8−p|2+3|F10−p|2+4|F12−p|2+5|F14−p|2+6|F16−p|2

))
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We finally consider
∫
M10−d

vol10−dRd = Rd
∫
M10−d

vol10−d > 0 for a de Sitter solution.
Focusing on p = d− 1, one has F8−p = F9−d and∫

M10−d

dF9−d =
∫
∂M10−d=0

F9−d = 0 . (2.35)

The integral of the right-hand side of (2.34) is thus negative for p > 2, i.e. d > 3, leading to
a no-go theorem for de Sitter. For p = 2, the term |F2−p|2 is however contributing with the
opposite sign. We conclude, for a single p

There is no de Sitter solution for p = d− 1 in any d ≥ 4. (2.36)

In addition, with a single p

There is no de Sitter solution for p = 2 in d = 3 with F0 = 0. (2.37)

We finally extend the analysis to sources of multiple dimensionalities p, p′. If we consider
as above the combination of (2.14) and −(p+ 1) 4

d (2.15) for a given p, we extend (2.32) to

− (p+ 1)4
d
Rd = −4gs

T
(p)
10

p+ 1 + gs
∑
p′ 6=p

p′ − p− 4
p′ + 1 T

(p′)
10 + 2|H|2 + 2p|H7|2 + g2

s

7∑
q=0

(p+ q− 4)|Fq|2 .

(2.38)
We can proceed as before, using the BI for p = d− 1, while having contributions of sources
with p′ > p. The extra term leads us to conclude, for multiple dimensionalities (with p′ > p)

There is no de Sitter solution for p = d− 1 in any d ≥ 4 with (p′ − p− 4)T (p′)
10 ≥ 0 ∀p′.

(2.39)
This was mentioned for d = 4, p = 3, p′ = 5, 7 in [35, (6.18)]. This formulation of the no-go
theorem could be relaxed to requiring ∑p′ 6=p

p′−p−4
p′+1 T

(p′)
10 ≥ 0; in practice it is typically

sufficient to consider each term of the sum separately as in (2.39).

2.2.5 Heterotic at order (α′)0

Heterotic string at order (α′)0 is effectively the NSNS sector of type IIA/B. The d-
dimensional Einstein trace (2.13) then boils down to

Rd = −d8
(
|H|2 + 3|H7|2

)
. (2.40)

Using (2.15) we eliminate the contribution of H7

Rd = −d2 |H|
2 . (2.41)

We conclude

There is no de Sitter solution in any d ≥ 3 in heterotic string at order (α′)0. (2.42)

Let us make a side remark. We recall that H7 = 0 for d ≥ 4. Comparing the above
expressions, we deduce that one can only get Minkowski solutions for d ≥ 4 in heterotic
string at order (α′)0. We note however that d = 3 seems to allow for an anti-de Sitter
solution as well, with H,H7 6= 0. It would correspond to a Freund-Rubin solution (see
e.g. [41]), but interestingly, a pure NSNS one. Such a solution on AdS3 × S3 × T 4 is for
instance mentioned in [42].
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3 Interlude: excluding or constraining (quasi-) de Sitter in each
dimension d

In section 4.2, we will reproduce and extend the no-go theorems obtained in section 2.2
to forbid quasi-de Sitter solutions, using a d-dimensional approach. Here in this section,
we already make a concrete use of these no-go theorems, to constrain, if not exclude, such
solutions in each dimension d ≥ 3. To that end, we determine in each d the actual flux
and source content: because the latter can be scarce, assumptions of the no-go theorems
sometimes get automatically satisfied, allowing us to conclude. We first constrain this way de
Sitter solutions in section 3.1. We then restrict the discussion to supersymmetry-preserving
source configurations in section 3.2. We summarize our findings in section 3.3 and finally
show, in section 3.4, that all these results are also valid for quasi-de Sitter solutions.

A pioneering paper on these matters is [33], where constraints in d ≥ 5 on metastable
de Sitter solutions with supersymmetry-preserving source configurations are discussed. In
this section, we reproduce the (existence) results obtained there, and go beyond them with
a more general analysis. Most of our results for d > 7, and some of them for 5 ≤ d ≤ 7,
were already obtained in [33]. However, with the extra no-go theorem (2.36) at our disposal
and further arguments, we exclude de Sitter solutions in some cases of 5 ≤ d ≤ 7, and not
just minima as in [33]. We provide further comparison along the text.

3.1 First existence constraints

d = 10.
Theory Fluxes Op/Dp dimensionality p
IIA F0 ∅
IIB ∅ 9

The absence of source in IIA leads to no-go theorem (2.16), and the only p = 9 sources
in IIB lead to no-go theorem (2.20). We conclude

There is no de Sitter solution in d = 10. (3.1)

d = 9.
Theory Fluxes Op/Dp dimensionality p
IIA F0 8
IIB F1 9

The presence of only p = 8 sources in IIA and p = 9 sources in IIB lead to no-go
theorem (2.20). We conclude

There is no de Sitter solution in d = 9. (3.2)

d = 8.
Theory Fluxes Op/Dp dimensionality p
IIA F0, F2 8
IIB F1 7,9
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The presence of only p = 8 sources in IIA leads to the no-go theorem (2.20). Considering
sources of only one dimensionality p in IIB would lead to the same conclusion. However,
with both sources (not considered in [33]), the analysis is more involved. With the sources
and fluxes of IIB, we can combine (2.14) and (2.15) towards

R8 = −gs
T

(9)
10
10 (3.3)

implying the de Sitter requirement T (9)
10 < 0. This leads to the no-go theorem (2.39) with

p′ = 9, p = 7; see also (2.3). We conclude

There is no de Sitter solution in d = 8. (3.4)

d = 7.
Theory Fluxes Op/Dp dimensionality p
IIA F0, F2, H 6,8
IIB F1, F3, H 7,9

Let us start with IIA. Having p = 8 sources only leads to no-go theorem (2.20) and
p = 6 only leads to no-go theorem (2.36); this leaves the possibility of having both together.
In that case, the combination of (2.14) and (2.15) leads to

R7 = 7
6

(
−|H|2 + g2

s |F0|2 − gs
T

(8)
10
9

)
= 7

10

(
−|H|2 − g2

s |F2|2 + gs
T

(6)
10
7

)
, (3.5)

from which we deduce T (6)
10 > 0 for de Sitter; this can also be read from (2.27) with p = 8.

No-go theorem (2.39) requires T (8)
10 > 0 to have a de Sitter solution. We then deduce

from (3.5) the further requirement of F0 6= 0.
T

(6)
10 > 0 and T (8)

10 > 0 mean that there are O6 and O8. The latter admits one transverse
internal dimension. Along that direction, an O8 is located at the fixed points of the
orientifold involution. With respect to those fixed points, F0 must be an odd function,
because of this O8 involution. The transverse space of the O6 is the whole internal space.
The O6 involution applied to this transverse space requires F0 to be an even function. The
requirements of both Op-planes can be found compatible with certain functions F0, so we
simply conclude

There is no de Sitter solution in d = 7 in type IIA, unless one has O6, O8 and F0 6= 0.
(3.6)

Note for instance that a constant F0 would not satisfy the above constraints. A similar
situation was discussed in [21, section 3.3.1] with O4 and O6, in d = 4. There however,
F0 = 0 was possible, and de Sitter solutions were indeed obtained in the class m+

46.
We turn to type IIB. Considering sources of only one dimensionality p in IIB would

lead to the no-go theorem (2.20). With both p = 7, 9 sources, the analysis is more involved.
The combination of (2.14) and (2.15) leads to

R7 = −7
8

(
gs
T

(9)
10
10 + g2

s |F3|2 + |H|2
)

= 7
12

(
gs
T

(7)
10
8 − g2

s

(
|F1|2 + 2|F3|2

)
− |H|2

)
,

(3.7)
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from which we deduce T (7)
10 > 0 and T (9)

10 < 0 for a de Sitter solution; we reach the same
result with (2.27). This implies the presence of O7, but not necessarily that of O9; still it
requires D9. Note already that (2.3) contradicts the requirement T (9)

10 < 0; let us give a
further argument. Since the Bianchi identity of F1 is simply given by dF1, proportional to
T

(7)
10 , then we must have F1 6= 0. The O9 projection has the particularity to always require
F1 = 0, since an O9 fills the whole space while having the involution σO9(F1) = −F1. We
can then only have D9 here. As discussed around (2.3), having D9 alone is however not
permitted. We conclude

There is no de Sitter solution in d = 7 in type IIB. (3.8)

This excludes completely de Sitter solutions in d = 7.

d = 6.
Theory Fluxes Op/Dp dimensionality p
IIA F0, F2, F4, H 6,8
IIB F1, F3, H 5,7,9

Let us start with type IIA. Having p = 8 sources alone leads to no-go theorem (2.20).
For de Sitter, one must then have p = 6 sources. The combination of (2.14) and (2.15)
leads to

R6 = 3
5

(
gs
T

(6)
10
7 − |H|2 − g2

s

(
|F2|2 + 2|F4|2

))
= −gs

T
(8)
10
9 − |H|2 + g2

s

(
|F0|2 − |F4|2

)
,

(3.9)
from which we deduce T (6)

10 > 0 and g2
s |F0|2−gs

T
(8)
10
9 > 0 for de Sitter; in particular one needs

O6. The second inequality indicates the need of F0 6= 0: indeed, the F0 Bianchi identity
gives dF0 proportional to T (8)

10 , so F0 cannot vanish while satisfying this inequality. Let us
now consider the possibility of having O8. In case the O8 and O6 are overlapping, then they
share a common transverse direction along which they are localized. This situation is similar
to the one in d = 7, and there is no general obstruction. If they are not overlapping, the O8
is then localized at a fixed point on the O6, and its involution forces F0 to be an odd function
along that O6 direction. This is not in contradiction with the O6 involution constraint
σO6(F0) = F0, since the involution σO6 has a trivial action along the O6. Therefore, for
non-overlapping O6 and O8, we do not encounter an issue either. Keeping in mind these
different source configurations for section 3.2, we conclude for now

There is no de Sitter solution in d = 6 in type IIA, unless one has O6 and F0 6= 0.
(3.10)

We turn to type IIB. In presence of sources of only one p, one cannot get de Sitter
solutions: only p = 7 or 9 sources would lead to no-go (2.20), while p = 5 leads to no-
go (2.36). We then consider sources of multiple dimensionalities. No-go theorem (2.39)
forbids to have only p = 5 with p = 9, and requires to have T (7)

10 > 0 if there are p = 5
sources. If there are no p = 5 sources, the related equation (2.38) still requires T (7)

10 > 0, as
will be confirmed by equations below. So O7 are always required. Having T (7)

10 > 0 requires
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in addition F1 6= 0 via its Bianchi identity, from which we deduce, as for d = 7, the needed
absence of O9. As discussed already, having D9 alone is not permitted, so overall, p = 9
sources cannot be present here. The combination of (2.14) and (2.15) leads to

R6 = 1
2

(
gs
T

(7)
10
8 + 2gs

T
(5)
10
6 − |H|2 − g2

s

(
|F1|2 + 2|F3|2

))
(3.11)

= 3
4

(
−gs

T
(9)
10
10 + gs

T
(5)
10
6 − |H|2 − g2

s |F3|2
)

(3.12)

= 3
2

(
−2gs

T
(9)
10
10 − gs

T
(7)
10
8 − |H|2 + g2

s |F1|2
)

(3.13)

where we should set T (9)
10 = 0. We read from the above various conditions, in particular the

need of T (5)
10 > 0, therefore of O5. We conclude

There is no de Sitter solution in d = 6 in type IIB, unless one has O7, F1 6= 0 and O5.
(3.14)

d = 5.
Theory Fluxes Op/Dp dimensionality p
IIA F0, F2, F4, H 4,6,8
IIB F1, F3, F5, H 5,7,9

In type IIA, having only p = 8 sources leads to no-go (2.20), and only p = 4 leads
to no-go (2.36). Having only p = 6 sources seems possible, in which case one needs O6
by (2.16). Turning to multiple dimensionalities, let us consider the no-go (2.39): having
D4/O4, with or without D8/O8, one gets the de Sitter requirement of having T (6)

10 > 0,
i.e. having O6. In absence of D4/O4, one can still use the related equation (2.38) with
p = 4 to conclude on the same need of O6 with T (6)

10 > 0, whether or not there are D8/O8.
We conclude

There is no de Sitter solution in d = 5 in type IIA, unless one has O6. (3.15)

As above, a few more constraints can be derived, although nothing decisive. Let us still
add, for future purposes, that the combination of (2.14) and (2.15) leads in particular to

R5 = 5
6

(
gs
T

(4)
10
5 − gs

T
(8)
10
9 − |H|2 + g2

s

(
|F0|2 − |F4|2 − 2|F6|2

))
. (3.16)

We deduce that in absence of p = 4 sources, one must have g2
s |F0|2 − gs

T
(8)
10
9 > 0. We are

then in the same situation as in d = 6, and one can run a similar discussion on O8/D8,
whether those have a common transverse direction with the O6 or not.

In type IIB, having sources of single dimensionality only allows p = 5 due to no-go (2.20),
and the need of O5 by no-go (2.16). Having multiple dimensionalities allows a priori for
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more options: let us consider again the combination of (2.14) and (2.15), leading to

R5 = 5
12

(
gs
T

(7)
10
8 + 2gs

T
(5)
10
6 − |H|2 − g2

s

(
|F1|2 + 2|F3|2 + 3|F5|2

))
(3.17)

= 5
8

(
−gs

T
(9)
10
10 + gs

T
(5)
10
6 − |H|2 − g2

s(|F3|2 + 2|F5|2)
)

(3.18)

= 5
4

(
−2gs

T
(9)
10
10 − gs

T
(7)
10
8 − |H|2 + g2

s(|F1|2 − |F5|2)
)

(3.19)

where from (2.3) we should set T (9)
10 = 0. From this we first deduce the requirement T (5)

10 > 0
for de Sitter, so the need of O5 in the case of multiple dimensionalities as well. We also
read the requirement g2

s |F1|2 − gs
T

(7)
10
8 > 0. If F1 = 0, this inequality cannot be satisfied

because the F1 Bianchi identity then gives T (7)
10 = 0. We must then have F1 6= 0, which, as

argued previously, forbids to have O9, and thus D9. In other words, de Sitter forbids p = 9
sources and we conclude

There is no de Sitter solution in d = 5 in type IIB, unless one has O5 and F1 6= 0.
(3.20)

d = 4.
Theory Fluxes Op/Dp dimensionality p
IIA F0, F2, F4, F6, H 4,6,8
IIB F1, F3, F5, H 3,5,7,9

For completeness, we list d = 4, which is by far the most studied case. Constraints
for single dimensionalities have been discussed e.g. in [26, 32] and references therein, while
some for multiple dimensionalities have appeared in [35, section 6] and more extensively
in [21]. Single dimensionalities only allow p = 4, 5 or 6; it was further argued that p = 4 is
very unlikely [21]. Multiple dimensionalities offer many options [21].

d = 3.
Theory Fluxes Op/Dp dimensionality p
IIA F0, F2, F4, F6, H,H7 2,4,6,8
IIB F1, F3, F5, F7, H,H7 3,5,7,9

Many options seem again possible for de Sitter and we refrain from listing them all.
Interestingly though, a few peculiarities appear in d = 3: some no-go theorems do not work
as in higher dimensions. In type IIA with only p = 2 sources, one gets different constraints,
as indicated in (2.26) and (2.37), which will play an important role in the next sections.

Classical de Sitter solutions in d = 3 have been discussed in [43] and [44]. The former
goes however slightly beyond our framework since anti-Dp are considered in IIA; some
features there remain interesting. The discussion in [44] is done in IIB and, interestingly,
involves F7-flux, without however finding de Sitter solutions.
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Sources d spacetime dimensions 1 2 3 4
O6, (D6) ⊗ ⊗
(O8, D8) ⊗ ⊗ ⊗ ⊗

Table 1. Supersymmetry-preserving source configuration allowing for possible de Sitter solutions in
type IIA in d = 6.

3.2 Restricting to supersymmetric source configurations

There are several motivations to require that the Op/Dp source configuration does not
break supersymmetry: first, it leaves a chance to get a supersymmetric effective theory in d
dimensions, which could be phenomenologically interesting, and second, it avoids possible
instabilities that would occur among the Op/Dp. This requirement has also been made in
the analysis of [33]; we reproduce and extend here the results obtained there.

Possible supersymmetric source configurations for a de Sitter solution in d = 4 were
discussed in [21, section 2.4.2], and we consider here higher dimensions d. In the presence
of 2 intersecting sets of orthogonal Op/Dp, the rule is well-known: the total number of
Neumann-Dirichlet boundary conditions should be a multiple of 4. We denote this number as
NND. This condition amounts to evaluate the total number of directions wrapped by one set
but not by the other, and require it to be a multiple of 4. If this holds, then supersymmetry
is only broken by a quarter; it is otherwise fully broken (sources are not mutually BPS),
which is what we want to avoid in this section. Note that having anti-Dp-branes together
with Op would also lead to such a breaking, which could be another argument not to include
them.

Instead of systematically determining the configurations that would preserve supersym-
metry for every dimension d, let us focus only on those for which a de Sitter solution is
possible, as determined in section 3.1. We thus start in d = 7.

d = 7. The only possible configuration identified there was in type IIA with O6 and
O8 (3.6). Given an O6 is fully space filling in d = 7, it is completely along an O8, so one
gets NND = 2 and supersymmetry cannot be preserved. We conclude by phrasing this
result as follows

There is no de Sitter solution in a d = 7 susy theory. (3.21)

d = 6. Let us start with type IIA, with the requirement of O6 (3.10). Since an O6
wraps only one internal dimension, there cannot be intersecting O6/D6 that preserve
supersymmetry: those would lead to NND = 2. Turning to O8/D8, the only possibility to
preserve supersymmetry is to place them as in table 1. Note that this is the case discussed
above (3.10) where O8 and O6 are not overlapping.

We turn to type IIB, with the requirement of O7 and O5 (3.14). O5 (and possibly
D5) are space-filling, so O7 and O5/D5 necessarily lead here to NND = 2, and thus do not
preserve supersymmetry.
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Sources d spacetime dimensions 1 2 3 4 5
O6, (D6) ⊗ ⊗ ⊗
(O6, D6) ⊗ ⊗ ⊗

O6, (D6) ⊗ ⊗ ⊗
(O8, D8) ⊗ ⊗ ⊗ ⊗ ⊗

Table 2. Supersymmetry-preserving source configurations allowing for possible de Sitter solutions
in type IIA in d = 5.

We conclude by phrasing these results as follows

There is no de Sitter solution in a d = 6 susy theory, unless from Op/Dp as in table 1.
(3.22)

Let us nevertheless express doubts on the ability of the IIA configuration in table 1 to provide
a de Sitter solution. First, a T-duality along one of its directions would lead to O5, O9, D9,
or O7, D7, neither of which allows for de Sitter according to (3.14). In addition, considering
only O6 then amounts to have a single set of parallel sources, a situation conjectured in d = 4
to not allow for any de Sitter solution [26]. We nevertheless do not yet have no-go theorems
to exclude this configuration. Let us add that searches for de Sitter solutions in d = 6 were
performed in [45] for source configurations preserving 1

2 supersymmetries, i.e. one set of
sources. No de Sitter solution was found in our setting, in particular with O6/D6. De Sitter
solutions are nevertheless mentioned when having Kaluza-Klein monopoles KKO5/KK5 in
type IIA; for those the compactness of the manifold is however not ensured.

d = 5. Let us start with type IIA, with the requirement of O6, and possible p = 4, 8
sources (3.15). O4/D4 sources cannot preserve supersymmetry together with O6 since they
are space-filling. We fall then in the case discussed below (3.16), which may or may not
include O8. In addition, having two intersecting sets of O8/D8 would lead to NND = 2.
The only possible supersymmetry preserving source configurations for de Sitter are thus
those of table 2.

We turn to type IIB, for which p = 5, 7 sources are a priori possible, with the systematic
need of O5 (3.20). For single dimensionality, we concluded that only p = 5 could give de
Sitter solutions. Since O5/D5 wrap only one internal dimension, supersymmetry preservation
allows for one set at most. Turning to multiple dimensionalities with p = 5, 7, we find
some possibility to preserve supersymmetry. Overall, the supersymmetry preserving source
configurations are given in table 3. It seems that the combination of p = 5 and p = 7
sources has been missed in [33].

We conclude

There is no de Sitter solution in a d = 5 susy theory, unless from Op/Dp as
in table 2 and 3. (3.23)

As for d = 6, we nevertheless have doubts on the ability to get de Sitter solutions with
these source configurations, even though we do not have decisive no-go theorems. Again,

– 18 –



J
H
E
P
0
1
(
2
0
2
3
)
0
2
0

Sources d spacetime dimensions 1 2 3 4 5
O5, (D5) ⊗ ⊗
(O7, D7) ⊗ ⊗ ⊗ ⊗

Table 3. Supersymmetry-preserving source configuration allowing for possible de Sitter solutions in
type IIB in d = 5.

T-dualities on the source configurations lead to others for which de Sitter is not possible,
while configurations with a single set of O5 or O6 also disfavour de Sitter.

3.3 Summary and perspectives

For each dimension d, we have determined the field and source content in type IIA/B
compactifications. The scarcity of this content, especially for the highest d, sometimes
implied that the assumptions of no-go theorems of section 2.2 were automatically satisfied.
This allowed to concretely exclude, or constrain, the existence of a solution with a d-
dimensional de Sitter spacetime. More precisely, de Sitter solutions are forbidden for
8 ≤ d ≤ 10 and in type IIB in d = 7. For d = 7, 6, 5, constraints were found in (3.6),
then (3.10), (3.14) and (3.15), (3.20). The cases of d = 4, 3 were also discussed and
referenced in section 3.1. When restricting in addition to supersymmetry-preserving source
configurations in section 3.2, de Sitter got fully excluded in d = 7 and in type IIB in d = 6.
Only few source configurations could then still allow for de Sitter: those of table 1 in d = 6,
and table 2 and 3 in d = 5, while d = 4 was treated in [21, section 2.4.2]. These results on
the (non)-existence of de Sitter in all dimensions d ≥ 3 reproduce and extend those of the
pioneering paper [33]. They will be extended to quasi-de Sitter solutions in section 3.4.

Restricting to supersymmetric source configurations is a reasonable assumption for
phenomenology, since it can avoid some instabilities, and possibly provides a supersymmetric
d-dimensional effective theory. Doing so, we are only left with few source configurations
in d = 6, 5. Interestingly, we note that those contain at most 2 sets of intersecting Op/Dp

sources: see table 1, 2, 3. This is expected due to the number of supercharges: for d ≥ 5,
the supersymmetry algebra does not allow for only 4 supercharges.5 Having 3 intersecting
sets of sources would break at least supersymmetry to 1

8 of the original amount, here 32
supercharges in type IIA/B. Preserving supersymmetry in d ≥ 5 then allows at most for 2
intersecting sets, as observed here.

This observation is crucial in regards of Conjecture 4 of [21]: it states that de Sitter
solutions cannot be found with 2 sets of intersecting sources. Conjecture 1 of [26] equally
forbids de Sitter solutions with 1 set, i.e. parallel Op/Dp, meaning that overall, de Sitter
solutions need at least 3 sets, giving a maximum of 4 supercharges [21]. Since the su-
persymmetric source configurations remaining in section 3.2 have at most 2 sets, proving
Conjecture 1 and 4 would exclude de Sitter solutions in d ≥ 5. It would leave d = 4 as the
highest possible dimension for de Sitter, an exciting possibility.

5We thank N. Cribiori for related discussion.
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3.4 Extension to quasi-de Sitter

We show in the following that all results obtained in section 3.1 and 3.2, constraining
or excluding de Sitter solutions in each dimension d, are straightforwardly extended to
quasi-de Sitter solutions, using a d-dimensional effective theory discussed in section 4 with
scalar potential V given in (4.17). In that language, a de Sitter solution is a critical point
∂ϕV = 0 with V > 0, and a quasi-de Sitter one is a setting with V > 0 and a slope |∂ϕV |
(here for single field) not too large, as will be specified below. This extension is important
for cosmology.

Anticipating on (4.17), one can show that

− 2
M2
p

( 2d
d− 2 V + 2

d− 2τ∂τV
)

(3.24)

= 2τ−2ρ−1R10−d + τ−
d+2

2
∑
p

ρ
2p−8−d

4 gs
T

(p)
10

p+ 1 − τ
−2ρ−3 |H|2 + τ2(1−d)ρ3−d|H7|2

reproduces (on-shell, at the critical point where ρ = τ = 1) the dilaton e.o.m. (2.11), using
the relation between Rd and V (4.4). Similarly, the following equation

− 2
M2
p

( 4d
d− 2 V + 10− d

2(d− 2)τ∂τV + ρ∂ρV

)
(3.25)

= 4τ−2ρ−1R10−d + 1
2 τ
− d+2

2
∑
p

ρ
2p−8−d

4 gsT
(p)
10 − τ

−2ρ−3 |H|2 + τ2(1−d)ρ3−d|H7|2

− 1
2τ
−d g2

s

10−d∑
q=0

ρ
10−d−2q

2 (5− q)|Fq|2

reproduces (on-shell) the 10d Einstein trace (2.12), and

2
M2
p

(
d

d− 2 V + (10− d)d
16(d− 2)τ∂τV + d

8ρ∂ρV
)

(3.26)

= d

16

(
τ−

d+2
2 gs

∑
p

ρ
2p−8−d

4
7− p
p+ 1T

(p)
10 − 2τ−2ρ−3 |H|2 − 6τ2(1−d)ρ3−d|H7|2

+ τ−d g2
s

10−d∑
q=0

ρ
10−d−2q

2 (1− q) |Fq|2
)

reproduces (on-shell) the d-dimensional Einstein trace (2.13). In other words, it can be
seen as the same equations up to first order derivatives of V , and (positive) factors made of
powers of fields (ρ, τ).

One can verify that all no-go theorems above and further constraints on the existence
of de Sitter solutions in various dimensions d have involved

- linear combinations of (2.11), (2.12) and (2.13)
- Bianchi identities of F0, F1, F9−d

- orientifold projections
- in section 3.2, rules for supersymmetry preserving source configurations.
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In addition, the impossibility of getting de Sitter was always reached as Rd ≤ 0 by
reasoning on signs of individual terms, such as each T (p)

10 , and not linear combinations thereof.
It is then clear that the entire same reasonings can be pursued using (3.24), (3.25)

and (3.26), in place of (2.11), (2.12) and (2.13). Indeed, one can consider the same linear
combinations. The Bianchi identities still hold in a d-dimensional effective theory, and can
be decorated by the appropriate scalar field factors if necessary, as in (4.47). The orientifold
projections and the supersymmetry rules also still hold. Last but not least, it is crucial that
the reasonings are based on the signs of individual terms: the scalar factors then do not
alter the results. If on the contrary they were based on sums of terms which get different
scalar factors, the reasonings and conclusions could have been altered. This last situation
was referred to as “field dependent condition” in [11], and is precisely mentioned to be
avoided in section 4.2 in the no-go theorems considered. In short, all previous reasonings
excluding de Sitter in d dimensions can be reproduced in a d-dimensional theory with scalar
potential as explained above, the only difference being the first order derivatives of the
potential. Instead of Rd ≤ 0, one then reaches, upon assumptions, conclusions of the form

a V +
∑
i

bi ϕ
i∂ϕiV ≤ 0 , (3.27)

with a > 0 and typically ∃ bi 6= 0. The precise derivation of the no-go theorems in d

dimensions in section 4.2 will be an illustration.
Interestingly, the inequality (3.27) holds also off-shell (away from a de Sitter critical

point where ϕi = 1). Physically, it has the crucial consequence that not only de Sitter
solutions are excluded in all dimensions d and situations where (3.27) is valid, but also
quasi-de Sitter ones. The latter refers to having V > 0 and a slope |∇V | not too large.
Indeed, as explained in e.g. [30, (1.5)] and reminded here in (4.36), the inequality (3.27)
implies a lower bound on the slope: |∇V | ≥ c V (Mp = 1). This is true, provided ∃ bi 6= 0
and the fields ϕi can be brought to canonical ones, which is the case here; more details will
be given in section 4.2. In conclusion, all excluded or constrained de Sitter solutions in
d dimensions, as summarized in section 3.3, lead to the same exclusion or constraints on
quasi-de Sitter solutions. For the latter, the bound is given by the number c, typically of
order 1. This conclusion is relevant for cosmology.

4 d-dimensional derivations

We perform in section 4.1 a dimensional reduction from a D-dimensional spacetime towards
a d-dimensional one, compute the kinetic terms of appearing scalar fields, as well as their
scalar potential for D = 10 and type IIA/B supergravity. We then use this d-dimensional
effective theory in section 4.2 to reproduce the no-go theorems of section 2.2, that were
obtained via 10d equations, and we consider two other no-go theorems. For all of those, we
also compute the (d-dependent) c value of the swampland de Sitter conjecture [4]. These
results will be summarized and discussed in section 5.
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4.1 Dimensional reduction and effective action

We consider two actions, in D and d dimensions, related as follows

S = 1
2κ2

D

∫
dDx

√
|gD|e−2φ

(
RD + 4(∂φ)2

D

)
, (4.1)

=
∫

ddx
√
|gd|

(
M2
p

2 Rd −
1
2gij∂µϕ

i∂µϕj − V
)
, (4.2)

with M2
p = 1

κ2
D

∫
dD−dy

√
|gD−d| g−2

s . (4.3)

The D-dimensional action depends on the metric and a dilaton field φ (whose kinetic term
is squared with that D-dimensional metric). κD is a constant. The d-dimensional action is
given in Einstein frame. Beyond the d-dimensional reduced Planck mass Mp and metric
gµν , it depends on the field space metric gij and a scalar potential V for the scalar fields ϕi.
In the following, we relate these two actions in more detail.

Before doing so, let us consider a solution of the d-dimensional theory, given by an
extremum of the potential (without scalar kinetic energy). In that case, the trace of the
d-dimensional Einstein equation gives the following relation

d− 2
d
Rd = 2

M2
p

V . (4.4)

A de Sitter solution then corresponds to a positive extremum of the potential.
A first set of d-dimensional scalar fields to be considered will be (ρ, τ, σ) (definitions

and references will be given below). The ansatz for dimensional reduction is then as follows:
we split the D-dimensional metric into

ds2
D = τ−2(x) gµν(x) dxµdxν + ρ(x) gmn(x, y) dymdyn , (4.5)

with µ = 0, . . . , d− 1, m = d, . . . ,D − 1. The scalar fields should be viewed as fluctuations
around a background metric. With this ansatz, one gets the relation RD = τ2Rd +
ρ−1RD−d + . . . , where the two Ricci scalars are given in terms of gµν and gmn, with d- and
(D − d)-dimensional derivatives respectively. In addition, we consider eφ = gs e

δφ(x), with a
constant gs. Going to the d-dimensional Einstein frame then requires to pick

eδφ = τ−
d−2

2 ρ
D−d

4 , (4.6)

which in turn fixes Mp as in (4.3). This leads to the scalar potential

V = 1
2κ2

D

∫
dD−dy

√
|gD−d| g−2

s ×
(
−τ−2

)
×
(
ρ−1RD−d

)
, (4.7)

and we will complete the latter with more ingredients below. We highlight the prefactor
(−τ−2) coming from prefactors in the D-dimensional action and the dimensional reduction.
We now turn to the scalar kinetic terms.
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4.1.1 Kinetic terms for (ρ, τ, σ)

To compute the kinetic terms for (ρ, τ, σ), we generalize the results of [46, appendix D]
to arbitrary dimensions D and d. A first contribution to the kinetic terms comes from
the dilaton

4(∂φ)2
D = τ2

(
(D−d)2

4 ρ−2(∂ρ)2+ (d−2)2

4 τ4(∂τ−2)2+ (d−2)(D−d)
2 τ2ρ−1∂µτ

−2∂µρ

)
,

where the squares on the right-hand side are now made with gµν . The other, less trivial
contribution comes from RD (with Levi-Civita connection). A first computation leads to

RD = τ2Rd + ρ−1RD−d −∇µ
(
(d− 1) τ4∂µτ−2 + τ2ρ−1gmn∂µ (ρgmn)

)
(4.8)

− (d+ 2) (d− 1)
4 τ6

(
∂τ−2

)2
− d

2τ
4∂µτ

−2∂µ (ρgmn) ρ−1gmn

− τ2

4
(
ρ−1gmn∂ (ρgmn)

)2
+ τ2

4 ∂µ (ρgmn) ∂µ
(
ρ−1gmn

)
,

where gµν is used to define covariant derivatives, lift indices and in the squares. The next
step is to perform an integration by parts of the previous derivative ∇µ, while we have to
take into account the prefactor τ−2 allowing to reach the Einstein frame. This leads to∫

ddx
√
|gd|τ−2RD (4.9)

=
∫

ddx
√
|gd|

(
Rd+τ−2ρ−1RD−d−

(d−1)(d−2)
4 τ4(∂τ−2)2− d−2

2 τ2∂µτ
−2∂µ(ρgmn)ρ−1gmn

− 1
4
(
ρ−1gmn∂(ρgmn)

)2
+ 1

4∂µ(ρgmn)∂µ(ρ−1gmn)
)
.

Finally, we recall that ∂µ ln detM = Tr(M−1∂µM) for an invertible matrix M . We assume
from now on that gD−d = det gmn is independent of coordinates x; this will be further
justified below. This implies gmn∂µgmn = 0, leading to the following expression∫

ddx
√
|gd|τ−2RD (4.10)

=
∫

ddx
√
|gd|

(
Rd+τ−2ρ−1RD−d−

(d−1)(d−2)
4 τ4(∂τ−2)2− (d−2)(D−d)

2 τ2ρ−1∂µτ
−2∂µρ

− (D−d)2

4 ρ−2(∂ρ)2−D−d4 ρ−2(∂ρ)2+ 1
4∂µ(gmn)∂µ(gmn)

)
.

Combining all the above, we finally obtain the following d-dimensional action

S =
∫

ddx
√
|gd|

(
M2
p

2 Rd−
M2
p

2

(
(d−2)τ−2(∂τ)2+D−d

4 ρ−2(∂ρ)2− 1
4 ∂µ(gmn)∂µ(gmn)

)
−V

)
,

(4.11)
from which one can read the canonical fields. Before giving them, let us pursue with gmn.

For our purposes, we will only consider here a single extra field σ. Its kinetic term was
computed in [26, appendix B] for D = 10 and d = 4. For more σI , see [46, appendix D]
and [22]. We recall the definition [47]

gmndymdyn = σAδabe
aeb + σBδcde

ced , (4.12)
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where a, b are parallel to an Op/Dp set, and c, d transverse to it. We also have ea =
eam(y)dym. The exponents A,B are chosen in such way that the determinant gD−d is
independent of σ, and thus of coordinates x, as assumed above. This gives here

A(p+ 1− d) +B(D − p− 1) = 0 → A = p+ 1−D, B = p+ 1− d . (4.13)

We then compute

−1
4 ∂µ(gmn)∂µ(gmn) = 1

4AB(A−B)σ−2(∂σ)2 = 1
4(D− p− 1)(p+ 1− d)(D− d)σ−2(∂σ)2 .

We conclude by introducing the canonical fields

τ̂ =
√
d− 2Mp ln τ ,

ρ̂ =
√
D − d

4 Mp ln ρ , (4.14)

σ̂ =

√
−AB(B −A)

4 Mp ln σ =

√
(D − p− 1)(p+ 1− d)(D − d)

4 Mp ln σ .

4.1.2 Scalar potential for (ρ, τ, σ)

We now consider D = 10 and take as a starting point the 10d type II supergravities action
(conventions of [29, appendix A]). The derivation of the scalar potential for ρ, τ was first
done in [48, 49] and matches the procedure to the above potential (4.7). Let us extend this
derivation here to arbitrary d, considering each term of the 10d action. We have first seen
above that R10 would lead to the potential term −τ−2ρ−1R10−d, where the −τ−2 comes
from the prefactors of the action. Similarly, from 10d action terms, one gets the following
potential terms in d dimensions

−1
2 |H|

2 → 1
2τ
−2ρ−3|H|2 ,

eφ
T

(p)
10

p+ 1 → −τ
− d+2

2 ρ
2p−8−d

4 gs
T

(p)
10

p+ 1 , (4.15)

−e2φ 1
2 |Fq|

2 → 1
2τ
−dρ

10−d−2q
2 g2

s |Fq|2 ,

reproducing the results of [33]. We used the fact that for sources Op/Dp of each dimen-
sionality p, T (p)

10 is inversely proportional to the transverse volume. We also consider that
p+ 1 ≥ d, as it should to preserve the d-dimensional maximal symmetry. For the source
terms as well as for the fluxes, we extracted ρ from the squares or the transverse volume,
since it should be considered as a fluctuation around a vacuum valued field (here gmn).
We also considered, in agreement with our notations, the fluxes that are entirely along
the 10− d compact dimensions (requiring q ≤ 10− d): if it is not the case, the flux would
vanish due to maximal symmetry of the d-dimensional spacetime, as long as d > q. A last
contribution can come from spacetime-filling fluxes, possible when d ≤ q. This contribution
is rarely derived in detail, and we now turn to it.
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Spacetime-filling fluxes in d ≥ 3 come from F 10
3,4,5 and H10: they were introduced

(on-shell) in (2.1) and (2.2) through the Hodge dual of the internal forms F5,6,7 and H7.
On-shell actions with spacetime filling fluxes, as considered here for the scalar potential
with such background flux contributions, require an extra d-dimensional boundary term. It
allows to avoid an ill-defined boundary condition on a gauge potential (e.g. C3|∞ = 0), which
would be gauge dependent, and trades it for a gauge independent condition (δ ∗4 F4|∞ = 0):
we refer to [11, appendix A] where this was detailed for d = 4. The net result of this
extra boundary term is that replaces a contribution ϕ|F4|2 to the potential by −ϕ−1|F4|2.
Starting as above from the 10d action terms with spacetime-filling fluxes (see (2.1), (2.2)),
we end-up with the following potential terms

1
2 |H

d|2 → −1
2τ
−2τ2dρd−3|H7|2 →

1
2τ

2(1−d)ρ3−d|H7|2 , (4.16)

e2φ 1
2 |F

d
q |2 → −

1
2τ
−2τ−(d−2)ρ

10−d
2 τ2dρd−qg2

s |F10−q|2 →
1
2τ
−dρ

10−d−2(10−q)
2 g2

s |F10−q|2 .

In the second step, we separate each scalar contribution for clarity. We also note that
F 10
q is only a flux and does not contain any metric, despite the notations of (2.1), so the

only ρ, τ contributions come from prefactors, φ, and metric in the square. Finally, we use
that on-shell, one has | ∗10−d F10−q|2 = |F10−q|2. The last step implements the effect of the
d-dimensional boundary term as previously described.

This allows us to give the precise scalar potential in d dimensions, completing (4.7)

V (ρ,τ) = 1
2κ2

10

∫
d10−dy

√
|g10−d| g−2

s

(
τ−2

(
−ρ−1R10−d+ 1

2ρ
−3 |H|2

)
+ 1

2τ
2(1−d)ρ3−d|H7|2

−τ−
d+2

2
∑
p

ρ
2p−8−d

4 gs
T

(p)
10
p+1 + 1

2τ
−d g2

s

10−d∑
q=0

ρ
10−d−2q

2 |Fq|2
)
,

(4.17)
where we recall that H7 = 0 for d ≥ 4.

We now focus on the dependency on σ, introduced around (4.12). The general potential
for a single field σ was derived in [32], together with [11, appendix A] for the spacetime-filling
fluxes, and concisely summarized in [11, section 2.2.1]. We restrict ourselves here to a single
σ corresponding to a single source set of Op/Dp with contribution T10; for multiple sets
and multiple dimensionalities p, we refer to [22, 26]. We extend here the derivation of the
potential for σ to arbitrary d. It requires the notation F (n)

q , referring to the part of the flux
form with n legs along the source set of Op/Dp. For arbitrary d, one then gets the following
fluctuations with respect to σ

|H(n)|2, |F (n)
q |2→σ−An−B(q−n)×|H(n)|2, |F (n)

q |2 , (4.18)

T10→σ−
1
2B(9−p)T10 ,

−|(∗10−dH7)(n)|2, |(∗10−dF10−q)(n)|2→−σ−An−B(q−d−n)×|(∗10−dH7)(n)|2, |(∗10−dF10−q)(n)|2

→σAn+B(q−d−n)×|(∗10−dH7)(n)|2, |(∗10−dF10−q)(n)|2 ,

with A = p − 9, B = p + 1 − d. As already noticed in d = 4 in [11, appendix A] for
the spacetime-filling fluxes, further convenient rewritings can be made. Since there are

– 25 –



J
H
E
P
0
1
(
2
0
2
3
)
0
2
0

p+ 1− d = B internal directions wrapped by a set of Op/Dp, one verifies that

∗10−d F
(n)
10−q = (∗10−dF10−q)(n′) with n′ = p+ 1− d− n (4.19)

⇒ An′ +B(q − d− n′) = −An−B(10− q − n) ,

allowing a rewriting of spacetime-filling flux potential terms. This eventually leads to the
following potential

V (ρ,τ,σ) = 1
2κ2

10

∫
d10−dy

√
|g10−d| g−2

s

(
τ−2

(
−ρ−1R10−d(σ)+ 1

2ρ
−3
∑
n

σ−An−B(3−n)|H(n)|2
)

+ 1
2τ

2−2dρ3−d
∑
n

σ−An−B(7−n)|H(n)
7 |2−τ−

d+2
2 ρ

2p−8−d
4 σ

1
2B(p−9) gs

T10

p+1

+τ−d 1
2g

2
s

10−d∑
q=0

ρ
10−d−2q

2
∑
n

σ−An−B(q−n)|F (n)
q |2

)
.

(4.20)
Note that the ρ and σ dependency of the T10 term can be written as ρA+B

4 σ
AB

2 . The
dependency R10−d(σ) is more involved. While the general result was provided in [32], we
can restrict ourselves here to the case of compact group manifolds. Then, the expression
of the Ricci scalar in terms of structure constants fabc is formally unchanged (only the
dimension is), and can be expressed as

R10−d = R|| +R⊥|| −
1
2 |f

||
⊥⊥ |

2 − δcdf b⊥a||c⊥f
a||
b⊥d⊥ , (4.21)

where we refer to [11, 32] for the detailed expression of each term. The fluctuation with
respect to σ is also formally the same, simply with the new values of A,B, and can be
phrased as

R10−d (σ) = −σ−B
(
δcdf b⊥a||c⊥f

a||
b⊥d⊥

)0
+ σ−A

(
R|| +R⊥||

)0
− 1

2σ
−2B+A|f ||0⊥⊥ |

2 ,

(4.22)
and we will drop the background labels 0. This ends the derivation of the scalar potential.

In the following, we will use the simplified notation∫
d10−dy

√
|g10−d| T10∫

d10−dy
√
|g10−d|

→ T10 , (4.23)

for each internal quantity (such as here T10) entering the potential. This notation is an
equality in the case where these quantities are constant. This notation allows to replace the
prefactor in V by M2

p

2 .

4.1.3 Kinetic terms and scalar potential for (τ, r)

We now turn to a different set of fields: the 4d dilaton τ and the radion r. Those were
introduced in [11, section 2.2.2] and we generalize here the derivation to arbitrary dimensions.
These fields enter the D-dimensional metric as follows

ds2
D = τ−2(x)gµν(x)dxµdxν + r2(x)(e1)2 +

D−d∑
a=2

δabe
aeb , (4.24)
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where ea = eam(y)dym. The D-dimensional Ricci scalar will then again lead to τ2Rd + . . ..
To reach the d-dimensional Einstein frame, we then define the dilaton fluctuation as

eδφ = τ
2−d

2 r
1
2 , (4.25)

and one gets the same −τ−2 prefactor entering the potential as in (4.7).
To compute the kinetic terms, one considers again the combination τ−2(RD + 4(∂φ)2

D).
Without loss of generality, we can take for this computation the D-dimensional metric to be
given by gµν = ηµν and eam = δam. In addition we introduce the indices i, j = 2, . . . , D − d,
along which there is no scalar field. One then derives the following expression for the
Ricci scalar

RD =2τ2∂µ
(
(d− 1)∂µ ln τ − ∂µ ln r

)
− 2τ2 (∂ ln r)2

− (d− 2)(d− 1) (∂τ)2 + 2(d− 2)τ2∂µ ln τ ∂µ ln r , (4.26)

and the dilaton contribution

4(∂φD)2 = (d− 2)2 (∂τ)2 + 2(2− d)τ2∂µ ln τ ∂µ ln r + τ2 (∂ ln r)2 . (4.27)

Combining these contributions as in (4.2), leaving aside the total derivative, we then get
the following d-dimensional action

S =
∫

ddx
√
|gd|

(
M2
p

2 Rd −
M2
p

2
(
(d− 2) (∂ ln τ)2 + (∂ ln r)2

)
− V

)
(4.28)

from which we read the kinetic terms and the canonical fields τ̂ , r̂

τ̂ =
√
d− 2Mp ln τ , r̂ = Mp ln r . (4.29)

We now focus on D = 10 and derive the scalar potential. We introduce a new notation
for the fluxes: F (n)

q includes the components with n legs along direction 1 (so n = 0, 1). We
then get the following potential terms starting with the 10d action ones

−1
2 |H|

2 → 1
2τ
−2
(
|H(0)|2 + r−2|H(1)|2

)
,

eφ
T

(p)
10

p+ 1 → −τ
− d+2

2
(
δ
‖
1r

1
2 + δ⊥1 r

− 1
2
)
gs
T

(p)
10

p+ 1 , (4.30)

−e2φ 1
2 |Fq|

2 → 1
2τ
−dg2

s

(
r|F (0)

q |2 + r−1|F (1)
q |2

)
,

where the source term depends on whether 1 is parallel or transverse to the source. The
spacetime filling fluxes go under the same steps as described previously for (ρ, τ, σ), namely

1
2 |H

d|2 → −1
2τ

2d−2
(
|(∗10−dH7)(0)|2 + r−2|(∗10−dH7)(1)|2

)
(4.31)

→ 1
2τ

2(1−d)
(
|(∗10−dH7)(0)|2 + r2|(∗10−dH7)(1)|2

)
,

e2φ 1
2 |F

d
q |2 → −

1
2τ

dg2
s

(
r|(∗10−dF10−q)(0)|2 + r−1|(∗10−dF10−q)(1)|2

)
→ 1

2τ
−dg2

s

(
r−1|(∗10−dF10−q)(0)|2 + r|(∗10−dF10−q)(1)|2

)
.
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The latter terms can be further simplified by noticing that on-shell, by definition of the
Hodge star,

|(∗10−dH7)(n)|2 = |H(|1−n|)
7 |2 , |(∗10−dF10−q)(n)|2 = |F (|1−n|)

10−q |
2 . (4.32)

We eventually obtain the following potential

V (τ, r) = 1
2κ2

10

∫
d10−dy

√
|g10−d| g−2

s

(
τ−2

(
−R10−d(r) + 1

2
(
|H(0)|2 + r−2|H(1)|2

))

+ 1
2τ

2−2d
(
|H(1)

7 |
2 + r2|H(0)

7 |
2
)
− gsτ−

d+2
2
∑
p,I

(
δ
‖I
1 r

1
2 + δ⊥I

1 r−
1
2
) T (p)I

10
p+ 1

+ τ−d
1
2g

2
s

10−d∑
q=0

(
r|F (0)

q |2 + r−1|F (1)
q |2

))
(4.33)

In the following, we will make use of the above in the case of a group manifold, for which
the Ricci scalar dependency on r can be written as follows

R10−d (r) = R0
10−d +

(
r−2 − 1

)
R0

11 + 1
4
(
2− r2 − r−2

)
δikδjlf1

ij
0
f1

kl
0
. (4.34)

It is indeed independent of the dimension d, so we can use this formula obtained in [11,
section 2.2.2] for d = 4.

4.2 No-go theorems in arbitrary dimension d, and c values

Using the d-dimensional effective theories worked-out in section 4.1, we now reproduce the
no-go theorems of sections 2.2.1–2.2.5 obtained using 10d equations: the corresponding
no-go theorems in d dimensions (10 ≥ d ≥ 3) are given here in sections 4.2.1–4.2.5. For
each no-go theorem, we refer to sections 2.2.1–2.2.5 for literature references. In addition to
those, we give two further no-go theorems in section 4.2.6 and 4.2.7: obtaining those in 10d
would require to use the internal Einstein equation, or partial traces thereof, which we have
not introduced in this paper.

The d-dimensional formulation of the no-go theorems takes the form of an inequality

a V +
∑
i

bi ϕ
i∂ϕiV ≤ 0 (4.35)

with a > 0, ∃ bi 6= 0, valid upon some assumption. By definition, such an inequality indeed
forbids de Sitter solutions, which correspond to critical points of the potential. Thanks to
the relation (4.4) between V and Rd, one can verify that, at a critical point where fields
ϕi = 1, the left-hand side of the inequality matches the 10d equations providing the (same)
no-go theorem. A related discussion can be found in section 3.4.

We then rewrite the inequality in terms of canonical fields, using (4.14) for (ρ, τ, σ)
or (4.29) for (τ, r), in order to deduce the c value as shown in [26, 30]

a V +
∑
i

Mp b̂i ∂ϕ̂iV ≤ 0 ⇒ |∇V | ≥ c

Mp
V , c2 = a2∑

i b̂
2
i

. (4.36)
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Note that theMp appearing above will be dropped in the following to alleviate the equations.
The constant c corresponds to the one of the swampland de Sitter conjecture [4]. Of particular
interest here is its comparison, across dimensions, to the TCC bound [10]

c0 = 2√
(d− 1)(d− 2)

. (4.37)

This will be analysed in section 5. In d = 4, the c values for these no-go theorems and more
were obtained in [11]; here, we only consider those with field independent assumptions.

4.2.1 Extension of Maldacena-Nuñez

The no-go theorem is obtained as follows, matching (2.15)

2
M2
p

(2V + τ∂τV ) (4.38)

= d− 2
2

τ− d+2
2
∑
p

ρ
2p−8−d

4 gs
T

(p)
10

p+ 1 − τ
−dg2

s

10−d∑
q=0

ρ
10−d−2q

2 |Fq|2 − 2τ2−2dρ3−d|H7|2


⇒ 2V +
√
d− 2 ∂τ̂V ≤ 0 if all T (p)

10 ≤ 0.

⇒ c2 = 4
(d− 2)

4.2.2 No-go for p = 7, 8, 9, or p = 4, 5, 6 with F6−p = 0, or p = 2 with H = 0

A first part of the no-go theorem is obtained as follows, matching (2.19)

2
M2
p

(2(p−3)
d−2 V − d+4−2p

2(d−2) τ∂τV +ρ∂ρV
)

(4.39)

=−τ−2ρ−3|H|2+(4−p)τ2−2dρ3−d|H7|2+τ−d 1
2g

2
s

10−d∑
q=0

ρ
10−d−2q

2 (8−p−q) |Fq|2

⇒ 2(p−3)
d−2 V − d+4−2p

2
√
d−2

∂τ̂V +
√

10−d
4 ∂ρ̂V ≤ 0 if p= 7,8,9, or p= 4,5,6 & F6−p = 0.

⇒ c2 = 4(p−3)2

(d−2)(5d−1−4p−pd+p2) = 4(p−3)2

(d−2)((p−3)2+(p−5)(2−d))

= 4
d−2 + 4(p−5)

(p−3)(p−1−d)+2(d−2)

The denominators appearing in the formulas for c2 do not vanish for any p with 2 < d < 10.
However, they do admit a (single) root at d = 10, namely p = 7: this can also be seen from
the coefficients of the linear combination. Nevertheless, p = 7 is not allowed for d = 10
since the minimal p allowed by maximal symmetry is p = d− 1. Keeping the latter in mind,
the formula for c is then always valid for our purposes. It is then straightforward to analyse
the dependency of c on p, especially using the last formula for c2. Interestingly, it gets
minimized at a value of p independent of d, namely p = 3 (and maximized at p = 7): see
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Figure 1. Graph of c(p, d = 6) as obtained in (4.39). The behaviour of this function is qualitatively
the same for any dimension 2 < d < 10.

figure 1. The first part of the no-go however requires as an assumption that 4 ≤ p ≤ 9. In
that range, the minimal value of c is obtained at p = 4 (as in d = 4). We conclude

c2 = 4(p− 3)2

(d− 2)(5d− 1− 4p− pd+ p2) ≥
4

(d− 2)(d− 1) , (9 ≥ p ≥ 4) (4.40)

with saturation at p = 4.
If we now divide (4.39) by p− 3 and focus on p = 2 (implicitly restricting us to d = 3),

we get the second part of the no-go theorem assuming H = 0, as noticed in 10d in (2.26).
The value for c is then the same as above and becomes for p = 2

c2 = 4
(d− 2)(3d− 5) <

4
(d− 2)(d− 1) , (p = 2) (4.41)

which strictly speaking should be evaluated at d = 3. For the first time, we get a value for
c which is lower than the TCC bound. This can be seen on figure 1, comparing to p = 4.
This highlights the peculiarity of d = 3; we will come back to this point in section 5.

4.2.3 Positive or vanishing internal curvature R10−d

The no-go theorem is obtained as follows, matching (2.28)

2
M2
p

(2(d+ p− 1)
d− 2 V − d− 4− 2p

2(d− 2) τ∂τV + ρ∂ρV

)
(4.42)

= −2τ−2ρ−1R10−d + (1− p)τ2−2dρ3−d|H7|2 + 1
2τ
−dg2

s

10−d∑
q=0

ρ
10−d−2q

2 (6− p− q) |Fq|2

⇒ 2(d+ p− 1)
d− 2 V − d− 4− 2p

2
√
d− 2

∂τ̂V +
√

10− d
4 ∂ρ̂V ≤ 0 if R10−d ≥ 0 and p ≥ 4.

⇒ c2 = 4(d+ p− 1)2

(d− 2)(−1 + d− dp+ 4p+ p2)
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As above, the denominator of c2 does not vanish for 2 < d < 10, but it does at d = 10 for
p = 3. However, the latter p value is not allowed in d = 10, so the formula for c is again
always valid for our purposes. We can then analyse the dependency of c in p. One can
prove that c2 > 1 within the admissible range of our parameters, as in d = 4. The proof is
not especially enlightening and we refrain from detailing it here.

4.2.4 No-go for p = d− 1

The no-go theorem is obtained as follows, matching (2.34)

2
M2
p

(
2(p+ 1)
d− 2 V − d− 4− 2p

2(d− 2) τ∂τV + ρ∂ρV

)
(4.43)

= −
∣∣∣τ−1ρ−

3
2 ∗10−d H + εpgsτ

− d
2 ρ

2p−2−d
4 F6−p

∣∣∣2 + 2τ−
d+2

2 ρ
2p−8−d

4 gsεp(dF8−p)

+ 1
2τ
−dg2

s

10−d∑
q=0
q 6=6−p

ρ
10−d−2q

2 |Fq|2 (4− p− q)− pτ2−2dρ3−d|H7|2

where we have used the sourced Bianchi identity (2.31) multiplied by scalar fields and
rearranged them conveniently for the off-shell formulation of the no-go theorem. All terms
on the right-hand side are negative for d ≥ 4, or for d = 3 with F0 = 0, except the one
in (dF8−p) that has a priori no definite sign. However, with the same argumentation as
in section 2.2.4, it follows from equation (2.35) that the integral of this term vanishes for
p = d− 1, since it is a total derivative over the compact space. Here, the integral is actually
implicit thanks to our simplifying notations (4.23), so this term on the right-hand side
simply vanishes. We obtain

2d
d−2V + d+2

2
√
d−2

∂τ̂V +
√

10−d
4 ∂ρ̂V ≤ 0 if p= d−1, and d≥ 4 or d= 3 with F0 = 0.

⇒ c2 = d2

(d−2)(d−1) (4.44)

4.2.5 Heterotic at order (α′)0

The (bosonic) action for heterotic strings at order (α′)0 reduces to the NSNS part, so the
potential (4.17) boils down to the R10−d and H-flux terms. The no-go theorem is then
obtained as follows, matching (2.41)

2
M2
p

(
V + 4− d

4 τ∂τV + d− 2
2 ρ∂ρV

)
= −d− 2

2 τ−2ρ−3|H|2 (4.45)

⇒ V + (4− d)
√
d− 2

4 ∂τ̂V + (d− 2)
√

10− d
4 ∂ρ̂V ≤ 0

⇒ c2 = 4
(d− 2)(d− 1)

4.2.6 The requirement λ > 0

This no-go theorem was first derived in 4d in [32, (3.12)], and c was computed in d = 4
in [26, section 3.1] and [11]. It assumes more restrictions than previously on the ansatz,
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namely that we work on a group manifold with constant flux components. The latter allows
to restrict the H(n) components to n = 0, 2, because it must get a minus sign under any
orientifold involution. In addition, being on a group manifold with constant flux components
restricts the components entering the RR sourced Bianchi identity to F (1)

8−p and F (0)
6−p. We

then consider the following combination of the potential (4.20) (with curvature (4.22)) and
its derivatives

2
M2
p

(
4(B −A)
(d− 2) V + (B −A)(d+ 2)

2(d− 2) τ∂τV − (A+B)ρ∂ρV + 2σ∂σV
)

(4.46)

= (B −A)
(
− 2τ−2ρ−1

(
σ−Bδcdf b⊥a‖c⊥f

a‖
b⊥d⊥ + σA−2B|f ||⊥⊥ |

2
)

− 2τ−2ρ−3σ−3B|H(0)|2 + (n− 1− p)τ2−2dρ3−d∑
n

σ−An−B(7−n)|H(n)
7 |

2

+ 4τ−
d+2

2 ρ
2p−8−d

4 σ
1
2B(p−9) gs

T10
p+ 1

+ 1
2τ
−dg2

s

10−d∑
q=0

ρ
10−d−2q

2
∑
n

σ−An−B(q−n)(2 + 2n− p− q)|F (n)
q |2

)
We now make use of the sourced Bianchi identity (2.31) (for arbitrary p) multiplied by
scalar fields as in section 4.2.4. We complete the reformulation of this Bianchi identity with
the following rewriting of the (dF8−p)⊥ term (we recall that the only relevant component
here is F (1)

8−p)

2τ−
d+2

2 ρ
2p−8−d

4 σB
p−9

2 εpgs(dF8−p)⊥

=−
∑
a‖

∣∣∣∣τ−1ρ−
1
2σ

A−2B
2 ∗⊥ (dea‖) |⊥ − τ−

d
2 ρ

2p−6−d
4 σ

−A−B(7−p)
2 εpgs

(
ι∂a‖

F
(1)
8−p

)∣∣∣∣2
+ τ−dρp−3− d

2σ−A−B(7−p)g2
s |F

(1)
8−p|

2 + τ−2ρ−1σA−2B|f‖⊥⊥|2 . (4.47)

We then obtain
2
M2
p

(
4(B−A)
(d−2) V + (B−A)(d+2)

2(d−2) τ∂τV −(A+B)ρ∂ρV +2σ∂σV
)

(4.48)

= (B−A)
(
−2τ−2ρ−1σ−Bδcdf b⊥a‖c⊥f

a‖
b⊥d⊥+(n−1−p)τ2−2dρ3−d∑

n

σ−An−B(7−n)|H(n)
7 |

2

−2
∣∣∣τ−1ρ−

3
2σ
−3
2 B∗⊥H(0)+εpgsτ−

d
2 ρ

2p−2−d
4 σB

p−6
2 F

(0)
6−p

∣∣∣2
−2
∑
a‖

∣∣∣∣τ−1ρ−
1
2σ

A−2B
2 ∗⊥(dea‖) |⊥−τ−

d
2 ρ

2p−6−d
4 σ

−A−B(7−p)
2 εpgs

(
ι∂a‖

F
(1)
8−p

)∣∣∣∣2

+ 1
2τ
−dg2

s

∑
q,n

q 6=6−p,(n=0)
q 6=8−p,(n=1)

ρ
10−d−2q

2 σ−An−B(q−n) (2+2n−p−q) |F (n)
q |2

)
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Since H7 is non-zero only in d = 3, where it is proportional to the internal volume, it is then
along all internal directions wrapped by the sources. Therefore, it must have a single value
n = p+1−d. This implies that n−1−p = −d < 0. Similarly, the coefficient of RR fluxes is
negative: indeed, on the one hand n ≤ q and on the other hand n ≤ p+ 1− d, since n is the
number of (internal) legs along the sources. Together this leads to 2+2n−p−q ≤ 3−d ≤ 0.
We conclude that the parentheses is negative if

− δcdf b⊥a‖c⊥f
a‖
b⊥d⊥ ≡ λ |f

‖
⊥⊥|2 ≤ 0 . (4.49)

Given the requirement for de Sitter to have |f‖⊥⊥|2 6= 0 in d = 4 [29], we shall with some
abuse refer to the previous condition as λ ≤ 0. Since B − A = 10 − d, we conclude for
3 ≤ d ≤ 9

4(B −A)
(d− 2) V + (B −A)(d+ 2)

2
√
d− 2

∂τ̂V − (A+B)
√

10− d
4 ∂ρ̂V +

√
−AB(B −A)∂σ̂V ≤ 0

if 3 ≤ d ≤ 9 and λ ≤ 0.

⇒ c2 = 4
(d− 2)(d− 1) (4.50)

4.2.7 The internal parallel Einstein equation

We generalize here to arbitrary dimension d a no-go theorem obtained using 10d equations
in [26, section 3.2] and d = 4 effective potential in [11, section 2.3]. We consider the following
combination of the potential V (τ, r) given in (4.33) and its derivatives

2
M2
p

(2V + τ∂τV + (d− 2)r∂rV ) (4.51)

= −(d− 2)
(
τ−2r−2|H(1)|2 + τ2−2d|H(1)

7 |
2 + τ−dr−1g2

s

∑
q

|F (1)
q |2

)

− (d− 2)

−gsτ− d+2
2 r−

1
2
∑
p,I

T
(p)I
10
p+ 1δ

⊥I
1 + τ−2r−2

(1
2δ

ikδjlf1
ijf

1
kl − 2R11

)
− (d− 2)

(
−τ−2r2 1

2δ
ikδjlf1

ijf
1
kl

)
As shown in [11, (2.66)], 1

2δ
ikδjlf1

ijf
1
kl− 2R11 ≥ 0 on a group manifold. If we now restrict

ourselves to the radion direction 1 being parallel to all source sets I with Op (i.e. those
are wrapped along 1; this requires p ≥ d), implying δ⊥I

1 = 0, then only the last term has
the wrong sign. Note that sets with only Dp do not matter since they obey T (p)I

10 < 0. We
conclude

2V +
√
d−2∂τ̂V +(d−2)∂r̂V ≤ 0 if f1

ij = 0 for direction 1 being parallel and ∀ i, j.

⇒ c2 = 4
(d−2)(d−1) (4.52)

where canonical fields are given in (4.29).
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5 Discussion: swampland conjectures and accelerated expansion in
d dimensions

In section 4.2, we have derived 7 no-go theorems against a (quasi-) de Sitter spacetime
in d dimensions, 3 ≤ d ≤ 10, in a d-dimensional theory coming from a compactification
of 10d type IIA/B supergravity compactifications. The 5 first no-go theorems were also
derived in section 2.2 using 10d equations. The no-go theorems in section 4.2 are valid upon
some assumptions, which are always taken to be field independent: they only depend on
the 10d background. The work of section 4.2 extends to arbitrary d dimensions the study
of [11] done for d = 4. For each of the no-go theorems, we have derived the (d-dependent) c
value, as defined in (4.36). It is meant to correspond to the c of the de Sitter swampland
conjecture [4], and we are particularly interested in the comparison to the TCC bound (4.37),
a c value obtained in [10] using the TCC, a refined version of the de Sitter conjecture.

We first report in section 5.1 on the c values obtained and compare them to the TCC
bound. The case of d = 3 will be singled-out. We then compare in section 5.2 to other
values proposed in the literature, and discuss further related conjectures. We finally say a
word on a related bound for cosmic accelerated expansion in section 5.3.

5.1 c values obtained, and the d = 3 case

The values for c obtained in the 7 no-go theorems considered are summarized in table 4.
We also provide a graph of their dependency on the dimension d in figure 2. In both, we
compare to the TCC bound.

A remarkable result is that for 4 ≤ d ≤ 10, all c values obtained verify the TCC (lower)
bound: c ≥ c0. There are several instances of saturation c = c0 that turn out to be exactly
those with saturation in d = 4 [11]. Let us emphasize that there is a priori no reason for
this to be the case. We only performed here a mere supergravity analysis, which is a priori
totally unrelated to the TCC argument, that relies on a quantum gravity and cosmological
principle. From the swampland perspective however, if one considers the TCC to be true,
the two should match, since supergravity is a quantum gravity theory in an asymptotic limit,
the classical and perturbative limit of string theory. From this point of view, the values
obtained here provide a highly non-trivial check of the TCC proposal. Note in addition that
while we observed already a saturation of the TCC bound in d = 4 [11], giving c =

√
2
3 , this

could have been extended to any formula in d dimensions (see section 5.2): it is non-trivial
to us that it is always extended to the TCC formula, setting the latter on solid grounds.

Another interesting result is what happens for d = 3. We noticed several peculiarities
for this dimension in no-go theorems, as indicated in (2.26) and (2.37). It turns out that the
(newly derived) no-go theorem (2.26) or (4.41) gives a c value that violates the TCC bound
for d = 3: c < c0. It is the only instance where this happens. How should we interpret this
violation of the bound?

Let us first examine the TCC [10]. The technical derivation of the bound does not
suffer any issue in d = 3. One may however question the physics starting point. Indeed, the
physics argument relies on avoiding quantum fluctuations becoming classical. However, it is
well-known that gravity in d = 3 is very special: it is said to be topological, meaning that
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10d d-dim.
No-go theorem derivation derivation c

(section) (section)

Extension of Maldacena-Nuñez 2.2.1 4.2.1 2√
d−2

p = 7, 8, 9, or p = 4, 5, 6 & F6−p = 0
2.2.2 4.2.2

2(p−3)√
(d−2)(5d−1−4p−pd+p2)

≥ 2√
(d−2)(d−1)

p = 2 & H = 0 (d = 3) (1 =) 2√
(d−2)(3d−5)

< 2√
(d−2)(d−1)

(=
√

2)

Positive or vanishing R10−d 2.2.3 4.2.3 2(d+p−1)√
(d−2)(−1+d−dp+4p+p2)

> 1

p = d− 1 2.2.4 4.2.4 d√
(d−2)(d−1)

Heterotic at order (α′)0 2.2.5 4.2.5 2√
(d−2)(d−1)

Requirement λ > 0 4.2.6 2√
(d−2)(d−1)

Internal parallel Einstein equation 4.2.7 2√
(d−2)(d−1)

Table 4. No-go theorems considered in the paper, with the sections where they were derived, using
the 10d approach or the d-dimensional one. The latter, giving an inequality of the form (4.36),
leads to a (d-dependent) c value, reported in the last column. The values corresponding to the TCC
bound (4.37) are highlighted in red.

gravitational fluctuations are not possible. One could then argue that the TCC reasoning
cannot be pursued any further since there is no fluctuation to consider and consequently,
there is no reason to consider this bound in d = 3. It would still be remarkable that 10d
supergravity is sensitive to this line of thought, and provides accordingly a counter-example
to this bound. In addition, one may wonder whether the TCC physics reasoning could not
be based on the scalar field fluctuations, instead of the (forbidden) gravitational fluctuations,
although those two may eventually be related.

This discussion relates to a more general one, regarding the validity of swampland
conjectures in d = 3. While they are thought to hold true in d ≥ 4, and not apply in
d ≤ 2 (see for instance all the d− 2 factors encountered in this paper), the case of d = 3 is
not settled. Apart from the topological nature of gravity in d = 3 with the consequences
mentioned, one should also state that black holes are very different. Therefore, the standard
gravity-based arguments motivating the swampland conjectures can become problematic in
d = 3, as suggested above for the TCC. This also gets reflected in the attempts for a weak
gravity conjecture in d = 3 (see e.g. [50, 51]).

Some papers however successfully checked swampland conjectures in d = 3, such as [52].
In [53, 54] some swampland conjectures are assumed to be valid in d = 3 and then used,
without reaching contradictions (so far). In those papers, one considers a simple circle
dimensional reduction from d = 4 to d = 3, in which case one does not expect much to
happen. We nonetheless note that a new ingredient could appear in lower dimensions
that was not present in the initial theory, a situation probably not encountered through
a simple dimensional reduction. We have witnessed such appearances and newly related
complications in our study of de Sitter in various dimensions in section 3. It seems to be
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Accelerated expansion bound; Extension of Maldacena-Nuñez

No-go for p=7,8,9, or p=4,5,6 with F6-p=0, or p=2 with H=0

Positive or vanishing curvature

No-go for p=d-1

TCC bound; Heterotic at order (α')0; Requirement λ>0; Internal parallel Einstein equation

p = 9

p = 2

p = 4

p = 5

p = 6

p = 7

p = 8

p = 4
p = 5

p = 6 p = 7 p = 8

3 4 5 6 7 8 9 10
d

0.5

1.0

1.5

2.0

2.5

c

Figure 2. Graph of the c values in terms of the dimension d, 3 ≤ d ≤ 10, for each no-go theorem
indicated in table 4. They are represented with plain lines of different colors, as made explicit in the
caption above. Some values are p-dependent (dimensionality of Op/Dp), as indicated on the graph.
The dashed lines represent bounds: the TCC (lower) bound (4.37), with its forbidden region being
filled, and the so-called accelerated expansion (upper) bound, discussed in section 5.3. Interestingly,
one no-go theorem violates the TCC bound, in d = 3.

what happens here for the problematic no-go theorem and c value: indeed, it is due to
O2/D2 sources which can only appear in d = 3 and not in higher dimensions. As a result,
they lead to new physics in lower dimensions, giving rise to an inconsistency with the TCC
bound in d = 3.

It would be interesting to find other concrete examples in d = 3 that raise tensions
with swampland conjectures, especially in the conjectures related to the TCC and de Sitter
conjecture, to which we now turn. The type IIA scale-separated AdS3 solutions of [55, 56]
might be viewed as such examples.

5.2 Related swampland conjectures

The check of the TCC bound (4.37), as a minimal value for c, through supergravity no-go
theorems across dimensions for d ≥ 4, establishes this expression on solid grounds

Mp
|∇V |
V
≥ c ≥ c0 = 2√

(d− 2)(d− 1)
. (5.1)
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As mentioned in section 5.1, it is a non-trivial check of this expression. Even though a
saturation had been observed in several cases in d = 4, one could have imagined different
expressions in other dimensions. One possibility comes from the analysis of the swampland
distance conjecture in Calabi-Yau complex structure moduli space performed in [57] (see
also [58]). Using the proposed relation to the de Sitter conjecture (see below), e.g. taking
α = 1

2 in (5.6), one would have obtained

c ≥ 4s√
10− d

, s =

1 if 10−d
2 is even

1
2 if 10−d

2 is odd
(5.2)

where 10−d
2 corresponds to the Calabi-Yau complex dimension. This is just one example of

possible expressions for a lower bound or minimal value of c, that matches the d = 4 one
c =

√
2
3 . We find it astonishing that we always get a single and same expression via the

no-go theorems.
Another important proposal in the literature is that of [34, 59], revisited recently

in [15, 60]. As for the TCC, it is meant to hold in the asymptotics of field space. The
proposed minimal value is higher than the TCC bound, and is given as follows

c ≥ 2√
d− 2

. (5.3)

The main argument in favor of this value is that it remains invariant under dimensional
reduction, as other swampland conjectures do. Interesting checks have also been performed,
as well as a relation to the distance conjecture, which we will come back to.

As argued in [11, 30], the derivation of the c value using supergravity no-go theo-
rems is effectively single field. Indeed, the linear combination of derivatives entering the
inequality (4.36) defines a (canonical) single field t̂b as follows [30]

∑
i

b̂i ∂ϕ̂i =
√∑

i

b̂2
i ∂t̂b , a V +

∑
i

Mp b̂i ∂ϕ̂iV ≤ 0 ⇔ c

Mp
V + ∂t̂bV ≤ 0 . (5.4)

One then reproduces the inequality of the de Sitter conjecture using that ∂t̂bV ≥ −|∇V |. A
different way to view this is to consider the potential slope along one field direction only,
while freezing all other fields to their (would-be) critical point value ∂ϕiV = 0 or for us
ϕi = 1. Indeed, in that case, |∂t̂bV | = |∇V |. This has been explicitly checked on the scalar
potential V (τ, r) (4.33) in d = 4 in [11, (4.31)]: freezing one field leaves precisely the e−c t̂b
asymptotic behaviour in the potential.

On the contrary, the bound (5.3) has been argued to hold when taking into account
all fields, i.e. the full gradient |∇V |, instead of freezing some [34]. This allows a priori to
get a higher, hence stronger, bound on c. This point of view seems to accommodate the
TCC bound (5.1) with the one in (5.3). We hope to better understand in future work the
distinction between these two bounds.

An important connection has been proposed between the swampland distance conjec-
ture [61–63] and the de Sitter conjecture. It is proposed that the mass scale m of the tower
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in the former is related to the scalar potential V of the latter [7, 10, 11] in the asymptotics
of field space

m ∼ V α (5.5)

taking here Mp = 1. This also relates to the anti-de Sitter distance conjecture [64],
trading V for |Λ|, since the asymptotics typically correspond to |V | → 0 [65]. The scalar
potentials encountered are typically sums of exponentials. Considering the leading one
in the asymptotics of field space, (5.5) then relates the exponential rate λ of the distance
conjecture to the c of the de Sitter conjecture: λ = α c. This is in particular true for
the lower bounds, i.e. the minimal values of λ and c; we refer to [11] for a more detailed
discussion. This leads to the proposed relation

λmin = α cmin . (5.6)

This shows that the value of cmin can also have an important impact on the distance
conjecture. In [11] it was proposed to take the TCC bound cmin = c0 and α = 1

2 , given the
good match in d = 4 with values for λmin appearing in the literature. The successful check
of the TCC bound for d ≥ 4 obtained in this paper motivates even more to consider

λmin = 2α√
(d− 2)(d− 1)

, (5.7)

with α(d = 4) = 1
2 , and possibly for any d. Let us also mention the possible range

1
d
≤ α ≤ 1

2 , (5.8)

for (quasi-) de Sitter, proposed and argued in [34, 66, 67].
In [60], a different interpretation of the above was considered by introducing a lower

bound λmin = 1√
d−2 that would correspond to the minimal rate of the lightest tower. In

other words, even though it is possible to have a tower decaying at a rate 1√
(d−2)(d−1)

, [60]
suggests that one can then find a lighter tower, thus decaying with a higher rate, which has
to be bigger than 1√

d−2 . This interpretation allows to verify a relation (5.6) with α = 1
2 ,

considering the bound (5.3) for c that we discussed above. We hope to come back in future
work to these intricate relations between conjectures, associated decay rates and bounds.

5.3 Comments on the “accelerated expansion bound”

The bounds on |∇V |V discussed above are crucial for cosmology: not only do they drastically
limit the possibility of having a quasi-de Sitter spacetime, they may even forbid accelerated
expansion. Indeed, let us consider a d-dimensional cosmological model for d ≥ 3, with a
spacetime described by a FLRW metric, and a single (canonically normalized) scalar field φ
with potential V > 0. Then, the following upper bound

|V ′|
V

<
2√
d− 2

, (5.9)

i.e. c = 2√
d−2 with the reduced Planck mass Mp = 1, appears to be an asymptotic

requirement for accelerated expansion (see e.g. [4, 15, 34]). To understand better this claim,
we revisit here this bound and provide, in appendix A, two distinct derivations of (5.9).
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As we see in appendix A, having accelerated expansion implies that the kinetic energy
should not be too large. Physically, we understand that this implies an upper bound on
the slope |V ′|, as in (5.9). But details matter, and each of the two derivations of this
bound rely on important assumptions that should not be neglected. The first one assumes
slow-roll, and the second one considers an asymptotic limit to a fixed point. Whether the
two assumptions are the same is not entirely clear to us, as discussed in appendix A. In any
case, this indicates ways to violate the bound (5.9) while still having accelerated expansion:
a first option would be to leave the slow-roll regime, and a second option would be to
have a transient, i.e. non-asymptotic, accelerated expansion phase (see related discussions
in [68]). These two options are worth being kept in mind, if one wants to avoid a cosmology
of decelerated expansion. If we stick to the TCC bound (5.1), the so-called accelerated
expansion bound (5.9) only leaves a small window

2√
(d− 2)(d− 1)

≤ |V
′|

V
<

2√
d− 2

, (5.10)

depicted in figure 2. Violating this upper bound with one of the two above options would
then leave more room for e.g. viable quintessence-like scenarios. We hope to come back to
such interesting cosmological scenarios in future work.
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A Derivations of the “accelerated expansion bound” in d dimensions

In this appendix, we provide two different derivations of the bound (5.9), claimed to
correspond to an asymptotic upper bound required for accelerated expansion. As discussed
in section 5.3, we show that such an “accelerated expansion bound” holds upon assumptions,
that one may consider violating.

We consider a d-dimensional spacetime, d ≥ 3, described by a FLRW metric, and a
(single) canonically normalized scalar field φ with a potential V > 0. The reduced Planck
mass is here taken as Mp = 1. As in a standard cosmological model, we start with the two
Friedmann equations in d dimensions and the equation of motion (e.o.m.) of φ

(d− 1)(d− 2)
2

(
H2 + k

a2

)
= ρ , (A.1)

(d− 2) ä
a

+ d− 3
d− 1ρ+ p = 0 ⇔ Ḣ − k

a2 + ρ+ p

d− 2 = 0 , (A.2)

φ̈+ (d− 1)Hφ̇+ V ′ = 0 , (A.3)

where we recall that H = ȧ
a , with a dot standing for a derivative with respect to the physical

time t, and we took a homogenous scalar field. In the following, we will restrict ourselves to
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k = 0. The scalar field energy density and pressure are given by

ρ = 1
2 φ̇

2 + V , p = 1
2 φ̇

2 − V , (A.4)

and the equation of state parameter is given by w = p
ρ . Having an accelerated expansion

requires, on top of H > 0, to have ä > 0: from the second Friedmann equation, this amounts
to having

Accelerated expansion: w < −d− 3
d− 1 . (A.5)

This condition can be translated into the bound (5.9) in two ways, as we now show.
Physically, one way to understand the bound is the following: the condition (A.5) indicates
that the kinetic energy cannot be too important. The latter would be violated for a high
potential slope, hence the upper bound on |V ′| in (5.9).

• Slow-roll approximation

To impose proper slow-roll conditions in d dimensions, let us first introduce
the parameters

ε ≡ − Ḣ

H2 = 1
d− 2

φ̇2

H2 , η ≡ ε̇

Hε
= 2 φ̈

φ̇H
+ 2ε . (A.6)

The slow-roll approximation then amounts to

ε� 1 , η � 1 ⇔ φ̇2 � H2(d− 2) , φ̈� φ̇H . (A.7)

This leads to the following simplified first Friedmann equation and φ e.o.m.

(d− 1)(d− 2)
2 H2 = V , (d− 1)Hφ̇ = −V ′ , (A.8)

and one gets in turn that

ε = d− 1
2

φ̇2

V
= d− 2

4
|V ′|2

V 2 ≡ εV , (A.9)

where we promoted the latter to the definition of εV in d dimensions; we recover in
this way the well-known slow-roll condition εV � 1. Using the first expression for ε
in (A.9), it is then straightforward to expand w in the slow-roll approximation as

w = −1 + 2ε
d− 1 +O(ε2) = −1 + d− 2

2(d− 1)
|V ′|2

V 2 +O(ε2) . (A.10)

At first order in this slow-roll approximation expansion, we then recover from the
accelerated expansion condition (A.5) the bound (5.9)

|V ′|
V

<
2√
d− 2

. (A.11)

This reproduces the bound on accelerated expansion |V
′|
V ≤

√
2 discussed in [69–71]

for exponential potentials in d = 4.
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• Flow and asymptotic fixed points
Note: During completion of this work appeared the paper [15]. The following deriva-
tion is provided in the appendix of the latter. A minor difference is that our derivation
considers generic potentials, while the derivation of [15] and the original works in
d = 4 restrict to exponential potentials.
We now take a different route and generalize the derivation of [72, 73] done in d = 4
to any dimension d ≥ 3. We introduce the variables

x = φ̇√
6H

, y =
√
V (φ)√
3H

, (A.12)

for V > 0. The original works include, on top of the above scalar field and potential,
a matter energy density and pressure ρm, pm. Taking the derivatives of x and y with
respect to N = ln a results in

dx
dN = −

√
3
2
V ′

V
y2 − (d− 1)x+ x

d− 2

(
6x2 + ρm + pm

H2

)
(A.13)

dy
dN =

√
3
2
V ′

V
xy + y

d− 2

(
6x2 + ρm + pm

H2

)
(A.14)

using the second Friedmann equation and the scalar e.o.m. The contributions ρm+pm
can further be rewritten using the first Friedmann equation, as well as a parameter
wm = pm

ρm
. In the following, we rather set ρm = pm = 0 to fit our initial setting.

We then determine the fixed points by setting dx
dN = 0, dy

dN = 0. Those correspond to
the asymptotics of the N -flow, which is nothing but a time flow here. The value of
V ′

V which then appears should be viewed as the asymptotic one (constant along the
flow in the case of an exponential potential). The fixed points, and corresponding
equation of state parameter w (deduced from (x, y)) are then

(a) (x,y) = (0,0) , (for V ′ 6= 0), w undetermined

(b) (x,y) =
(
±
√

(d−1)(d−2)
6 ,0

)
, w= 1

(c) (x,y) =

− (d−2)
2
√

6
V ′

V
,±
√

(d−2)
2
√

6

√
4(d−1)−(d−2)

(
V ′

V

)2
 , w=−1+ d−2

2(d−1)

(
V ′

V

)2

Only the last fixed point allows for V > 0, and is able to realise cosmic acceleration.
Using its value for w and the accelerated expansion condition (A.5), we deduce the
“accelerated expansion bound” (5.9), as done already with slow-roll in (A.11).

We see that in both derivations of the “accelerated expansion bound” (5.9), there is
a non-trivial assumption: the first one is slow-roll and the second one is an asymptotic
limit to a fixed point. It is unclear to us that the two assumptions are the same. Still, let
us note that the value of x at the last fixed point is compatible with the two simplified
equations (A.8) obtained in the slow-roll approximation; also, dx

dN is proportional to the
parameter η. In any case, violating these assumptions could lead to a violation of the
bound (5.9) while still having accelerated expansion, as we further discuss in section 5.3.
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