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Abstract The correlation functions of Yang—Mills theo-
ries formulated in the background field method satisfy linear
Slavnov—Taylor identities, which are naive generalizations of
simple tree level relations, with no deformations originating
from the ghost-sector of the theory. In recent years, a stronger
version of these identities has been found to hold at the level
of the background gluon self-energy, whose transversality
is enforced separately for each special block of diagrams
contributing to the gluon Schwinger—Dyson equation. In the
present work we demonstrate by means of explicit calcula-
tions that the same distinct realization of the Slavnov—Taylor
identity persists in the case of the background three-gluon
vertex. The analysis is carried out at the level of the exact
Schwinger—Dyson equation for this vertex, with no trunca-
tions or simplifying assumptions. The demonstration entails
the contraction of individual vertex diagrams by the relevant
momentum, which activates Slavnov-Taylor identities of
vertices and multi-particle kernels nested inside these graphs;
the final result emerges by virtue of a multitude of extensive
cancellations, without the need of performing explicit inte-
grations. In addition, we point out that background Ward
identities amount to replacing derivatives of propagators by
zero-momentum background-gluon insertions, in exact anal-
ogy to standard properties of Abelian gauge theories. Finally,
certain potential applications of these results are briefly dis-
cussed.

1 Introduction

In recent years, the systematic exploration of Green’s (corre-
lation) functions has afforded important insights on the non-
perturbative properties of non-Abelian gauge theories, such
as pure Yang—Mills theories and Quantum Chromodynam-
ics [1-12]. This ongoing scrutiny relies on continuum stud-
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ies based on nonperturbative functional methods [7,13-39]
carried out almost exclusively in the linear covariant (Rg)
gauges, where the Landau gauge is the preferred choice, and
on lattice simulations performed in the same gauge [40-55].
However, the background field method (BFM) [56—65] has
also been employed in several occasions, furnishing useful
vantage points, and exposing key properties of the theory that
are normally distorted by standard quantization procedures
[8,12,66,67].

The BFM is a powerful framework that enables the imple-
mentation of the gauge-fixing procedure necessary for quan-
tizing gauge theories without losing explicit gauge invari-
ance, in contradistinction to the conventional quantization
schemes [56—65]. The starting point of the BFM is the split-
ting of the gauge field Aj, appearing in the classical action of
the theory according to Aj, = B;, + @, where Bj; and O},
are the background and quantum (fluctuating) fields, respec-
tively. The quantum field is the variable of integration in the
generating functional Z(J), and external sources are cou-
pled only to it, as J - Q. The background field does not enter
in loops; it couples externally to Feynman diagrams, con-
necting them with the asymptotic states to form S-matrix
elements. Then, by virtue of a special gauge-fixing condi-
tion, the resulting action (with the corresponding ghost terms
included) is no longer invariant under transformations of the
quantum field, but retains its invariance intact with respect
to the background field [5,63].

A key consequence of the background gauge invariance of
the action is that Green’s functions involving the B); field sat-
isfy ghost-free Slavnov—Taylor identities (STIs), akin to the
Takahashi identity known from QED: the STIs are straight-
forward generalization of tree level relations, receiving no
ghost-related contributions after the inclusion of quantum
corrections. Instead, in the standard STIs [68,69] of the R:
gauges [70], starting already at one-loop, the ghost sector
modifies these tree level relations non-trivially. To fix the
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Fig. 1 Diagrammatic representation of the self-energy ﬁ/w(q). The
small gray circles at the end of gluon legs indicate a background field.
The orange and green circles represent conventional fully dressed prop-

ideas with a simple example, the quark-gluon vertex with
either a B or a Q gluon satisfies at tree level the simple iden-
tity (suppressing color) g"y, = ¢ = (—p—m) —(f —m) =
Sy 1(— P =Sy 1 (1), where Sy is the tree level version of the
quark propagator S. In the case of a B gluon, the all-order STI
is obtained from the above tree level identity by simply substi-
tuting So — S,namelyq”f‘\ﬂ(q, r,p) = S_l(—p)—S_l(y‘).
Instead, in the case of a Q gluon (R: gauges), the STI gets
modified by quantum corrections [68,69], which induce a
dependence on the ghost dressing function and the quark-
ghost kernel [71-74].

As was pointed in earlier studies, the STI satisfied by the
background-gluon self-energy, I w(q), namely the standard
transversality condition g m w(g) = 0,is implemented in a
very special way, which has been denominated “block-wise”
[8,60,67]. Specifically, the diagrammatic representation of
the SDE governing i wv(g) is composed by four distinct
blocks, namely one- and two-loop diagrams containing only
gluons, and one- and two-loop diagrams containing ghost
fields, as shown in Fig. 1. The block-wise realization of the
STI in this case is the simple statement that the transversal-
ity of m wv(q) is enforced independently for each of the four
blocks. This is in sharp contrast to what happens in the R
gauges, where, already at the one-loop perturbative level, it
is only the sum of gluon and ghost diagrams that is transverse
[75,76]. The proof of this property is particularly simple; it
proceeds by contracting the various diagrams by g from the
side of the fully dressed vertices, thus triggering the corre-
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agators and vertices, respectively, while the blue circles represent fully
dressed vertices with one background gluon

sponding naive STIs of the BFM. It is important to emphasize
that the proof holds for any value of the gauge-fixing param-
eter £, used to define the propagators of the Q-type gluons
entering in the various loops.

The basic question that arises naturally in this context
is whether the special block-wise realization of the STI
described above is particular to the two-point function, or
if it is a common feature of all Green’s functions containing
only B gluons. In the present work we take a first step in the
exploration of this issue, and demonstrate that the same pat-
tern persists in the STI of the BEM vertex with three incom-
ing background gluons, to be denoted by Ty wo(q, r, p). This
Abelian STI relates the contraction q“f‘a,w (g, r, p) to the
difference T1,,,,(r) — T, (p) [5,66,77]. It turns out that the
diagrams comprising the SDE of Fa w (g, r, p) may also be
classified into four subsets in a way completely analogous to
the case of 1 wv(q). Then, the contraction of each subset by
g" generates the difference of the corresponding subsets of
n wv»> confirming the block-wise realization of this STI. We
emphasize that, as in the case of the gluon self-energy, this
property is completely &,-independent.

An additional noteworthy aspect of the BFM Green’s
functions is the Ward identities (WIs) they satisfy, namely
the relations that emerge when the momentum that triggers
the STIs is taken to vanish. For example, in the case of the
Fu (g, r, p) mentioned above, a Taylor expansion of the STI
around ¢ = 0 and subsequent matching of terms linear in
q yields the relation Fu 0,—p,p) =095"" (p)/ap*, which
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is the precise equivalent of the text-book WI known from
QED, relating the photon—electron vertex with the electron
propagator [75,76]. In fact, exactly as happens in QED, this
WI admits a simple diagrammatic interpretation: the deriva-
tive of the inverse quark propagator may be depicted as the
insertion of a background gluon carrying zero momentum.
These observations may be straightforwardly extended to the
case of the three-gluon vertex fa w (g, 1, p), allowing for a
completely analogous pictorial representation of the corre-
sponding WI. In fact, the block-wise realization of the STI
leads to a corresponding pattern for the WIs that emerges
from it: the derivative acting on any of the blocks of m w(q)
is identical to the diagrams comprising the associated block
of fa w (g, 1, p), when the corresponding momentum is set
to zero. To the best of our knowledge, the notions described
above appear for the first time in the literature.

The article is organized as follows. In Sect. 2 we review
certain pivotal properties of the BFM, and explain the notion
of the block-wise transversality at the level of the SDE that
governs the background gluon propagator. Section 3 con-
tains the main result of this work, namely the demonstration
of the block-wise realization of the STI for the case of the
background three-gluon vertex. Then, in Sect. 4 we focus
on the WIs of the BFM, their graphical representation in
terms of zero-momentum gluon insertions, and demonstrate
the block-wise realization of the three-gluon W1, for the oper-
ationally simplest subset of graphs. In Sect. 5 we summarize
our findings and discuss future directions. Finally, in four
Appendices we present complementary material that facili-
tates the perusal of the article.

2 General theoretical framework

In this section we highlight some of the significant features of
the BFM formalism that are relevant for the demonstrations
that follow; for further details the reader is referred to the
extensive literature on the subject, see, e.g., [5,61,65].

(i) The initial decomposition of the gauge field into B,
and Q) components increases considerably the number of
Green’s functions that can be defined, which may be classi-
fied into three broad subsets: those with B} fields only, those
with Qf, fields only (corresponding to the standard Green’s
functions of the R¢ gauges), and mixed ones, with both B}
and Q) fields. We will occasionally denote Green’s functions
according to the type of incoming fields, such as “BB” for
the case of the propagator connecting two background fields,
or “BBB” for the case of the three-gluon vertex connecting
three such fields.

(i1) The gluon propagator QQ that enters in the quantum
loops will be denoted by A% (q) = —i8“" A, (), with

Auv(@) = Pun(@)D(g) + sgqg#,

Puv(q) = guv — ngv, @2.1)
whose inverse is

AL@AL (@) = 8o’

A @) = AT Py (@) +E5 0vap. 2.2)

The scalar function A(g) is related to the gluon self-energy
My (g) = Puy(q)T(g) through A~ (g) = ¢* + iTl(g),
and &, is the quantum gauge-fixing parameter. Note that &,
enters also in the tree level expressions of the vertices BQQ
and BBQQ, given in Table 1.

(iii) In what follows we will use extensively a number
of three- and four-particle vertices, which we list here. In
particular, the relevant three-particle vertices are

Lanenga (r, p,q) = —gf""“T'u(r, p. q),
FinQﬁQﬁ (g,r,p) = gfabcra/w(‘]v r,p)s
aneipg (r, pq) = =g ™ Tu(r, p. @),

Ta gt 00(@: 7 P) = 8f " Tan (. 1 ), 2.3)
while the four-particle vertices are
C gy ppenen (@72 p.1) = —~ig’ TRl (q.r. p. 1),
Tayon0500@: 7 P 1) = —ig Ty (@ 7 p. 1),
Upagpamen(qs 1, ps 1) = —ig*Tahm™ (g, r, p,1).
Toensonos @7 P10 = —ig’ Tl (. r.p.0). (24

where g denotes the gauge coupling constant, and f%¢ are
the SU(3) structure constants.

(iv) A central quantity in our analysis is the background
self-energy, m wv(q), related to the inverse background gluon
propagator Z;& (q) by!

Z,Iul @) = ¢*Puv(@) + il (q). (2.5)
The gauge symmetry enforces the fundamental STI
¢"T,(g) = 0, (2.6)

from which follows that ﬁw(q) = Pw(q)ﬁ(q), where
IT(g) is a scalar function. Thus, Eq. (2.5) may be cast in

! The definition of the BB propagator A wv(q) requires the addition to
the action of a supplementary gauge-fixing term, which introduces the
“classical” gauge-fixing parameter, & [5,61,65]. Note that this step is
necessary only when connecting the background gluon to external states
in order to construct S-matrix elements, and will be omitted here.

@ Springer
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the form

R @ = Pu@ ¢ +ifl@). @7

The SDE that defines T1 wv(q) is diagrammatically repre-
sented in Fig. 1. Note the separation of the dressed Feynman
diagrams into the following four distinct groups:

(1) One-loop gluonic graphs, enclosed in the blue box; their
total contribution is denoted by ﬁf}g ().

(2) One-loop ghost graphs, enclosed in the orange box; their
total contribution is denoted by ﬁf}g ().

(3) Two-loop gluonic graphs, enclosed in the purple box;
their total contribution is denoted by ﬁffg ().

(4) Two-loop ghost graphs, enclosed in the green box; their

total contribution is denoted by ﬁﬁg (q).

One of the most exceptional properties of m wo(g) s its
block-wise transversality [66,78,79]. Specifically, the funda-
mental relation given in Eq. (2.6) is realized in a very special
way: each of the four subsets of diagrams in Fig. 1 is indi-
vidually transverse, i.e.,
¢TI0 @ =0, i=1234 2.8)
This particular result is a direct consequence of the Abelian
STIs satisfied by the fully dressed vertices entering in the
diagrams comprising the ﬁfj,),(q) [66,78,79], namely BQQ,
Bce, BQQQ and BQcc, reported in Table 2 of the Appendix C.

(v) In order to elucidate with a simple example how
this special transversality is enforced at the diagrammatic
level, we consider the case of ﬁffg (g), whose diagrams are
enclosed by the orange box of Fig. 1.

The diagrams (a;) and (a4) are given by

(@3)uv(q) =2 /k(Zk—q)uD(k — @)D (g—k, k, —q),
(2.9)

(@) (@) = 2 gy /k ) (2.10)

where we have used the Feynman rules given in Eq. (B2)
and Eq. (B6) of the Appendix B, and factored out the trivial
color structure 8% from both expressions. In addition, we
have defined
A= g°Ca, (2.11)

where Cy is the Casimir eigenvalue of the adjoint represen-
tation [N for SU(N)]. Furthermore, we have introduced

1 +o0
/ = / d*k,
k (277)4 —00

@ Springer

(2.12)

where the use of a symmetry-preserving regularization
scheme is implicitly assumed.

We next contract graph (as),.,(q) by ¢", thus triggering
the STI satisfied by T, (g — k, k, —q), given in Eq. (C2), to
obtain

4" (@) (q) = 2 /k 2k — @), Dk — ) D(K)
x[D7' k=)= D7 0]
—x /k<2k — ), [DE) = Dk — )]

= —2Aqu / D(k), (2.13)
k

which is exactly the negative of the contraction ¢" (a4) uv(q).

Hence,

7" [(@)0(@) + @) (@] = " TIE)(g) = 0. (2.14)
We emphasize that the above strategy of contracting

directly individual diagrams and triggering the correspond-

ing STIs will be followed unaltered in the more complicated

case of the three-gluon vertex treated in the next section. Note

finally that the entire demonstration leading to Eq. (2.8) is

carried out for a general value of the gauge-fixing parameter
£ [66,78,79].

3 Block-wise STI of the three-gluon vertex

In this section we demonstrate the block-wise realization of
the STI satisfied by the BBB three-gluon vertex.

3.1 General considerations

(i) The one-particle irreducible three-gluon vertex,

/I‘\gi’fv (g, r, p), is defined from the vacuum expectation value

of the time ordered product of three background gluons (in
momentum space), as

0|7 [Bs,(q) Bz, (r) Bs/(P)] |0)
= g T4, (q.r, PYAL (@A) (DAL (p). 3.1)

The three-gluon vertex ff;zcu (g, r, p) is naturally cast in
the form

Tobe(q.r.p) =T (q.r. p) + TelS(q. v p). (3.2)
~(0)abe
where the tree level component Iy (q,7, p) =

f “bcf‘égz,,(q, r, p) coincides with that of the conventional
three-gluon vertex (QQQ), i.e.,

IO q.r.p) =T (q.r. p) = (@ — 1)y 8an
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+( = pla&uv + (P — @) p8av, (3.3)

while Fgﬁ"v (g, r, p) captures all quantum corrections, both
perturbative and nonperturbative.

(i1) The SDE that defines fgzcv (g, r, p) is shown diagram-
matically in Fig. 2, written with respect to the gluon that
carries momentum g; therefore, the corresponding vertices
to which this leg is attached are kept at tree level. The cor-
responding Feynman diagrams have been classified in four
blocks, applying the exact same criterion as in the case of
f w(q), and employing the same color code for the individ-

ual boxes as in Fig. 1. Thus,

4

Tabe(q.r.p) =Y TE(q. 7 p).
i=1

(3.4)

where, as shown in Fig. 2, the four blocks are comprised by
the diagrams (suppressing indices)

T =)+ ) + (bs), TP = () + (c2) + (cy),
O = @), T® = (). (3.5)

(iii) It is well-known that Fgffv(q,r, p) satisfies the
Abelian STI [5,66,77]

vrchv(q’ , 17) — fcae [Abe (l’)] fbce [Aae (q)]

(3.6)

and cyclic permutations thereof. The STI of Eq. (3.6) may
be obtained by means of formal manipulations of the BFM
generating functional, or simply from the STI of the conven-
tional QQQ vertex [71,80,81], by setting all ghost-related
contributions to their tree level values.

From Eq. (3.3) it is elementary to show that

TO

a,w(q’r p)—r Pau(”)_q Paﬂ(‘]) 3.7
Then, from Egs. (2.5), (3.2) and (3.6) follows that
PTab (g, r, p) = if TS, (1) —if"“Te(@).  (3.8)

(iv) The central observation of the present study is that, as
happens in the case of Eq. (2.6), the STI in Eq. (3.8) admits a
block-wise realization. Specifically, as we will demonstrate
in this section,

p' T8 (q.r. p)

i=1,2,3,4.

— ifCueﬁ((xil)Abe (r) _ ifbce ﬁ‘(leLl/l(f(q)’

(3.9)

In diagrammatic terms, Eq. (3.9) states that the contrac-
tion by p¥ of the diagrams within a given block (color) in
Fig. 2 generates the difference between diagrams within the
corresponding block (color) of Fig. 1. In fact, the validity of
Eq. (3.9) will be demonstrated by acting with p” on vertex

diagrams, and exploiting the STIs triggered by this contrac-
tion in order to cast the result in the form of self-energy
contributions.

(v) Note that the diagrams shown in Fig. 2 have a factor g
removed from them, which cancels against the g appearing
in the definition of the three-gluon vertex in Eq. (3.1). In
addition a factor of i will be factored out, which will cancel
against the expliciti appearing on the r.h.s. of Eq. (3.9). Thus,
on the r.h.s. of all intermediate formulas will appear directly
the self-energy diagrams (a;) of Fig. 1. Furthermore, with the
exception of Sect. 4, we will suppress the argument (g, r, p)
in all vertex graphs.

(vi) We introduce the definitions

hcltbmn — fabefmne’ hghcde — fabmfcmnfdne' (3.10)
Note that 2P = pbam™ and hgPede = phaced.
(vii) We introduce the short-hand notation

R (r, p) = A (1) APP (p)T oo (=1 = p. 1. ),

Ry (r, p) = D(r)D(p)Ty(r, p, —r — p),
ReB(r, p) = A% (1) APP ()T yuorp (=1 = p. 1. p).

R (r, p) = D(r)D(p)T . (r, p, —r — p). (3.11)
The special relations
/ﬁ;ﬁ(k,r—k) =/§M(k,r—k):0, (3.12)

k k

will be employed in the analysis that follows. Their validity
may be established by appealing to the Bose symmetry of the
BQQ vertex with respect to its two quantum legs or the ghost—
antighost symmetry of the Bcc vertex, and the change of
integration variable r —k — k. An alternative demonstration
proceeds by noting that

~ r
/kRM(k, r—k) = r—’;](r2), (3.13)
with
1% = / D(k)D(r — k) rHT , (k, r —k, —r)
k
— / DK)D(r — k) [D_l(k) —p ' - k)]
k
= / [D(r — k) — D(k)] =0, (3.14)
k

where the STI of Eq. (C2) was used. The first relation in
Eq. (3.12) may be proved in the exact same way, employing
the STI of Eq. (C1).

(viii) Lastly, from now on we adopt the convention that
1PI vertices containing at least one background gluon will

@ Springer
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R i :
..... (.CS.)--J' :~--.(C£)--_'I :s o:
f(?ﬂ)

B
5

Fig. 2 The block-wise structure of the SDE which describes the three-gluon vertex Tabe (g, r, p) (BBB). The blue circles represent full one-particle
irreducible vertices, while the purple ones the four- and five-point scattering kernels

(bs) (bs.) (bs)

Fig. 3 The two contributions which arise from diagram (b;) of Fig. 2
after performing the skeleton expansion of the four-gluon scattering
kernel (purple blob)

be represented diagrammatically by a blue circle (see, e.g.,
the BBQQ vertex in diagram (b;,) of Fig. 3).

3.2 One-loop gluonic sector (first block)

We begin by considering the one-loop gluonic vertex graphs,
namely the set {(b,), (b,), (b3)}, enclosed in the blue box of
Fig. 2.

As a first step, we recognize that, by virtue of Eq. (3.12),
diagrams (b;) and (b,) vanish,

apy apfo

2
(bl)abc — g?fced/];’f(O)aba’eRgﬁ(_k’ k—p)=0,

2
(by)ebe, = % shed | TOucdeRob(—k,k —r) =0, (3.15)
k

opy avfo

since f‘\gﬁg};de is momentum-independent, and may be pulled

out of the integral sign.
Diagram (b;) has two contributions,

(b3)20¢ = (bs )¢+ (by,)20¢

oY apy apy?

(3.16)

@ Springer

oLy

given in Fig. 3, with

A ~ ~
(b, = =5 1 /k FO (g k — g, ~0 AP ()RS

x (k4 p,q —OTyu(p, k, =k — p),

apY afo

2
(b3,2)abc — %fade F(O) (q’k _ q’ _k)
k

x APk — q) AT ()T (p.r.q — k. k).
(3.17)

The contraction p”(b3)gl/’fv may be evaluated using the

STIsin Egs. (C1) and (C4) and a moderate amount of algebra,
yielding

oy afo

. A C~
pv(bz)abc — _zfabc j F(O) (q.k —q, —k)

X [ﬁzﬁ(k,q —k)—i-ﬁgﬂ(—k—p,k—q)].
(3.18)

The first term in Eq. (3.18) is exactly —fbce(al)gZ(q). The
second term, after k — —k — p, generates f C“e(al)ZZ(r);
note, in particular, that

TS0, (G .k —q.—k) — =T (r.k — . —k) + 2 pp gac
— Pagps — &' + 1) pogap. (3.19)

where, due to Eq. (3.12), the last three terms give vanishing
contributions. Thus, one arrives at

p (b, = f(anie (r) — fanie (). (3.20)
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? { { ?

Qo = do + dJdo o+ ¢
N Y . B \ e
O.. .O.
(03) (Cs 1) (C:s.z) (Ca 3)
Fig. 4 The three contributions which emerge from the diagram (c;)
shown in the Fig. 2, after implementing the skeleton expansion of the

four-point scattering kernel (purple blob) formed by two background
gluons with a ghost—antighost pair

At this point, we add and subtract on the r.h.s. of Eq. (3.20)
the momentum-independent seagull graph (a,), to obtain

P (b)ab, =f“l@) + (@)1, ()

— fPlar) + @)1, (@), (3.21)

which, in view of Eq. (3.15), is precisely Eq. (3.9) fori = 1.

3.3 One-loop ghost sector (second block)

We next focus on the one-loop ghost graphs, forming the
set{(cy), (¢2), (c3)}, enclosed in the orange box of Fig. 2. The
demonstration that follows is completely analogous to that
of the previous subsection.

Due to Eq. (3.12), diagrams (c,) and (c,) vanish,

gy = 871 /k TR, (k. k = p) =0,

oy

(¢ = g2 fedb /k TWacdeR (—k,k—r)=0, (3.22)

and we only need to consider the contraction of graph (c;).
This diagram contains three contributions, depicted in Fig. 4,

3
(e)ihe, = (s ek, (3.23)
j=1

with

X A . ~

(c3.)506, = —Ef‘”“ /k 2k — @)a D(k — q) R, (k, —k — 1)

X F,)(k +r,q—k,p),

2 pare [0k — )u Dtk — )R~k — 1. 1)
B A q)a q) R r,

x Ty(qg —k, k +r, p),

(e3 ), = —g? feda /k 2k — ) DR D(g — k)

X fﬁcvde(r, p,q —k, k).

b
(C3,2)Z,fv =

(3.24)

The contraction of diagram (c;) by the momentum p"
activates the STIs of Egs. (C2) and (C6), and one obtains.

pY(cs)iht, = —nfee /}((2k — @a

x [Ru(k —q,—p — k) + Ru(qg — k, k)]
(3.25)

The second term of Eq. (3.25) is simply — f b"e(az)gﬂ(Q),
while the first term, after the shift k — —k — p and use of
Eq. (3.12), furnishes fc”e(ag)g‘;(r). Thus, we conclude that
PP (es)eh, = Fanli () — fP @i (@), (3.26)
which, after adding and subtracting the momentum-

independent (a4), is tantamount to the validity of Eq. (3.9)
fori =2.

3.4 Two-loop gluonic sector (third block)

We turn to the two-loop dressed gluonic contributions, con-
tained within the diagram (d), enclosed by the purple box in
Fig. 2. To that end, in Fig. 5 we show the individual diagrams
that emerge upon implementing the skeleton expansion of the
five-gluon kernel (purple circle) inside (d). Note that all ver-
tices appearing in these graphs are one-particle irreducible.

The diagrams in Fig. 5 are naturally organized into two
subsets,

(d)ahe, = (d)ab, + (d)ibs, (3.27)
with
2 5
()b, = "(d ebe,.  (dahs, = (dr)ib,.  (3.28)
j=1 j=1
where
abc ig4 cen =(0)adme , Bt on
(di Doy = Tf A lFa'BGP APT (kYA (s)
x ROMU —p = DT (r 1 + p, 5. k),
i
g ~
(dl,z)g};fv =" /k lré?gzmeAﬂf(k)A“”(s)
x APHOTSE (p v, s. k), (3.29)

and

- 4
ig ~

@ity = S [k /l N OVNLIE)
X ﬁﬁ)‘(l, —r — l)f"l'j;:]”fd(p, L+rs,k),

- 4
(d)5fs, = g / / Tipan" APHDRZP (5, k)
kJI
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o

(d) (d1a (d12)
%ﬁg\q " ﬁ " " "
(da) (d2,2) (dos) (d2,4) (das)

Fig. 5 The seven contributions originating from diagram (d) of the Fig. 2. This group splits into two subsets: the first composed by the diagrams

{(d\.1), (d\2)} and the second by {(d1,1), (d12), (d23), (d2.4), (d25)}

x RI(L+ p.qg — DT vy (p. 1.~ = p).
@)y, = %hé””“b /k /l Fpes" AP R (U = q.9)
x REM1U —r = DTy (p L +1.q — D),
(da0)2be, = ig*nsimbe /k /1 TOpaame AP (R (1, —r — 1)
x RZ*(s.k + p)yiy(p. —k — p. k),

. 4
. g ~ .
sy, = - " fk f; Tpaame APT (k) AP (DRI (1 — q. 5)

x I—w\cben

v log = 1. (3.30)

This particular separation is motivated by the observation
that the contraction by p” of each subset generates a concrete
term of the STI, namely

P ), = £ (as)be (r) — P (as)i (@),

PP, = £ (@), (r) — FP(a), (@), (3.31)

where the self-energy diagrams (as) and (ag) (purple box in
Fig. 1) are given by

igh ~
(as)gp (@) = —% /k /I Tpaame APT (k) A7 () AP (1)

x Themd(—q.1,5.k)

— ig4h‘fd’”g/k/lAﬂf(k)Ag(s)Ag(l)

x Thomd(—q. 1,5, k),
- 4
ig ~ o~
(@) (q) = —-hie™" /k /I T R, q — DR (5. k),
(3.32)

with s = g — k — [. In passing from the first to the second
expression for (as), the explicit form of Fgggﬁme, given in
Eq. (B3), has been used.

The contraction of the momentum p" with the above dia-
grams will activate a series of STIs, which will furnish the

desired structures, together with a considerable number of

@ Springer

terms that will cancel exactly among each other. In what fol-
lows, we briefly outline how this calculation may be best
organized.

We begin with the diagrams comprising (dl)gll’fv. The
abc

action of p"” on (dl,l)a;w leads to the contraction p”lﬁ!:’fA
(I, —p — 1), triggering the STI of Eq. (C1), and yielding

PYREM U, —p — 1) = AP* DAY (U + p)N
x [aght+p) = 0]
=AM (1) — APM( + p). (3.33)

The second term in the above expression will give

o4
: ig" . ~(0)ad
pv(dl,l)zl;cv — _chen /k Kré?gpmeAﬁr(k)Aan(s)

x APHU+ p)TIe G L+ pos k) + o
(3.34)

where the ellipsis denotes terms that do not contribute to the
r.h.s. of Eq. (3.31). We now change the integration variables
ask — —k andl — —I — p, and exploit Lorentz invariance
to replace FZ’;’;’?(r, -1, —t,—k) — FZ’;’;’?(—A l,t,k) and
s — —t,wheret = r —k—I. Then, substituting the Feynman
rule of Eq. (B3) and using the Bose symmetry of the vertices,

we arrive at

X anmd(_r1lstak)+"' )

hnT (3.35)

which is precisely f<*¢ (a5)/bfv (r), in the form given in the

second line of Eq. (3.32).

Similarly, the contraction of (dl,z)“b"

oy

F‘f%’:'?f(p, r, 1, s, k), given in

by p" activates the

STI for the five-point function
Eq. (C7), namely

PR (p, 1,5, k) = PO 4 1 s, )
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+ TR L+ pls k)

+ T ps + pLk)

+ fAETEM (r p.s k + p).
(3.36)

Note that only the first term on the r.h.s. of Eq. (3.36) contains
the four-point function with a ¢ entry, since r + p = —q.
Thus, one gets

. 4
. 1 . ~
Pl (d o), = —i fhex /k fl Taame APT (k) A7 (s)

x AP OTS (=g, Ls, k) + -

(3.37)
which is precisely £ (as)?(q).

After appropriate changes in the integration variables and
judicious use of Bose symmetry, one may show that all
remaining terms, denoted by the ellipses in Egs. (3.35) and
(3.37), cancel against each other. Thus, one is left with the
first equation in Eq. (3.31).

A similar line of reasoning reveals that the term
feae (aﬁ)g"; (r) originates from the contraction of p” with the
diagrams (d,,) and (d,4) of the second group. Specifically,
one triggers the STI of Eq. (C1), to obtain

oY

x /kflfgggjmeﬁg*(z,r—l)Rgﬁ(z,k)Jr....

vl
3 l ecC .
P (@) + (@ loys, = - [0 4+ 2nge |

(3.38)

Using the Feynman rule given by Eq. (B3) for the tree level
vertex one gets that

. 4
'8 [ dmbec dmbe | T(0)ad
L

. ig4 caxhbedmN(O)xdme X 33

_Tf 1" T opop  +o00s (3.39)
the substitution of the first term into Eq. (3.38) gives precisely
f C“e(aﬁ)gz (r), while the ellipsis contains the terms that will
cancel.

Finally, the contraction of (d,s) by p" activates the STI
of Eq. (C4), giving

P ot
- g X7 xe =(0)adme 73
pv(dz,s)glzcv — _becxh)lccdm /k /Zréﬁ,)gpmeRﬁx(l’ q— 1)

x R (s, k) + -+, (3.40)
which is exactly — 2 (a5)2¢, (q).

Once again, all the terms inside the ellipses in Egs. (3.38)
and (3.40), cancel exactly against the terms coming from
pY [(dan) + (da3)]

apy’

leading to the second linein Eq. (3.31).

Thus, the above considerations demonstrate the validity
of Eq. (3.9) fori = 3.

3.5 Two-loop ghost sector (fourth block)

Finally, the two-loop dressed ghost graphs, given by the dia-
gram (e), enclosed by the green box in Fig. 2, have twenty
two contributions, depicted in Fig. 6, which have been further
separated into three subgroups as

3
()3, = (enihe,. (341)
i=1
with
4 6
@iy = D@ )ans (@ =D (e)ih.
j=1 j=1
12
(e)8he, = "(es )3k, (3.42)
j=1
such that
pY(en)ihe, = f(anbe, (r) — f(ani ().
PY(e)ihe, = fe(a)’s, (r) — P (a)i, ().
PP (e)ih, = £ [(av) + (@)1, ()
— £7lay) + (@o)1s, (@) (3.43)

The expressions for all the diagrams in Fig. 6, together
with the associated self-energy graphs, are given in the
Appendix D.

A close inspection of these expressions reveals that

pv(elA)gl;;} — _fbw(a7)gZ(q) 4+,
P (ese)in, = — fPa0)s (@) + -+ .
pv(ezf))gl;;) — _fbw(ag)gZ(q) 4+,

PP (esn)in, = — fPCan)is (@) + - . (3.44)

and

abc

P’ [(61.1) + (e12) + (61,3)]01/“) = f"”e(a7)§;(r) +--
P’ [(e22) + (2], = O anli, ) + -+ .
p

! [(63.3) + (€34) + (€39) + (93,10)]
= [(as) + (@)I5, (1) + -+ .

abc
apy

(3.45)

It is then a matter of straightforward algebra to demon-
strate that all terms contained in the ellipses of Egs. (3.44)
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(63,11)

(63,12)

Fig. 6 Contributions from the diagram (e) in Fig. 2 after expanding the five-point kernel represented by the purple blob. This group is organized

in the three subsets (e;), (e,), and (e3)

and (3.45) cancel against each other and with the other dia-
grams, as

pv[(eZ.l) + (62,3) + (625)]?{?3} + ..o = O’
pUles)) + (e32) + (e33) + (e35) + (e37) + (ess)

+ (e, + - =0, (3.46)
leaving Eq. (3.43) as the final result. Thus, the validity of
Eq. (3.9) for i = 4 is confirmed.

The final conclusion drawn from the analysis presented in
Sects. 3.2, 3.3, 3.4, and 3.5 is that the block-wise realization
of the STI announced in Sect. 3.1, holds. Notice, in fact,
that the validity of Eq. (3.9) has been demonstrated for an
arbitrary value of the gauge-fixing parameter &,.

4 Abelian Ward identities with background gluons

In this section we derive Abelian WIs from the STIs satis-
fied by the BFM vertices, and apply to them the text-book
diagrammatic representation for the WIs known from QED
[75]. In addition, we demonstrate the block-wise realization
of the WI that connects the vertex ﬁw(o, r, —r) with the
derivative of K(r).

As is well-known in the context of Abelian gauge theo-
ries, such as spinor or scalar QED, the implementation of the

@ Springer

limit ¢ — O of the Takahashi identity gives rise to the cor-
responding WI. In order to fix the ideas consider the latter
theory, describing the interaction of a photon with a com-
plex scalar, where the full photon-scalar vertex I';,(r, p, q)
satisfies the Abelian STI (Takahashi identity)
¢"Tu(r, p,q) =D~ (p) =D~ (1), @.1)
with D(p) denoting the fully dressed propagator of the scalar
field. Then, the standard W1 is determined by expanding both

sides of Eq. (4.1) around ¢ = 0, and equating the linear terms.
Specifically, this procedure yields

3D (r)
L, —r,0) = —— 42
W=, 0) = = (42)
or, equivalently,
9D
: D) DI~ VD). 4.3)
p

The version of the WI given in Eq. (4.3) admits the text-book
diagrammatic interpretation: the derivative of the propagator
D(r) is equivalent to the insertion of a zero-momentum pho-
ton in it [75].

It turns out that the Abelian STIs satisfied by the BFM
three-point functions give rise to WIs completely analogous
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Fig. 7 Diagrammatic representation of the WI for the Bcc vertex,
where the derivative of the ghost propagator can be identified as the
insertion of a zero-momentum background gluon leg. Here we define
the notation of a perforated circle as being the derivative acting on the
Green'’s function

Fig. 8 Diagrammatic representation of the WI for the BQQ vertex,
where the derivative of the gluon propagator can be identified as the
insertion of a zero-momentum background gluon leg

to that of Eq. (4.3), which admit the same diagrammatic inter-
pretation given above, but now in terms of zero-momentum
insertions of a background gluon.

The simplest case is that of the ghost-gluon vertex
Fu (r, p, q), whose WI is identical to that of Egs. (4.2) and
(4.3), after the replacement I'y — I'y and D — D, i.e.,

- o D1 9D
B (r =1, 0) = aru(r) arf:)
= —D()T,u(r, =1, 0)D(r); (4.4)

the corresponding diagrammatic representation is shown in
Fig. 7.

Turning to the case of the BQQ vertex ﬁwv (g,r, p), it
is rather straightforward to deduce from the STI of Eq. (C1)
the corresponding WI, namely

-1
Aw(p) _ 9AM(p)

ap“ ap¥

= A" (p) Topo (0, —p, p) A (p);

the last relation is diagrammatically depicted in Fig. 8. Note
that the above WI, when applied at tree level, reproduces
from Eq. (2.2) the expression for 1"0, w (g, r, p) given in
Eq. (B1), capturing correctly its dependence on the gauge-
fixing parameter &,.

We next focus our attention on the W1Is satisfied by BFM
vertices with more than three incoming fields. As a concrete
example, consider the vertex BBcc; when contracted with
respect to the momentum carried by one of the background
gluons, it satisfies the STI given by Eq. (C6). Expanding both
sides of Eq. (C6) around ¢ = 0, and using the Jacobi identity
to eliminate the zeroth order term on the r.h.s., we obtain the

Fot,uv(oa —-p,p) =—

4.5)

WI
Fabmn(o —p—t,p1)

(famx fnbx + fanx fbmx 0 )

ot

xF,,(p,t, —p—t). 4.6)

Exactly analogous expressions may be deduced for higher
point Green’s functions; for a formal derivation of the STI sat-
isfied by a general vertex of the form BQ", see Appendix A.

Now we want to explore the block-wise realization of the
WI of the BBB vertex for the case of the one-loop ghost
group, which satisfies the STI of Eq. (3.9) for i = 2, or,
equivalently, Eq. (3.26). In the soft-gluon limit, we obtain
simply

=1¢))]
e, (q)
T2).(q.—q.0) = oar @7
or, in terms of diagrams
d(as)ap(q)
(€)auv(q. —q.0) = T“ (4.8)

In arriving at Eq. (4.8) we have used that (a,) is ¢-
independent, and that, in the soft-gluon limit, (¢;) = (c;) =0
(see Sect. 3.3).

To prove Eq. (4.8), we first symmetrize the process of
differentiation of (a3)y, by shifting the loop momentum
(k= u—k,withu = q/2), to get

3(as)a , / /
% = (a5 Dapv (@) + (a5,)apuv (@) + (a5 3)anv (@),
“4.9)
with
d
(@ Ve (q) = —2)»//%( [FD(k - u)i| D(k + u)
k q
x Fﬂ(k +tu,u— kv _6])1
d
(@ )an (@) = —2)»//6 D(k — u) |:—D(k + u)]
X Fﬂ(k—i_u’ u—K, —4),
(@} Dy (@) = —22 / ke D(k — ) D(k + )
k
0 ~
X [aquﬂ(k-l-u,u—k, —q)]; (4.10)

the last three contributions are depicted graphically in the
first line of Fig. 9.

Next, for the terms (a5 )0 (q) and (@} ,)auv(g) We use
Eq. (4.4) to write

(a;,l)auv(Q)
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= —A/ka [D(k — )Ty (k —u,u —k,0)D(k — u)]
k
x Dk +u)T,(k +u,u —k, —q),
(a;,z)a/w(q)
= —A/kaD(k —u) [D(k +u)Ty(k +u, —u — k, 0)
k

x Dk 4+ u) Tk +u,u —k, —q). 4.11)

A direct comparison of these last expressions with the con-
tributions to (¢3)ev (¢, —¢, 0) in Eq. (3.23) [for (¢, r, p) —
(g, —q, 0)] allows one to establish that

(agyl)a;w(‘Z) = (Q.l)a;w(q’ —-q, 0),

(a;,z)a/w (@) = (C3,2)otpw (g,—q,0). (4.12)

Consider finally the (c;3)%¢ in Eq. (3.24); setting

oLy

(g,r, p) — (¢, —q,0), shifting k — u — k, and employ-
ing Eq. (4.6), we get

(c33)80¢ (q. —q. 0) = 2% f*4 | kaD(k =)Dk + w)

X fﬁf)de(—q, 0,k+u,u—=k),

N ad
=-3 -/kkaD(k —uw)D(k +u) (3(k+u)" + o(u —k)v)
x Tk +u,u—k, —q),
= —Z)V/kaD(k - M)D(k+u) °
k 8qv

x Ttk +u,u—k, —q), (4.13)
and therefore
(a;g)a/w(‘Z) = (C3,3)omv(CIs —q,0), (4.14)

which completes the proof of Eq. (4.8). The interpretation of
the previous steps in terms of background-gluon insertions
is given in the second line of Fig. 9.

5 Discussion and conclusions

It has been known for some time [66] that the transversal-
ity of the background self-energy is enforced in a special
way, namely independently for each one of the four subsets
(blocks) of diagrams comprising the corresponding SDE. In
the present work we have shown that the Abelian STI of
the background three-gluon vertex is also realized according
to the exact same pattern, at the level of the corresponding
SDE: the momentum contraction of each subset of vertex
diagrams generates the difference of the corresponding self-
energy subsets.

The demonstration of this property has been carried out
at the level of the fully dressed Feynman diagrams that com-
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prise the relevant SDEs. In particular, the contraction of all
three-gluon vertex diagrams by the appropriate momentum
triggers STIs satisfied by the vertices and the kernels embed-
ded in them, giving rise to crucial rearrangements and cancel-
lations, which are implemented algebraically, with no need
to resort to any integrations. Note that the extensive reorga-
nization of diagrams observed here has been first identified
in the context of the pinch technique [5,82-85], where the
“gauge-invariant” three-gluon vertex was first studied at the
one-loop level [77,86,87]. Evidently, it would be particu-
larly interesting to explore the origin of the block-wise STIs
at a formal level, and establish its validity by means of the
Batalin—Vilkovisky functional machinery [5,88-92].

It is natural to conjecture that the STI of the background
four-gluon vertex, B4, given by [86,93]

g TS (q.r. p 1) = [ f " Tapy (r. p.q + 1)
_I_fmnefesrfﬂya (P, 1,q+ r)
+fmrefensryaﬂ(t,r,q + p)’ (5.])

isrealized according to the same block-wise pattern described
above. A diagrammatic demonstration along the lines pre-
sented in this work appears to be quite feasible, and would
give further support to the notion that the STI of any B"-type
of vertex is enforced in this characteristic manner.

Some of the results presented in Sect. 4 may be used in
order to explore the numerical impact of certain truncations
or approximations, in the spirit of the recent study presented
in [94]. For example, the equality shown in Fig. 9 will be
distorted if the vertex BBcc were to be replaced by its tree
level value, given by Eq. (B6). The amount of discrepancy
induced between the two sides of this equation is a quantita-
tive indicator of the veracity of such an approximation.

Throughout the present analysis we have assumed that
the BBB vertex does not contain irregularities in the form
of massless poles. However, as has been shown in detail
in a series of studies, the emergence of a dynamical gluon
mass [82] through the operation of the Schwinger mecha-
nism [95,96] hinges on the inclusion of longitudinally cou-
pled massless poles in the fundamental vertices of the the-
ory [67,97-102] Quite importantly: (a) the STIs satisfied by
the vertices are resolved with the nontrivial participation of
these poles, and (D) in the soft-gluon limit, the associated W1s
are displaced by an amount controlled by the corresponding
pole residues [101,103, 104]. In particular, ongoing research
reveals that the STIs impose stringent conditions on the pole
content of the three-gluon vertex, which must, at the same
time, be dynamically realized. The treatment of this prob-
lem within the BFM (i.e., at the level of the BBB rather
than the QQQ vertex) eliminates structures originating from
the ghost-sector of the theory, which tend to complicate and
obscure the underlying physical picture. We expect that the
completion of this study will shed light on the question of
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Fig. 9 The diagrammatic representation of the differentiation of the graph (a;) with respect to ¢". The effect of differentiating the ghost propagator
(dressed background ghost-gluon vertex) is the insertion of a zero-momentum background gluon leg in the propagator (vertex)

how symmetry-induced constraints are dynamically enforced
at the level the corresponding SDEs.
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Appendix A: Derivation of Abelian STIs

In this Appendix we employ the Batalin—Vilkovisky formal-
ism [5,88-92] to derive the Abelian STI satisfied by the
generic vertex BQ" when contracted by the momentum car-
ried by the gluon B.

We start with the WI functional, given by [5]

9 BYH ()

4 X,
W= /d 89 Q™ (1) ——— an()

3Qx( )

+8pct (x) ——— + 8y¢C (X)S XT(’ )j| 0, (A1)

oT

Sc*(x)
where 9¢ are the local infinitesimal parameters which cor-
respond to the SU(3) generators ¢, and play the role of the
ghost field. I in Eq. (A1) is the “reduced” effective action,
defined as the full effective action without the gauge-fixing
term [5,90]. Consequently, the Green’s functions obtained
from I will be missing the corresponding gauge-dependent
contribution at tree level. Finally, the gauge transformations
of the fields are given by

890} = gfdeQd o<,
fxdc d

X _ X xdc pd ocC
8y BE = 9,0% + gf*I¢Blve,

Spc* = —g 89" = —gfrdcedye (A2)

To obtain the background Abelian STIs the first step is to
differentiate the functional W with respect to the parameter
9“(x), furnishing

SW
S04 (x)

= g/4Q4 (M) ge (1) + 8, Tpg (1) =0, (A3)

where we have already set to zero the vacuum expectation
values (VEVs) of the ghost, antighost, and background gluon
fields2. Moreover, we introduce the shorthand notation for

2 In the end of the procedure all of the VEVs are set to zero. Since the
BQ" vertex has only one external B and no external ghost and antighost
fields these VEVs can be set to zero from the outset.
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functional derivatives

snr
Forgnan 00 22,0 Xn) = S ) - o)

(A4)

where ¢; (x;) denotes a generic field.

The STIs of interest are then obtained by differentiat-
ing Eq. (A3) n times with respect to the quantum gluon.
Note, in particular, that the functional derivatives of the
term 9, I"ga (x) in Eq. (A3) generate divergences such as
0, B Q{J,} o (x, ¥1, ..., yn) which, after Fourier transfor-
matioln, result in the typical Lh.s. of the Abelian STIs,
i.e., a Green’s function contracted with a background gluon
momentum.

To fix the ideas, let us consider as two special cases the
STIs for the BQ and BQQ functions.

Differentiating Eq. (A3) with respect to Qﬁ} (y1) we obtain

82w ebia
— o = &f T8 —yTgg (x)
30y, (y1)894(x)

eda Hd
+ gf Q;L(X)FQgin(yl,x)

0Ty g (5, 31) =0, (A5)

Setting the gluon field O = 0, and the one-point function
FQil (x) = 0, we obtain

a,I" b (x,y1) =0,

T g gt (A6)

where I' 5 (x, y1) is the inverse BQ propagator, with its

B(l
vy
1/§ ¢ term removed. In momentum space notation, Eq. (A6)
becomes

" [ Pw@ +iflu@] =0 = ¢"flu@=o.
(A7)

expressing the exact transversality of the BQ self-energy.
Then, an additional differentiation of Eq. (AS) with respect
by .
to Q)5 (y2) yields

83w
5O (y1)S QU (y1)8¥4(x)
_ ebra _
=gf(x yl)FQ%’,l o2 (x, y2)

ebra _
+gf 8 (x yz)FQﬁf o,

eda Hd
r
a0 g g

0”2 (x,y1,y2) =0.

(1, x)
1, y2, x)

+ 9,7 (A8)

b
Bj, Q)
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At this point, by setting all the fields to zero we obtain
the Abelian STI for the BQQ vertex in configuration space,
namely

OuT gy i1 b2 (62 V1 2) = = & P18 — yDIT o, (3, 72)
vy =2V

= Ba 0yl 0.2
— gf“P8(x — y)T

0l 05, 1, ).

(A9)

Now, Fourier transforming the above equation to momentum
space leads to
q"T ,, o o2 (@, 1, p) =gf "' [sz (p)+1 (p)]
BiOv Qv w e
= gf " [P P () + ()]
(A10)

which, with the definition of Eq. (2.3), becomes Eq. (C1). The
derivation of the STI for the BBB vertex, given in Eq. (3.6),
is completely analogous.

Next, we prove that the STI of the BQ" vertex is given by
—9,T

by b by (X V1, V2, o0ty
810l 0.ty (¥ Y1 32

=gf“Ps(x — ypr b (6, V2, 34y V)

b2 Hb3
Qﬁl sz Qv3 '”Qvn

eab) _ r
+gf " 8(x — y2) ol s, 00l 15X, ¥35 445 yn) +

+8f P s(x — y)T s ECII

b by sy Yn—1,X).
ol %20l ge. In—1,

(A11)

To that end, we first differentiate Eq. (A8) n — 2 times. This
procedure yields

— BMFBZQ?,{ Q%Qeﬁ (xy yla y25 ceey )’n)

= gf“Ps(x — yHT b (X, Y2, V35 s V)

05, 030030V
eab28 _ F
+gf (X y2) Q‘lz%ngQ‘ngeg(ylaxv y377yn)

8n—2

300 () -+ 805 (v3)

x [jS(X)Fle otz s 0172 x)]}
v m

V1

+ gfeax {

(A12)
0—0

Clearly, to demonstrate Eq. (A11) we need to prove that

(3"_2
gfeax |:Qx T oy by, 1, yZ,X)]
500 () -8QN () L1 001050

= gfeab33(x — y3)l"Qb} Qb%Qe ijme,, (1, Y2, X, ya, ..
vy Qvy 0%, Qg+ Oy

+ gfeal7”8(x - y")FQﬁll QS%”'Q€U711 0¢ 01 y2, -5 Yn—1,X)

0—0
7yn)+

4 gfeax [Qﬁ(x)FQb by obn

ho..gl o 01,32, -+, yn,x)}

0—0
(A13)
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The proof proceeds by induction. First, it is clear that
Eq. (A13) holds for n = 3. Indeed, in this case one has
to take a single derivative

eax 8 X
gf {SQ{E—(ys) [QIL(X)FQ‘b){ Q%Qz(yl,)’LX)“

— eabg(S _ r
e

0—0
V1, y2, x)
eax X F

0—0
(A14)

which is Eq. (A13) forn = 3.
Then, assume that Eq. (A13) is true for n = k. Differen-

- . b .
tiating the result once more with respect to QY| we obtain

akfl
br41 by b3
SQUk+1 ()’k+1)5ka ()’k) e 8QU3 ()’3)

x [Qii(x)rggmgm(yl,ym)]}Q )

= gf*3§(x — y3)T

gfeax {

0V 02 05, 0V 0l 0!
X (V15 Y2, X, Y4y ooy Yho k1) + -+
+ f P8 (e = yOT oy

b by b,
V] QU%QV}&?} Q‘E’k Q\q]:rr}
X (V15 Y2y s Ye—15 X, Y1)

+ 8f P (= Yy DT by by
&f Y% ol olz- 0l o,

X (Y1, Y2, « o5 Yk» X).

+gfe [jS T

b1 nb2 APk Hbk+1
Qvl sz"'ka Q"k+l Qfl

(A15)

X (V15 Y25 -+ Vi yk+1,x)]Q_>0,

which is Eq. (A13) for n = k + 1. This completes the proof.

In momentum space, Eq. (A11) is given by (suppressing
a factor of g)

iqMFBZQf;]l 0720l (. p1.p2. - Pn)

— eablF )
f 0s, 012 0l-oln (p1+4q, p2, p3,-- -, Pn)
easz X RN
+f oll 05, 0% -0l (p1.p2+q,p3,....,pn) +
eab,
+f 0% 0201 s, (p1. P2, P3 Pn+q)
(A16)

The corresponding WI is obtained by expanding Eq. (A16)
around ¢ = 0 and collecting terms linear in g. Using p, =
n—1
— Y pi, we obtain
i=1
lFB‘aLQ{’)} Qﬁ% bn (0, P1, P2, ...

vn

a a
(s )

n—1

) pn)

(A17)

X Fth (P1y -+ Pn)-

Vi an

Note that the absence of a zeroth order term on the lL.h.s.
of Eq. (A16) implies the relation

0=rehr D2y P3s s
f 05, 02070l (p1> P2, P3 Pn)

eabzr

+f QZ%Q%Q/;;__ng(pl,pz, P3sves Pn) T

eab,
n , D2, D3y e e ,
+f 00 020! ge. (p1. P2, 3 Pn)
(A18)

whose validity we have checked explicitly for n = 3, 4.
Appendix B: Feynman rules for BFM vertices

In the Table 1 of this Appendix we list the Feynman rules for
BFM vertices at tree level.

@ Springer



86 Page 16 of 20 Eur. Phys. J. C (2023) 83:86

Table 1 The diagrammatic representations of the new vertices lowing the definitions of Eq. (2.3), while for the four-point func-
appearing in the BFM and their respective Feynman rules at tree tions, we have factored out only —ig? as shown in Eq. (2.4)
level [5]. Notice that for the three-point functions we have fac-
tored out the coupling g and their respective color structure, fol-

Vertex Feynman rule
A Fgﬁu(‘]a T, p) = (C] - T)Vgau + (T - p)ag,uu + (p - Q)ugau (Bl)
v,c (BQQ) ) + fgl(gauru - ga,upv) 9
Iy a
l q

AN () = (r— B2
/' \ m (Tap7 q) - (7’ p),u ) ( )
n (BE(:) m

B,b

=(0)abcd adx pcbx abx cx
>< L = £ £ (gapgs — Gapguw) + F % (Gow 95y — Gongpn)  (B3)
acx pdbx
v,d BQaq) "° +frf (gowgﬁu - gaﬁguu) )
(0)abed 0)abed — adx rbex acx T

>< Tt = T 4 €3 (£ £ gangpy — £ F gopgpn) (B4)
“4 maag) M
1, a v, b
| N | fgg/)abmn _ fmaxf:cbngwj , (B5)
n (BQﬁ(r) m

v,b

| ffg/)abmn = G (fma:cfbnx + fmbxfanx> ) (BG)
n (BBEC) m
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Appendix C: Abelian Slavnov-Taylor identities in the
BFM

In the Table 2 we collect all the Abelian STI in the BFM
necessary to demonstrate the block-wise realization of the
STI for the background three-gluon vertex.

Appendix D: Expressions for the two-loop ghost sector of
the BBB SDE

The two-loop ghost sector of the SDE of the vertex BBB
given by diagram (e) in Fig. 2, whose expansion is given
in Fig. 6, relate with the background gluon self-energy by
Eq. (3.43), where the expression for the diagrams (a;), (ag),
(ay) and (ay), in Fig. 1 can be expressed as

(@b (q) = ig*h{e" /k /1 DWU)D(s)AL (k)

x Thde(—q.k.1.5), (D1)
1
(as)eh (q) = Emzaa”gaﬂ / f Ry (—1,1—k)
k Jl1
x RSP (~k.q +k). (D2)

(@) (q) = —ir25 /k /l D +DALR Rk — 1,1)

x Tu(=1,q+1,—q), (D3)
@0 (q) = —5i3%% /k fl D(g +D AP ()
x Rg(l,k —DTy(q +1, —1, —q). (D4)

The decomposition of diagram (e), given in Egs. (3.41) and
(3.42), can be separated in three groups: (e Dabe with

apY?
(e1,0)ry = ig* 8" gup fk /1 D(k)D(s)RE (1, —p — 1)
x Thedmr 14+ p, s, k),
ety =ity [ [ DoalORp -k b
X Fz%dm(r, l,s, k+ p),
(e1.3)a0, = ig*hgmeed /k fl D(k)AL(DR, (k. —k — p)
X Fﬁ%d’"(r, Lk+p,s),
(e1.4)a, = ig*himed fk f, D(k)D(s) AT (v, p. 1. 5. k),
(D5)

(e2)abe,, with

(2,022, = ig*hgm P g /k /Z DWDESRE U, —r — 1)

X Fgcd,e’"(p, r+1,s,k),

. i . ~
(e2,2)8b¢, = —Zsz”b‘ fk /Z ARy (s, VRS (p+1,9 —1)
X i:vﬂa(Pv l,—p—=1D),
i
(23405 = =32 gap /k /I AY(q = DRy (s.k)
~Bo ~
x RE7(,—r = DF o (p,q =11 +7),
)
a8ty = 215 [ [ D)
x Ry(—k = p, ORE (1, = =Ty (s, k + p. L +7),
(62,5)3?5) = ig4h)1cmbehgmecxgaﬁ /k /ZD(S)]}‘U (k, =k — p)
~Bo
x Ry (,—r —Dlg(k+p,s, 1 +71),
i
(2600, = 582" fk /l AB@)APT (g — DRy (s, k)

x I—Tbcem

uvﬁa(r’ p’lﬁq_l)s (D6)

and finally (e3)42¢,, with

(e3,1)ab6, = ig*nhmade /k /I D&)A O Ru(—k =1, k)
X F‘fg‘lm(p, l,s,k+r),
(32806, = ig*hy™eehgm P g /k /I DWRE (. ~1 — p)
X Ro (s, k4T y(—k —r k1),
@208t = =521 [ [ AR~k
x Rp(k—q, )Tk +p,g—k.r),
(e3. )7y = —%Azf“b“ /k fl AGWOTg(s + p.k+7,D)
X ﬁu(—k —r, k)ﬁu(s, —s —p),
(03,5080t = =222 fk /l NG Rg(s. k= q) Ru(—k = r k)
x Tog —k.k+r.p).
(e3,6)40%, = —%g2kf“de fk /l DAL ORs(k —q.5)
X f‘\li]ide(r, p.k,qg—k),
(e3.7)ip0, = ig*hgme?? /k /l DAL DRk, —k = r)
X F‘fgdm(p, Lk+r,s),
(e3.8)ipe = 18 H{" " g /k fl DR, ~1 = p)
X Ry (k+r, )Tk, =k —r,r),
(e3,0)306, = %sz“bc /k /I AEWRg(s, k- q)
x Tyu(q —k,k+p,r)Ry(—=p —k, k),
(€3,10)356, = ixzf’”’c /k /1 AEOTgr —k, —1,1)
X Ryu(—k,k —r)Ry(t, q +k+1),

. i .
(e3105 = 5271 /k /lAg(l)R,s(k ~q.5)
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Table 2 The Abelian STIs satisfied by the BQQ, Bcc, BQQQ, BBQQ, BQce, BBce, BBQQQ and BBQcc vertices

Vertex Abelian STI

BQQ 4 Taun(q. 1. p) = AL (p) — AN (), (@)

Béc q"Tu(rp.q) = D~ (p) = D~ (r), (€2)

BOOQ Q" Toit @ v po 1) = [P [T + g, po ) + L9 fPH T (r, p g, 1) ©3)
+fadxf6bxrﬂ;w(r, p.t+q),

BBQOQ a°Togi@.r.p.t) = f f1T g+ q. po 1) + [N fP D Tpun (o p +4.1) )
+fadeCbxFﬁ#v(r, p.t +q)’

BQGe qHTam (g, r, p. 1) = [ P, (pog 1) + [N T (g + patar) ©5)
+fnm)(fabxl—~v(p’ tq + r)’

BREc q"Tam (g, r, p.1) = f“be"l”XFggp, t.q+r)+ [T (g + potr) C6)
+ fE I (p g + 1, 7),

BBOQO qUTaede (q.r, potow) = fPUTE0 (r + g, potow) + fTe (rp + g1, u) ©n

+ fAETReR (r, pot+ g, u) + fESTR (r potu+ q),
aabemn __ gpbaxTxcmn cax Phxmn
BBQcc 9T, (q rop, tou) = fPUT M (r 4+ q, potw) + fC5T 3" p+q. 1, u) ©8)

ST pot - qou) + TN pat ).

X Eﬂ(k, —k — r)ﬁ,(k +r,q—k,p)),

(e3,12)35¢, = —ig?rfede fk le(k)Ag(l)R,a(s, k—q)

x FZf)de(r, p.q —k, k). (D7)
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