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The path-integral measure of a gauge-invariant fermion theory is transformed under the chiral
transformation and leads to an elegant derivation of the anomalous chiral Ward-Takahashi identities,
as we know from the seminal work of Fujikawa. We present in this work an alternative and illuminating
way to calculate the Jacobian in the path-integral measure from the covariant derivative expansion
technique used in effective field theory. We present several ways to customize the crucial regularization
such that the anomaly is located in the desired current, which is unprecedented within the path integral
approach. We are then able to derive, in a transparent and unified way, the covariant, consistent,
gravitational, and scale anomalies.

DOI: 10.1103/PhysRevD.107.025017

I. INTRODUCTION

Symmetries play an important role in explaining the
fundamental forces of nature. A symmetry valid in the
classical theory might be violated in its quantized version.
This defines what an anomaly is in quantum field theory
(QFT). The axial or chiral anomaly which has a long
history is certainly the most well-known and had a huge
impact in the building and understanding of QFT.
In 1967, Sutherland and Veltman [1,2] proved that the

neutral pion, π0, cannot decay into two photons in obvious
disagreement with the experimental results. The π0 → γγ
puzzle has been solved in 1969 by Bell and Jackiw [3] who
showed that the unexpected, axial symmetry breaking
perfectly explains this decay, later confirmed by Adler
[4]. This is the so-called ABJ anomaly now commonly
computed through triangle Feynman diagrams involving
one axial and two vector currents and involving a UV
divergence which leads to ∂

μj5μ ¼ 1=ð8π2ÞFF̃, meaning
that while the vector conservation law can be maintained,
the axial current has to be broken.

As stated by the Adler-Bardeen theorem [5], it is actually
quite astonishing that the anomaly does not receive
radiative corrections and is totally given at the one-loop
level. It has been realized later [6] that the anomaly was not
just a perturbation effect arising from divergent diagrams
requiring to be regularized. Indeed, anomalies, as opposed
to divergences, essentially do not diverge even if they both
emerge from the presence of an infinite number of degrees
of freedom in the theory.1 It seems more accurate to
appreciate anomalies as a side effect of the quantization
which might break some symmetries.
It is really in the 1970s [7–10] that the anomaly was

interpreted in terms of a topological invariant. The anomaly
has indeed been determined by an index theorem by
counting the zero modes of a chiral Dirac operator. This
counting was made transparent by Fujikawa and Suzuki
[11] as the anomaly arises in the path integral as the
functional trace of γ5.
In QFT the fundamental quantity is the generating func-

tional which is a path integral for the classical action. How
can an anomaly emergewhen the classical action is invariant
under a symmetry? This questions has been solved by
Fujikawa in Refs. [12–14] by realizing that the only quantity
which contains the quantum aspects, the path integral
measure, does not remain invariant under chiral transfor-
mations. The anomaly is precisely arising from the asso-
ciated nontrivial Jacobian,which is ill-defined. To regularize
it in a gauge-invariant manner, one can use, as Fujikawa did,
an eigenbasis expansion associatedwith aGaussian cutoff or
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1In that regard, the scale anomaly is singular.
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alternatively a heat-kernel regularization or a ζ-function
regularization.2 In any case, the anomaly technically arises
as a finite term from the regularization. Within this formal-
ism the anomaly is truly independent of perturbation theory
and indeed provides a conceptually and satisfactory deri-
vation of the anomaly terms present from the beginning
instead of discovering it after the evaluation of the diver-
gence of a current.
In particle physics, the methods of effective field theory

(EFT) have recently seen a resurgence, mostly due to the
lack of new physics discovery at the weak scale.
Observations seem to indicate that new physics should
indeed be decoupled to heavier scales, urging us to
reconsider the Standard Model (SM) as a more humble
EFT supplemented by higher-dimensional operators.
The newphysics integrated out at somehigher energy scale

is technically encapsulated in the coefficients of these higher-
dimensional operators. The task to evaluate these Wilson
coefficients from ultraviolet (UV) theories has traditionally
been done using Feynman diagrams, where amplitudes
involving the heavy degrees of freedom are explicitly
“matched” to the EFT amplitudes. However, a more elegant
approach is to “integrate out” the heavy particles by evalu-
ating the path integral directly [16–19] even if in the past, this
approach has been limited because, in practice, the expansion
techniques could be cumbersome. However, recently a
significant effort has been done for developing new methods
to evaluate the path integral at one loopmore efficiently using
improved expansion techniques [20–24].
In this work, we propose to compute anomalies in QFT,

identified as a Jacobian in the path integral formalism as
Fujikawa did, but in view of recent developments made in
EFTs and more especially the usefulness of a mass
expansion technique such as the covariant derivative
expansion (CDE) [16–19]. This offers a novel technical
approach to evaluate anomalies in QFT within the path
integral formalism. The novelty of our formalism is the
following. First, it does not truly rely on the computation of
the transformation of the measure through the existence and
definition of the Dirac operator spectrum and more espe-
cially trying to properly deal with the zero modes of the
chiral Dirac operators as Fujikawa did. Second, the
anomalies emerge from a ratio of two ill-defined determi-
nants which can be evaluated systematically and efficiently
by the CDE technique.
In practice, in Fujikawa’s method, the various sym-

metries have been enforced to the model beforehand in
order to define the eigenbasis of the Dirac operator and cure
the illness of the Jacobian of the considered transformation.
The choice of regulator (to count the zero modes) to
evaluate the anomaly is crucial and depends on the active
symmetries. It will lead to several types of anomalies
(consistent, covariant, etc.). We will see that in many

situations, it is possible to end up in this situation when
“bosonizing” the fermionic functional determinants, then
straightforwardly extracting the anomalous interactions
with the CDE. Within our proposed alternative method,
the regularization procedure is fixed and always carried
with the usual dimensional-regularization scheme [25]. The
illness of the Jacobian is then embodied in the ambiguity of
Dirac traces involving γ5 (see Refs. [26,27]). These
ambiguities are cured by imposing manually the invariance
of the EFT under specific symmetries. Thus, our method is
available to evaluate in a general way the covariant and
consistent anomaly from the path integral having then the
possibility to tune which current bears the anomaly.
These two approaches allow one to treat gauge and

mixed global-gauge anomalies, i.e., consistent and covariant
anomalies, gravitational anomaly, as well as the scale
anomaly, in a transparent, simple, and unified way which
certainly deserves to be presented due to the importance and
phenomenological implications of anomalies in physics.
The plan of the paper is the following, in Sec. II we detail

the outline of the proposed new method to compute QFT
anomalies within the path integral formalism and use the
example of the axial anomaly to concretely show how to
connect the Jacobian of the transformation to the functional
determinants and how to conveniently expand them. In
Sec. III, we apply our formalism to other anomalous
transformations in chiral gauge field theory, namely fer-
mionic vector and axial transformations, leading to so-
called covariant and consistent anomalies. In Sec. IV, we
evaluate the axial-gravitational anomaly and technically
show how to deal with this approach in curved spacetime.
In Sec. V, we evaluate the so-called scale anomaly, without
having to introduce the curvature of spacetime [28–32]. In
Sec. VI, we discuss the approach of the new method
presented in this work compared to the original approach of
Fujikawa, before providing our conclusion in Sec. VII.

II. OUTLINE OF THE NEW METHOD

In this section we will introduce and present a method to
compute QFT anomalies within the path integral formalism
while dealing with EFTs. In order to make our points as
clear as possible we will deal with the concrete case of the
axial anomaly in a vector gauge theory. More general
situations will be discussed in the following section.

A. Functional determinant and Jacobian

Let us start with a Dirac fermion field involved in a
vector gauge theory with the following path integral:

Z≡
Z

DψDψ̄ exp

�
i
Z

d4xψ̄ði=∂ − =V −mÞψ
�

¼
Z

DψDψ̄eiS; ð1Þ
2See Refs. [11,15] and the references therein.
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with V a gauge field, element of SUðNÞ≡G and “slashed”
quantities are Lorentz-contracted with γ matrices.
Performing the integration on Grassmann variables Z
can be written as (in the eigenbasis with eigenvalues λn
of the Dirac operator)

Z ¼
Y
n

ðλn −mÞ ¼ det ði=∂ − =V −mÞ; ð2Þ

where det is a functional determinant. Let us consider an
infinitesimal chiral reparametrization of the fermionic field,
of parameter θðxÞ ¼ θaTa ∈ SUðNÞ,

ψ → eiθðxÞγ5ψ ; ψ̄ → ψ̄eiθðxÞγ5 : ð3Þ

Under such a transformation, the path integral measure
transforms with a Jacobian J½θ�,

DψDψ̄ → J½θ�DψDψ̄ : ð4Þ

On the other hand, the action transforms as

S → S −
Z

d4xψ̄ ½2imθγ5 þ ðDθÞγ5�ψ ; ð5Þ

with ðDθÞ ¼ ð=∂θÞ þ i½=V; θ�, and the parentheses indicate
the local derivative. The path integral after the chiral
reparametrization reads

Z0 ¼
Z

J½θ�DψDψ̄

× exp

�
iS − i

Z
d4x ψ̄ ½2imθγ5 þ ðDθÞγ5�ψ

�
: ð6Þ

Since the anomaly is fully determined by the structure of
the gauge groups of the theory, the Jacobian J½θ� does not
depend on the fermionic field. Then one can perform the
integration on the Grassmann variables and write

Z0 ¼ J½θ� detði=∂ − =V −m − 2imθγ5 − ðDθÞγ5Þ: ð7Þ

As a result of the invariance under the labeling of the path
integral variables (Z ¼ Z0), the Jacobian reads

J½θ� ¼ detðiD −mÞ
detðiD −m − 2imθγ5 − ðDθÞγ5Þ

¼ detðiD −mÞ
detðiD −mþ ifθγ5; iD −mgÞ : ð8Þ

The Jacobian can therefore be expressed as the exponential
of the difference of two functional determinants,

J ½θ� ¼ expðlog detðiD −mÞ
− log detðiD −mþ ifθγ5; iD −mgÞÞ

≡ exp

�Z
d4xAðxÞ

�
: ð9Þ

In the peculiar case of the chiral reparametrization of
Eq. (3) being disjoint from gauge transformations, injecting
this solution for J½θ� in Eq. (6) leads to the relation

Dμhψ̄γμγ5ψi ¼ 2im hψ̄γ5ψi þ
δAðxÞ
δθðxÞ ; ð10Þ

which is the anomalous Ward identity of the axial
current reflecting the anomalous behavior of that chiral
reparametrization.
The main goal of this paper is to compute the anomaly

operator of a theory, A, directly from its path integral
formulation. Yet, we will not revert to the procedure of
Fujikawa to compute the determinants, which corresponds
to a precise procedure to regularize the computation (the
core of the problem). Instead, we will call in the mass
expansion method known as CDE [16,17] that we will
combine with different regularization procedures. All in all,
this is very efficient to obtain anomalies in QFT.
One should also note that the CDE method has recently

proved its usefulness while dealing with precisely this kind
of EFTs and more especially the matching step which
consists in expressing the Wilson coefficient of the low-
energy EFT as a function of the parameters of the high-
energy theory (see for example Refs. [18,19,22–24,33,34]).

B. The ABJ anomaly from the covariant
derivative expansion

The principle of the CDE approach will be detailed
below. Let A be
Z

d4xAðxÞ ¼ −Tr log ðiD −m − 2imθγ5 − ð∂θÞγ5Þ

þ Tr log ðiD −mÞ: ð11Þ
In this section, we restrain ourselves to a vector gauge
theory,Dμ ¼ ∂μþ iVμ, with V ∈G¼ SUðNÞ, and the chiral
reparametrization of the fermionic field is a simple axial
Uð1Þ transformation. Thus we expect to obtain the so-
called chiral or ABJ anomaly [3,5].
For clarity, we will first present the evaluation of the first

functional trace in Eq. (11) that we label Aθ, before
combining both needed to compute the axial current
anomaly A. We evaluate the trace over spacetime using a
planewave basis, leaving the trace tr over the internal space,

Aθ¼−
Z

ddq
ð2πÞde

iq·xtr logðiD−m−2imθγ5−ð∂θÞγ5Þe−iq·x;

ð12Þ
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use the Baker-Campbell-Hausdorff formula to perform the
spatial translation,

Aθ ¼ −
Z

ddq
ð2πÞd tr log ðiDþ q −m − 2imθγ5 − ð∂θÞγ5Þ;

ð13Þ
and perform the change of variable q → −q to factorize an
inverse propagatorlike term,

Aθ¼−
Z

ddq
ð2πÞd tr

×log

�
−ðqþmÞ

�
1þ −1

qþm
ðiD−2imθγ5−ð∂θÞγ5Þ

��
:

ð14Þ
The factorized term exhibits UV divergences and involves
the usual scale of renormalization, which would be intro-
duced through dimensional regularization. It can be
absorbed in redefinitions of the parameters of the model.3

One could also notice that it would be canceled anyway by
the other trace to evaluate in Eq. (11). Using Taylor
expansion on the remaining logarithm,

Aθ ¼
Z

ddq
ð2πÞd

X∞
n¼1

1

n
tr

�
−1

qþm
ð−iDþ 2imθγ5 þ ð∂θÞγ5Þ

�
n
:

ð15Þ
If we now apply the very same treatment to the other
contribution, Tr logðiD −mÞ of Eq. (11), in order to
evaluate the anomaly, we find that the terms which do not
involve the θ parameter do cancel with each other,

A¼
Z

ddq
ð2πÞd

X∞
n¼1

1

n
tr

×

�
−1

qþm
ð−iDþ2imθγ5þð∂θÞγ5Þ

�
n
����
carryingθdependence

:

ð16Þ
As shown in Appendix B, it can alternatively be written as

A ¼
Z

ddq
ð2πÞd trð2imθγ5 þ ð∂θÞγ5Þ

X∞
n¼0

�
−1

qþm
ð−iDÞ

�
n

×
−1

qþm
: ð17Þ

So the reader should not be surprised if we switch between
the two expressions. This expression might still look quite
cumbersome to deal with; however, as we will see in the

following section, it only calls for a basic power counting
and use of master integrals.4

C. Complete evaluation of the ABJ anomaly
from the CDE

Since we are only interested in the terms linear5 in θ in
Eq. (16), the anomaly can be expressed as A ¼
Amγ5 þA∂γ56 with

Amγ5 ¼
Z

ddq
ð2πÞd

X∞
n¼1

1

n
tr

�
−1

qþm
ð−iDþ 2imθγ5Þ

�
n
����
OðθÞ

;

A∂γ5 ¼
Z

ddq
ð2πÞd

X∞
n¼1

1

n
tr

�
−1

qþm
ð−iDþ ð∂θÞγ5Þ

�
n
����
OðθÞ

:

ð18Þ

The terms which contribute to A involve, here, exactly
one γ5 matrix, and there can be no contribution from orders
greater than n ¼ 5, within the CDE approach, since they
would carry a mass dependence.
Some of the integrals in Eq. (18) are divergent, and we

use dimensional regularization [25] to evaluate them along
with the MS scheme for renormalization. The traces over
Dirac matrices have to be performed in d ¼ 4 − ϵ dimen-
sions, and the ϵ-terms resulting from the contractions with
the metric tensor (satisfying then gμνgμν ¼ d) must be kept
in the calculations. These ϵ-terms will then multiply with
the (1=ϵ) pole of the divergent integrals and yield finite
contributions. We also emphasize that depending on the
regularization scheme for γ5 in d-dimensions, different
results for ϵ-terms in Dirac traces will emerge (see, for
example, Refs. [35,36]). In the following sections, we will
discuss in detail several prescriptions that one can use to
evaluate ill-defined Dirac traces involving γ5 matrices, in
dimensional regularization. However, in this section, since
we discuss the case of a vector gauge theory related to
Eq. (1), the divergent contributions are regularized using
the Breitenlohner-Maison-’t Hooft-Veltman (BMHV)
scheme of dimensional regularization [25,37] which is
compatible with the conservation of the gauge vector
current at the quantum level, as it is well-known, placing
then the anomaly entirely in the classically conserved
(only) axial current associated with Eq. (3). In the evalu-
ation of Eq. (18), we will then maintain the trace cyclicity
property which might not hold for another γ5 regularization
scheme.

3It corresponds to a renormalization of the vacuum energy, and
it can be absorbed as a constant term in the Standard Model Higgs
potential.

4Notice that our formalism does not support the m ¼ 0 case.
We suggest the heat-kernel method if the reader would like to
recover the ABJ anomaly in this case.

5This is the only possibility to obtain a θ-dependent term times
a gauge boundary term which is mass independent.

6This is nothing but the transcription of the Ward identity
Eq. (10) in the present CDE context.
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We are here bypassing, on purpose, an important
difficulty regarding the crucial regularizing step in order
to focus on the standard but important CDE algebra. The
reader willing to concentrate on a careful regularization
procedure should directly reach the next section.
Regarding the actual task of collecting operators from

Eq. (18), we do not especially rely on it but the different
contributions produced by these expansions could also be
enumerated using the convenient formalism of covariant
diagrams (see Ref. [21] for example).
To perform the computations straightforwardly from

Eq. (18), we decompose the propagator −1=ð=qþmÞ as
follows:

−1
=qþm

¼ m
q2 −m2

þ −=q
q2 −m2

: ð19Þ

Let us consider first the expansion of A∂γ5 . The first
nonzero contribution is to be found at n ¼ 4, where there
are finite and divergent contributions. The finite one leads
to the following term:

A∂γ5
n¼4;fin ¼ iðm4I4

i − 4m2I ½q2�4i ÞtrðDDDð∂θÞγ5Þ; ð20Þ

using standard and convenient master integrals I , writ-
ten explicitly in Appendix A. This contribution can be
written as7

A∂γ5
n¼4;fin ¼ −

1

32π2
trðDDDð∂θÞγ5Þ

¼ i
8π2

ϵμνρσtrðDμDνDρð∂σθÞÞ: ð21Þ

The divergent contribution is regularized using the BMHV
scheme of dimensional regularization [25,37]. With this
choice, the divergent contribution is

A∂γ5
n¼4;div ¼

−i
16π2

�
ε
2

ε
þOðεÞ

�
ϵμνρσtrðDμDνDρð∂σθÞÞ

⟶
ε→0

−
i

8π2
ϵμνρσtrðDμDνDρð∂σθÞÞ: ð22Þ

The full n ¼ 4 contribution therefore cancels as the
divergent and finite contributions compensate exactly,

A∂γ5
n¼4 ¼ A∂γ5

n¼4;div þA∂γ5
n¼4;fin ¼ 0: ð23Þ

Note that we talk about divergent contributions because
the integrals are divergent, but in the end, the result is finite
as the pole 2=ϵ is compensated by an ϵ from the trace.
Turning now to the expansion of Amγ5 , its first con-

tribution arises at n ¼ 5 and is fully finite. In this case there

is no requirement to switch to d dimensions.8 This con-
tribution reads

Amγ5
n¼5 ¼ ið2m6I5

i − 16m4I ½q2�5i þ 48m2I ½q4�5i Þ
× trðDDDDθγ5Þ: ð24Þ

Performing the Dirac matrix algebra and using the expres-
sion of the master integrals given in Appendix A, the n ¼ 5
contributions reads

Amγ5
n¼5 ¼ −

i
16π2

ϵμνρσθtrðFμνFρσÞ; ð25Þ

where the convention for the field strength is Fμν ¼
½Dμ; Dν�.
Within the CDE approach, this is the only surviving

contribution, and it matches the well-known result for the
axial current anomaly in a vector gauge field theory
[11,12,38],

A ¼ Amγ5 þA∂γ5 ¼ Amγ5
n¼5 ¼ −

i
8π2

θtrðFμνF̃μνÞ; ð26Þ

where the convention for the dual tensor is F̃μν ¼
1=2 ϵμνρσFρσ, with the choice ϵ0123 ¼ þ1.
One may be a bit surprised by the fact that the anomaly

ends up extracted from a nondivergent integral, for which
no regularization is needed. Let us stress though that the
crucial step was to show that the A∂γ5 term gives no
contribution in that particular case at order m0.
Following a similar strategy, we will now discuss more

generalities and details of the evaluation of the covariant
and consistent anomalies in QFT based on a careful
regularization.

1. ABJ anomaly in given 2n dimensions
from the CDE

In this section, we provide a general approach to
extend the computation of the ABJ anomaly in given 2n
dimensions. There is no obstruction to computing the
anomaly for a given even dimension, but for arbitrary
2n dimensions it becomes more complicated to simplify
Dirac traces.
Starting from Eq. (17) in the manuscript, we have in

d ¼ 2n dimensions,

A ¼
Z

ddq
ð2πÞd trð2imθγ2nþ1 þ ð∂θÞγ2nþ1Þ

×
X∞
k¼0

tr

�
−1

qþm
ð−iDÞ

�
k −1
qþm

; ð27Þ

7The trace over Dirac matrices is performed but the trace tr
over the gauge group structure is left.

8For convenience with the notations, we are still using the
master integrals which are technically defined in the d dimension.
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where we have generalized the definition of γ5 in 2n
dimensions as

γ2nþ1 ¼ ðiÞn−1γ0γ1 � � � γ2n−1; ð28Þ

and we have

tr½γ2nþ1γ
μ1γμ2 � � � γμ2n �≡ ð−iÞ2nϵμ1μ2���μ2n : ð29Þ

By power counting, we can isolate the terms of orderm0,

Ajd¼2n ¼
Z

d2nq
ð2πÞ2n tr½ð2imθγ2nþ1Þ½Δð−iDÞ�2nΔ

þ ½ð∂θÞγ2nþ1�½Δð−iDÞ�2n−1Δ�; ð30Þ

where Δ ¼ −1=ð=qþmÞ.
We rewrite the propagators Δ in terms of bosonic and

fermionic propagatorsΔ¼ΔbþΔf withΔb¼m=ðq2−m2Þ
and Δf ¼ −=q=ðq2 −m2Þ. The integration over momentum
is nonvanishing for even powers in q, which means that we
have to account for all the terms that have an even number
of fermionic propagators. Therefore, the number of terms to
compute increases significantly with the dimension.
For 2k fermionic propagators among the 2nþ 1 propa-

gators, we have to compute traces of the form

gα1���α2k tr γ2nþ1ðγα1γμ1γα2γμ2 � � � γμ2nþ1 þ � � �Þ; ð31Þ

where the dots encompass the remaining ð2nþ1
2k Þ − 1 pos-

sible combinations of 2k fermionic propagators among
2nþ 1 propagators, and gα1���α2k is the fully symmetrised
metric.9 Then such traces have to be computed for all k ≤ n.
Such a trace is not trivial to compute for arbitrary k and

n, which is why the general formula for the anomaly in 2n
dimensions is not straightforward to obtain and is out of the
scope of this paper. For the computation in arbitrary 2n
dimensions, we refer the reader to Refs. [39,40].
Within our framework, we can compute the ABJ

anomaly (and other anomalies) in 4; 6; 8;… dimensions,
and then extrapolate the result to 2n dimensions. This
strategy is analogous to the computations of l-agon
Feynman diagrams (with l ¼ nþ 1) which have been
performed by Frampton et al. [41,42].
One must also generalize the definition of the master

integrals in 2n dimensions, but this presents no difficulty.

III. ANOMALIES IN VECTOR-AXIAL GAUGE
FIELD THEORY

In the previous section, we discussed the methodology to
compute the Jacobian of a path integral measure by using
EFT techniques, namely the CDE, and gave a concrete

example by computing the well-known axial current
anomaly in a vector gauge field theory. In this section,
we apply this new formalism to recover the various and
well-known anomalies in vector-axial gauge field theory. If
θ is charged under the SUðNÞ gauge group of the theory,
then the anomaly can either be covariant (covariant
anomaly) or respect the Wess-Zumino consistency con-
ditions [43] (consistent anomaly). Our computations in the
following sections are performed in Minkowski space-
time,10 and our results agree with the traditional ones (see,
for example, Refs. [11,15,44]).
In our computation, it is necessary to consider θ local. In

practice, if θ ∈ SUðNÞ [and V; A ∈ SUðNÞ as well] is
associated with a global symmetry, we conduct the com-
putation with θ local, but we should regularize in order to
get the covariant anomaly. If θ ∈ SUðNÞ is associated with
a local symmetry, i.e., a gauge transformation, we should
regularize in order to get the consistent anomaly (gauge
anomaly).

A. Definiteness and regularization

Consider the following Lagrangian:

L ¼ ψ̄ði=∂ − =V − =Aγ5 −mÞψ ; ð32Þ

with Vμ and Aμ a vector and axial gauge field, elements of
SUðNÞ.11 It is anomalous under the fermion reparametri-
zation,

ψ → eiθðxÞγ5ψ ; ψ̄ → ψ̄eiθðxÞγ5 ; ð33Þ

with θ infinitesimal, and can be charged under the SUðNÞ
gauge group. The Jacobian of this reparametrization can be
expressed as follows:

J½θ� ¼ detðiD −mÞ
detðiD −m − ðDθÞγ5 − 2imθγ5Þ

: ð34Þ

However, we know that the anomaly associated with
the axial reparametrization may as well appear in the
vector current or the axial current (see, for example,
Refs. [15,45]). The Jacobian in Eq. (34) standing as it is
can lead to any distribution of the anomaly in both currents.
Moreover, since the theory has an axial gauge field Aμ,

the reparametrization in Eq. (33) can be interpreted as a
gauge transformation (i.e., local transformation) if θ is
charged under the gauge group. For these reasons, the
Jacobian in Eq. (34) is ill-defined.

9For example, gμνρσ ¼ gμνgρσ þ gμρgνσ þ gμσgνρ.

10The standard computations of Refs. [11,15] are performed in
Euclidian space.

11In order to clarify our manuscript, we postpone the important
discussion about manifest gauge or global symmetry invariance,
the mass term as an hard breaking source in the unitary basis and
the introduction of Goldstone bosons to implement spontaneous
symmetry breaking to Sec. III C 1.
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To make sense of this ratio of formal determinants,
we need to regularize it. In CDE, the most convenient
regularization scheme is dimensional regularization.
However, it is well-known that the definition of γ5 in
dimensional regularization is ambiguous due to its intrinsic
four-dimensional nature [25]. Wewill propose two methods
of regularizing the Jacobian of Eq. (34). The first method
consists in working with the formal determinant in dimen-
sional regularization and, throughout the computation,
deals with the ambiguity related to γ5 using free parameters

]26,27 ]. The second method consists in bosonizing the
determinant, making it finite, hence fixing the ambiguity
before the calculation. The first method can be seen as more
general (or maybe naïve and brutal) as one first regularizes
an ill-defined quantity inserting as much freedom as needed
and second calls for coherence (covariance, integrability/
consistence) of the obtained theory to fix those ambiguities.
We believe that a remarkable advantage of this approach is
that its derivation is smooth and self-consistent within the
path integral formalism. The second method works the
opposite way, as one first calls for a well-defined theory
(free of any ambiguity) and second performs the regulari-
zation. As we will see, both have their own advantages and
disadvantages, and we find it illuminating to present them
both. We should also notice that while we believe the first
method is novel in its approach, the bosonization method is
well-known [15,18,40]; however, its combined use, with
the CDE to evaluate anomalies, is new. Since this offers a
powerful tool and interesting implications for EFTs related
topics, it deserves to be duly studied here.

1. Ambiguities and free parameters

In d dimensions, γ5 is ill-defined. One cannot maintain
both the cyclicity of the trace and Clifford algebra. There
exist many ways of defining γ5 in d dimensions consis-
tently [25,26,35–37], although they may yield different
results. The ambiguity in the Jacobian of Eq. (34) lies in the
dependence on the choice of the γ5 regularization scheme.
In a diagrammatic approach, the amplitude of a diagram

is dictated by the Feynman rules. However, it does not
specify by which vertex we should start writing the
amplitude of the diagram, which results in different
possible positions for γ5. Since in d dimensions, the
different positions of γ5 are not equivalent, we have an
ambiguity in the position of γ5.
Nonetheless, it is possible to compute traces of γ5 in d

dimensions while keeping track of the ambiguity by
introducing free parameters [26]. We outline the method
in the following.
Consider the trace

trðγ5γμγνγργσÞ: ð35Þ

In four dimensions, one can use Clifford algebra to move
the γ5 at different positions,

trðγ5γμγνγργσÞ ¼ trðγμγνγ5γργσÞ ¼ trðγμγνγργσγ5Þ: ð36Þ

However, this may not be true anymore in d dimensions.
For example, if we use the BMHV scheme [37], we

maintain the cyclicity of the trace but we have to abandon
Clifford algebra. We then have an ambiguity on the position
of γ5 in the trace. The trick presented in Ref. [26] consists in
implementing all the positions for γ5 that are equivalent in
four dimensions, with a free parameter for each,

trðγ5γμγνγργσÞ → α trðγ5γμγνγργσÞ þ β trðγμγνγ5γργσÞ
þ δ trðγμγνγργσγ5Þ; ð37Þ

with the condition αþ β þ δ ¼ 1, so that we recover
trðγ5γμγνγργσÞ in four dimensions.
The introduction of those free parameters with all the

equivalent positions (in four dimensions) of γ5 makes the
trace regularization scheme independent. Therefore, we can
choose a specific scheme to compute each separate trace. If
the result depends on the free parameters in the end, it
means that the initial trace itself is ambiguous.
For the example above, we compute each separate trace

using the BMHV scheme to get

trðγ5γμγνγργσÞ → α trðγ5γμγνγργσÞ þ β trðγμγνγ5γργσÞ
þ δ trðγμγνγργσγ5Þ

¼ ðαþ β þ δÞð−4iϵμνρσÞ ¼ −4iϵμνρσ; ð38Þ

where we have used the condition αþ β þ δ ¼ 1 to match
with the result in four dimensions. It turns out that this trace
is nonambiguous.
However, consider the following trace with one con-

traction among the Dirac matrices:

trðγ5γμγνγaγργσγaÞ
→ α trðγ5γμγνγaγργσγaÞ þ β trðγμγνγ5γaγργσγaÞ
þ γ trðγμγνγaγργ5γσγaÞ þ δ trðγμγνγaγργσγaγ5Þ

¼ ð−1þ 2γÞ4iðd − 4Þϵμνρσ: ð39Þ

It is ambiguous because even after enforcing the condition
αþ β þ γ þ δ ¼ 1, the result still depends on a free
parameter. Actually, insofar as there is more than one
contraction among the Dirac matrices, the trace will be
ambiguous.12 As a consequence, when computing the
anomaly, the final result depends on free parameters.
Those free parameters are then fixed under physical
constraints, for example, by enforcing gauge invariance
and vector current conservation.

12See Appendix C for the case with two contractions among
the sequence of Dirac matrices.
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Although the positions of γ5 in the computation of the
path integral Jacobian are not arbitrary, as opposed to the
diagrammatic approach, it may still bear traces that depend
on the choice of γ5 scheme. Despite the absence of
arbitrariness in the position of γ5 we will still rely on
the free parameters trick to compute the ambiguous
Jacobian, since it allows us to compute the traces in a γ5
scheme independent way.

2. A well-known treatment: The bosonization

Before delving into the expansion of the determinant, it
is possible to regularize it. One way of achieving a
regularized Jacobian is to bosonize it.

Vector gauge theory.—Consider first a vector gauge theory:
the Jacobian can be squared to bosonize it,

L ¼ ψ̄ði=∂ − =V −mÞψ : ð40Þ

We will show in Sec. III D 2 that the Jacobian in Eq. (34)
can be written as

J½θ�2 ¼ detðD2 þm2Þ
detðD2 þm2 þ fiD; ðDθÞγ5g þ 4im2θγ5Þ

: ð41Þ

This Jacobian yields the same result as the fermionic
Jacobian Eq. (8) insofar as the theory is not chiral.

Vector-axial theory.—Now, consider a vector-axial gauge
theory,

iD ¼ i=∂ − =V − =Aγ5: ð42Þ

Now the operator iD −m does not have a well-defined
eigenvalue problem, the presence of the axial field spoils
the Hermiticity. It is, however, crucial to have a well-
defined eigenvalue problem to make sense of the determi-
nant, which is the product of the eigenvalues of the
operator.
We will now present a solution for bosonizing the

Jacobian of Eq. (34) that let us deal with Hermitian and
gauge covariant operators.
One way to obtain a Hermitian operator is to use the

following Laplace operators:

D†D and DD†: ð43Þ

These operators are Hermitian, and hence have a well-
defined eigenvalue problem. They preserve the spectrum of
the theory (see, for example, Ref. [15]), and hence do not
change the value of the determinants (aside squaring them).
Besides, they lead to a gauge covariant regularization of the
bosonized form of the Jacobian.

We will show in Sec. III C that the Jacobian of Eq. (34)
can be written as,

J½θ�2 ¼ det ð−ðiDÞ†iDþm2Þ
det ð−ðiDÞ†iDþm2 þ fðθÞÞ ; ð44Þ

where

fðθÞ ¼ 4im2θγ5 − i½θ;−D2�γ5 −
1

2
½σ:FV; θ�γ5

−
1

2
½σ:FAγ5; θ�γ5: ð45Þ

FV and FA are the Bardeen curvatures defined a bit later in
Eqs. (50) and (51).
This bosonized determinant is finite and hence unam-

biguous. Besides, since the regularization it provides is
gauge covariant [15], the final result can only be gauge
covariant, hence the so-called covariant anomaly.
On the other hand, if we want to compute the consistent

anomaly, we can try to use the bosonization as in the vector
gauge theory. However, the operator D2 þm2 is still not
Hermitian. We palliate this problem using the analytic
continuation Aμ → iAμ that restores the Hermiticity of iD,
and hence of D2 þm2.
The Jacobian will then be written as

J½θ�2 ¼ detðD2 þm2Þ
detðD2 þm2 þ fiD; ðDθÞγ5g þ 4im2θγ5Þ

: ð46Þ

Unfortunately, as we will see, this does not suffice to fix the
ambiguity. It does not necessarily yield the consistent
anomaly.

B. A generic Lagrangian

To pave the way for our computations of covariant and
consistent anomalies, we present briefly the generic
Lagrangian we will consider and our notations. One can
consider a gauge theory in which left- and right-handed
fermion components are charged under a non-Abelian
gauge group and then described by the following
Lagrangian:

L¼ ψ̄Lγ
μði∂μ−LμÞψLþ ψ̄Rγ

μði∂μ−RμÞψR−mψ̄ψ ; ð47Þ

where Lμ ¼ La
μTa and Rμ ¼ Ra

μTa are gauge fields belong-
ing to SUðNÞ. In terms of the projector algebra, this
Lagrangian can be written in terms of vector-axial gauge
fields as follows:

L ¼ ψ̄ði=∂ − =LPL − =RPR −mÞψ ¼ ψ̄ði=∂ − =V − =Aγ5 −mÞψ
≡ ψ̄ðiD −mÞψ ; ð48Þ

FILOCHE, LARUE, QUEVILLON, and VUONG PHYS. REV. D 107, 025017 (2023)

025017-8



where we defined the fields Vμ, Aμ, and the covariant
derivative as follows:

Vμ≡LμþRμ

2
; Aμ≡Rμ−Lμ

2
; iDμ≡ ið∂μþ iVμþ iAμγ5Þ:

ð49Þ

The computation of the commutator ½Dμ; Dν� permits one
to define two Bardeen’s curvatures (see Ref. [38]) by
identifying the axial and vector parts such that
½Dμ; Dν�≡ FV

μν þ FA
μνγ5, which leads to the following

expressions:

FV
μν ¼ iðð∂μVνÞ − ð∂νVμÞ þ i½Vμ; Vν� þ i½Aμ; Aν�Þ; ð50Þ

FA
μν ¼ iðð∂μAνÞ − ð∂νAμÞ þ i½Aμ; Vν� þ i½Vμ; Aν�Þ: ð51Þ

In the L=R basis the field strengths are

FL
μν ¼ iðð∂μLνÞ − ð∂μLμÞ þ i½Lμ; Lν�Þ; ð52Þ

FR
μν ¼ iðð∂μRνÞ − ð∂μRμÞ þ i½Rμ; Rν�Þ; ð53Þ

and the Bardeen curvatures are related to the L=R curva-
tures by

FV
μν ¼

1

2
ðFR

μν þ FL
μνÞ; ð54Þ

FA
μν ¼

1

2
ðFR

μν − FL
μνÞ: ð55Þ

C. Covariant anomaly

1. Mass term, manifest symmetry invariance,
and Goldstone bosons

All along our work, we constantly integrate out a
massive chiral fermion. The mass term is a hard breaking
source of axial symmetries (local or global). In order to
make manifest those symmetries at tree level one can
evidently implement their spontaneous breaking, introduc-
ing then their associated Goldstone bosons. We chose to
work within the unitary basis and loose manifest tree-level
axial invariance (when relevant) in order to deal with
simpler functional determinants. The Goldstone bosons
will be explicitly reintroduced only when it is necessary
(see Sec. III C 3). Consequently, one should not be sur-
prised if we discuss an anomalous global symmetry which
looks naively already broken at tree level.13

2. Case of an anomalous axial symmetry

We state here again, for convenience, the Lagrangian and
the Jacobian associated with the axial transformation.
Starting from the vector-axial Lagrangian of Eq. (48), let

us perform an axial fermion reparametrization

ψ → eiθðxÞγ5ψ ; ψ̄ → ψ̄eiθðxÞγ5 : ð56Þ
Under this fermion reparametrization, the Lagrangian given
by Eq. (48) becomes

L → ψ̄ ½iD −m − 2imθðxÞγ5 − ðDθγ5Þ�ψ ; ð57Þ
where the quantity inside the parentheses, ðDθγ5Þ ¼
ðð=∂θÞ þ i½=V; θ� þ i½=A; θ�γ5Þγ5, indicates that the covariant
derivative locally acts on θðxÞ (i.e., not on everything on its
right). The Jacobian produced by this transformation is
therefore given by the following expression:

J½θ� ¼ detðiD −mÞ
det eiθðxÞγ5ðiD −mÞeiθðxÞγ5

¼ detðiD −mÞ
detðiD −m − 2imθγ5 − ðDθγ5ÞÞ

: ð58Þ

As emphasized in the previous sections, this Jacobian is ill-
defined. The next step is to explicitly compute it, according
to the methods proposed in Sec. III A.

Fermionic expansion with free parameters.—Weare now in
the situation where we are looking to evaluate an equivalent
of Eq. (16) for a vector and axial gauge field theory,

A ¼
Z

ddq
ð2πÞd trððDθÞγ5 þ 2imθγ5Þ

×
X
n≥0

�
−1

q −m
ð−iDÞ

�
n −1
q −m

; ð59Þ

where θ belongs to SUðNÞ and the covariant derivative
is Dμ ¼ ∂μ þ iVμ þ iAμγ5.
Let us start by computing the mass term. The integrals

are finite; hence no ambiguity arises from this term.
The propagators that appear in the expansion need to be

expanded as −1=ð=qþmÞ ¼ Δb þ Δf where the bosonic
propagator is Δb ¼ m=ðq2 −m2Þ and the fermionic propa-
gator isΔf ¼ −=q=ðq2 −m2Þ. The integrals over momentum
are nonvanishing only if the integrand has an even power in q
in the numerator (the denominator always has an even power
in q). Therefore, the number of fermionic propagators must
be even. This leaves us with three contributions. Note that
each of those contributions is finite; thus the computation is
performed in four dimensions.:

(i) The contribution to the anomalous interaction
involving only bosonic propagators is

m5I ½q0�52imtrðθγ5D4Þ: ð60Þ
13A detailed discussion on the parametrization of local and

global anomalous symmetries can be found in Ref. [27].
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(ii) The contribution to the anomalous interaction
involving two fermionic propagators is

m3I ½q2�52imtrðθγ5½γaDγaD3 þ γaD2γaD2 þ � � ��Þ;
ð61Þ

where the dots bear all the remaining insertions
of the two fermionic propagators [ð5

2
Þ ¼ 10

combinations].
(iii) The contribution to the anomalous interaction

involving four fermionic propagators is

mI ½q4�52imtrðθgabcdγ5½γaDγbDγcDγdD

þ γaDγbDγcDDγd þ � � ��Þ; ð62Þ

where again the dots bear all the remaining inser-
tions of the four fermionic propagators [ð5

4
Þ ¼ 5

combinations] and gabcd¼gabgcdþgacgbdþgadgbc.
Then one needs to expand the covariant derivatives in

order to extract the γ5 from the axial fields and compute the
Dirac traces. It is then simple algebra to form the field
strengths as defined in Eqs. (50) and (51).
The mass term then yields a contribution that corre-

sponds to the so-called Bardeen anomaly (with conserved
vector current), that is to say, the consistent anomaly

Amγ5 ¼ −i
16π2

ϵμνρσtrθaTa

�
FV
μνFV

ρσ þ
1

3
FA
μνFA

ρσ

−
8

3
ðiAμiAνFV

ρσ þ iAμFV
νρiAσ þ FV

μνiAρiAσÞ

þ 32

3
iAμiAνiAρiAσ

�

¼ ABardeen: ð63Þ

Now let us focus on the derivative term

A∂γ5 ¼
Z

ddq
ð2πÞd trðDθÞγ5

X
n≥0

�
−1

q−m
ð−iDÞ

�
n −1
q−m

: ð64Þ

We proceed similarly for the derivative term to obtain the
following contributions:

(i) The contribution to the anomalous interaction
involving only bosonic propagators is

im4I ½q0�4trððDθÞγ5ðDÞ3Þ: ð65Þ

(ii) The contribution to the anomalous interaction
involving two fermionic propagators is

im2I ½q2�4trððDθÞγ5½γaDγaDDþ γaDDγaDþ � � ��Þ;
ð66Þ

where the dots denote the other ð4
2
Þ ¼ 6 combina-

tions for the insertions of the two fermionic
propagators.

(iii) The contribution to the anomalous interaction
involving four fermionic propagators is

iI ½q4�4trððDθÞγ5½γaDγbDγcDγdgabcd�Þ: ð67Þ

Now this last integral is divergent; thus the trace that
appears in the term with four fermionic propagators is
ambiguous. We use the trick described in Sec. III A 1 to
keep track of the ambiguity. Therefore, the three contri-
butions above may be written, after integrating by parts, as
a sum of operators with a free parameter for each. The
result can thus be written fully in terms of free parameters
associated with each possible operator (the finite contri-
butions will just combine with a free parameter to give a
different free parameter). We thus have

A∂γ5 ¼
−i
16π2

ϵμνρσtrθaTa

�X
i

aiXi;μνρσ

�
; ð68Þ

where Xi are all the possible operators of the form
O1O2O3O4 with O1≤i≤4 ∈ fV;A; ∂g that can be formed,
provided it has an even number of A fields (the number of
γ5 must be odd). Note that the operators with a partial
derivative to the right vanish, and those with consecutive
partial derivatives vanish due to the contraction with the ϵ
tensor. This leaves us with 22 possible operators, with 22
free parameters ai.
We then want to enforce the covariance of Amγ5 þA∂γ5

under the gauge transformation

�
Vμ → Vμ þ ðDV

μ εVÞ þ i½Aμ; εA�
Aμ → Aμ þ i½Aμ; εV � þ ðDV

μ εAÞ
: ð69Þ

We can focus only on the gauge transformation associated
with ϵA, and it will be sufficient to fix the free parameters.
A covariant operator O must transform as

δO ¼ ½ϵA;O�; ð70Þ
under the ϵA gauge transformation. Therefore, we enforce
that the terms with derivatives of ϵA vanish, and also that ϵA
must appear either at the beginning or at the end of each
operator.
For example, after performing the gauge variation we

have, among others, the following operator:

fða1;…; a22Þϵμνρσð∂μAνÞϵAVρVσ; ð71Þ
where f is some linear function of the free parameters. This
term must vanish for the result to be gauge covariant
because ϵA is sandwiched between operators; hence it
cannot occur from a term of the form Eq. (70). We hence
obtain a constraint on the free parameters.
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It turns out that enforcing these conditions fixes 21 free
parameters out of 22. We rely on the result from the ABJ
anomaly to fix the last free parameter that we call β. Setting
A ¼ 0 we are left with

−i
16π2

ð1þ βÞϵμνρσFμνFρσ; ð72Þ

where Fμν ¼ ð∂μiVνÞ− ð∂νiVμÞ þ ½iVμ; iVν�. Equation (72)
is covariant regardless of the normalization, and this is why
it needs to be compared with the anomaly in a vectorlike
theory to fix β (i.e., the ABJ anomaly). This amounts to
enforcing the conservation of the vector current. We thus
deduce that β ¼ 0. Now that all the free parameters are
fixed, we obtain

Amγ5 þA=∂γ5 ¼
−i
16π2

ϵμνρσtrθaTaðFV
μνFV

ρσ þ FA
μνFA

ρσÞ; ð73Þ

with FV and FA the Bardeen curvatures as defined in
Eqs. (50) and (51). This is the covariant non-Abelian
anomaly in the axial current in a vector-axial theory.
Note that the relative coefficient between FVF̃V and
FAF̃A is fixed by requiring the covariance of the result,
since FVF̃V þ bFAF̃A is not covariant unless b ¼ 1.
It can also be written in the L-R basis as

Amγ5 þA=∂γ5 ¼
−i
32π2

ϵμνρσtrθaTaðFL
μνFL

ρσ þ FR
μνFR

ρσÞ: ð74Þ

Finally, we can mention the Bardeen-Zumino polyno-
mial (BZ polynomial) [46] that naturally appears in our
computation. The BZ polynomial is the unique local
function Pμ such that the gauge variation of DμPμ cancels
exactly the gauge variation of the consistent anomaly.
The ambiguity in the derivative term A=∂γ5 was fixed by

requiring that the mass term and derivative term together
are gauge covariant, that is to say, that the gauge variation
of the derivative term cancels exactly the gauge variation of
the unambiguous mass term. Since the mass term coincides
with the consistent anomaly, then the derivative term
canceling its gauge variation is by definition the divergence
of the BZ polynomial.
The derivative term thus reads

A∂γ5 ¼ θaðDμPμÞa

¼ −i
16π2

ϵμνρσtr θ

�
2

3
FA
μνFA

ρσ þ
8

3
ðAμAνFV

ρσ þ AμFV
νρAσ

þ FV
μνAρAσÞ −

32

3
AμAνAρAσ

�
: ð75Þ

Note that the divergence of the BZ polynomial was not
obtained by subtracting the covariant anomaly from the

consistent anomaly, but truly by requiring the cancellation
of the gauge variation of the consistent anomaly.
Eventually, we emphasize that the BZ polynomial itself

can be obtained by summing Eqs. (65), (66), and (67),
performing the Dirac trace using the values of the free
parameters that cancel the gauge variation of the anomaly,
as we did. We thus obtain a term of the form ðDμθÞPμ

where Pμ is the BZ polynomial.

Bosonization method.—The previous method proceeds by
carrying dimensional regularization on the ill-defined func-
tional determinants of the Jacobian of Eq. (58). A main
difference with Fujikawa’s approach is that one does not
need to directly worry about whether the Dirac operator has
a well-defined eigenvalue problem, and then compute its
spectrum. However, there exists a known trick which
consists in transforming that Jacobian into a another
well-suited quantity, a Jacobian “squared.”
As suggested in Refs. [39,40,47,48], the operators D†D

and DD† define a good eigenvalue problem in order to
compute the spectrum of iD. In particular, since those two
operators are Hermitian and covariant, they admit two
orthogonal eigenbases with real eigenvalues. For simplic-
ity, we introduce Pμ ¼ iDμ, and we then have

P†Pϕn¼ λ2nϕn; PP†φn¼ λ2nφn; n∈N; λn∈R; ð76Þ

where

Pϕn ¼ λnφn; P†φn ¼ λnϕn with λn ∈ R: ð77Þ

In order to form such operators from the original Jacobian
Eq. (34), one can build the following quantity:

J2½θ� ¼ detðP† −mÞ
det ðeiθγ5ðP† −mÞeiθγ5Þ

detðP −mÞ
det ðeiθγ5ðP −mÞeiθγ5Þ

¼ detðP† −mÞ
det ðeiθγ5ðP† −mÞeiθγ5Þ

detð−P −mÞ
det ðeiθγ5ð−P −mÞeiθγ5Þ

¼ det ð−P†Pþm2Þ
det ð−P†Pþm2 þmðP − P†Þ þ fðθÞÞ ; ð78Þ

where in the second line we have used the invariance of the
determinant under the change γμ → −γμ,14 and we have
defined

14It uses the fact that det ¼ Tr exp, and that the trace of an odd
number of Dirac matrices always vanishes. Since they have to
come in by pairs, the sign flip does not affect the result. Under
this sign flip, γ5 is unchanged since it has an even number of
Dirac matrices.
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fðθÞ¼ 4im2θγ5− i½θ;P2�γ5−
1

2
½σ:FV;θ�γ5−

1

2
½σ:FAγ5;θ�γ5

þ2imðθγ5P−Pθγ5Þþ imððPθÞ− ðP†θÞÞγ5: ð79Þ

FV and FA are the Bardeen curvatures as defined in
Eqs. (50) and (51), and σμν ¼ i

2
½γμ; γν�. Details of the

bosonization are provided in Appendix D.
θ is charged under the gauge group so ðPθÞ ¼

ði=∂θÞ − ½=V; θ� − ½=Aγ5; θ�. Therefore, we can a priori obtain
the consistent or the covariant anomaly, but we will see that
the bosonization we have chosen selects the covariant
result.
We shamelessly used the multiplicativity property,

detðAÞ detðBÞ ¼ detðABÞ, on nonregularized determinants.
Indeed, this has to be admitted since CDE assumes that for a
nonregularized determinant one can write log det ¼ Tr log.
The computation of this Jacobian can be performed

following the same principle given in Sec. II,

2A¼−
Z

ddq
ð2πÞde

iqxtrðfðθÞþmðP−P†ÞÞ 1

−P†Pþm2
e−iqx:

ð80Þ

At this point, one can recall that the terms that have an odd
number of Dirac matrices vanish under the trace. Therefore,
in the above we can drop the termmðP − P†Þ, and the terms
2imðθγ5P − Pθγ5Þ and imððPθÞ − ðP†θÞÞγ5 from fðθÞ,
since 1=ð−P†Pþm2Þ has an even number of Dirac
matrices. We are then left with

2A¼−
Z

ddq
ð2πÞd e

−iqxtr

�
−i½θ;P2�γ5−

1

2
½σ:FV;θ�γ5

−
1

2
½σ:FAγ5;θ�γ5þ4im2θγ5

�
1

−P†Pþm2
eiqx: ð81Þ

This produces in the end

2A ¼
Z

ddq
ð2πÞd tr hðθÞ

×
X
n≥0

�
Δ
�
−P2 þ i

2
σ:FV þ i

2
σ:FAγ5 þ 2q · P

��
n
Δ;

ð82Þ
where

hðθÞ ¼ −i½θ; P2�γ5 −
1

2
½σ:FV; θ�γ5 −

1

2
½σ:FAγ5; θ�γ5

þ 4im2θγ5 ð83Þ
and Δ ¼ 1=ðq2 −m2Þ.
After scrutinizing the various terms, they appear to be all

finite (hence nonambiguous), and in the end only one term
contributes,

2A ¼
Z

ddq
ð2πÞd Δ

3tr4im2θγ5

�
i
2
σ:FV þ i

2
σ:FAγ5

�
2

¼ 2
−i
16π2

ϵμνρσtr θðFV
μνFV

ρσ þ FA
μνFA

ρσÞ; ð84Þ

where we have discarded terms with an even number of γ5
matrices (they cannot yield a boundary term so they cannot
contribute to the final result). We thus obtain the so-called
covariant anomaly,

A ¼ −i
16π2

ϵμνρσtrθðFV
μνFV

ρσ þ FA
μνFA

ρσÞ

¼ −i
32π2

ϵμνρσtr θðFL
μνFL

ρσ þ FR
μνFR

ρσÞ: ð85Þ

Additional details on the calculation are provided in
Appendix D.
As an important remark, in the bosonized form of the

Jacobian, it turns out that the derivative coupling contri-
bution vanishes at order m0, only the mass term 4im2θγ5
(which stems from the term 2imθγ5 before bosonizing)
contributes. As a result, the computation is finite (in the
sense that no divergent integral appears); therefore no
ambiguity arises due to the definition of γ5 since we can
perform the calculation in four dimensions. Although the
operators stemming from the derivative coupling [ðDθÞγ5
before bosonizing] do not contribute to the anomaly, they
are required to compensate the finite higher order (of order
1=mk with k > 0) terms in the mass expansion, since the
final result has to be exact at order m0. Note also that we
bosonized usingD†D, but we could have equivalently used
DD† to get the same result.

3. Case of an anomalous vector symmetry

Starting from the vector-axial Lagrangian of Eq. (48), let
us perform now an SUðNÞ vector fermion reparametrization,

ψ → eiθðxÞψ ; ψ̄ → ψ̄e−iθðxÞ: ð86Þ

Under this fermion reparametrization, the Lagrangian given
by Eq. (48) becomes

L → ψ̄ ½iD −m − ðDθÞ�ψ ; ð87Þ

withDμ ≡ ð∂μ þ iVμ þ iAμγ5Þ, andagain the quantity inside
the parentheses, ðDθÞ≡ γμð∂μθ þ i½Vμ; θ� þ i½Aμ; θ�γ5Þ,
indicates that the covariant derivative locally acts on θðxÞ,
with θ charged under the gauge group. The Jacobian
produced by this transformation is therefore given by the
following expression:
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J½θ� ¼ detðiD −mÞ
detðiD −m − ðDθÞÞ : ð88Þ

As in the axial rotation, the functional determinants of
Eq. (88) are ill-defined and need to be regularized. In
dimensional regularization, this is the γ5 located in the
covariant derivativewhich entirely carries the ambiguity now.
Before presenting the computation of the Jacobian of

Eq. (88) and its bosonized form, one should notice that
starting from Eq. (85), no additional computation is needed,
if one is only interested in the result. Indeed, from

∂μJ
μ
5 ¼ ∂μJ

μ
R − ∂μJ

μ
L

¼ −i
32π2

ϵμνρσtrθðFL
μνFL

ρσ þ FR
μνFR

ρσÞ; ð89Þ

one can identify

∂μJ
μ
R ¼ −i

32π2
ϵμνρσtrθðFL

μνFL
ρσÞ;

∂μJ
μ
L ¼ i

32π2
ϵμνρσtrθðFR

μνFR
ρσÞ; ð90Þ

with θ ∈ SUðNÞ. Hence,

∂μJ
μ
V ¼ ∂μJ

μ
R þ ∂μJ

μ
L ¼ −i

32π2
ϵμνρσtrθðFR

μνFR
ρσ − FL

μνFL
ρσÞ

¼ −
i

16π2
ϵμνρσtrθðFV

μνFA
ρσ þ FA

μνFV
ρσÞ: ð91Þ

We are, however, more interested in presenting an explicit
and transparent evaluation of this version of the covariant
anomaly.

Fermionic expansion with free parameters.—We proceed
in a similar fashion as for the covariant anomaly in the axial
current, except there is no mass term to compute according
to Eq. (88).
The derivative term is ambiguous because of the

presence of γ5 in the covariant derivative and of the
divergent integrals. As explained in Sec. III C 2, it can
thus be written as

A ¼ A=∂ ¼
−i
16π2

ϵμνρσtrθaTa

�X
i

aiXi;μνρσ

�
; ð92Þ

where Xi are all the possible operators of the form
O1O2O3O4 with O1≤i≤4 ∈ fV;A; ∂g that can be formed.
Contrary to the case of the anomaly in the axial current, the
operators Xi that appear now have an odd number of A
(because there must be an odd number of γ5). Note that the
operators with a partial derivative to the right vanish, and
those with consecutive partial derivatives vanish due to the
contraction with the ϵ tensor. This again leaves us with 22
possible operators, with 22 free parameters ai.

The result should be covariant under the gauge trans-
formation Eq. (69). Once again, we only need to enforce the
gauge covariance with respect to ϵA to fix the free
parameters. The covariance of the result requires that its
gauge variation has the form Eq. (70), and we therefore
enforce on the free parameters that the derivatives of ϵA and
the operators that have ϵA neither at the beginning nor at the
end of the operator vanish. This fixes again 21 free
parameters out of 22 and leaves us with a result of the form

A=∂ ¼ αϵμνρσtrθðFV
μνFA

ρσ þ FA
μνFV

ρσÞ; ð93Þ

where α is the remaining free parameter.
For the anomaly in the axial current, we compared our

result to the ABJ anomaly by setting the gauge field A ¼ 0
to fix the normalization. Unfortunately, this is not possible
here because setting A ¼ 0 makes the whole term vanish.
In the case of the Abelian anomaly, we happen to have

the same issue, where the result is gauge covariant but there
is a normalization freedom that remains. In Ref. [27], they
deal with the free parameters for the Abelian anomaly to fix
the normalization factor by enforcing the conservation of
the axial current (up to the mass term).15 In Eq. (93), we
set the gauge fields and θ as Abelian16 and apply the
technique from Ref. [27].
We consider Eq. (93) with Abelian gauge fields and

Abelian θ, which is gauge covariant independently of the
remaining free parameter. To break down this gap, we
reorganize Eq. (93) in terms of generalized Chern-Simons
(GCS) forms using integration by parts, and then we
introduce an auxiliary background field ξμ associated with
the deformation of ð∂μθÞ17 as follows:

A=∂ ¼ βϵμνρσtr½ξμ − ð∂μθÞ�ðiAμÞFV
ρσ; ð94Þ

where β ¼ 4α. At this stage, Eq. (94) is no longer gauge
invariant under the axial gauge transformation. The con-
servation of the axial current (up to the mass term) can be
enforced nontrivially if the axial gauge field obtains its
mass after spontaneous symmetry breaking. By introducing
the Goldstone boson πA associated with the longitudinal
component of the axial gauge field Aμ, we obtain

15For the reader interested in anomaly from the global axial
(vector) transformation, see Ref. [27] for the details of compu-
tations and also the applications in axion phenomenology.

16Equation (93) can be separated in an Abelian part and a non-
Abelian part (formed uniquely of commutators of θ, V, and A).
Since the free parameter is common to both these parts, we can
set the non-Abelian part to zero to fix the free parameter as in the
Abelian case.

17The auxiliary vector field ξμ will be set to zero at the end of
the computation.
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Ã∂ ¼ βϵμνρσtr½ξμ − ð∂μθÞ�ðiAμÞFV
ρσ

−
i

8π2
ϵμνρσtr

�
πA
v
ð∂μξνÞFV

ρσ

�
: ð95Þ

Requiring the quantity Ã∂ to be gauge invariant implies that
β ¼ −i=ð4π2Þ, or equivalently α ¼ −i=ð16π2Þ. Additional
details about the GCS terms and the Goldstone terms are
provided in Appendix C. Eventually, going back to non-
Abelian gauge fields and θ, we obtain the non-Abelian
covariant anomaly in the vector current,

A=∂ ¼
−i
16π2

ϵμνρσtrθðFV
μνFA

ρσ þ FA
μνFV

ρσÞ: ð96Þ

Bosonization method.—We bosonise the Jacobian from
Eq. (88). Following the method detailed in Eq. (78)

J½θ�2 ¼ detð−ðiDÞ†iDþm2Þ
detð−ðiDÞ†iDþm2 þmðiD − ðiDÞ†Þ þ fðθÞÞ ;

ð97Þ

and we have defined

fðθÞ ¼ i½θ; D2� − 1

2
½σ:FV; θ� − 1

2
½σ:FAγ5; θ�: ð98Þ

However, this regularization yields the covariant anomaly
in the axial current as seen in the above, and it thus comes
with no surprise that the vector current is conserved. That is
to say, if we supplement the theory with global axial and
global vector symmetries, then this regularization puts all
the anomaly in the global axial symmetry and conserves the
global vector symmetry. Therefore, as expected, the
Jacobian in Eq. (97) is equal to one and then is unable,
from the start, to deal with an anomalous vector
transformation.

D. Consistent anomaly

For the covariant anomaly, we have showed that we can
bosonize the Jacobian in a gauge covariant way. However,
the anomalous operator A may not be gauge invariant, and
in that case, one should rather make sure that the deter-
minants in Eq. (34) are regularized in a nongauge invariant
way. Now, what we may ask is that the anomaly satisfies
the algebra of the gauge group; i.e., the anomaly can be
required to satisfy a consistency relation (also called an
integrability condition or Wess-Zumino condition [43]).
In that case, the anomaly is more accurately called the
consistent anomaly.
As a remark, it has been shown that the Wess-Zumino

condition corresponds to the Bose symmetry with respect
to the vertices of the one-loop Feynman diagrams. If the
covariant anomaly collects the effects of the anomaly to

only one of the vertices, this does not satisfy the Bose
symmetry and thus the so-called integrability condition.
Notice that the leading terms of consistent anomaly and
covariant anomaly (e.g., the anomaly corresponding to the
AAA triangle diagrams) are related by the Bose symmetry
factor. In four dimensions, the symmetry factor is 1=3. For
arbitrary 2n dimensions, the symmetry factor is 1=ðnþ 1Þ.
The reason for these symmetry factors lies in the distribu-
tion of anomaly in all vertices when evaluating the
consistent anomaly.18

1. Fermionic expansion with free parameters

As it is done in the previous sections, it is possible to
compute the anomaly without bosonizing the Jacobian,
although it is ambiguous. This ambiguity transpires in
certain traces that bear a γ5 in d dimensions. Keeping track
of the ambiguity requires the introduction of free param-
eters that need to be fixed under physical constraints. For
the covariant anomaly, those physical constraints arise from
the expected gauge covariance of the result. However,
for the consistent anomaly, it is not gauge covariance or
invariance that needs to be enforced, but rather Wess-
Zumino consistency conditions. We will outline the method
in the following.
The covariant derivative is iD ¼ i=∂ − =V − =Aγ5. Under an

axial reparametrization of the fermions, the path integral
yields the following Jacobian:

J½θ� ¼ detðiD −mÞ
det½eiθγ5ðiD −mÞeiθγ5 �

¼ detðiD −mÞ
detðiD −m − ðDθÞγ5 − 2imθγ5Þ

; ð99Þ

where θ ¼ θaTa is charged under the gauge group SUðNÞ.
The anomalous operator can be expressed as the follow-

ing expansion:

A ¼ −
Z

ddq
ð2πÞd trð−2imθγ5 − ðDθÞγ5Þ

×
X
n≥0

��
−1

qþm

�
ð−iDÞ

�
n
�

−1
qþm

�
: ð100Þ

As we will see, the mass term 2imθγ5 gives rise to the
anomaly, while the divergent term ðDθÞγ5 does not
contribute to the result at order m0. However, the derivative
term will contribute at higher order to cancel the contri-
butions from the mass term, so that the whole result is
proportional to m0.

18We remind the reader that the Bose symmetry will play an
essential role in the functional bosonizsation formalism; for
further discussions, see Ref. [49].
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The computation is the same as the one of the consistent
anomaly in Sec. III C 2. We thus have

Amγ5 ¼ −i
16π2

ϵμνρσtrθaTa

�
FV
μνFV

ρσ þ
1

3
FA
μνFA

ρσ

−
8

3
ðiAμiAνFV

ρσ þ iAμFV
νρiAσ þ FV

μνiAρiAσÞ

þ 32

3
iAμiAνiAρiAσ

�

¼ ABardeen ð101Þ

and

A=∂γ5 ¼
−1
16π2

ϵμνρσtrθaTa

�X
i

aiXiμνρσ

�
; ð102Þ

where Xi are all the possible operators of the form
O1O2O3O4 with O1≤i≤4 ∈ fV;A; ∂g that can be formed,
provided it has an even number of A fields (the number of
γ5 must be odd). Note that the operators with a partial
derivative to the right vanish, and those with consecutive
partial derivatives vanish due to the contraction with the ϵ
tensor. This leaves us with 22 possible operators, with 22
free parameters ai.
Let us take all the operators from the derivative term

when the axial field A goes to zero. There remains only the
operators that do not depend on A (they only bear V and ∂)
and each has a free parameter. Setting A to zero amounts to
considering an axial reparametrization of the fermion in a
vector gauge theory, and if we want, for example, to
conserve the vector current, we know the result should
then be vector gauge invariant. Therefore, the free param-
eters are fixed under this requirement, and the terms that do
not depend on A combine together to form

α
−i
16π2

ϵμνρσtrθFV
μνjA¼0

FV
ρσjA¼0

; ð103Þ

with FV
μνjA¼0

¼ iðð∂μVνÞ − ð∂νVμÞ þ i½Vμ; Vν�Þ, and α is a
remaining free parameter that cannot be fixed by the sole
requirement of gauge invariance (while A ¼ 0).
We rewrite this term as

α
−i
16π2

ϵμνρσtrθFV
μνjA¼0

FV
ρσjA¼0

¼ α
−i
16π2

ϵμνρσtrθ½FV
μνFV

ρσ

− FV
μνjA¼0

i2½Aρ; Aσ� − i2½Aμ; Aν�FV
ρσjA¼0

− i2½Aμ; Aν�i2½Aρ; Aσ��; ð104Þ

where we have made the Bardeen curvature of Eq. (50)
appear.

Now consider the remaining terms with free parameters,
that is to say, the terms that vanished when we set A to zero.
Among those operators, we can identify the same operators
as those in the last line of equation Eq. (104), with different
free parameters βi. Therefore, they will combine together,
and only change the free parameters βi to new free
parameters β0i.
We will now enforce the Wess-Zumino consistency

conditions. No calculation is needed, and we will only
use the well-known fact that the Wess-Zumino consistency
conditions fix the coefficients of all the operators with
respect to the coefficient of the term FV

μνFV
ρσ (as explained

in Ref. [43]). Therefore, among all the remaining operators,
all the free parameters will be fixed with respect to one, α in
Eq. (104), such that the whole operator respects the
integrability conditions. This unequivocally leaves us with

A∂γ5 ¼ α
−i
16π2

ϵμνρσtrθaTa

�
FV
μνFV

ρσ þ
1

3
FA
μνFA

ρσ

−
8

3
ðiAμiAνFV

ρσ þ iAμFV
νρiAσ þ FV

μνiAρiAσÞ

þ 32

3
iAμiAνiAρiAσ

�

¼ αABardeen; ð105Þ

where we still have one free parameter left, α.

Final result.—Now let us put together the contributions
from the mass term and the derivative term, i.e., Eqs. (101)
and (105), and we obtain

A ¼ ð1þ αÞABardeen: ð106Þ

Basically, the Wess-Zumino consistency conditions allow
us to fix the coefficients of all the operators with respect to
the coefficient of the term FV

μνFV
ρσ, and this is why we still

have a remaining freedom at the end. The coefficient of
FV
μνFV

ρσ can be fixed by comparing the result with the
anomaly in a vector gauge theory as suggested in [43]. That
is to say, in our result, we again set A to zero. Therefore we
can identify our result with the ABJ anomaly [with
θ ∈ SUðNÞ] of Eq. (26), which immediately sets α to
zero, leaving the expected result.
Note that there is no need to introduce counterterms in

our computation to obtain the minimal Bardeen anomaly,
because the vector current conservation has been enforced
to fix the free parameters.
As a remark, notice that by comparing our result with the

ABJ anomaly to fix the last free parameter, we restrain
ourselves to the consistent anomaly with the vector current
being conserved. If we want, for example, to conserve the
axial current, we need to compare with the anomaly in a
vector gauge theory where the anomaly is in the vector
current. Besides, the Wess-Zumino consistency conditions
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have to be adapted. Indeed, they correspond to enforcing
the Lie algebra of the gauge group and the Ward identities
as well. Changing the current that remains conserved at the
quantum level amounts to changing the Ward identities,
hence changing the Wess-Zumino consistency conditions.
The procedure presented in this section can thus also be

applied while enforcing the conservation of the axial
current. It can even be used to obtain a generic expression
where the consistent anomaly is distributed between the
vector and the axial currents.
As far as we know, this is the only method that allows

one to tune which current bears the anomaly from a path
integral approach.

Calculation in BMHV’s scheme.—Alternatively, it is pos-
sible to obtain the Bardeen anomaly without relying on free
parameters. It is known that Pauli-Villars regularization
satisfies the Wess-Zumino consistency conditions, as well
as enforces conservation of the vector current [11]. Besides,
as showed in Refs. [15,36,50], the BMVH scheme in
dimensional regularization is equivalent to a “continuous
superposition” of Pauli-Villars regularizations, and thus
respects the Wess-Zumino consistency conditions and
vector current conservation as well. We can therefore avoid
the introduction of free parameters and significantly sim-
plify the calculation by making use of the BMHV scheme
to obtain Bardeen’s consistent anomaly in the axial current.
However, this approach prevents the freedom to choose
which current should bear the anomaly, as opposed to the
free parameters approach discussed above.

2. Bosonization method

The bosonization presented in Sec. III C 2 defines a finite
and nonambiguous Jacobian. But it only allows us to get a
gauge covariant result. The same procedure thus cannot be
used to compute the consistent anomaly.
Nonetheless, we can try to bosonize with the operator

D2. It has the same spectrum as iD (aside from squaring it).
We circumvent the problem of the non-Hermiticity using
the analytic continuation Aμ → iAμ [11,15].
We showed that bosonizing using ðiDÞ†iD as a regulator

enforces the gauge covariance of the result, leaving us with
only the possibility to get the covariant anomaly. However,
there is no reason to think that bosonizing with the analytic
continuation Aμ → iAμ and D2 would enforce all the
conditions to get the consistent anomaly, namely the
Wess-Zumino (integrability) consistency conditions.
Let us now see in the computation why the D2

bosonization along with the analytic continuation is still
ambiguous.
After the analytic continuation, we have iD ¼

i=∂ − =V − i=Aγ5. The Jacobian of the axial field reparamet-
rization is the following:

J½θ� ¼ detðiD −mÞ
det ðeiθγ5ðiD −mÞeiθγ5Þ

¼ detðiD −mÞ
detðiD −m − 2imθγ5 − ðDθÞγ5Þ

; ð107Þ

where θ ¼ θaTa is charged under the SUðNÞ gauge group.
Now we perform the bosonization,

J2½θ� ¼ detðiD −mÞ
det ðeiθγ5ðiD −mÞeiθγ5Þ

detðiD −mÞ
det ðeiθγ5ðiD −mÞeiθγ5Þ

¼ detðiD −mÞ
det ðeiθγ5ðiD −mÞeiθγ5Þ

detð−iD −mÞ
det ðeiθγ5ð−iD −mÞeiθγ5Þ

¼ detðD2 þm2Þ
detðD2 þm2 þ ½2imθγ5; iD� þ fiD; ðDθÞγ5g þ 4im2θγ5Þ

; ð108Þ

where we have used the fact that the determinant is
invariant under the change γμ → −γμ (see footnote 14).
We expand it following the prescription described in Sec. II,

log J½θ�2 ¼
Z

d4x
ddq
ð2πÞd e

−iq·xtrð½2imθγ5; iD − q �

þ fiD − q; ðDθÞγ5g þ 4im2θγ5Þ
1

D2 þm2
eiqx:

ð109Þ
We can straightforwardly see that the term ½2imθγ5;
iD − =q�=ðD2 þm2Þ has an odd number of Dirac matrices;

therefore it vanishes under the trace. For simplicity we
extract the γ5 in Dμ using the notations

iDμ ¼ iDV
μ − iAμγ5; where iDV

μ ¼ i∂μ − Vμ: ð110Þ

We have

e−iq·xD2eiq·x ¼ðDþ iqÞðDþ iqÞ
¼D2−q2þ2iq ·DV − ½γμ;γν�γ5iqμAν: ð111Þ
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Finally, we can expand the Jacobian as usual,

2A¼−
Z

d4q
ð2πÞ4 trðfiD−=q;ðDθÞγ5gþ4im2θγ5Þ

×
X
n≥0

½ΔðD2þ2iq ·DV − ½γμ;γν�γ5iqμAνÞ�nΔ; ð112Þ

where Δ ¼ 1=ðq2 −m2Þ. The key point is that because of
the term −½γμ; γν�γ5iqμAν, there are terms with several
momenta q contracted with a Dirac matrix as γμqμ.
Combined with divergent integrals, they lead to traces
such as

trðγμγνγργσγaγ5γaÞ; ð113Þ

which are ambiguous in d dimensions. When bosonizing
using ðiDÞ†iD, the term −½γμ; γν�γ5iqμAν does not appear
[see Eqs. (D17) and (D18) in Appendix D].
Therefore, the bosonization method does not offer any

appealing simplification regarding the calculation of the
consistent anomaly. One could, of course, proceed with the
computation with free parameters or get rid of those
ambiguities using the BMHV scheme which satisfies the
Wess-Zumino conditions but also enforces vector current
conservation. We refrain from doing so as ultimately this
does not offer any insights compared to the fermionic
expansion already discussed.

IV. AXIAL-GRAVITATIONAL ANOMALY

In this section we aim at deriving the axial-gravitational
anomaly, which stems from the gravitational contribution to
the Jacobian associated with the axial reparametrization as
defined in Eq. (3).
In curved spacetime, the covariant derivative does not

bear only the gauge fields. Diffeomorphism invariance
requires the presence of the Christoffel connection, and
Lorentz invariance requires the presence of the spin
connection for fermions. For simplicity, we consider a
theory without a gauge sector (in any case we know that we
do not expect cross terms between the gravity sector and the
gauge sector). We denote by Dμ the general covariant
derivative, which includes both the spin connection when
applied to the nontrivial element of the Dirac space and the
Christoffel symbols when applied to a Lorentz tensor. We
follow [51] for conventions for the spin connection. We
have

DμΨ ¼ ð∂μ þ ωμÞΨ; ð114Þ

with the spin connection defined asωμ ¼ 1
8
½γa; γb�eνaðDμebνÞ,

with eaμ the tangent frame vielbein such that gμν ¼ eaμebνgab
(latin indices refer to the tangent frame).

Considering a spinless Lorentz vector v we have

Dμvν ¼ ∂μvν þ Γν
μρvρ; ð115Þ

Dμvν ¼ ∂μvν − Γρ
μνvρ: ð116Þ

The following expressions will be useful later:

FμνΨ ¼ ½Dμ; Dν�Ψ ¼ 1

4
γργσRμνρσΨ; ð117Þ

D2 ¼ D2 −
i
2
σμνFμν where σμν ¼ i

2
½γμ; γν�; ð118Þ

with

i
2
σ:FΨ ¼ 1

4
R1DiracΨ; ð119Þ

where 1Dirac is the identity in Dirac space.
Finally, the covariant derivative commutes with the Dirac

matrices

ðDμγ
νÞ ¼ ð∂μγνÞ þ Γν

μργ
ρ þ ½ωμ; γν� ¼ 0; ð120Þ

ðDμγ5Þ ¼ ½ωμ; γ5� ¼ 0: ð121Þ

A. Covariant derivative expansion
in curved spacetime

The CDE in curved spacetime requires extra care that
significantly complexifies the expansion. The main point is
that the commutativity between the covariant derivatives D
and the propagators Δ ¼ 1=ðq2 −m2Þ that appear in our
expansion is lost. Indeed, q2 ¼ gμνðxÞqμqν is spacetime
dependent. Therefore ½Dμ;Δ� ¼ −ð∂μq2ÞΔ2. The CDE can
still be performed in an extended framework that includes
the curvature of spacetime, as it has been done, for
example, in Refs. [52,53]. However, we propose here a
different way of conducting the expansion that we believe
to be simpler in the formalism. Defining the expansion in
curved spacetime is not trivial, and this is out of the scope
of this paper (see Ref. [54]), so we just give the outline of
the method without delving too much into the details.
First of all, there is no trivial definition of the Fourier

transform in curved spacetime. However, following
Refs. [53,55] we can define the Fourier transform using
Riemann normal coordinates (RNC). We take the momen-
tum qμ to be the covariant variable conjugate to the
contravariant variable xμ, so that dDqdDx is diffeomor-
phism-invariant. We then have

ð∂μqνÞ ¼
∂qν
∂xμ

¼ 0; ð122Þ

but
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ð∂μqνÞ ¼ ð∂μgνρqρÞ ¼ ð∂μgνρÞqρ ≠ 0: ð123Þ

We thus have the standard Fourier transform of the
covariant derivative,

e−iq·xDμeiq·x ¼ Dμ þ ð∂μiqνxνÞ ¼ Dμ þ iqνð∂μxνÞ
¼ Dμ þ iqμ: ð124Þ

B. Computation of the gravitational anomaly

According to the previous results, we know that at order
m0 the derivative coupling does not contribute in the
bosonized form (and we can show it), and for simplicity
we drop it. The anomaly is thus fully encompassed (at order
m0) by the following Jacobian19:

J½θ�2 ¼ det ð ffiffiffiffiffiffi−gp 2ðD2 þm2ÞÞ
det ð ffiffiffiffiffiffi−gp 2ðD2 þm2 þ 4im2θγ5ÞÞ

: ð125Þ

Since we discarded the derivative term, this Jacobian is
trivially finite and thus well-defined.
Using Eq. (124), we have,

e−iq·xD2eiq·x ¼ gμνðDμþ iqμÞðDνþ iqνÞ−e−iq·x
i
2
σ:Feiq·x

¼D2−q2þ2iq ·Dþ igμνðDμqνÞ−
i
2
σ:F

¼D2−q2þ2iq ·D− iΓρ
μνqρ−

i
2
σ:F: ð126Þ

Hence we can expand the Jacobian as

log J½θ�2 ¼
Z

d4x
ddq
ð2πÞd tr

�
4im2θγ5

X
n≥0

�
Δ
�
D2 −

i
2
σ:F þ 2iq ·D − iΓρ

μνqρ

��
n
Δ
�
: ð127Þ

Since all the Lorentz indices are contracted, the field strength that appears in Eq. (127) is in the fermion representation20:
hence we can use Eq. (119) to simplify

log J½θ�2 ¼
Z

d4x
ddq
ð2πÞd tr

�
4im2θγ5

X
n≥0

�
Δ
�
D2 −

R
4
þ 2iq ·D − iΓρ

μνqρ

��
n
Δ
�
: ð128Þ

We remark that the spacetime measure
ffiffiffiffiffiffi−gp

does not come
into play in the expansion. This is because it appears in both
the numerator and the denominator.
Now, we are interested in the terms that are propor-

tional to m0. In each of these terms, the propagators
Δ ¼ 1=ðq2 −m2Þ have to be commuted to the left in order

to perform the integration over momentum. Therefore,
each of these terms will yield several terms where the
open covariant derivatives will be localized or not on a
propagator.
For example, consider the following term of

order m0:

Z
ddq
ð2πÞd tr

�
4im2θγ5Δ

�
−
R
4

�
ΔD2Δ

�
¼

Z
ddq
ð2πÞdΔ

2tr

�
4im2θγ5

�
−
R
4

�
ðΔD2 þ ðD2ΔÞ þ 2ðDμΔÞDμÞ

�
: ð129Þ

The only terms that can contribute in the end are gauge and
diffeomorphism invariant. That is to say, the remaining open
covariant derivatives that are not localized on a propagator
have to combine together to form field strengths. For
example, in Eq. (129), the term involving ðDμΔÞDν has a
single open derivative, it is impossible to form an invariant
term with it, and thus it cannot contribute to the final result
(besides it vanishes in Riemann normal coordinates).
Second, notice that whenever a covariant derivative is

localized on a propagator, it bears no spin connection since
Δ is a scalar in Dirac space: ðDμΔÞ ¼ ð∂μΔÞ1Dirac.

Keeping those last two points in mind, one can easily
isolate the few terms that will contribute to the gravitational
anomaly, making use of

trγ5 ¼ trγ5γμγν ¼ 0; trγ5γμγνγργσ ≠ 0: ð130Þ

19We have decided to work within the bosonized form of the
Jacobian, but one could have equivalently chosen to carry the
computation with the original Jacobian.

20Indeed, recall that the trace in internal space (i.e., Dirac space
and gauge space) is defined as trA ¼ P

n Ψ
†
nAΨn, where fΨng is a

basis of internal space [constant vectors: ðDμΨnÞ ¼
ωμΨn þ VμΨn]. Therefore, for any operator O that is a matrix in
internal space without free Lorentz indices (and it can bear open
covariant derivatives)wehave trDμO ¼ P

n Ψ
†
nDμOΨn. SinceO is

amatrix in internal space, thenOΨn is a vector in internal space, and
all the derivatives in O are localized because they act on Ψn.
Therefore, in

P
n Ψ

†
nDμOΨn,Dμ acts on a vector in internal space,

and hence can be written in the fermion representation.
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In Eq. (128), the only terms that bear Dirac matrices are the
covariant derivatives via the spin connection. The remain-
ing open covariant derivatives will combine in the end to
form field strengths that have two Dirac matrices [see
Eq. (117)]; therefore the only way to have enough Dirac
matrices so that the trace does not vanish is by having four
open covariant derivatives, and thus two field strengths.
In the end, the only terms that can contribute are the

following:
(i) At n ¼ 2:

R ddq
ð2πÞd Δ

3tr½4im2θγ5D2D2�.

(ii) At n ¼ 3:
R ddq

ð2πÞd Δ
4tr½4im2θγ5ðD2ð2iq ·DÞ2 þ

2iq ·DD22iq ·Dþ ð2iq ·DÞ2D3Þ�.
(iii) At n ¼ 4:

R ddq
ð2πÞd Δ

5tr½4im2θγ5ð2iq ·DÞ4�.
In each of these terms, the momenta can be freely
commuted to the left for the integration for the same
reasons as before. Indeed, if one of the covariant derivatives
were localized on a momentum q, it would bear no Dirac
matrix since q is a Dirac scalar; hence the term would
vanish under the trace. The sum of the different contribu-
tions yields

2Agrav ¼ tr4im2θγ5ðI ½q0�3D2D2 þ I ½q2�4gμνð2iÞ2ðD2DμDν þDμD2Dν þDμDνD2Þ
þ I ½q4�5ðgμνgρσ þ gμρgνσ þ gμσgνρÞð2iÞ4DμDνDρDσÞ

¼ −i
16π2

2

6
tr iθγ5ð0D2D2 þ 2DμDνDμDν − 2DμD2DμÞ

¼ −i
16π2

2

6
tr iθγ5FμνFμν: ð131Þ

In the last line we have not used any integration by parts nor
trace cyclicity—it is only algebra. Note that when comput-
ing a gauge anomaly, the contributing term is of the form
tr γ5σ:Fσ:F, which vanishes in gravity thanks to the use of
Eq. (119) earlier (and because we discarded the gauge
sector).
Now one must pay some attention to the last line of

Eq. (131). The field strength on the right is in the fermion
representation, and we can thus write

−i
16π2

2

6
triθFμνFψ

μν: ð132Þ

However, the field strength on the left will contract the
indices of Fψ

μν because of the Christoffel connection

FμνFψ
μν ¼ Fψ ;μνFψ

μν þ γαγβ½RR�; ð133Þ

where the last term is a sum of Riemann tensors contracted
together and with the two Dirac matrices. It vanishes using
the symmetries of the tensors (and also vanishes under the
Dirac trace).
Using Eq. (117), we obtain

Agrav ¼ −i
16π2

1

6
tr

�
iθγ5

1

4
γαγβRμν

αβγ
μγν

1

4
Rρσμν

�

¼ −i
384π2

ϵ̄μνρσRαβ
μνRαβρσ; ð134Þ

which is the so-called axial-gravitational anomaly. We
have ϵ̄μνρσ ¼ ϵμνρσ=

ffiffiffiffiffiffi−gp
.

We can notice that in our computation, the only contri-
bution to the gravitational anomaly is in the end the spin
connection via the field strengths, although there are many

terms with covariant derivatives that are localized on propa-
gators that can yield Riemann squared terms via the
Christoffel connection. This translates the fact that a fermion
in curved spacetime is not subject to diffeomorphism
invariance, but only to Lorentz invariance. The spin con-
nection only ensures that Lorentz invariance is preserved in
curved spacetime. Therefore, it is expected that one can get
the gravitational anomaly only considering the spin con-
nection, and not minding the Christoffel connection.
In the end, we could have had the correct result in a very

simple framework where spacetime is considered flat,
but the covariant derivatives acting on a spinor bears the
spin connection (the covariant derivative acting on a
Dirac matrix would be zero since we would consider it
“uncharged” under the spin connection).

V. SCALE ANOMALY

It is well-known that there are two main categories of
symmetries which are broken by the quantization of a
theory. The first is the axial symmetry associated with
Dirac’s γ5, the chiral anomaly, that we have just treated in
detail. The other is the Weyl transformation, which changes
the length scale of spacetime, keeping the local angle
invariant, and this is called the Weyl anomaly or conformal
or trace or scale anomaly [28–32]. We then propose to
evaluate the Weyl anomaly always following the prescrip-
tion described in Sec. II, and for pedagogical reasons we
stick to the case of QED,

L ¼ ψ̄ði=∂ − =V −mÞψ −
1

4e2
F2: ð135Þ

Scale invariance is classically broken by the fermion
mass term. The divergence of the Noether current Jμ
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associated with the scale transformation, i.e., the trace of
the symmetric energy-momentum tensor T̃μ

μ, reads

∂μJμ ¼ T̃μ
μ ¼ mψ̄ψ : ð136Þ

This relation is also broken at the quantum level by the
renormalization of the coupling e.
The scale transformation xμ → x0μ ¼ eσxμ induces

∂

∂xμ
→

∂

∂x0μ
¼ e−σ

∂

∂xμ
;

ddx → ddx0 ¼ edσddx; ð137Þ

and the fields transform with their canonical mass
dimension

ψðxÞ → ψ 0ðx0Þ ¼ e−ðd−1Þσ=2ψðxÞ;
ψ̄ðxÞ → ψ̄ 0ðx0Þ ¼ e−ðd−1Þσ=2ψ̄ðxÞ;
AμðxÞ → A0

μðx0Þ ¼ Aμðx0Þ ¼ e−σAμðxÞ; ð138Þ

where d is the dimension of spacetime. Notice that the
gauge field does not transform by itself: it only transforms
due to its dependence on x [11].
Using the invariance of the path integral under the

relabeling of the path integral variables and the invariance
of the spacetime integral under relabeling the spacetime
variable, we can write

Z
ðDψÞ0ðDψ̄Þ0 exp

�
i
Z

ddx0L½x0;ψ 0ðx0Þ; Aμðx0Þ�
�

¼
Z

DψDψ̄ exp

�
i
Z

ddxL½x;ψðxÞ; AμðxÞ�
�
: ð139Þ

On the other hand, we know how the action transforms, and
we can assume that the transformation of the measure
produces a Jacobian,

Z
ðDψÞ0ðDψ̄Þ0 exp

�
i
Z

ddx0L½x0;ψ 0ðx0Þ; Aμðx0Þ�
�

¼
Z

J½σ�DψDψ̄ exp

�
i
Z

ddxL½x;ψðxÞ; AμðxÞ�

þ
Z

ddx

�
ψ̄

�
−i

d − 1

2
ð∂σÞ −mσ

�
ψ

��
: ð140Þ

One can take advantage of equating the two path integrals
to express the Jacobian as

J½σ� ¼ detðiD −mÞ
det

	
iD −m − σm − i d−1

2
ð∂σÞ


 : ð141Þ

The term proportional to ð=∂σÞ requires it to be regularized,
we use the BMHV scheme of dimensional regularization

[25,37] since the calculation does not involve any γ5
matrices. At order m0, the divergent contribution from
−i d−1

2
ð=∂σÞ vanishes; only the finite contribution from σm

remains and yields the scale anomaly

Ascale ¼
σ

24π2
trðFμνÞ2: ð142Þ

More details of the calculation are provided in Appendix E.
However, higher order terms (terms of order 1=mk, with
k > 0) involve contributions from both σm and d−1

2
ð=∂σÞ

which cancel one another.
We can now relate the anomaly to the β function. At tree

level the coupling e does not transform. It, however,
transforms at the one-loop level, and by definition of the
β function we have

e → eþ σβðeÞ: ð143Þ

The following action is invariant under the scale trans-
formation up to the mass term:

S ¼
Z

ddxL½x;ψðxÞ; AμðxÞ�

¼
Z

ddx

�
ψ̄ðiD −mÞψ −

1

4e2
F2

�
: ð144Þ

By definition of the β function, the gauge sector transforms
at one loop as

−
1

4e2
ðFμνÞ2 → −

1

4e2
ðFμνÞ2 þ σ

βðeÞ
2e3

ðFμνÞ2: ð145Þ

By identification with the term produced at one loop by the
Jacobian, we deduce the following expression for the one-
loop β function:

βðeÞ ¼ e3

12π2
; ð146Þ

which corresponds to the well-known QED β function.
A derivation of the scale anomaly has been proposed by

Fujikawa in Ref. [30]. This is interesting to point out an
important difference between our procedure and Fujikawa’s
procedure for computing the scale anomaly. In Fujikawa’s
method, we temper directly with the path integral measure;
therefore it is necessary to isolate the field transformation
from the spacetime transformation. This is achieved by
introducing the curvature of spacetime and defining a
diffeomorphism invariant path integral measure. Because
of this redefinition of the fields, they do not transform
with their canonical mass dimension anymore. It is even
emphasized in [11] that doing the transformation with their
canonical mass does not yield the correct result.
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However, in our procedure we can use the invariance of
the spacetime integral under relabeling the spacetime
variable, along with transforming the fields with their
canonical mass dimension. As we showed, it provides
the correct result without having to introduce the curvature
of spacetime or redefining the fields in a diffeomorphism
invariant way.

VI. COMPARISON WITH FUJIKAWA’S METHOD

Let us consider the simple case of a vector gauge theory
and an axial fermion reparametrization. The covariant
derivative is

Dμ ¼ ∂μ þ iVμ: ð147Þ

Under the infinitesimal Abelian field reparametrization,

ψ → eiθðxÞγ5ψ ; ψ̄ → ψ̄eiθðxÞγ5 ; ð148Þ

the path integral,

Z
DψDψ̄e

R
d4xψ̄ðiD−mÞψ ; ð149Þ

produces the following Jacobian:

J½θ� ¼ detðiD −mÞ
detðiD −m − ð=∂θÞγ5 − 2imθγ5Þ

: ð150Þ

As emphasized before, the initial theory is ill-defined,
leading to an ambiguous Jacobian. A well-known way of
dealing with the ambiguity is to bosonize it [15] (it enforces
the conservation of the vector current as explained in
Sec. III A 2),

J½θ�2 ¼ detðD2 þm2Þ
detðD2 þm2 þ fiD; ð=∂θÞγ5g þ 4im2θγ5Þ

: ð151Þ

Note also that since the theory is nonchiral, we have
ðiDÞ† ¼ iD, and hence there is no difference between the
bosonization with D†D or D2.
As detailed in Eq. (B2) of Appendix B, the log of this

ratio of determinant can be written as follows:

log J½θ� ¼ −Tr
�
1

2

fiD; ð=∂θÞγ5g
m2

1

1þ D2

m2

�

− Tr
�
2iθγ5

1

1þ D2

m2

�
; ð152Þ

where Tr is the trace over both spacetime and internal
spaces.
Now let us recall Fujikawa’s procedure to compute the

anomaly. The Dirac operator iD is Hermitian and thus

provides a complete and orthonormal set of eigenfunctions
fφng with real eigenvalues λn, such that iDφn ¼ λnφn. We
use this basis to decompose the fermion field, and this will
enable us to define the path integral measure,

ψðxÞ ¼
X
n

anφnðxÞ; ψ̄ðxÞ ¼
X
n

φ†
nðxÞb̄n: ð153Þ

The measure is then defined as

DψDψ̄ ¼
Y
n

dandb̄n: ð154Þ

Now the fermion undergoes an axial reparametrization as in
Eq. (148), the reparametrized field can be decomposed in
the eigenbasis as well, with coefficients a0n and b̄0n. They are
related to an and b̄n by the transformation matrix Cnm,

a0n ¼
X
m

Cnmam; b̄0m ¼
X
n

Cnmb̄n; ð155Þ

where

Cnm ¼ δnm þ i
Z

d4xθðxÞφ†
nðxÞγ5φmðxÞ: ð156Þ

Now we know that the Grassmann measure transforms with
the inverse determinant of the transformation operators,

Y
n

da0n ¼ ðdet CÞ−1
Y
n

dan;

Y
m

db̄0m ¼ ðdet CÞ−1
Y
m

db̄m; ð157Þ

whence

Dψ 0Dψ̄ 0 ¼ ðdet CÞ−2DψDψ̄ : ð158Þ

Finally, using det ¼ exp Tr log and expanding the log in
first order in θ infinitesimal, the Jacobian reads

log J½θ� ¼ −2i
Z

d4xθðxÞ
X
n

φ†
nðxÞγ5φnðxÞ: ð159Þ

Since fφng defines a complete set of operators, it is, in fact,

log J½θ� ¼ −Tr 2iθγ5; ð160Þ

where the trace Tr is over both internal indices and
spacetime.
This quantity needs to be regularized; hence Fujikawa

introduces a regulator that will work as a cutoff. This
regulator needs to preserve the spectrum of the theory. In
the simple case of a vector gauge theory, a good choice is
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log J½θ� ¼ − lim
Λ→∞

Tr 2iθγ5f

�
D2

Λ2

�
: ð161Þ

The function f that was introduced has to be a smooth
function such that f and all its derivatives vanish at
infinity and respect the requirement fð0Þ ¼ 1. It can, for
example, be

fðxÞ ¼ 1

1þ x
: ð162Þ

This leaves us with

log J½θ� ¼ − lim
Λ→∞

Tr

�
2iθγ5

1

1þ D2

Λ2

�
: ð163Þ

Now let us compare Eqs. (152) and (163). If one takes
the infinite mass limit in Eq. (152), it is clear that one
recovers Eq. (163) withΛ identified as the physical fermion
mass. It thus appears that the procedure presented in this
paper (the bosonic CDE) not only amounts to Fujikawa’s
procedure in the infinite mass limit but moreover general-
izes it to a finite and physical mass.
In Fujikawa’s procedure, the infinite mass limit ensures

that the Jacobian is of order m0, while in the bosonic CDE,
it is the derivative coupling that plays this role.21 Besides, in
the bosonic CDE, there is no need to add the regulator by
hand. Although, in more complicated cases (when the
theory is vector axial, for example), there is still a choice on
how to define nonambiguously the Jacobian, which is in the
end making a choice of regulator.
As pointed out in the above, in the bosonic CDE the

regulator that naturally appears corresponds to

fðxÞ ¼ 1

1þ x
; ð164Þ

as in the treatment of Fujikawa. It is known that this specific
regulator amounts to doing a Pauli-Villars regularization
[15]. It is also known that Pauli-Villars regularization
enforces the conservation of the vector current, while the
axial one is anomalous. Therefore, in the infinite mass
limit, the bosonic CDE amounts to a Pauli-Villars regu-
larization, and hence conserves the vector current. Now
since the anomaly is mass independent, we can expect that
with a finite mass, the conservation of the vector current
will hold.

Another point that is worth noticing is that in the bosonic
CDE, the anomaly always arises in the mass term, even if
the mass is finite. Likewise, in a Pauli-Villars regulariza-
tion, we know that the anomaly is carried by the mass
regulating term (see Sec. 6.2 of Ref. [11]).

VII. CONCLUSION

EFT has always been a pillar in particle physics. Its
fundamental reason is to transform a QFT paradigm into a
phenomenologically accessible one. In practice, it can be
used to “replace” (integrating out) supposedly directly
inaccessible fields by potentially observable distortions
(higher dimensional operators effects). Those heavy or
weakly coupled fields may or may not be sensible to other
symmetries.
If these symmetries are for some reasons anomalous,

then the EFTwill inherit very specific anomalous operators,
i.e., interactions between the “light” fields. In order to
compute these interactions, there exist very efficient and
well-known master formulas and techniques to apply on the
full UV theory, mainly by computing loop Feynman
diagrams or by computing the variance of the fermionic
measure in the path integral which may involve quite a
different toolkit.
Building successively EFTs from the path integral, i.e.,

integrating out fields successively, offers undeniable advan-
tages. Then, when encountering anomalous symmetries
one has to inevitably borrow standard calculations made in
a substantially different context. This task is not always
straightforward.
In this work, we have presented a natural way to build

EFTs from the path integral, being able to get the anomalous
operators for free and in a self-consistent way, i.e., without
having to rely on any external results and then specific
conditions of applicability. Indeed, when building EFTs
involving anomalous interactions onemay face the choice of
deciding in which current this has to go; consequently, one
may customize the regularization of EFTs.
While constructing an EFT from a generic UV theory,

this method allows one to directly obtain the anomalous
interactions. The procedure is simple and based on the well-
known fact that an anomalous transformation means that
the path integral measure transforms with a nontrivial
Jacobian. Opposed to Fujikawa’s prescription which com-
putes directly the transformed measures from accessing the
zero modes of Dirac operators, we expressed this Jacobian
as a ratio of functional determinants, i.e., two EFTs. The
“comparison” of these two EFTs allows us to access
straightforwardly the anomalous operators. This is even
more remarkable when this method is combined with the
CDE techniques. In practice, one only has to perform basic
algebra and power counting to access the expected result. It
is all the more striking that the CDE, extended to curved
spacetime, provides so straightforwardly the gravitational
anomaly.

21In the case of a vector-axial theory, we showed in Sec. III D 2
that the analytic continuation Aμ → iAμ to make iD Hermitian,
and the bosonization as in Eq. (108), hence Eq. (152) replacing
ð=∂θÞ by ðDθÞ, is still ambiguous. However, we also noted that the
ambiguity was carried by the derivative term only. In Fujikawa’s
procedure, the derivative term vanishes because of the infinite
mass limit, and this is why the analytic continuation is sufficient
to bring forth the consistent anomaly.
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The presented methodology is even more impressive
since it allows one to obtain all various types of anomalies
in vector-axial gauge theory (covariant anomaly involving
vector or axial symmetries; consistent anomaly), the axial
gravitational anomaly, and the Weyl anomaly (even if the
last one has a quite different physical nature).
These computations have been presented in details and

the heart of those computations are (as expected) the
procedure used to regularize ill-defined functional deter-
minants. A first method consists in fermionic CDE com-
bined with dimensional regularization and introduces free
parameters to keep track of γ5 ambiguities subsequently
fixed when imposing gauge invariance (covariant anomaly)
or integrability conditions (consistent anomaly). We have
also investigated another method based on evaluating a
“squared Jacobian” combined with a CDE.
We believe that this is the first time that a method is

proposed to evaluate in a general way the covariant and
consistent anomaly from the path integral having then the
possibility to choose in which current the anomaly has
to stand.
We have also presented an enlightening comparison

between our work and the seminal work of Fujikawa
which allows one to appreciate how an EFT mass expan-
sion can mimic the educated guess regulators used by
Fujikawa. Moreover, it appears that the bosonic CDE
extends Fujikawa’s procedure by replacing the regulator
by a physical and finite mass.
Another interesting comparison with Fujikawa’s method

is highlighted in the computation of the scale anomaly,
where we are able to compute the scale anomaly without
having to introduce the curvature of spacetime, nor rede-
fining the path integral measure in a diffeomorphism
invariant way, which substantially simplifies the procedure.
Furthermore, several public codes appeared recently (see,

for example, Refs. [56,57]) based on analytical and sys-
tematic CDE to efficiently build EFTs. They also drastically
simplify the so-called matching step. Unfortunately,
models involving QFT anomalies are out of reach of these
codes. The results of this work could be straightforwardly
implemented in these or similar codes and then allowed to
compute anomalous interactions in a self-consistent manner
in the path integral formalism. Incorporating theoretical
models involving anomalous features, as appearing in many
Beyond the Standard Model (BSM) physics, would have
important phenomenological implications.
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APPENDIX A: MASTER INTEGRALS

In this appendix, we discuss the master integrals and
tabulate some of them that are useful in practice. In this
paper our results are written in terms of master integrals I ,
defined by

Z
ddq
ð2πÞd

qμ1 � � �qμ2nc
ðq2 −M2

i Þniðq2 −M2
jÞnj � � �

¼ gμ1���μ2ncI ½q2nc �ninj���ij��� :

ðA1Þ

In the mass degenerate case, the master integrals,
I ½q2nc �ninj…ij… , reduce to the form I ½q2nc �nii , for which the
general expression reads

I ½q2nc �nii ¼ i
16π2

ð−M2
i Þ2þnc−ni

1

2ncðni−1Þ!
Γðϵ

2
−2−ncþniÞ

Γðϵ
2
Þ

×

�
2

ϵ
−γþ log4π− log

M2
i

μ2

�
; ðA2Þ

where d ¼ 4 − ϵ is the spacetime dimension and μ is the
renormalization scale. In the MS scheme, we replace

ð2ϵ − γ þ log 4π − logM2
i

μ2
Þ by ð− logM2

i
μ2
Þ in the final result.

We factor out the common prefactor, I ¼ i
16π2

Ĩ , and

present a table of Ĩ ½q2nc �nii for various nc and ni needed
in our computations in Table I.
In this paper, we only need the integrals in the mass

degenerate case, i.e., Mi ¼ M for all i.

APPENDIX B: EXPANSION OF A RATIO
OF DETERMINANTS

The Jacobians that we have to compute are always of the
form

TABLE I. Commonly used master integrals with degenerate
heavy particle masses. Ĩ ¼ I= i

16π2
and the 2

ϵ − γ þ log 4π con-
tributions are dropped.

Ĩ ½q2nc �nii nc ¼ 0 nc ¼ 1 nc ¼ 2

ni ¼ 1 M2
i

	
1 − logM2

i

μ2



M4

i
4

	
3
2
− logM2

i

μ2



M6

i
24

	
11
6
− logM2

i

μ2



ni ¼ 2 − logM2

i

μ2
M2

i
2

	
1 − logM2

i

μ2



M4

i
8

	
3
2
− logM2

i

μ2



ni ¼ 3 − 1

2M2
i

− 1
4
logM2

i
μ2

M2
i
8

	
1 − logM2

i

μ2



ni ¼ 4 1

6M4
i

− 1
12M2

i
− 1

24
logM2

i

μ2

ni ¼ 5 − 1
12M6

i

1
48M4

i
− 1

96M2
i
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J½θ� ¼ detðAÞ
detðAþ fðθÞÞ ; ðB1Þ

where A is some operator and fðθÞ carries all the θ
dependence.
Using log det ¼ Tr log, it can be expanded at first order

in θ (which is infinitesimal) as follows:

log J½θ� ¼ Tr logA − Tr logðAþ fðθÞÞ

¼ −Tr log
�
1þ fðθÞ

A

�

¼ −Tr
fðθÞ
A

þOðθÞ: ðB2Þ

If the Jacobian has been bosonized, A ¼ −P†Pþm2,
whereas if it were kept in the fermionic form, A ¼
iD −m. fðθÞ also depends on whether the Jacobian has

been bosonized or not. To fix the ideas consider the
fermionic form, although the reasoning holds for both.
We now explain the trace over spacetime and use the

Fourier transform to make the momentum appear. We thus
have iD − =q −m ¼ Δ−1ð1 − Δð−iDÞÞ, with the propaga-
tor Δ ¼ −1=ð=qþmÞ. We denote fqðθÞ the Fourier trans-
form of fðθÞ. We then proceed with

log J½θ� ¼ −
Z

ddx
ddq
ð2πÞd tr

fqðθÞ
Δ−1ð1 − Δð−iDÞÞ

¼ −
Z

ddx
ddq
ð2πÞd tr fqðθÞ

X
n≥0

ðΔð−iDÞÞnΔ: ðB3Þ

It is apparent that the ratio of the two determinants in
Eq. (B1) is proportional to θ. Now, using the cyclicity of the
trace, this determinant can be written under the form

log J½θ� ¼
Z

ddx
ddq
ð2πÞd tr

X
n≥0

ðΔð−iDÞÞnðΔð−fqðθÞÞÞ

¼
Z

ddx
ddq
ð2πÞd tr

X
n≥0

1

nþ 1
½Δð−iD − fqðθÞÞ�nþ1

���
OðθÞ

¼
Z

ddx
ddq
ð2πÞd tr

X
n≥1

1

n
½Δð−iD − fqðθÞÞ�n

���
OðθÞ

: ðB4Þ

The factor 1=ðnþ 1Þ appears in the second-to-last line to
avoid overcounting the number of terms with one fqðθÞ
insertion.
Note that the use of trace cyclicity despite the presence of

γ5 is not an issue, since we regularise using the free
parameters, or using a proper hermitian operator that makes
the Jacobian unambiguous (D†D).

APPENDIX C: FERMIONIC EXPANSION WITH
FREE PARAMETERS: CASE OF ANOMALOUS

VECTOR SYMMETRY

In this appendix, we recast in detail the calculation that is
presented in Sec. III C 3. A similar approach has been
studied in a different context in Ref. [27]. As derived in
Sec. III C 3, we state here the Jacobian produced by the
vector transformation,

J½θ� ¼ detðiD −mÞ
detðiD −m − ðDθÞÞ : ðC1Þ

Since we introduced the auxiliary background field ξμ and
the longitudinal mode πA of the axial gauge field Aμ, the
expansion of the Jacobian now reads

Ã ¼
Z

ddq
ð2πÞd

X∞
n¼1

1

n
tr

×

�
−1

qþm

�
−iDþ ½=ξ − ð∂θÞ� þm

πA
v
iγ5

��
n
����
Oðθ;πAÞ

;

ðC2Þ

where we restrict ourselves in the Abelian gauge fields and
Abelian θ.
Evaluating A∂ : Since the mass term does not explicitly

break the vector transformation, only the term involving
ð=∂θÞ will contribute to the anomaly as can be seen in
Eq. (C1) (with θ Abelian).
At n ¼ 4: We obtain the m0 term

Ã∂ ¼ ½−8m4I4
i þ 32m2I ½q2�4i

þ αð48εÞI ½q4�4i �ϵμνρσtr½ξμ − ð∂μθÞ�ðiAνÞ½i∂ρVσ�
¼ i

8π2
ð−1þ α0Þϵμνρσtr½ξμ − ð∂μθÞ�ðiAνÞ½i∂ρVσ�

¼ β0ϵμνρσtr½ξμ − ð∂μθÞ�ðiAνÞFV
ρσ; ðC3Þ
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where we define β0 ¼ ið−1þ α0Þ=ð8π2Þ. In this computation, we followed the strategy outlined in Sec. III A 1 to deal with
the ambiguous traces. In d ¼ 4 − ϵ dimensions, we explicitly have

tr gabcdðγaγμγbγνγcγργdγσγ5Þ → α1tr gabcdðγaγμγbγνγcγργdγσγ5Þ þ α2tr gabcdðγaγμγbγνγcγργ5γdγσÞ
þ α3tr gabcdðγaγμγbγνγ5γcγργdγσÞ þ α4tr gabcdðγaγμγ5γbγνγcγργdγσÞ

¼ εðα1 − α2 þ α3 − α4Þ½i24ϵμνρσ�
¼ εα0½i24ϵμνρσ�: ðC4Þ

Even though we enforced the condition α1 þ α2 þ
α3 þ α4 ¼ 1, the above trace still depends on free param-
eters and thus is ambiguous. In the last line of Eq. (C4), we
relabeled the sum of free parameters by a new parameter,
α0. Note that the standard evaluation of BMHV’s scheme
without free parameters is equivalent to α0 ¼ 1.
As a remark, Eq. (C3) is not gauge invariant due to the

presence of the Chern-Simons term ϵμνρσtrξμðiAνÞFV
ρσ.

At n ¼ 5: The order m0 terms related to the Goldstone
boson πA and the auxiliary field ξμ that we need to enforce
the gauge invariance of the axial current are

Ã∂ ¼ −
i

8π2
ϵμνρσtr

�
πA
v
ð∂μξνÞFV

ρσ

�
: ðC5Þ

Enforcing gauge invariance: In the Abelian case, a
complete set of gauge transformations is

8<
:

Vμ → Vμ þ ð∂μεVÞ;
Aμ → Aμ þ ð∂μεAÞ;
πA → πA − 2vεA;

ðC6Þ

where εV;A are infinitesimal gauge parameters. Under the
gauge transformation of Eq. (C6), we enforce

δGðÃ∂Þ ¼ δGϵ
μνρσ

�
β tr½ξμ − ð∂μθÞ�ðiAνÞFV

ρσ

−
i

8π2
tr
πA
v
ð∂μξνÞFV

ρσ

�
¼ 0: ðC7Þ

Hence, we are now able to fix the value of the free
parameter

β0 ¼ −i
8π2

: ðC8Þ

As a small remark, in parallel with the usual Feynman
diagrams technique, the gauge invariant combination of the
general Chern-Simons term, ϵμνρσtr½ξμ − ð∂μθÞ�ðiAνÞFV

ρσ,
and the Goldstone term, ϵμνρσtrðπA=vÞð∂μξνÞFV

ρσ, is equiv-
alent to enforcing the classical Ward identity of the axial
current in the massive case.

Eventually, we substitute the value of β0 into Eq. (C3),
we then set ξμ → 0, and we perform integration by parts.
Going back to non-Abelian gauge fields and θ, we obtain
the non-Abelian covariant anomaly in the vector current,

A ¼ A∂ ¼
−i
16π2

ϵμνρσtr θðFV
μνFA

ρσ þ FA
μνFV

ρσÞ: ðC9Þ

APPENDIX D: COVARIANT ANOMALY:
BOSONIZED FORM

In this appendix, we detail the bosonization and the
computation of the covariant anomaly in the bosonized
form as discussed in Secs. III C 2 and III C 3. For more
details about bosonization, we refer the reader to
Refs. [15,48].

1. Bosonization

The operator P ¼ iD is not Hermitian,

P† ¼ ði=∂ − =V − =Aγ5Þ† ¼ i=∂ − =V þ =Aγ5; ðD1Þ

therefore, it does not have a well-defined eigenvalue
problem. However, P†P and PP† are Hermitian, and
hence they admit two orthogonal eigenbases with real
eigenvalues,

P†Pϕn ¼ λ2nϕn; PP†φn¼ λ2nφn; n∈N; λn ∈R;

ðD2Þ

where

Pϕn ¼ λnφn; P†φn ¼ λnϕn with λn ∈ R: ðD3Þ

By decomposing ψ on the orthonormal basis fϕng, and ψ̄
on the orthonormal basis fφng, we can show that

detðP −mÞ ¼
Z

DψDψ̄e
R

d4xψ̄ðP−mÞψ

¼ NΠnðλn −mÞ; ðD4Þ

and similarly,
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detð−P† −mÞ ¼
Z

DψDψ̄e
R

d4xψ̄ð−P†−mÞψ ¼ MΠnð−λn −mÞ: ðD5Þ

N andM depend on the determinant of the matrices that relate ψ to ϕn and ψ̄ to φn. They play no role in the computation of
the anomaly [15].
We can therefore conclude that

j detðP −mÞj2 ¼ detðP −mÞ detðP† −mÞ ¼ detðP −mÞ detð−P† −mÞ
¼ NMΠnðλn −mÞð−λn −mÞ ¼ NMΠnð−λ2n þm2Þ
¼ NM detð−P†Pþm2Þ ¼ NM detð−PP† þm2Þ: ðD6Þ

In the second line, we have used the fact that the
determinant is invariant under the change of sign of
the Dirac matrices. This can be understood by writing
the determinant as a trace using log det ¼ Tr log, and the
fact that a trace of an odd number of Dirac matrices
vanishes, hence allowing us to flip their sign. Besides, note
that under this sign flip, γ5 does not change since it is
composed of an even number of Dirac matrices.
The sign flip of the Dirac matrices has two purposes.

First, it rids us of the cross term between m and P. Indeed,
without the change of sign, we would have

detðP† −mÞ detðP −mÞ
¼ NM detðP†Pþm2 −mP −mP†Þ: ðD7Þ

Second, after the Fourier transform, it provides the good
relative sign between the q2 and them2 terms, which allows
us to factorize the propagator Δ ¼ 1=ðq2 −m2Þ instead of
Δ ¼ 1=ðq2 þm2Þ without a sign flip.
Now, for a determinant of the form

detðP −mþ AÞ; ðD8Þ

where A is a nondiagonal matrix in Dirac and in gauge
space, we cannot easily write the determinant in terms of
eigenvalues of the Dirac operator, because A is nondiag-
onal. Therefore, we use naively the product of determi-
nants22 to get

det ½eiθγ5ðP† −mÞeiθγ5 � det ½eiθγ5ð−P −mÞeiθγ5 �
¼ NM det ½−P†Pþm2 þmðP − P†Þ þ fðθÞ�; ðD9Þ

where

fðθÞ¼ 4im2θγ5− i½θ;P2�γ5−
1

2
½σ:FV;θ�γ5−

1

2
½σ:FAγ5;θ�γ5

þ2imðθγ5P−Pθγ5Þþ imððPθÞ− ðP†θÞÞγ5: ðD10Þ

We have used the convenient formulas

P†P ¼ D†D ¼ −P2 þ i
2
σμν½Dμ; Dν� ðD11Þ

and

½Dμ; Dν� ¼ FV
μν þ FA

μνγ5 ðD12Þ
with the Bardeen curvatures as defined in Eqs. (50) and
(51). As a result we get the Jacobian in the bosonized form

J2½θ� ¼ detð−P†Pþm2Þ
detð−P†Pþm2 þmðP − P†Þ þ fðθÞÞ : ðD13Þ

Expanding this ratio of determinants we obtain

2A¼
Z

ddq
ð2πÞd e

iqxtrðfðθÞ þmðP−P†ÞÞ 1

−P†Pþm2
e−iqx:

ðD14Þ
At this point, one can notice that the term −mðPþ P†Þ and
the term −2imðP†θ − θiDÞγ5 in fðθÞ can be dropped since
they produce terms with an odd number of Dirac matrices,
which will vanish under the Dirac trace.
Finally, let us compute the Fourier transform of P†P,

e−iqxP†Peiqx ¼ ðe−iqxPeiqxÞ†ðe−iqxPeiqxÞ
¼ P†P − P†=q − =qPþ =q2: ðD15Þ

Because of the presence of the axial field, Pμ does not
commute with the Dirac matrices. In order to proceed with
the computation let us define

Pμ ¼ PV
μ − Aμγ5 where PV

μ ¼ i∂μ − Vμ; ðD16Þ

with ðPVÞ† ¼ PV and ð=Aγ5Þ† ¼ −=Aγ5.

22In general the group homomorphism property detðA:BÞ ¼
detðAÞ detðBÞ is not correct for regularized determinants. How-
ever, the determinants we temper with are not regularized yet.
Nonetheless, it is generally accepted that for nonregularized
determinants one has log detA ¼ Tr logA, which trivially im-
plies the group homomorphism property of the determinant on
nonregularized matrices.
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Therefore we can write

−P†=q − =qP ¼ −fPV; =qg þ =Aγ5=q − =q=Aγ5

¼ −2q · PV − 2f=A; =qgγ5
¼ −2q · PV − 2q:Aγ5

¼ −2q · P: ðD17Þ
Finally we have

e−iqxP†Peiqx ¼ P†P − 2q · Pþ q2: ðD18Þ

2. Computation

We expand the Jacobian using the mass expansion

2A ¼
Z

ddq
ð2πÞd tr hðθÞ

×
X
n≥0

�
Δ
�
−P2 þ i

2
σ:FV þ i

2
σ:FAγ5 þ 2q · P

��
n
Δ;

ðD19Þ
where

hðθÞ ¼ −i½θ; ðP − qÞ2� − 1

2
½σ:FV; θ�γ5 −

1

2
½σ:FAγ5; θ�γ5

þ 4im2θγ5 ðD20Þ
and Δ ¼ 1

q2−m2.
Now we gather the terms of orderm0 and those that have

an odd number of γ5. First, consider the contributions from
the term −i½θ; ðP − qÞ2�,
Z

ddq
ð2πÞ4 trð−i½θ; ðP − qÞ2�Þ

×

�
Δ2

�
−P2 þ i

2
σ:FV þ i

2
σ:FAγ5

�
þ Δ3ð2q · PÞ2

�
:

ðD21Þ
These contributions vanish under the Dirac trace by lack of
Dirac matrices. Second, the contributions from the terms
are − 1

2
½σ:FV; θ�γ5 − 1

2
½σ:FAγ5; θ�γ5Z

ddq
ð2πÞ4 tr

�
−
1

2
½σ:FV; θ�γ5 −

1

2
½σ:FAγ5; θ�γ5

��
Δ2ð−P2Þ

ðD22Þ

þΔ2

�
i
2
σ:FV þ i

2
σ:FAγ5

�
ðD23Þ

þΔ3ð2q · PÞ2
�
: ðD24Þ

The terms from Eqs. (D22) and (D24) both vanish under the
Dirac trace by the lack of Dirac matrices. The term in

Eq. (D23) vanishes too using trace cyclicity in gauge space
(all the operators are local). In the last two contributions,
some of the integrals are divergent, but we do not need to
compute them to see that the terms vanish; it is the operator
itself that vanishes. Therefore, no ambiguity related to the
γ5 in dimensional regularization can arise. Finally, we
consider the contributions from the mass term 4im2θγ5.
Note that for this term, all the integrals are finite:

Z
d4q
ð2πÞ4 tr4im

2θγ5

�
Δ5ð2q · PÞ4 þ Δ3ð−P2Þ2

þ Δ3

�
i
2
σ:FV þ i

2
σ:FAγ5

�
2

ðD25Þ

þ Δ4

��
i
2
σ:FV þ i

2
σ:FAγ5

�
ð2q · PÞ2

þ 2q · P

�
i
2
σ:FV þ i

2
σ:FAγ5

�
2q · P

þ ð2q · PÞ2
�
i
2
σ:FV þ i

2
σ:FAγ5

���
: ðD26Þ

The first two terms from Eq. (D25) vanish under the Dirac
trace. The third term from Eq. (D25) does contribute and
actually yields the covariant anomaly. The term from
Eq. (D26) vanishes under the Dirac trace by the lack of
Dirac matrices. Therefore, among all the possible combi-
nations, in the end only one term contributes:

2A ¼
Z

ddq
ð2πÞd Δ

3tr4im2θγ5

�
i
2
σ:FV þ i

2
σ:FAγ5

�
2

¼ −i
16π2

1

2m2
tr4im2θγ5

��
i
2
σ:FV

�
2

þ
�
i
2
σ:FAγ5

�
2
�

¼ −i
16π2

1

8
triθγ5ð½γμ; γν�½γρ; γσ�FV

μνFV
ρσ

þ ½γμ; γν�γ5½γρ; γσ�γ5FA
μνFA

ρσÞ

¼ 2
−i
16π2

ϵμνρσtrθðFV
μνFV

ρσ þ FA
μνFA

ρσÞ; ðD27Þ

where we have discarded terms with an even number of γ5
matrices (they cannot yield a boundary term so they cannot
contribute to the final result). The remaining trace in the last
line is the trace over the gauge space.

APPENDIX E: SCALE ANOMALY

In this appendix, we detail the computation of the
following Jacobian:

J½σ� ¼ detðiD −mÞ
detðiD −m − σm − i d−1

2
ð∂σÞÞ ; ðE1Þ
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where d is the dimension of spacetime and σ is a local
scalar function. No γ5 is involved in the computation;
therefore the Jacobian is well-defined, and the computation
in d dimensions is performed using the BMHV scheme.
This Jacobian can be expanded following the usual
procedure described in this paper:

A ¼ −
Z

ddq
ð2πÞd tr

�
−i

d − 1

2
ð=∂σÞ − σm

�X
n≥0

½Δð−iDÞ�nΔ:

ðE2Þ
Δ ¼ −1=ð=qþmÞ ¼ Δf þ Δb, where we label fermionic
propagator Δf ¼ −=q=ðq2 þm2Þ and bosonic propagator
Δb ¼ m=ðq2 −m2Þ. We focus on the terms of order m0

only. The higher order terms see a cancellation between the
mass term and the derivative term.

1. Derivative term − i d − 12 ð=∂σÞ
The only term of order m0 is

Z
ddq
ð2πÞd tr

�
−i

d − 1

2
ð=∂σÞ

�
ðΔð−iDÞÞ3Δ

¼
Z

ddq
ð2πÞd tr

�
d − 1

2
ð=∂σÞ

�
ðΔDÞ3Δ: ðE3Þ

The propagators Δ now have to be decomposed in terms of
fermionic and bosonic propagators Δ ¼ Δf þ Δb, keeping
in mind that the integral over momentum vanishes if the
integrand bears an odd power in momentum. That is to say,
the nonvanishing terms have an even number of fermionic
propagators.
Note that there is a factor i

16π2
from the master integrals

that we discard for now for clarity. It will be accounted for
at the end.

(i) The term with only bosonic propagators is

d−1

2
m4I ½q0�4trðð=∂σÞD3Þ

¼ 1

4
ð4gμσgνρ−4gμρgνσþ4gμνgρσÞtrð∂μσÞDνDρDσ:

ðE4Þ
(ii) For the term with two fermionic propagators, we

have to account for all the possible positions (two
fermionic propagators among four propagators, thus
six possibilities),

d− 1

2
m2I ½q2�4gabtrðð=∂σÞðγaDγbD2 þ γaD2γbD

þ γaD3γb þDγaDγbDþDγaD2γb þD2γaDγbÞÞ

¼ −
1

8
ð−16gμσgνρ þ 32gμρgνσ − 16gμνgρσÞ

× trð∂μσÞDνDρDσ: ðE5Þ

(iii) Finally, there is a termwith four fermionic propagator
insertions. This is the only term that is divergent and
that is computed in d ¼ 4 − ϵ dimensions,

d − 1

2
I ½q4�4gabcdtrðð=∂σÞγaDγbDγcDγdÞ ðE6Þ

¼
�
−
13

3
gμσgνρ þ 23

3
gμρgνσ −

13

3
gμνgρσ

þ log

�
m2

μ2

�
ð−2gμσgνρ þ 4gμρgνσ − 2gμνgρσÞ

�

× trð∂μσÞDνDρDσ; ðE7Þ

where gabcd ¼ gabgcd þ gacgbd þ gadgbc.
Those three contributions come together to yield

�
−
4

3
gμσgνρþ8

3
gμρgνσ−

4

3
gμνgρσ

þ log

�
m2

μ2

�
ð−2gμσgνρþ4gμρgνσ−2gμνgρσÞ

�

×trð∂μσÞDνDρDσ

¼ð−gμσgνρþ2gμρgνσ−gμνgρσÞ
�
4

3
þ2log

�
m2

μ2

��

×trð∂μσÞDνDρDσ: ðE8Þ

Now let us explain the operator,

trð∂μσÞDνDρDσ ¼ −trσ∂μDνDρDσ; ðE9Þ

up to a boundary term. Writing explicitly Dμ¼∂μþVμ and
distributing the derivatives, we can write23

−trσ∂μDνDρDσ ¼ −σtr½ð∂μνρVσÞ þ ð∂μVνÞð∂ρVσÞ
þ Vνð∂μρVσÞ þ ð∂μνVρVσÞ
þ ð∂μVνVρVσÞ�; ðE10Þ

where the parentheses on the derivatives mean that they act
locally in everything inside the parentheses. It is then
simple algebra to show that

ð−gμσgνρ þ 2gμρgνσ − gμνgρσÞtr∂μDνDρDσ ¼ 0; ðE11Þ

using Eq. (E10) and trace cyclicity. As a result Eq. (E8)
vanishes, and the derivative coupling has no contribution at
order m0.

23Recall that a partial derivative to the right vanishes.
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2. Mass term σm

The only term of order m0 is

−
Z

ddq
ð2πÞd trð−σmÞðΔð−iDÞÞ4Δ ¼

Z
ddq
ð2πÞd σmtrðΔDÞ4Δ:

ðE12Þ

Once again, the only nonvanishing terms are those that
involve an even number of fermionic propagators. The term
with only bosonic propagators is

σm6I ½q0�5trD4 ¼ −σ
1

12
ð4gμσgνρ − 4gμρgνσ þ 4gμνgρσÞ

× trDμDνDρDσ: ðE13Þ

The term with two fermionic propagators has ð5
2
Þ ¼ 10

contributions. We do not write them all for clarity,

σm4I ½q2�5gabtrðγaγμγbγνγργσþγaγμγνγbγργσþ���Þ

×trDμDνDρDσ¼σ
1

48
ð32gμρgνσ−16gμσgνρÞtrDμDνDρDσ:

ðE14Þ

Finally, the term with four fermionic propagators has ð5
4
Þ¼5

contributions. Again, we do not write them all for clarity,

σm2I ½q4�5gabcdtrðγaγμγbγνγcγργdγσ
þ γaγμγbγνγcγργσγdþ���ÞDμDνDρDσ

¼−σ
1

96
ð64gμσgνρ−32gμρgνσ −32gμνgρσÞtrDμDνDρDσ:

ðE15Þ

Note that the three contributions are finite; hence the
computation is performed in four dimensions. Putting
together the three contributions, we obtain

σtr

�
−
4

3
DμD2Dμ þ

4

3
DμDνDμDν þ 0D2D2

�

¼ σ
2

3
trFμνFμν: ðE16Þ

3. Final result

Finally, the only term contributing to the scale anomaly
at order m0 is the mass term. Recovering the factor i

16π2

from the master integrals, we obtain the scale anomaly

A ¼ σ
i

24π2
trF2: ðE17Þ

The remaining trace is in gauge space only.
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