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In this work, a refined Bayesian neural network (BNN) based approach with six inputs including the 
proton number, mass number, and engineered features associated with the pairing effect, shell effect, 
isospin effect, and “abnormal” shape staggering effect of 181,183,185Hg, is proposed to accurately describe 
nuclear charge radii. The new approach is able to well describe the charge radii of atomic nuclei with 
A ≥ 40 and Z ≥ 20. The standard root-mean-square deviation is 0.014 fm for both the training and 
validation data. In particular, the predicted charge radii of proton-rich and neutron-rich calcium isotopes 
are found in good agreement with data. We further demonstrate the reliability of the BNN approach 
by investigating the variations of the root-mean-square deviations with extrapolation distances, mass 
numbers, and isospin asymmetries.

© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons .org /licenses /by /4 .0/). Funded by SCOAP3.
1. Introduction

Nuclear charge radius is one of the most fundamental proper-
ties of an atomic nucleus, which characterizes its charge distribu-
tion. It is a key observable that can directly reflect various fine 
structure phenomena, such as neutron halo [1], neutron skin [2,3], 
proton halo [4], odd-even staggering [5–7], shape staggering [8,9], 
and the emergence of new magic numbers [10]. Remarkable exper-
imental progress has been achieved in measuring charge radii over 
the past few years. Particularly, laser spectroscopy experiments 
have measured more than one hundred charge radii of unstable 
nuclei [9,11–15]. Some exotic and interesting phenomena, such as 
the endpoint of the shape staggering of mercury isotopes [8] and 
the abrupt increase in the charge radii of neutron-rich calcium iso-
topes [5] as well as the odd-even staggering in proton-rich calcium 
isotopes [6], pose great challenges to our understanding of nuclear 
charge radii. Therefore a systematical study of the new experimen-
tal data is of great importance.

Various theoretical models have been applied to study nuclear 
charge radii, from simple liquid drop models [16,17], phenomeno-
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logical formulae [12,18–21], local-relation based models [22–26], 
sophisticated mean-field models [27–33] to ab initio no core shell 
models [34]. Among these models, the Weizsäcker Skyrme (WS∗) 
model is able to provide the best description of the newest experi-
mental data, yielding a root-mean-square deviation (RMSD) around 
0.018 fm [12]. However, the description and explanation of some 
fine structures, such as the odd-even staggering of calcium iso-
topes, still remain difficult for most theoretical models. In 2020, a 
modified relativistic mean field plus BCS (RMF(BCS)*) ansatz [31], 
which considers the semi-microscopic correction originating from 
the Cooper pair condensation, was proposed to describe the charge 
radii of calcium isotopes, and the agreement with data turns out 
to be quite good, compatible with or even slightly better than the 
sophisticated Fayans energy density functional approach [6,35].

In recent years, machine learning methods have been widely 
and successfully applied to study various physical systems [36–40]. 
In particular, a variety of machine learning methods are used to 
study nuclear charge radii, ranging from the naive Bayesian prob-
ability classifier [41], kernel ridge regression (KRR) model [42], 
artificial neural networks (ANNs) [43–45], to Bayesian neural net-
works (BNNs) [46,47]. In Ref. [47], a hybrid model combining the 
simplicity of a three-parameter formula (NP) with the expression 
power of a Bayesian neural network, named as the D4 model, was 
proposed to describe nuclear charge radii with Z ≥ 20 and A ≥ 40. 
le under the CC BY license (http://creativecommons .org /licenses /by /4 .0/). Funded by 
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Fig. 1. Structure of the artificial neural network used in this work. The number of 
neurons in the input layer is 6. The number of hidden layers is 1 and the number 
of neurons in the hidden layer is 34. The number of neurons in the output layer 
is 1.

It can not only achieve a much improved description of experimen-
tal charge radii [11,12,48] but also describe the peculiar odd-even 
staggering of calcium isotopes and make predictions for neutron-
rich calcium and potassium isotopes with quantified uncertainties, 
in good agreement with the experimental data [12,49]. Nonethe-
less, a closer examination of the predictions shows that the D4 
model does not give satisfactory predictions for isotopes in the 
neutron-deficient regions of several isotopic chains, i.e., calcium 
and thallium. In addition, the rms deviation for the validation set 
is about 30% larger than that for the training set, which hints at a 
possible over-fitting problem. In this work, we refine the NP-BNN4 
(D4) model of Ref. [47] by adding new features containing more 
physical information, trying to provide a solution to the problems 
mentioned above and develop a new NP-BNN model with better 
extrapolation ability.

This article is organized as follows. In Sec. 2, we construct the 
refined Bayesian neural network by adding new features and ex-
plain how we divide experimental charge radii into training and 
validation sets. Results and discussions are presented in Sec. 3. A 
short summary and outlook is provided in Sec. 4.

2. Theoretical formalism

The Bayesian neural network (BNN) [50] is a powerful machine 
learning method, because of its ability to combine the strengths 
of an artificial neural network (ANN) and the Bayesian statistical 
theory, with the former being generally regarded as a “universal 
approximator” [51]. As shown in Fig. 1, the artificial neural net-
work we used is a fully connected feed-forward artificial neural 
network with one hidden layer. Mathematically, it has the follow-
ing form:

f (x,ω) = a +
H∑
j=1

b j tanh(c j +
I∑

i=1

d jixi), (1)

where the parameters of the neural network are ω = (a,b j, c j,d ji), 
I is the number of input layer neurons, H is the number of hidden 
layer neurons, and x is the set of inputs xi .

The Bayesian inference is based on Bayes’s theorem [50,52],

p(ω|x, t) = p(ω)p(x, t|ω)

p(x, t)
, (2)

where p(ω) is the prior distribution of the parameters of the neu-
ral network, p(x, t|ω) is the likelihood based on the actual data, 
p(ω|x, t) is the posterior distribution which is used to make pre-
dictions, p(x, t) is the marginal likelihood which can always be 
2

neglected because it does not contain the information of param-
eters, and t is the set of target data ti . All the model parameters 
are assumed to be independent in this work and follow Gaus-
sian distributions centered around zero as their prior distributions. 
To define the likelihood p(x, t|ω), we first introduce an objective 
function for the neural network in terms of a least-squares fit to 
the training data:

χ2(ω) =
N∑

i=1

(
ti − f (xi,ω)

�ti

)2

, (3)

where N is the number of training data. In this work, we use the 
experimental uncertainties of charge radii as �t , the set of stan-
dard deviation �ti . A Gaussian distribution is usually used for the 
likelihood in terms of the objective function:

p(x, t|ω) = exp(−χ2(ω)

2
). (4)

All that remain for the model training process are to specify 
the input data and target data of the Bayesian neural network. 
As we mentioned in the Introduction, the predictions of the D4 
model for the neutron-deficient calcium isotopes do not agree 
well with the data [47]. The same can be said about the potas-
sium isotopic chain. Clearly, isospin dependence is not adequately 
treated in the D4 model. In addition, the D4 model is not able 
to predict well the latest experimental data for neutron-deficient 
mercury and thallium isotopes. Experimentally, the charge radii of 
181,182,183,184,185Hg show strong odd-even staggering, which has 
been attributed to the shape oscillation from prolate to oblate and 
back forth [8]. In the D4 model, such shape staggering, which hap-
pens much less frequently, has not been explicitly considered and 
is not correctly captured by the network either. To prevent such a 
rare event from distorting the BNN, we add a new feature by la-
beling 181,183,185Hg such that they are treated differently from all 
the other nuclei. This should be viewed as the most economic way 
to remove “abnormal” data from the training set.

Thus, the final inputs for the BNN are x ≡ (Z , A, δ, P , I2, LI), 
where

δ = (−1)Z + (−1)N

2
, (5)

P = νpνn

νp + νn
, (6)

I2 = (
N − Z

A
)2, (7)

LI =
{
1, (Z , A) = (80,181), (80,183), (80,185)
0, else

. (8)

The pairing term δ is related to nuclear pairing effects and the 
promiscuity factor P [53,54] is related to shell closure effects. The 
new features are I2, which takes into account isospin dependence, 
and LI , which treats the “abnormal” behavior in 181,183,185Hg. It 
should be noted that we do not observe any such large shape os-
cillations in other nuclei except for 188Bi [9]. The target data t in 
the present work are δRch = Rexp. − Rth. , i.e., the residuals between 
experimental and theoretical charge radii. Following Ref. [47], we 
choose the NP formula [18] as our theoretical model to be refined 
by BNN:

RNP(Z , A) = rA A
1
3

[
1− b(

N − Z

A
) + c

A

]
, (9)

where rA = 0.966 fm, b = 0.182, and c = 1.652 [55].
The Bayesian prediction for the charge radius difference of a 

particular nucleus n is:
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〈 fn〉 =
∫

f (xn,ω)p(ω|x, t)dω = 1

K

K∑
k=1

f (xn,ωk), (10)

where xn = (Zn, An, δn, Pn, I2n, LIn) are the input data (features), 
f (xn, ωk) are the neural network predictions for δRch(Zn, An) for 
a given set of parameters ωk , and K is the total number of effec-
tive samples. In this work, we use the Markov chain Monte Carlo 
(MCMC) method [50] to obtain the Bayesian predictions. One of 
the most important features of BNNs (in comparison with conven-
tional neural networks) is that they can provide a proper estimate 
of output uncertainties. To characterize such uncertainties in a 
quantitative way, we define a confidence interval of 68.3% as:

� =
√

〈 f 2n 〉 − 〈 fn〉2, (11)

where 〈 f 2n 〉 is obtained by following the same procedure as in ob-
taining 〈 fn〉.
3. Results and discussions

Similar to [47], we only study those nuclei with A ≥ 40 and 
Z ≥ 20. For the training set, we use the 820 experimental data 
given in Ref. [11]. The more recent experimental data [12,48], con-
taining 113 data for nuclei with A ≥ 40 and Z ≥ 20, are used as 
the validation set to test the predictive power of our model.

For the sake of easy reference, we use “D6” to denote the model 
combining the NP formula and the BNN with 6 input neurons. We 
also show the results obtained in the BNN with five input neurons 
(Z , A, δ, P , I2), denoted by “D5” for comparison. The difference be-
tween “D5” and “D6” shows how a local feature affects the global 
performance of a BNN via the large non-linearity of a neural net-
work. To quantify the extent of the BNN refinement of the NP 
formula, we compute the root-mean-square deviation (RMSD) be-
tween the NP-BNN model outputs R(NB) and experimental data 
R(exp.):

σ (v)(R(exp.), R(NB)) =
√√√√ 1

Nv

Nv∑
i=1

(
R(exp.)

i − R(NB)
i

)2
, (12)

where Nv is the total number of charge radii contained in the val-
idation set.

One advantage of the BNN method is that it can provide quan-
titative uncertainty estimates. However, the above conventional 
RMSD does not reflect this important piece of information. As a 
result, we propose to use a modified root mean square devia-
tion named as special root mean square deviation (SRMSD), such 
that the generic model uncertainties are taken into account, which 
reads

Sσ (v)(R(exp.), R(NB)) =
√√√√ 1

Nv

Nv∑
i=1

(Sσi)
2, (13)

Sσi =

⎧⎪⎨
⎪⎩

0, if R(L)
i ≤ R(exp.)

i ≤ R(H)
i

|R(exp.)

i − R(H)
i |, if R(exp.)

i > R(H)
i

|R(exp.)

i − R(L)
i |, if R(exp.)

i < R(L)
i

(14)

where R(L)
i = R(NB)

i − � and R(H)
i = R(NB)

i + �, R(NB)
i is the out-

put of the NP-BNN model (D4/D5/D6) for nucleus i, and � is the 
confidence interval of Eq. (11).

As can be seen from Eqs. (12), (13) and (14), the SRMSD reflects 
the deviations between the experimental data and the 1σ limits 
of theoretical predictions while the RMSD denotes the deviations 
between the experimental data and the center values of theoretical 
predictions.
3

Table I
RMSDs and SRMSDs for the charge radii predicted by 
the NP formula, D4, D5 and D6 models.

Model σ (t) (fm) σ (v) (fm) Sσ (v) (fm)

NP 0.0394 0.0300
D4 0.0143 0.0187 0.0142
D5 0.0137 0.0170 0.0124
D6 0.0140 0.0139 0.0094

Fig. 2. Variations of the RMSDs and SRMSDs for nuclei with mass number A in the 
validation set.

Fig. 3. Variations of RMSDs and SRMSDs for nuclei in the validation set with the 
extrapolation distance �Z .

The RMSDs of the NP formula, D4 [47], D5, and D6 models are 
displayed in Table I for the training set (σ (t)) and the validation 
set (σ (v)), where the SRMSDs for the validation set, Sσ (v) , are also 
shown.

First, we note that all the three NP-BNN models can describe 
the training set much better than the NP formula, at a level of 
0.014 fm. On the other hand, for the validation set, the D6 model 
yields the least RMSD, which is only about 46% of that of the NP 
formula, 74% of the D4 model, and 82% of the D5 model. In addi-
tion, the RMSD of the D6 model for the validation set is almost the 
same as that for the training set while that of the D4(D5) model 
increases by 31%(24%). This means that the D6 model performs 
much better in terms of extrapolation and its predictions are more 
reliable.

It is interesting to compare the D5 and D6 models, which differ 
by the input feature “LI”. The improvement of D6 over D5 indi-
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Fig. 4. Charge radii of the thallium isotopes predicted by the NP formula [18,55], D4 (center value) [47], D5, and D6 models, in comparison with the experimental data [11,12]. 
The data in the gray area are pure predictions, i.e., they are not contained in the training set. The red dashed line denotes the neutron magic number N = 126.
Fig. 5. Variations of the RMSDs and SRMSDs for the validation set with |N − Z |. 
Every bin in each interval represents the (S)RMSD of all the nuclei in this interval.

cates that a few “abnormal” data could distort the calibration of 
a neural network and thus affect its performance. Because of the 
scarcity of “abnormal” data, they could not be correctly identified 
by the neural network. In such a scenario, it is important to treat 
them separately by hand, if feasible, such that the distortion of the 
neural network performance could be minimized or eliminated.

In the last column of Table I, we show the SRMSDs for the 
D4/D5/D6 models. It is clear that taking into account uncertain-
ties, the difference between theoretical and experimental results 
decreases by about 24% for the D4 model, 27% for the D5 model, 
and 32% for the D6 model.

A physically motivated and constrained NP-BNN model is sup-
posed to perform better in extrapolations in terms of masses, ex-
trapolation distances, and isospin asymmetries. Therefore, in the 
following, we test the generalization ability of the NP-BNN models 
by studying the variations of RMSDs(SRMSDs) with the mass num-
ber A, the extrapolation distance �Z , and the isospin asymmetry 
|N− Z | respectively. For those nuclei in the same mass region, with 
the same �Z and in the same |N − Z | region, one can define a 
RMSD similar to Eq. (12) as well as a SRMSD similar to Eq. (13). 
The corresponding results are shown in Fig. 2, Fig. 3, and Fig. 5.

As can be seen from Fig. 2, the RMSDs and SRMSDs of the D6 
model exhibit less fluctuation compared with those of the D4 and 
D5 models. Especially in the heavy mass region, the performance 
of the D6 model is more stable, which implies that the D6 model 
is able to yield more reliable predictions for super-heavy nuclei, 
which is very important because of the lack of experimental data 
in this region.

To further check the predictive power of the NP-BNN models, 
we define the extrapolation distance �Z for data in the validation 
set as follows:
4

�Z (Z
(v)
i ,N(v)

i ) = MIN
Z (t)
j =Z (v)

i

(
|N(t)

j − N(v)
i |

)
, (15)

where the subscript i and superscript v denote a nucleus in the 
validation set, and j and t denote a nucleus in the training set. As 
a result, �Z represents the shortest distance between the nuclei 
contained in the validation set and those in the training set with 
the same proton number Z .

The variations of the RMSDs and SRMSDs for nuclei in the val-
idation set with �Z are shown in Fig. 3. The RMSDs of the D6 
model are smaller than those of the D4 and D5 models for �Z ≤ 4, 
which contains 64.6% of the validation data. Large odd-even stag-
gering of the D4 predictions happens in the 5 ≤ �Z ≤ 10 region, 
which contains 31.9% of the validation data, while no large odd-
even staggering is found in the D6 predictions. Even with the 
uncertainties taken into account, the large odd-even staggering be-
havior of the D4 model still persists. The origin of this odd-even 
staggering effect can be understood by studying the thallium iso-
topes. As can be seen in Fig. 4, the predictions of the D4 model 
show large odd-even staggerings in conflict with the experimental 
data. Though the new feature of isospin effect is not able to solve 
this problem, it decreases the amplitude of the odd-even stagger-
ings as can be seen by comparing the results of the D5 and D4 
models. After the local interaction feature LI is included, the pre-
dictions of the D6 model for the thallium isotopes are in excellent 
agreement with the experimental data.

Another interesting thing is that the RMSDs of the D6 model 
are not monotonically increasing with �Z as those of the kernel 
ridge regression method [42], which means that the extrapolations 
of the D6 model are more stable. After the BNN uncertainties are 
taken into account, the extrapolation capacity of the D6 model is 
further improved, especially for those nuclei far from those con-
tained the training set. All the experimental data of the validation 
set in the �Z ≥ 9 region (about 11.5% of the validation set) are 
within the confidence intervals provided by the D6 model.

In Fig. 5, we show the variations of the RMSDs and SRMSDs of 
the validation set as a function of the distance to the N = Z line 
in the nuclear chart, to further investigate the effect of the new 
feature I2. With I2 considered in the BNN, both the RMSDs and 
SRMSDs decrease in the 15 ≤ |N − Z | ≤ 50 region. In addition, the 
RMSDs of the D6 model are smaller than those of the D5 model 
in the |N − Z | ≥ 15 region. As a result, it implies that the local 
feature introduced to account for 181,183,185Hg can influence the 
study of the nuclear charge radii in the whole nuclear chart via 
the complicated neural network.

Clearly, from the above analysis, one can see that the predic-
tive power of the D6 model in the A ≥ 40 region is quite good. It 
is interesting to check whether in the A < 40 region, such as the 
neutron-deficient calcium isotopes, the D6 model can still provide 
good predictions. In order to showcase the odd-even staggering ef-
fect of the calcium isotopes, we study the odd-even staggering �r

defined by
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Fig. 6. Charge radii (a, c) and �r (b, d) of calcium isotopes predicted by the NP formula [18,55], D4 (center value), D5, and D6 models, in comparison with the experimental 
data [11,12]. The data in the gray area are pure predictions, i.e., they are not contained in the training set. The red dashed line represents the neutron magic number 20 
and 28.
�r(N, Z) = 1

2
[R(N − 1, Z) − 2R(N, Z) + R(N + 1, Z)] , (16)

where R(N, Z) is the RMS charge radius for a nucleus with neu-
tron number N and proton number Z . The results are shown in 
the lower panels of Fig. 6. As can be seen from Fig. 6, with four 
input neurons (Z , A, δ, P ), the predictions of the D4 model do 
not agree well with data for those nuclei with N < 19. On the 
other hand, the D5 and D6 predictions are in better agreement 
with the experiment data in the N < 19 region, as well as in 
the neutron-rich region. This can be viewed as a clear evidence 
that the isospin-asymmetry effect plays an important role in de-
scribing the charge radii and the odd-even staggering phenomena 
of the calcium isotopes, especially in the neutron-deficient region. 
On the other hand, in the 29 ≤ N ≤ 31 region, the D6 model de-
scribes better the odd-even staggering than the D5 model, which 
further proves the importance of the explicit consideration of local 
“anomolies” in global nuclear charge radii studies.

Finally, we briefly comment on the performance of various ma-
chine learning methods in studies of nuclear charge radii, partic-
ularly in describing the data in the validation set. For the sake of 
simplicity, we use RMSDs for this purpose with the caveat that the 
nuclei contained in the validation sets can be very different. By 
randomly dividing all the data [11] into a training set and a val-
idation set, the RMSDs achieved by the ANNs of Refs. [43,44] are 
0.023 fm. The naive Bayesian probability classifier achieves a RMSD 
of 0.02 fm [41] while the KRR method obtained a RMSD of 0.03 
fm [42]. The BNN methods of Ref. [46] and our previous study [47]
achieved RMSDs of 0.026 fm and 0.019 fm, respectively. While in 
the present work, we have achieved a RMSD of 0.014 fm.

4. Summary and outlook

We showed that with four physically motivated engineered 
features, i.e., isospin-asymmetry, pairing, shell and local shape-
staggering effects, one can achieve an unprecedented description 
of nuclear charge radii. Compared to the three-parameter parame-
terization, the RMSD(SRMSD) of the validation set achieved by the 
NP-BNN6 model is lower by about 54% (69%).

Studying the variations of RMSDs and SRMSDs with nuclear 
mass number A, we found that the new features I2 and LI im-
proved the predictive power of the NP-BNN model mainly in the 
heavy mass region. The large odd-even staggering effects of RMSDs 
5

and SRMSDs disappear after adding the new features I2 and LI
into the BNN. In addition, the predictive power of the D6 model 
becomes more apparent when the theoretical uncertainties are 
taken into account. Even for the nuclei located far from those 
contained in the training set, the D6 model can still make fair pre-
dictions.

The present work demonstrated the potential of Bayesian neu-
ral networks in explaining nuclear structure properties, such as 
nuclear charge radii. In particular, we showed that physically mo-
tivated features are indispensable for the cases where data are 
limited and extrapolations are necessary. In addition, the power 
of Bayesian neural networks in providing quantitative uncertain-
ties should also be fully exploited. The local feature considered 
showed that a local “anomaly”, which indicates physics not explic-
itly considered, can have the potential to influence the descriptions 
and predictions elsewhere via the complicated neural network and 
should be taken care in similar studies.
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