PUBLISHED FOR SISSA BY @ SPRINGER

RECEIVED: October 25, 2022
ACCEPTED: January 4, 2023
PUBLISHED: February 7, 2023

Projected transverse momentum resummation in
top-antitop pair production at LHC

Wan-Li Ju®® and Marek Schonherr®
@ Institute for Particle Physics Phenomenology, Durham University,
Durham DH1 SLE, U.K.

YINFN, Sezione di Milano,
Via Celoria 16, 20133 Milano, Italy

E-mail: wanli.ju@mi.infn.it, marek.schoenherr@durham.ac.uk

ABSTRACT: The transverse momentum distribution of the £ system is of both experimental
and theoretical interest. In the presence of azimuthally asymmetric divergences, pursuing
resummation at high logarithmic precision is rather demanding in general. In this paper,
we propose the projected transverse momentum spectrum do,;/dg,, which is derived from
the classical gr spectrum by integrating out the rejection component ¢, with respect to
a reference unit vector T, to serve as an alternative solution to remove these asymmetric
divergences, in addition to the azimuthally averaged case do,;/d|gr|. In the context of the
effective field theories, SCETy; and HQET, we will demonstrate that in spite of the ¢,
integrations, the leading asymptotic terms of do,;/dg, still observe the factorisation pattern
in terms of the hard, beam, and soft functions in the vicinity of ¢, = 0 GeV. Then, with the
help of the renormalisation group equation techniques, we carry out the resummation at
NLL+NLO, N2LL+N2LO, and approximate N?LL/4+N?LO accuracy on three observables
of interest, do;/dqr in, doyz/dgr out, and do,z/dA¢,z, within the domain Mz > 400 GeV.
The first two cases are obtained by choosing 7 parallel and perpendicular to the top quark
transverse momentum, respectively. The azimuthal de-correlation A¢,; of the ¢t pair is
evaluated through its kinematical connection to gt ou. This is the first time the azimuthal
spectrum Ag,; is appraised at or beyond the N2LL level including a consistent treatment
of both beam collinear and soft radiation.
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1 Introduction

Hadroproduction of top-antitop pairs plays a pivotal part in the physics programme of

the LHC experiments due to its role in the precise extractions of fundamental parameters
of the Standard Model (SM). It has thus drawn plenty of theoretical and experimental
attention in the recent years. On the experimental side, the inclusive top-pair production
cross section has been measured at the colliding energies /s = 5.02 TeV [1-4], 7 TeV [5-7],
8 TeV [6-9], 13 TeV [10-16] and 13.6 TeV [17], respectively, whilst a large number of the



differential spectra have been published in the latest analyses [12, 16, 18-21], including the
transverse momentum of the ¢t system gr, the invariant mass of the top quark pair M,;, and
the azimuthal opening angle of the top and antitop quarks A®,;. Theoretical calculations of
these spectra also have since long attracted a lot of interest in the community. While NLO
QCD corrections to top-pair production were determined already some time ago [22-25],
recent advances have reached the NNLO accuracy [26-32]. Top-quark decay effects were
considered in [33-37] and the electroweak (EW) corrections in [30, 38-45]. Along with the
progress made in fixed-order calculations, in a bid to improve the perturbative convergence
and in turn the predictivity of the theoretical results, resummed calculations have also been
carried out within a variety of frameworks and the kinematical limits. Examples include
the mechanic threshold [46-56], the top-quark pair production threshold [57-63], the low
transverse momentum domain [64-68], and the narrow jettiness regime [69]. Very recently,
the combination of the fixed-order results with a parton shower has been discussed in [70, 71].

This work will investigate the projection of the t¢ system’s transverse momentum with
respect to a reference unit vector 7 on the azimuthal plane, more explicitly, ¢, = |(j‘TH| =
|gr - 7). In contrast to the traditional transverse momentum spectrum do,;/dgr, gv = |§r/,
where both components of ¢ are measured and thereby constrained, the present observable
doy;/dq; only concerns the projected piece (j’T” , leaving the perpendicular part ¢, unresolved
and, hence, it should be integrated out. As will be demonstrated in this paper, the act
of integrating out the perpendicular components will introduce new and distinguishing
features to the g, spectrum, particularly in regards to the treatment on the azimuthal
asymmetric contributions [66, 67, 72, 73].

Induced by the soft and collinear radiation, the fixed-order calculation of the g,
distribution exhibits substantial higher-order corrections in the small ¢, region. This, thus,
necessitates a resummation of the dominant contributions in this regime to all orders
to stabilise the perturbative predictions. In order to accomplish this target, one of the
prerequisite conditions is to determine the dynamic regions driving the asymptotic behaviour
in the limit ¢ — 0. For the classic transverse momentum resummation, this analysis was
first presented for Drell-Yan production in [74] by means of inspecting the power laws of a
generic configuration on the pinch singularity surface [75-77]. It was proven that the leading
singular behaviour in the small g domain was well captured by the beam-collinear, soft,
and hard regions. However, this conclusion cannot be straightforwardly applied onto the
¢r resummation in top-pair production, as the deep recoil configuration |¢; | ~ M > g,
which stems from the integral over the perpendicular component, was kinematically excluded
in [74]. Therefore, for delivering an honest and self-consistent study on do,;/dg,, this work
will reappraise the scalings of the relevant configurations, comprising both the gp-like
configuration M;; > |¢-, | ~ ¢r and the asymmetric one |gr, | ~ My > ¢-.

To this end, we will exploit the strategy of expansion by regions [78-81] to motivate
the momentum modes governing the low ¢, regime, which will cover the beam-collinear,
soft, central-jet, and hard regions. Then, the soft-collinear effective theory (SCET) [82-91]
and the heavy quark effective theory (HQET) [92-95] are used to embody those dynamic
modes, thereby calculating the effective amplitudes and the respective differential cross
sections. After carrying out a multipole expansion, the results constructed by those



dynamic regions all reflect the unambiguous scaling behaviors, which can be determined
from the power prescriptions of the relevant effective fields. From the outcome, we point
out that the leading asymptotic behavior of do,;/dg;, is still resultant of the symmetric
configuration M; > |¢-, | ~ ¢r, which is in practice dictated by the beam-collinear, soft,
and hard momenta, akin to the case of do,;/dgr, whereas the contributions from the
|qr, | ~ M,z > ¢, pattern are suppressed by at least one power of A\ = ¢, /M.

Upon the identification of the leading regions, we make use of the decoupling properties
of the soft modes [58, 82] to derive the factorisation formula for do,;/dg,. Owing to the
integration over ¢- , the impact space integrals herein are all reduced from 2D to 1D. Thus,
the azimuthal asymmetric contributions, which in principle contain divergent terms in the
asymptotic regime in the general do,;/dgr cross section after completing the inverse Fourier
transformations, do not contribute any divergences to the ¢, spectrum. This is the second
gr-based observable free of asymmetric singularities in addition to the azimuthally averaged
spectra do,;/dgr [64, 65, 68].

To implement the resummation, we employ the renormalisation group equations (RGE)
and the rapidity renormalisation group equations (RaGE) to evolve the intrinsic scales in
the respective ingredients and in turn accomplish the logarithmic exponentiations [96-99].
Alternative approaches can also be found in [100-109]. For assessing the resummation
accuracy, we take the logarithmic counting rule Ly ~ a; ! ~ )\Zl throughout and organise
the perturbative corrections to the relevant sectors in line with the following prescription,

t o gg"m exp [ L folasLy) + fi(asLy) + s fo(asLy) + o2 fa(asLyg) + . . . }
(LL) (NLL,NLL/)  (N2LL,N2LL’) (N3LL,N3LL")

X {1(LL,NLL) + as(NLL/,N%LL) + o?(N2LL/,N3LL) + o3(N3LL/ N'LL) + ... } .
(1.1)

Therein, the desired precisions of the anomalous dimensions are specified between the square
brackets in the exponent as for a given logarithmic accuracy, while the according requirements
on the fixed-order elements are presented within the curly brackets. In this work, we will
evaluate and compare the resummed ¢, spectra on the next-to-leading-logarithmic (NLL),
N2LL, and approximate N2LL’ (aN2LL’) levels.

The paper is structured as follows. In section 2, we will utilise the strategy of expansion
by dynamic regions [78-81] and effective field theories, i.e. SCETy [89-91] and HQET [92-
95], to derive the factorisation formula governing the leading asymptotic behaviour of
do,;/dq, in the limit ¢, — 0. Then, the (rapidity) renormalisation group equations will be
solved in section 3 for the respective sectors participating into the factorisation formula,
from which we exponentiate the characteristic logarithmic constituents in the impact space
and thereby accomplish the resummation of the singular terms in the momentum space.
Section 4 will be devoted to the numeric evaluations on the spectra ¢,. Therein, we will
at first validate the approximations of our factorisation formula up to N2LO, and then
present the resummation improved differential distributions for three particular observables,
doyi/qT,ins doyi/qT 00t and doy/Agyz.  Grin(out) 18 @ special case of ¢; on the choice of
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Figure 1. The kinematics on the transverse plane in the laboratory reference frame. ]5;%{) stands
for the transverse momentum of the (anti-)top quark. A®,; is the azimuthal opening angle between

the top and anti-top quarks. 7 is a unit reference vector in the transverse plane.

7 parallel (perpendicular) to the top quark transverse momentum, while A¢,; represents
the azimuthal de-correlation of the ¢t pair and can be extracted through its kinematical
connection to ¢t ut. Finally, we will offer some concluding remarks in section 5.

2 Factorisation

2.1 Kinematics and the factorised cross section

We start this section with the elaboration on the kinematics. As illustrated in figure 1, the
main concern of this work is on the interplay between a reference unit vector 7 and the
transverse momentum ¢t of the ## system. By means of the reference vector 7, ¢r can be
decomposed into two parts, the projection component (j;” and the rejection one ¢; , i.e.,

jTZJTl +q_:7'H :qTLFXﬁ+QT“7:'7 (21)

where 71 is another unit vector pointing to one of beam directions in the laboratory reference
frame. In the numeric implementation presented in this paper, the magnitude of the
projection ¢y, is of primary interest, which will hereafter be dubbed ¢, = |q_’TH |.

The fixed-order calculation on the ¢, spectrum can be realised using the QCD factori-
sation theorem of [110], that is,

oy 1 / 2 i
= = = | G Oun | —|qr - T|| — s 2.2
th% d2‘PtJ_ dthdQT sign[P7] 168(27T)6 [ } M’? ‘Ptz‘ ( )

where M,; denotes the invariant mass of the t¢ system, and s is the colliding energy. In this
work we will concentrate on /s = 13 TeV throughout. Y}; and Mrtf{ are for the pseudorapidity
and the transverse mass of the ¢t pair in the laboratory frame (LF), respectively. P/
represents the longitudinal components of the top quark momentum measured from the
z-direction rest frame (2RF) of the ¢t pair. The zRF can be obtained through boosting the
LF along one of the beam directions until the longitudinal momentum of the tt pair has
been eliminated.



To perform the integral of g7 in eq. (2.2), it is of essence to establish suitable kinematical
boundaries to fulfill energy-momentum conservation condition. To this end, we introduce
the function Oy, to impose the following constraints,

M2 + s5)2
sinh ™! % —1| =1V
4s M4

(2.3)

Okin 29[\/g — M~ WT@ @{M%i— mh — mi[‘} S}

)

where O]...] is the usual Heaviside function. Therein, mf, and mET are the transverse masses
of the top and anti-top quarks in the LF, respectively. Finally, eq. (2.2) also entails ¥z,
encoding the contributions from all partonic processes, defined as,

Vdz,, dzs "
Ett‘:Z/O —— fiyn(aa) fi5(27) > / [[d®x, (2m)*s* (pz‘ﬂ?j—pt—pf—zkm)
4,5 n r m m

Tn

X Y [IM(itj st X))
hel,col
(2.4)

Here f;/n(z) is the parton distribution function (PDF) for the parton 4 within the proton
N carrying the momentum fraction x. d®j, characterises the phase space integral of the
m-th emitted parton, that is,

o,

dym ki,
2 (2m)%’

4km
(2m)3

o,

A, = 6(kZ) O(KY) = (2.5)

N |

where y,, and Eﬁl indicate the rapidity and transverse momentum of the occurring emission,
respectively. |M|? is the squared transition amplitude for the partonic processes of the
indices indicated. Substituting eq. (2.4) into eq. (2.2), it is ready to perform the fixed-order
calculations of the spectra of ¢,. In the vicinity of ¢, = 0 GeV, however, this perturbative
expansion fails to converge, and an asymptotic expansion of do,;/dg, can be carried out in
the small parameter A, = ¢ /M,;,

Gl 10" O) + e A I () |

dUtEN it {as(Mtt)}m (0 In"(Ar)
— 47 A

0B m,n
dgr T

2
P NLP N=ZLP

(2.6)

indicating the leading, next-to-leading and next-to-next-to-leading power terms in A,

labelled LP, NLP, and N2LP, respectively. Therein, O'g is the Born level total cross section

of the process pp — tt + X, o denotes the strong coupling constant, and cﬁ,’i)n represents

the coefficient for the asymptotic constituent with the superscript & specifying the occurring

power. Thus, conventionally, the leading power terms cﬁ,??n In"(A\;)/\; are associated with

the most singular behaviors in the low ¢, domain and also the main concern of this work.
(1)

It is important to note, however, that also the next-to-leading power terms, cn}m In"(A;),
are divergent as Ay — 0.



2.2 Dynamic regions

Based on the strategy of expansion of dynamic regions [78-81], the asymptotic series of
eq. (2.6) can be interpreted with the aid of a set of regions from the phase space and
loop integrals. This work, in particular, will choose the formalism of [81]. We base the
definition of our regions on the criterion of domain completeness, i.e. the existence of a
set of non-intersecting dynamic regions that cover the whole integration domain. This
criterion plays an essential role in consistently extrapolating the expanded integrands from
their own convergent domains to the entire integration ranges. Other constraints are also
imposed therein, including the regularisation of the expanded integrands and the (at least
partial) commutativity amongst the asymptotic expansions. The former case can be fulfilled
by introducing the rapidity regulator [96-99, 107, 109, 111] in implementing the SCETy;
formalism [89-91]. However, for the latter criterion, we assume that all the non-commutative
dynamic regions, such as the collinear-plane modes [81], will cancel out in the eventual ¢,
spectra. It merits noting that, this ansatz, together with the proposal of [81], has been
scrutinised only within the one-loop integrals in the various kinematical limits. We regard
their effectiveness on ¢t hadroproduction as the primary hypothesis in this work. Recent
developments on the criteria to implement the region analysis can be found in [112-114].

As the first application of the domain completeness, we explore the relevant modes for
the ¢-, integral here. From eq. (2.2), two types of scales will be involved, one of O(g,) and
the other of O(M,;). In order to disentangle the influences of those two scales and to also
fulfil the constraints of [81], we identify the dynamic regions for the rejection component
as follows

Isotropic-recoil : My > |¢;, | ~ ¢r,

Asymmetric-recoil : |¢; | ~ My;> q-.

To precisely separate both regimes and still cover the complete integration range, we
introduce the auxiliary boundary A, satisfying M;; > A, > ¢,, from which the two
non-intersecting intervals read |g-, | < Ar and A; < |7, |- However, as demonstrated in [81],
those auxiliary boundary dependences will all drop out after assembling all relevant domains.
Their dependence is thus dropped in the following. An analogous analysis is also applied to
the phase space integral for the real emissions in eq. (2.5), which leads to,

Soft : Y, ~0, k-] ~ g, (2.9)
Beam-collinear-n:  y,, ~ +1In ., kL ~ qr, (2.10)
Beam-collinear-n : y, ~ —InA., kL] ~ gr, (2.11)

Jet-collinear-ny : y, ~0, k-] ~ M. (2.12)

Therein, the decomposition of the Ig#b integration range respects a similar pattern as the
¢r, case. The rapidity integrals are broken down with respect to the reference points
+A,,, with the relationship 0 < Ay, < In A;, from which three non-overlapping regions
emerge, Ym S —Ny,., =Ny, S Ym S Ay, and Ay, S yp. As before, the dependence on the

auxiliary boundary A, cancels, and we omit it in the following. In addition, please note



—

that in deriving eq. (2.12) the super-hard-collinear domains y,, ~ +1In A\, and |k:| ~ M,z
are ignored as they explicitly contradict the energy-momentum conservation condition
in eq. (2.4).

Apart from the above momentum modes, the amplitudes in eq. (2.4) also contain the
loop integrals. A region analysis of this case can proceed in principle in a similar way as
for the real emission corrections. However, due to the variability in the offshellness and
the varying multiplicity of the external particles, exhausting all relevant circumstances
herein is usually more challenging. To this end, this work will utilise momentum regions
that can lead to pinched singularities (PS) in a hadron collider process [74-77, 115, 116],
which in general consists of hard, collinear, soft, Coulomb, and Glauber regions. During our
calculation, to circumvent the complexity induced by Coulomb singularities, we introduce
the lower cutoff upon M,; in the phase space integral to stay clear of the ¢t production
threshold. In order to cope with the remaining hard, collinear, and soft components, we
apply effective field theories, i.e. SCETy [89-91] and HQET [92-95], onto the massless
and heavy partons, respectively. Regarding Glauber gluon exchanges, even though their
cancellation for inclusive observables has been demonstrated in colour-singlet production in
hadronic collisions using a variety of approaches [117-120], a systematic discussion of their
effects on the production of coloured systems, like hadronic ¢t pair production, is still absent.
While leftover soft contributions were observed in ¢t production in the context of light-cone
ordered perturbation theory [121-123], it nevertheless deserves further confirmation from
perturbative QCD, in particular as to whether those soft remnants are eikonalisable or
not [124, 125]. In this work, we will follow the approach of [66, 67], and assume the
irrelevance of the Glauber contributions. Recent developments in generalizing SCET to
encode the Glauber interactions can be found in [124, 126-129].

We are now ready to summarise the dynamic modes presiding over the virtual and real
corrections to the ¢, spectra,

Hard : ky, ~ My [0(1),0(1),0(1)] | (2.13)

Soft : Ky ~ My [O(A,),O(A,), O(A,)], | (2.14)
Beam-collinear-n : k. ~ My [O(1),0(\),0();)] (2.15)
Beam-collinear-ii :  kz ~ M,;; [O(A2),0(1),0(\,)] (2.16)
Jet-collinear-ny : ky ~ M [O(1),0(\2), O(\,)] (2.17)

In writing those momentum modes, the light-cone coordinate system has been applied, from
which an arbitrary momentum p* are decomposed and reforged as
P o, PN Ly — Py Pry &

k _

pl =

Therein, ng and ny are two light-like vectors with the normalisation conditions ny - ng = 2
and n% = ﬁg = 1. Throughout this paper, we will make use of the symbols n (n) and nj to
characterise the positive (negative) beam and jet directions, respectively. In accordance
with eq. (2.12), at least one of the transverse components of the vector n’j should be
non-vanishing. In establishing eqs. (2.14)-(2.17), the offshellnesses of the collinear and soft



fluctuations are assigned to be of O(A2) so as to accommodate the projected transverse
momentum. The hard-collinear degree of freedom, e.g., kpe ~ Mz [O(A;), O(1), O(VA:)]n,
is neglected in the analysis as it always results in a scaleless integral for the leading power
accuracy investigated in this paper.

By comparison with the calculations on doy;/dgr of [64-68, 130], in addition to the
common pattern of the hard, beam-collinear, and soft regions, this work will also take into
account the central jet mode as shown in eq. (2.17). For the low g1 domain, the subleading
nature of the jet region has been demonstrated in [74, 131] by analyzing the powers of the
relevant PS surfaces. This conclusion is also expected to hold for our symmetric configuration
in eq. (2.7). Nevertheless, aside from the isotropic recoil, the region expansion strategy
in [81] also leads to the asymmetric configuration of eq. (2.8) participating in the ¢, spectra.
In light of the different scaling behaviors in both regions, it is a priori not clear whether
the conclusion in [74, 131] derived for the isotropic pattern of eq. (2.7) is still applicable
to the asymmetric configuration of eq. (2.8). To this end, we will revisit the power rules
of all the relevant configurations induced by eqgs. (2.7)—(2.8) and egs. (2.13)—(2.17) in the
following subsections.

To facilitate our discussion, we categorise the ¢, spectrum according to the number of
the embedded jet modes Nj, more explicitly,

dSJt{ i d5att_
2 32pL — Z 2 1981 (2.19)
thfd P;-dYy; dg, m=0 thfd Pr-dY;dg, Ny—m
In section 2.3, we will concentrate on the Nj = 0 configuration, elaborating on the

factorisation properties of the occurring constituents and utilising SCET; and HQET
to determine the power accuracy. Section 2.4 will then be devoted to all configurations
comprising at least one jet. This discussion will be subdivided into section 2.4.1, examining
the Nj = 1 configuration as an example to present the generic scaling feature in presence
of the jet mode, and section 2.4.2, where we move on to the more general situation, the
Nj > 2 contributions, enumerating all the possible scaling behaviors brought about by the
various jet momenta present. At last, we will summarise our observations and compare the
power prescriptions derived in EFT with those established in [74, 131].

2.3 The case of Ny =0

In this part, we will discuss the dynamic regions contributing to the Nj = 0 configuration,
which comprises the hard, beam-collinear, and soft regions, as exhibited in egs. (2.13)—(2.16).
As opposed to the beam-collinear and soft regions, which can be assigned to both the phase
space and loop integrals, the hard mode is only present in the virtual processes. In this
regard, the transverse momentum for the ¢ system observes only the isotropic pattern in
eq. (2.7), which thus permits us to perform the expansion on the kinematic variables in
eq. (2.2) as follows,

= %“2 me + O(\r), (2.20)

Nj=0 L - Btf
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; —
n-Beam H
Figure 2. Dynamic regions in the Ny = 0 configuration. Herein, the black bubbles stand for
the hard modes. The red bubble and springs encode the soft fluctuations connecting the heavy
partons represented by the black double lines as well as the collinear modes depicted in the blue
straight lines.

where f;; = /1 — 4m7/M?Z with m; denoting the mass of the (anti-)top quark. z; is the

cosine of the scattering angle of the top quark in the ¢t rest frame. Further,

M = Mg+ 0(\), (2.21)
Ny=0
and, thus,
2
2 / 5 o1 s Mg
Oxin o =0 (\/E—Mtt—) (S <Mtt_2 m%+(Pti)2> e |ﬁ,u1h (W%) _|Ytt"| +0O(Ar)
=
=0l +O(\,). (2.22)

Please note, in the results above only the LP contributions are kept. Similarly, in the
following, we define the LP term in eq. (2.22) as @1((?31 hereafter.

The remaining task is now to expand the partonic convolution function ¥,; in line with
egs. (2.13)—(2.16). This can be achieved by means of the effective field theories, i.e. SCET
and HQET. Therein, the beam-collinear regions are embodied in terms of the gluon and
quark fields, A,z and &, [88, 90, 91, 132] in SCETy;. The soft corrections on the heavy
(anti-)quark are encoded by the field h,(x,) from HQET, while those from the incoming
gluons and massless quarks are reflected by the fields As and g5 [90, 91] in SCETy;. The
hard mode can be taken care of by the effective Hamiltonian Hf{f [51], which consists of
products of Wilson coefficients and the corresponding field operators.

Up to LP, the interactions in the individual momentum regions are governed by the
effective Lagrangians [89-91, 95],

_ 1 i 1
_ ~ . o - s - _ 1224 mn
L, =& (m Dy + il Dnupnl) 7 én 2’1‘1-[Fn FW] 7 (2.23)
1 178 nt =
Lo=—STe[FE, | + @il (2.24)
Ly = hy (10 -0) hy + X (10 - V) X , (2.25)



where D“( = 0N — igSAZ(S) and Fr’;(”s) = (i/gs)[D Z(S) Dy )] stand for the covariant deriva-
tive and the field strength tensor for the collinear (soft) fields An(s),
Lagrangian L5 can be obtained by exchanging n <+ n in £,,. In deriving egs. (2.23)—(2.25),

respectively. The

the decoupling transformations [58, 82] have already been performed to strip the soft
particle of the collinear and heavy partons. As a result, the (anti-)top quark is free of any
interactions at this point, while the collinear partons only communicate with themselves.
The LP contribution of ¥,; can be found through assembling the amplitudes induced by
H%ﬁf and the effective Lagrangians in egs. (2.23)—(2.25), and we follow the scheme of [51, 65]
to construct the hard contributions. In light of the rapidity divergences arising from
the soft and collinear integrals, the exponential regulator proposed in [98, 99] is applied
throughout. Finally, the decoupling nature of the Lagrangians in eqs. (2.23)—(2.25) allows
us to rewrite ,; as,

Ett‘

872 - o\ ke

= M2 Z /dsz CXp (1 br - QT) E,[g’;](bTy Mg, B, e, Yig, V) Wi W, (226)
Ny=0 tor
where Z;T is the impact parameter introduced during the Fourier transformation. X7
includes the contributions from all channels € {gngn, ¢, @, 443}, with i,j € {u,d, ¢, s,b}
indicating the flavour of the quark field. 1 and v are the scales associated with the virtuality
and rapidity renormalisations, respectively. Finally, W; and W; are the heavy parton
correlation functions,

B 1 T 1+ ﬁt _
Wi = e T (0, (0) )R, 0) 5 210) = 1, (2.27)
Wi = = T (00, 0D e, 0)10) = 1, (2.28)

where N, = 3 is the colour factor. v, is the velocity of the (anti)top quark in the rest
frame of the ¢t system. Considering that the (anti-)top quark up to the LP accuracy
amounts to a free particle, the correlation functions W, ;) will never receive any perturbative
corrections. Therefore, in the second steps of egs. (2.27)—(2.28), we evaluate them using
the tree-level expressions.

Apart from the correlation function Wy, eq. (2.26) entails the partonic cross sections

il[;] as well, which are built by suitably combining beam-collinear, soft and hard functions,

E[qnq ](bT,Mttaﬁttamt,YttaMa )

= ( . ) BI) (b, ) B (1, b 1, 0)
2N n Y Y Y n ) ) )

XZ{H[qnqn Mttvﬁttvxtv )S[qﬁq }(bT’H’V)}’ (2‘29)

ii%ngﬁ] (bT7 Mtt_7 Bt{? xty }/tt_7 u’ l/)

1 \? . . .
- (N2_1) Z {Bifh]’ (T]naanuv )BELg,h];Lhn(nTHbT?Nﬂ/)
c 0,3,y il b

XHE) e (Mg, B ) S (e ) } (2.30)
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where the momentum fractions 7, and 7 are defined as n, = M, e¥t/\/s and n; =

M,z e+t /\/s, respectively. The expression for E[q”q"]

can be derived by exchanging the
labels n & n.

Hfgqﬁ} and H[gg%j hihih, 1€ the hard functions for the quark and gluon initiated
processes, respectively. The indices v and S label the colour states to track the full colour
correlation between the hard and the soft functions detailed below. Similarly, the h,,, hl,
h;, and hl, denote the polarisation states of the incoming gluons to capture all off-diagonal
correlation effects of the beam-collinear and hard functions. Please note, that the beam-hard
function correlation for massless quarks is devoid of off-diagonal contributions. The hard
functions now account for the LP contributions from the deep off-shell region in eq. (2.13).

Their expressions read [51, 65],

[qnqn _ h zh.8'8 19,(a) 1"
H (Mtt76tt7xt? )_ Z (Z[q:qs) [QnQn] Z Ca1a2a3a4 [ 3?0(216(135(14}
a/7ﬁ/

x M* (g5,

_a’ h1 a2 9 —ai1hi asho I
— ta h3taﬁlh4)M( qn7i _>ta3h3ta4h4)7

Qn]
(2.31)

[gn.gn] A _ ho/a\* Zh,8'3 99,(’) (8 1
Haﬁ%hllhl;héhz(Mtt’Btt’xt"u)_ Z (Z[gngﬁ}) Z[gngﬁ]{ % . caﬁ%as% [Cgsllaga;“‘l]
o B! a,a’ },h3,hg
h/ h
XM ( " 22 _>ta h ta hy )M(gglhlgn2h2 _>ta5h3ta4h4)
(2.32)

where M denotes the amplitude for the partonic process gq — tt or gg — tt. Therein, the
variables a;(i = 1,...,4) are introduced for the colour states of the individual external
particles. In particular, every a; runs over the set {1,...,3} for quarks and anti-quarks,
and {1,...,8} for gluons. Also, to facilitate our calculation, the orthonormal colour bases
C%Z} and c?i y [133] are exploited in eqs. (2.31)—(2.32), more explicitly,

qq,(1) _ 1 c99:(2)
Ca1a2a3a4 - 3 5a1a25a3a4 ) a1a2a3a4 - a1a2 a3a4 ) (233)

99,(1) _ 1 99,(2) arcaz 995 (3) a1 cas e
ca1a2a3a4 - 2\/6 5010250304 ) ca1a2a3a4 2\/‘ f a3a4 ? a1a2a3a4 d Ta3a4 ?
(2.34)

where T, stands for the generator in the fundamental representation of the SU(3) group.
fabe and dgpe. mark the antisymmetric and symmetric structure constants for the SU(3)
group, respectively. As alluded to above, in calculating the hard functions, due to the
absence of spin-correlations for external quarks, we take the sum over all the helicity
configurations for the quark channel, while, to capture the non-diagonal gluon polarisation
effects, the explicit dependence of Hggﬁfm; hyhy O1 the gluon helicities is retained.

To evaluate the amplitudes in egs. (2.31)—(2.32), we make use of the on-shell prescription
to renormalise the top quark mass and the ny = 5 active flavor scheme to handle the UV
divergences from the strong coupling. The remaining singularities are of infrared origin,

] and Z[ ] following the method in [134]. Up

and are subtracted by means of Z[anﬁ
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to NLO, the amplitudes of all the helicity and colour configurations can be extracted
from RECOLA [135, 136]. The NNLO results are more involved, and in consequence we
will only address their logarithmic parts in this work. For reference, grid-based NNLO
results can be found in [137], and the progress towards the full analytic evaluations is
discussed in [138-140].

B,[?’Z] and BE’;}, ;, are the quark and gluon beam functions, respectively, collecting the
contributions from the region in eq. (2.15). Their definitions in the exponential regularisation
scheme are [98, 141, 142],

B’r[g;ﬂ (T]na bT? ,LL, V)
c _1 _innanﬁ
- Z[%]( qn] 51;%1 47r < 2 > (2.35)

x Tr (N (P)|€. Wy, (—ibod, —ibyd -+ by, ET)?WJ»:;(O);N(P»

=1

BEZ}/;}(%, gT? , V)

c cs -1 : dbn _innanﬁ
= 25(25)  Jim [ e (2 ) (2.36)

6—0t 47

x Tr (N(P)| Ay (=ibod, —ibod + by, br) €6 .0 (=0 Pr) €7 Ay, (0)|N (P))

5=1

where Z[ an](lgn]) 18 the renormalisation constant for the quark (gluon) beam function in the
MS scheme. Z[ e and Z[C;n] represent the ensuing zero-bin subtrahend to remove the soft-
collinear overlapping terms. 9§ is the exponential regulator suggested in [98], accompanied
by the constant by = 2exp(—7g). 1 and v are the scales associated with the virtuality and
rapidity renormalisations, respectively. Within the matrix elements, &, denotes the collinear
quark field of the flavour i given in eq. (2.23). A}, | = 19 WTTL(ZDZ | W,,) signifies the gauge
invariant building block for the gluon field with W, dendting the collinear Wilson line [132].
Finally, P is the momentum carried by the initial proton with P; = P - n being the largest
light-cone component. The anti-quark beam function Bl?"] and those for the n direction can
be obtained by adjusting the labels and fields in eqs. (2.35)—(2.36) appropriately.
Comparing with the quark beam function, the gluon case possesses extra indices,
h,,h), € {4+, —}, to characterise its intrinsic polarisation effects [73]. In this work, the

following helicity basis is adopted,

F1 —i } { +1 —i }
ro=00,"2=,—,0¢, BLo=10,"—=,—,0}. 2.37
€n,+ { \/E \/§ En,:l: \/§ \/§ ( )

In principle, the representations of the helicity polarisation states EZ,:I: are not unique.
Nevertheless, in order to avoid the appearance of an unphysical phase factor in the cross
section, the helicity space utilised in the beam sector must synchronise with the one used
for the hard function in eq. (2.30). In our case, since we use RECOLA to extract the hard
function, eq. (2.37) is subject to the choice adopted in this program. The quark beam
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function is known to N3LO accuracy [143, 144], while for the gluon case only the helicity-
conserving components B[g"("ﬂ and B[_gi(ﬁ)] are known to this order [143]. The helicity-flip

components B[g"(")] and B[_gi(")} are only known to N2LO [142, 145, 146].
Finally, S[qnqﬁ] is the soft function and covers the wide angle domain in eq. (2.14). Its
LP expression is,

S[qfq (bT"u’ V)

zZsao zs BB’ . aq,(a) * (B
B Z ( qnqn]) lanqn] Z 51_1%14. [ca’la’zagafj Cg?a(zag,az; (2'38)
o, B {a,a’,b}

: R
X0 [V by, Vo Vil Yoty | (=900, =1800,50) [V 1y Vst Yl Yorsasna | (0)10)

§=3

S[gngn](bT,M, v)
-3 ) sl 2 e ] . 2
<O|[ nibyay Vb, Y, v, by, Yorahh ]( ibod, —ibd,br) [yIL blajn,@bzyvi’bmYv{,wm} (0)]0) R

where Z[f] ] and Z[Sg g 1€ the renormalisation constants of the soft function in the MS

scheme. Again, § denotes the rapidity regulator [98, 99], and the c‘fz(}gg)
coefficients defined in eqs. (2.33)(2.34). Y () and YV,,5y describe the incoming soft Wilson
lines for the (anti-)quark and gluon fields, respectively, while the Y, (,.) are the outgoing

are the colour

soft Wilson lines of the (anti-)top quark. Their specific expressions have been summarised
n [133]. Even though the azimuthally averaged soft functions have been computed up
to N2LO [64, 65, 147] recently, the azimuthally resolved soft functions, as displayed in
egs. (2.38)—(2.39), are not yet available in the context of effective field theories. The relevant
function at this point is the soft correlation factor defined in [66, 148] which is derived
in the generalised g resummation framework of [100, 131]. Nevertheless, in this paper,
aiming at a self-consistent and independent study, we will revisit the soft interactions in the
EFT including the exponential rapidity regulator [98] at NLO accuracy. In section 2.5, we
will explicitly calculate the rapidity and virtuality associated divergences originating from
the soft sector defined in egs. (2.38)—(2.39) and utilise them to examine the consistency
condition required by the factorisation of egs. (2.29)—(2.30), providing a powerful test of its
validity. Moreover, regarding the finite contributions in the soft function, we will present a
comparison between our results and those obtained in [66, 148].

Now we can consider the differential cross section in eq. (2.2) with the reduced kinematic
variables of egs. (2.20)—(2.22) as well as the expanded partonic contributions in eq. (2.26).
We begin by disentangling the Fourier integrals in eq. (2.26) with the help of the reference
vector T, using the different scaling behaviours of the components of the vector br (or
correspondingly, ¢r),

Ett_ OCZ/ deH exXp (iqTHbTH> / deJ_ eXp(iqTJ_bTJ_)i£§](gT7Mtfaﬂtfvxt7)/tf7uvy)+'"7

(2.40)
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where in analogy to the case in figure 1, we apply the relationships,
br =br, + b = by T X T+ bTHF, I = G-, + q}H =qr, T XN+ qTHF. (2.41)
Substituting the separated expression in eq. (2.40) into eq. (2.2) yields,

5
d°oy;

dM2 d2P-dYy; dg,

x Z /_OO db-, /_OO dgr, 6(gr — lar,|) exp (i qTHbT”) (2.42)

N;3=0

o0 ~ —
X / deL Zl[g](bT7 Mtf7 /Btfa T, tha 122 V)
—00
00
></ dgr, exp(igr br )+ ...,
—00

where the variables that are independent of I;T or g are omitted for simplicity. In comparison
to eq. (2.2), one of the main differences in eq. (2.42) resides in the absence of the boundaries
on the g, integral, which is a consequence of the g1 independence in the expanded function
91((?31 of eq. (2.22). In this way, the integral over ¢, in the third line of eq. (2.42) can
be completed before the inverse Fourier transformation, thereby leading to the Dirac
delta function d(b,, ).! The integration over b, is then straightforward, reducing the b
dependence of it; to a dependence on ETH only. This leaves the integrals over b and ¢r.
The evaluation on the latter is immediate via the function d(¢r — [gr |) in the first line of
eq. (2.42), eliminating the imaginary part of exp(i ar bTH)' The integration over by, finally,
is less straightforward to perform, and we turn to the numeric solutions in section 4.

To summarise, specifying the kinematic factors in eq. (2.42), we are able to establish
the LP contribution from the Nj = 0 configuration,

o o -
= = > - D / db-, cos (br qr (2.43)
M 2Py dYzdgr Nyj=0  sign[z:] 1673 Bz |we| Mjps S ) oo ( I )

X il[f';] (bTH 7_:’ Mtf’ /Btf’ Tt, Y;fﬂ M, V) ;

where the index s runs over {gngﬁ,q;cj%,q%cj%} as before. @1(31)1 imposes the kinematic
constraints as defined in eq. (2.20), and the it{ are the contributions of the individual
partonic processes, as presented in eqs. (2.29)—(2.30).

It should be stressed that the result in eq. (2.43) and the factorisation in egs. (2.29)—
(2.30) are subject to the absence of other sources of divergent behaviour. In particular,
Coulomb divergences encountered in the threshold region must be avoided. In the vicinity
of the threshold §,; = 0, according to pNRQCD [149-152] and also the analysis in [62], the

function i[;] can develop the power like singularities, i.e.,

n

. - [K/] as

5113}10 Xy = E Cn s
tt n tt

Tt is worth emphasizing that this operation is prohibited in the original expression of eq. (2.2) due to
the explicit dependences on gr in the boundary function of eq. (2.3).
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as a result of the exchanges of Coulomb gluons between top and antitop quarks. As for lower
powers of ag, those singular behaviours are innocuous, thanks to the kinematic suppressions
in the threshold regime. However, with increasing perturbative accuracy, the severity of
the Coulomb singularities worsens, such that beyond a given precision, they can not be
regularised by any kinematic factors any longer and, thereby, develop a Coulomb divergence
during the phase space integration.

The emergence of such Coulomb divergences marks a failure of the factorisation
of eq. (2.26) and egs. (2.29)—(2.30) within the threshold domain and therefore prompts a
combined treatment of the Coulomb, soft, and beam-collinear interactions. The combination
of the former two cases has been addressed in both the static [58, 59, 61] and recoiled [153]
top-antitop systems in the soft limit. However, with the participation of the beam-collinear
sector and the ensuing appearance of the rapidity divergences, novel types of subleading
vertices may come into play at a given logarithmic accuracy along with the insertions of
Coulomb potentials, which inevitably requires additional considerations, generalising the
frameworks of [58, 59, 61, 153] to the present process. To this end, we will constrain the
investigation in this work to the domain M,;; > 400 GeV, or, equivalently, 5,z 2 0.5, to stay
well clear of the Coulomb divergence, and aim to address the relevant subtleties arising
from Coulomb interactions in a future work.

Finally, we make use of eq. (2.43) to assess the power accuracy of the Ny = 0 configura-
tion. First of all, since the kinematic constraint M,; > 400 GeV (or equivalently, 3,; = 0.5)
has been imposed, the prefactor in front of the integral does not induce any power-like
behaviour for the bulk of phase space, and is thus of O(1). Next, in order to determine
the powers of the impact parameter bT” and the Fourier basis cos (bTH qT), note that the
bTH integral serves in part as the momentum conservation condition on the beam and soft
radiations. Considering that the transverse momenta for the real emissions are all of O(\;)
in the Ny = 0 configuration, we arrive at [87],

bry ~ oY, cos (bTH qT) ~O(1). (2.44)
The remaining task is to ascertain the power of ¥,7. As defined in egs. (2.29)-(2.30), £,z
entails the hard, soft, and beam functions from the various partonic transitions. The hard
sector consists of nothing but the Wilson coefficients multiplied by the colour (helicity)
bases, which invokes no power-like behaviour and is, hence, of O(1). The soft functions
are defined in eqgs. (2.38)—(2.39) as the products of the soft Wilson lines sandwiched by the
vacuum states. From the scaling prescriptions in SCETy; [89-91], the soft Wilson lines are
also of O(1), regardless of the quark or gluon channels, which in turn yields,
S[O:If(?ﬁ} ~ nggﬁ} ~0(1). (2.45)
The last piece to examine is the beam function, see egs. (2.35)—(2.36). It contains the
integral of the collinear building blocks, (W,&,) and A;- sandwiched between the proton
states, with respect to b,. Akin to the case of bTH’ the power of b,, is now related to Py,
giving b, ~ Py ~ O(1). For the integrand, the scaling rules of those operators and the
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n-Beam

Figure 3. Dynamic regions in the Nj > 1 configuration. Herein, the black bubbles stand for the
hard modes. The red bubble and curly lines encode the soft corrections connecting the heavy partons
represented by the black double lines as well as both the beam- and jet-collinear modes depicted in
the blue straight lines.

corresponding external states are (W;&,) ~ AL ~ O(\;) and |g,) ~ |gn(£)) ~ O(A71) [89-

-
91], respectively. We can thus conclude,

Bl ~ B, ~ O(1). (2.46)

Combining the above scaling relationships, we observe that the only ingredient of eq. (2.43)
that can bring about a power-like behaviour is the differential deH’ from which the power
of the Ny = 0 configuration is lowered by .. In accordance, the ¢, spectrum behaves as,

5
d°oy

dM2 2P dYy;dg, Ny

~ O\, (2.47)

Confronting eq. (2.47) with the series in eq. (2.6), it illustrates that eq. (2.43) can deliver
at least in part the most singular behaviors of eq. (2.6). In order to assess the existence of
other contributions to the leading asymptotic terms in eq. (2.6), we devote the following
section to investigate all possible Ny > 1 configurations.

2.4 The case of Ny > 1

This part will discuss the contributions induced by the hard, beam-collinear, jet-collinear,
and soft modes in the layouts with at least one hard jet. A representative diagram of the
associated dynamic regions is displayed in figure 3.

2.4.1 The Nj = 1 configuration

We start our analysis with a single insertion of a jet region. So far, as the jet momentum is
the sole source of energetic transverse recoil for the tt system, the components ar and ¢r,
must admit the asymmetric configuration in eq. (2.8) as a result of momentum conservation.
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With this in mind, we can now expand the kinematic variables and the boundary conditions
of eq. (2.2),

ME| = /M2 42 +O0) = MY+ O, (2.48)
Ny=1
Okin =0 [\/g - M%T - |qﬂ_ ” S |:M'tTt,7' - mzfﬂ' - mz[‘,r}
Ny=1
M2 + 5)2
x © [sinh™! % -1 =Yl + O(\)
43M¥T
=oW 1 o0 2.49
= O, + O\, (2.49)
PZ _ :|: M’g’r 1 + mtT,T + miT,T 1 + mtT,T - mt:I‘,T 1 mtT,T + m%n’
5 — _ e i ¥ O Y
Nj=1 2 M'%T M%,T M’%,T
mbt.  —mt
% 1— T, _ T’T+O()\7—)
M,
= P? +0()\,), (2.50)

where the approximate transverse masses of the top and antitop quarks are defined as

mtT,T = \/m? + (¢, )? and mET’T = \/m% + (lﬁtL — -, )%, respectively. The approximate tt
invariant mass M%t_ , is defined in eq. (2.48). While egs. (2.48)—(2.49) follow immediately
from the definition of the transverse mass Mt and the boundary condition of eq. (2.3),

deriving eq. (2.50) necessitates solving the energy conservation equation in the zRF,

My = \Jm3 4+ (P72 + \[(mh)? + (P?)2. (2.51)

The solution is then expanded using the power counting of eq. (2.8), keeping the lowest
power contributions. Using these results, we can now evaluate the partonic contributions
for Ny = 1. We follow the same steps as in the derivation of eq. (2.26) with the addition
of embedding the soft Wilson lines and the jet functions as appropriate here. The soft-
collinear decomposition as illustrated in eqs. (2.23)—(2.25) is independent of the specific
configurations and, thus, still holds at present. After combining all contributions and
omitting the unrelated higher power correction terms, we arrive at the partonic function
Y7 of the Ny =1 case,

1 Y AT S
/ Z/d2deykd2bT €Xp <1bT‘qT+1bT'kT) EE[’]P\](bTrPhkTa}/tf?yknu’vV)7
A

Y, =
! 27l

Njy=1
(2.52)

where now the indeces £ € {gngn, 4105 @ dh: 497 ndhs 9> Iy} and A € {gn;. a3, }
label the initial and final state light partons, respectively. P; = (P/-, P?) denotes the spatial
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momentum of the top quark as measured in the zRF. I;T and gy stand for the transverse
momentum and rapidity of the jet in the LF, respectively. The variables n], and 7. are
the momentum fractions of the active partons in the beam functions with respect to the
colliding protons, namely,

= (ME, ¥+ bret) /s, (2.53)
o= (ME e hp e ) /5. (2.54)

In the following discussion, we will particularly focus on the ng% — tt gpn, process. All
other partonic processes can be accessed through exchanging the labels n <+ n or the active
S

partons herein, as appropriate. The expression of X 7 o] reads,
El Tl_]

~lidl - = - 1 \? _ G: -
Z[q’nqn] (bTankTaY;fvyk’,uv V) = 87[?11(777,175%% V) BL’?]](n;’mbTa,uay) jn[g}(k‘T7yk)
tt,[gn,] 2N, !

Z {H[qnqn PtagTanfv ykuu) S[ o [gnJ](bT7/’L7 ) } ’

qnqn)]

(2.55)

[@;]

where the beam functions B! and B

(2.36). The soft sector S[ . [gf i takes the similar appearance to that in eq. (2.38), except

for the necessary adaptation in the colour bases and the inclusion of the jet Wilson lines.

are defined in the same way as those in eqs. (2.35)—

The jet function j,[f,] is the novel ingredient in the Ny = 1 configuration,

T (Fr,ye) = [ dmtdta exp ko) Tr (0LAL (0) AL Q) =1, (2:56)

4(N2-1)
where m% = k2 measures the offshellness of the jet radiations. Af;J stands for the gauge-
invariant collinear fields in SCETyy, see eq. (2.36). In calculating eq. (2.56), after using the
dimensional regulator to regulate the UV divergences, completing the coordinate space
integral in eq. (2.56) always results in contributions of the form (m2/u?)¢ [154-159]. The
following integration over the complete my range, however, turns out to be scaleless and,
thus, the unmeasured jet functions involved in this paper will never receive any perturbative
corrections in ag. Therefore, we equate JE} in eq. (2.56) with its tree-level result. Further,
it is worth pointing out that, since we are not observing the jet itself, but only its recoil on
the tt system, the relative transverse momenta amongst the collinear emissions as well as
their helicity dependence have been integrated out.
The quark jet function shows the same behaviour [158, 159],

T (kr,ye) = W / dmi d*z exp (ik-x) Tr (06, (2)n, (0)it5]0) = 1. (2.57)
In addition to the above functions capturing the low-offshellness effects, igﬁ[%}} also needs

the hard function ’H[q"q[”] P consisting of the UV-renormalised and IRC-subtracted partonic
amplitude M(qq — tt g) constructed in analogy to egs. (2.31)—(2.32). The presence of the jet
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mode, however, complicates the IRC-subtraction procedure as singularities arising from the
region |kt| — 0 will need to be treated. This necessitates the inclusion of lower-multiplicity
partonic processes, e.g., by using

Z3 @ M(qq — ttg) + Zo @ M(qq — tt) (2.58)

as the IRC-finite quantity [160, 161]. Its details, however, are unimportant in the following
as the only quantity of interest in this paper is the scaling behaviour of the hard function

H%%L] itself.
Substituting eq. (2.52) into eq. (2.2), we obtain the master formula for the Ny =1

configuration,
d5at£ Z / d d (H)Er)l EE’;,][/\} (67 Pt’ _q_;l ) Y;ff: Yk, 1y V)
=3 = qTL yk 5 - =<
thzf dZPtL d}/t{ dq'r Nj=1 Sign[/\tz] Ky 8(27T) M'?,T’Ptz ’774177%52

(2.59)

(]
tt,[A
following the multipole expansion. To see this, we apply the decomposition in eq. (2.41)

In deriving this formula, the argument ET of the function ¥ | has been integrated out

again onto the impact parameter br and the jet transverse momentum kr in eq. (2.52),
br =b;, +bry =br T XA +byT, kr=ke +ky =kr TX0+knT. (2.60)

The parallel component kT” drops out of the lowest power hard sector 7—[([;% 0 during the
asymptotic expansion, due to the scaling hierarchy

kry ~ O(Ar) < kry ~ O(1). (2.61)

Therefore, the kr, integral therein can be calculated immediately, resulting in a 0 (bTH)
(<]

tt,[A]
out without further complications. On the other hand, in the perpendicular direction, the

distribution in the integral. The following bTH integral in ) can then also be carried

expansion in \; is subject to the relationship

G, ~ ke ~O) >k ~kl ~kE ~ O\, (2.62)

C

where kF and kcl(é) represent the transverse momenta of the soft and beam-collinear regions,

as given in egs. (2.14)—(2.16). Thus, the multipole expansion at the hard vertices can
climinate the argument b, of the beam-collinear and soft functions up to O(A,) [87], such
that the inverse Fourier transformation in eq. (2.52) can be completed prior to the integral
over k, , giving rise to d(k;, + ¢, ) and, thus, sets kr = —r, upon integration.

Using eq. (2.59), we are now ready to determine the power accuracy of the Ny =1
configuration. Following the assessment of eq. (2.43), for the bulk of the phase space,
the kinematic factors in eq. (2.59), such as M%f » and ]?’tz, invoke no power-like behaviour,
and thus all belong to O(1). The hard, beam-collinear, and soft functions are of O(1) by

construction, and so are the jet functions of egs. (2.56)—(2.57). Then, the remaining factors
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that matter to the power counting are the differentials d¢;, and dyy, which are of O(1)
as well due to the scaling laws in eq. (2.8) and the definition of eq. (2.17). Hence, all the
ingredients from eq. (2.59) are characterised by the O(1) behaviour, which then allows us
to establish,

dUtg
AM} 2P dYyday |

~0(1). (2.63)
=1

Comparing eq. (2.63) with the asymptotic series in eq. (2.6) and the Nj = 0 scaling rule in
eq. (2.47), it is noted that the Ny = 1 configuration here gives rise to the regular behaviors
of eq. (2.6), which pertains to the NLP corrections and is one power higher than the Ny =0
influences.

2.4.2 The Nj > 2 configuration

The case with (at least) two hard jet insertions differs from the pervious case where the
scaling laws for ar and ¢r, are uniquely determined. The variety of the jet transverse
momenta in the Nj > 2 configuration can accommodate both the isotropic and asymmetric
recoil configurations in eqs. (2.7)—(2.8). In the following paragraphs, we will discuss them
individually.

Isotropic recoil. We start with the isotropic recoil configuration. In this case, the

transverse components qr and ¢,, respect the power prescription in eq. (2.7), from which

the reduced kinematics variables have been presented in egs. (2.22)—(2.20). As demonstrated

in eq. (2.47), none of them bears any power-like behaviour. Then, the problem reduces to

the scaling behaviour of the partonic function ¥,; in eq. (2.4) in the Nj > 2 configuration.

The calculation of ¥,; now follows similarly to eq. (2.52) in the Ny = 1 case, aside from

duplicating the jet function and generalizing the hard and soft sectors in accordance, giving
Ny Ny Ny

~/ [deidQEﬂ d%br exp {i br (G + Y k)| H @S @By B @[ Ju,
i=1 j=1 I=1

(2.64)

Etf

Ny>2

where y; and I_f} denote the pseudo-rapidity and transverse momentum of the i-th jet. For
simplicity, the indices specifying the partonic channels have been omitted here. Akin to
the Ny =1 case, the hard, soft, beam, and jet functions in eq. (2.64) are all of O(1). To
appraise the power accuracy of the pseudo-rapidity ¥;, it merits noting that due to the
scaling rules in eq. (2.12) and eq. (2.17), the differential dy; always evaluates to O(1) and
thus does not influence the scaling behaviour of ¥,

Now the remaining task is to determine the scaling behaviour of Ef‘ and br. It is noted
that the scaling behaviour of ET depends on the regions of Ef To exhaust all the possibilities,
we regroup the jets here according to the scaling behaviour of the transverse components,

Pr= {k € Ris OO ~ tr, ~ @ ~ Fie, < Kigy ~ OO}, (2.65)
O = {EZJ' € Ry; O(/\T) ~dr, ~ 4~ Ei,’T” < Ei,frl ~ OO‘?—)} ’ (2'66)
I = {_} € Ri; O(A\r) ~qry ~ i < E’L,TL ~ EZ’,T” ~ O()\?)} ) (2.67)
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where the full set Ry collects all transverse momenta for the Ny jets, more explicitly,
card[Ry| = Nj. (2.68)

Here the operator card evaluates the cardinality of a set. Py, O, and Z; are three non-
intersecting subsets of R consisting of different types of the jet directions. For instance,
‘Pr contains l;:} parallel or antiparallel to the reference vector 7, while Of encompasses the
orthogonal ones. Z; comprises all the other configurations.

We are now ready to investigate the scalings for 5T. As required by the label momentum
conservation [87], the scaling power of b- (b, ) is subject to the strongest momenta in the
7 (71 x 7) direction. To this end, if there are label momenta dictating both sides, namely,
card[P}] card[O] + card[Z;] > 1, we have dbp ~ O(1). Otherwise, either the 7 or the
7t x 7 direction will be governed by O(),) fluctuations, which gives rise to dbp ~ O(A1).
Summarising these relationships, we are capable of establishing the power counting for ¥,z,

S (2.69)

O()\gard[Pk]—ﬁ-card[Ok})’ caI‘d[Pk] card[Ok] + card[Ik,] >1,
N;y>2,Iso O, card[Py]| card|[Oy] + card[Z;] =0,

where the extra powers of A\; come from the differentials dk;,, ~ O(M\;) of Py and
dkiz ~ O(A;) of Ok. In light of the non-negative nature of the cardinality, the lowest
power eq. (2.69) can reach is O(1), where the sets Py and Oy are both empty and thus
7 = Rg. It should be emphasised that this finding is not dependent on the number of

the embedded jet modes, or, more specifically, the result of card[Zy]. This differs from the
eff
tt

appears that the power accuracy of Hteg grows along with the increase in the number of

naive expectation from the scaling behaviour of the effective Hamiltonian H¢;', where it
jets. The reason is that every jet in our calculation is unmeasured and thus participates
in the ¢, spectrum such that, when calculating the contributions in eqs. (2.56)—(2.57), the
4-dimensional coordinate space integral d*z ~ O(A; 4) balances the power suppression
from the collinear field operators and the differential dmz. Hence, the insertion of the jet
modes invokes no power-like behaviour unless kinematical constraints are imposed on the
jet directions, such as those in Py or Op.
Substituting the result of eq. (2.69) into eq. (2.2), we arrive at

Min 2 Qd"gf
thEd Pr-dY;dg,

~ O, (2.70)

Nj>2,Iso

where the integral over ¢r has increased the power of eq. (2.69) by one order of A;.
In previous investigations on the gr spectrum, the scaling of the isotropic pattern was
also addressed in [74] and the outcome in eq. (2.70) is in agreement with their findings.
Comparing eq. (2.70) with the Ny = 0 and Nj = 1 configurations, it is found that the result
here is one order higher than Ny =1 case in eq. (2.63), and two orders higher with respect
to the Ny = 0 one from eq. (2.47).

Asymmetric recoil. Turning now to the asymmetric recoil configuration, the transverse
components gz, and g,, observe the scaling rules in eq. (2.8). The accordingly expanded
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boundary conditions can be found in egs. (2.49)—(2.50). As demonstrated in eq. (2.63),
those kinematic factors are all of O(1). Thus, the investigation of the scaling behaviour
driven by the asymmetric recoil configuration relies again on the analysis of the convolution
function in eq. (2.64). As before, to denominate all the possible configurations of the jet
transverse momenta, we introduce the sets,

O = (B € Ris OO ~ r) ~ Fiy € s, ~ Firy ~ OO}, (2.72)
Iy = {EZJ_ € Ry; O(AT) ~ QTH <L G ~ Ez'ﬂl ~ Ei,T” ~ O()‘g)} : (273)

Since there are at least one pair of label momenta presiding over the direction 77 X 7 now,
the differential db,, is always of O(AY). As for the 7 direction, if there also appear any label
momenta, namely card[Oy] + card[Z;] > 1, the power scaling of b, will give the same
result as the perpendicular piece, i.e. db;, ~ O()\2). Otherwise, this direction will still be
occupied by the soft and beam fluctuations, which leads to db;, ~ O(A;!). Summarizing
those observations, it follows,

o (2.74)

O()\gard[Pk]-‘rcard[(’)k])’ card[Ok] N card[Ik} >,
Ny>2 Asy O(AN-1), card|Oy| + card[Z;] = 0.

Combining this result with eq. (2.2) and exploiting the non-negative nature of the cardinality,
the minimal power of the cross section in the asymmetric recoil configuration can be derived,

Min [ doyg

~ O(1), (2.75)

dM2 d2Bt Y dg,

Nj>2,Asy

where the scaling rule g, ~ O(A\2) has been utilised in line with eqs. (2.8). Comparing the
outcome with eq. (2.63) of the Ny =1 case, it is interesting to note that the lowest power
behaviour for the asymmetric configuration is not impacted by the increase in the number
of jets Ny, both are of O(1). However, in light of the asymptotic series in eq. (2.6) and the
power accuracy of the Ny = 0 configuration in eq. (2.47), it is noted that eq. (2.75) is only
able to account for the regular terms in part, which belongs to at least NLP and thus will
not be the main concern in the latter numeric evaluations.

2.4.3 Summary and discussion

In section 2.3, 2.4.1, 2.4.2, we have enumerated all configurations that are relevant to the
regime ¢; — 0 and determined the corresponding power precision with the help of the
effective field theories SCETy; and HQET. We find that the leading-power contribution of
O(\71) is given by the Nj = 0 configuration in eq. (2.47). It is followed at next-to-leading
power at O(AY) by the asymmetric recoil configurations regardless of the total number of
the embedded jet modes, see eq. (2.63) for Ny = 1 and eq. (2.75) for Ny > 2, respectively.
The highest order contribution at O(A;) is produced by the isotropic recoil configuration in
eq. (2.70) with the Ny > 2 jets having been incorporated.
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Comparing those power rules with the asymptotic series in eq. (2.6), we observe that the
leading singular terms are solely governed by the Ny = 0 configuration. As will be illustrated
below, this finding imposes non-trivial constraints on the ingredients of egs. (2.29)-(2.30).
Firstly, due to the IRC-safe nature of the observable do,;/dq,, the asymptotic terms in
eq. (2.6) are finite at each power in A;. In terms of the EFT ingredients, this means the
IRC subtraction factor of the hard sector in egs. (2.31)—(2.32) and the renormalisation
constants of the beam and soft functions in egs. (2.35)—(2.36) and eqgs. (2.38)—(2.39) must
cancel after the combination,

5 (2l ) A Y B By =, 70
«,
where the superscript x here runs again over the partonic channels {g,9gs, qfl(j%, ¢} as

in eq. (2.26). K, and k7 mark the incoming active partons along the n and n directions,
CS

[Kn(m)]
introduced to remove the soft-collinear overlap [141, 142] and thus is not involved with the

respectively. We have omitted the contributions from Z of eq. (2.35) as it was solely
renormalisation of the beam function. The relationship in eq. (2.76) will be examined in
section 2.5 through an explicit NLO calculation.

From eq. (2.76), we can infer the scale evolution relationship amongst the elements
of egs. (2.29)—(2.30). It is worth reminding that the scale dependences in the hard, beam,
and soft functions are all brought about through the IRC subtraction or the UV /rapidity
renormalisation. To this end, the cancellation of those subtraction factors and the renor-
malisation constants renders the partonic convolution functions igg] in egs. (2.31)-(2.32)
independent of the scale p or v, more specifically,

il[g?(gTthfa Btﬂ $t7Y;ffvﬂ7 V) il[g;]<gT7Mtfv /Btfa CCuYt{,,uW) =0. (277)

dln p ~ dlnv

This result correlates the RGEs and RaGEs of the relevant ingredients therein, and also
(<]
tt
we will utilise eq. (2.77) to derive the evolution equations for the soft interactions.

permits us to leave out the scales p and v from the arguments of > hereafter. In section 3,

Apart from the leading singularities in eq. (2.6), our analyses in section 2.4.1 and
section 2.4.2 demonstrate that the following subleading terms entail the participations of
the jet modes. In the previous investigations, a similar point was first addressed in [74].
There, the power scaling of the jet contributions is determined by assessing the relevant
pinch singularity surfaces in the low gt domain, from which the asymptotic behaviors of

the g spectra are related to the power laws of the hard vertices,?
do,; . - -
A0 o e - Re - R, (2.78)
d*qr

where K f:z are the transverse momenta of two active partons connecting the hard vertex
producing the top quark pair. If K f:Q and ¢r, including all their components, are of O(\;),

?The focus of [74] is only on the Drell-Yan process. However, in absence of the super renormalisable
vertices, such as the Coulomb exchanges, the findings of [74] are, however, generalisable to top quark pair
production at LHC.
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(a) Light-light correlation.  (b) Light-heavy correlation. (c) heavy-heavy correlation.

Figure 4. Representative Feynman diagrams for the NLO soft function. The double line represents
the gauge links attached to the top or antitop quark. The single line stands for that from the
incoming massless parton, such as gluon, quark, and antiquark.

it yields do,;/d%gr ~ O(\-?), which is in agreement with our result in eq. (2.47) from the
Nj = 0 configuration after integrating out g, . When the jet modes are taken into account
in the isotropic recoil configuration in eq. (2.7), it follows that gr ~ O(\;) and K 1%2 ~ O(1),
which gives rise to the scaling behaviour do,;/d*gr ~ O(1) from eq. (2.78), also coinciding
with the expression in eq. (2.70) once the integral over ¢, is performed. This congruence
of findings is a consequence of the equivalence of eq. (2.78) and our approach in regards to
the isotropic configuration in eq. (2.7). During our derivations, the power behaviour of the
q- spectrum is extracted in part from the scaling laws of the impact parameter ET, which is
in practice correlated to the delta function in eq. (2.78) by means of the inverse Fourier
transformation, as illustrated in (2.44).

Nevertheless, once the asymmetric recoil configuration of eq. (2.8) is encountered, it
is not straightforward to apply eq. (2.78). The power rules for the transverse components
are ¢r, ~ O(A-) and ¢, ~ O(1) here, from which the right-hand side of eq. (2.78) is of
O(A71) in the Ny = 1 situation and O(1) in the Ny > 2 case. Even though this accidentally
agrees with our EFT-based derivation in the Nj > 2 case, see eq. (2.75), its prediction
in the Ny = 1 case is one power lower than our EFT-based outcome in eq. (2.63). This
mismatch originates in part in the fact that in [74] all the jet transverse momenta possess
homogenous components, as is the case our Zj classification in eq. (2.67) and eq. (2.73).
This arrangement works well in the isotropic configuration of eq. (2.7). However, if the
jet orientations are of particular concern, such as in the Ny = 1 case, the extra power
suppression will come into play by means of the integrals over the transverse components,
e.g. the projected element k; detailed in eq. (2.61).

2.5 The soft function with the exponential regulator

In the previous parts, we have derived the factorisation formula for the leading singular
behaviour of the ¢, spectrum in egs. (2.29)-(2.30), which entails the soft functions Sﬁ ﬁ j to
accommodate the wide angle correlations amongst the active partons. The field-operator
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definitions of the soft elements have been presented in egs. (2.38)—(2.39) in terms of the soft
Wilson lines, see [133], sandwiched by the orthonormal colour basis in eqgs. (2.33)—(2.34).
In this part, we will calculate the soft function to NLO accuracy. Their three typical
contributions are depicted in figure 4.

Without any loss of generality, the fixed-order results can be parameterised as

—

af T > Qg m aB,(m
S[R}B(bT’“’”)E > [4;)} S[Kf( by, 1), (2.79)

m=0

where k € {gngn, qf;cj%, ¢- @} as that in eq. (2.26). The coefficients for the first two orders

in o, read
S[C;f’(o)(gnu, v) =dag, (2.80)
S[Ofi]ml)(g“ pov) = > (| Ta- Ty |e)) Zap(br, p,v) - (2.81)
a,b

0 i equal to the identity matrix

In absence of any soft interactions, the LO result S[CZ ]ﬂ ’
as a consequence of the orthonormality of our colour basis in eqgs. (2.33)—(2.34). For the
NLO expression, we employ the colour algebra formalism suggested in [162] to illustrate
the outcome. Therein, the flavour subscripts a,b € {q,q, g,t,t} denote the active partons
participating in the hard kernel. T, signifies the colour charge operator for the parton a, and
T}, likewise. |c,) is the vector representation of gy N eqs. (2.33)—(2.34) in colour space. The
coefficient function Z,; contains the contributions from the squared soft amplitudes induced
by the Wilson lines in egs. (2.38)—(2.39). Its expression in the exponential regularisation

scheme [98, 99] is

- 2e7E )¢ - ) -
Top(bp, p,v) = _M lim /dk‘n dks d2=2€ oy 5+(k2) _ Yar U etk -br—bo E).d
v 5—0 (k- va)(k - vp) .
0=
+ 28, (2.82)

where by = 2 exp(—vg) with vg being the Euler constant. ¢ and ¢ are the regulators for the
virtuality and rapidity divergences, respectively. v, denotes the four-velocity of parton a,
for instance n#(n*) for a = g,y and vf({) = Pt‘éz)/mt for the a = t(t). Z.4. stems from the
perturbative expansion of the renormalisation constant Z[SH} and its complex conjugate in
egs. (2.38)—(2.39), defined in the MS scheme throughout this paper.

The result of eq. (2.82) depends on the partons a and b. We will first examine the case
of a and b being light flavours, a,b =1 € {q, q, g}, depicted in figure 4a. Starting with the
case a = b = [, the light-like nature of the vectors n and n trivialises the calculation and
we have,

Tu(br, ) =0,  ZL (bp,p,v,e) =0. (2.83)

However, if the participants consist of different light particles, a =1 # b =1', Z;; does not
vanish in general. To calculate its contribution, we follow [98] and first integrate out the
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longitudinal components k,, and k5 in line with the exponential regularisation. Then, we
expand the result in § and truncate the series to O(6?). Finally, we carry out the integral
over kp with the aid of the dimensional regulator, giving

2 - 2 2

Ty (bp, p,v) = LA — 2 Ly Ly, + 5 ZW (br, pyv,€) = S+ Ly, (2.84)

where L, = In[p?/v?] and Lt = In[b%4%/b3]. We have compared eq. (2.84) to the expressions
in [98] and find the agreement after synchronising the overall colour factors.

In addition to those correlations between the incoming particles, eq. (2.82) also involves
the contributions from the heavy top quark, h € {t,t}, see figure 4b. The presence of the
massive partons complicates the calculation substantially. Since the denominators at this
moment are not homogeneous in k, and kj, performing the integral over those longitudinal
components is not straightforward, especially when involving the exponent Ejd. To this end,
we resort to the Mellin-Barnes (MB) representation [163, 164] to recast the inhomogeneous
propagators in a first step. For Zj;, we thus apply the following substitution [80, 165],

L MB., 11/Ci+md dzo T(—21) T(—20) T(A 21+ 22) (2.85)
(k‘-vh)/\ 1_‘()\) 47‘(‘2 . z10a29 z1 z9 Z1T %9 .

;s —ioo

)

. .n)1* N . z2 4 —A—zq—2
" {(k‘ n)évh n)] [(k n);vh n)] (—k‘T-ﬁ}f) 1—22
where the contours (or the values ¢;) are chosen such that the poles from I'(A 4 21 + 22)
are to the left of the path, while those of I'(—z;)I'(—z22) are to the right. Integrating
the MB-transformed propagators over k) and kr now follows the similar pattern to
that in deriving eq. (2.84). Then, to perform the J-expansion, we first make use of the
package MB [166] to determine the contours for z; and z3, and then feed the outputs to
MBasymptotics [167] for deriving the asymptotic series in 0. The remaining integrals are
those over z; and z9, for which we utilise MBsums [168] to implement Cauchy’s residue
theorem and sum up the ensuing residues from the software Mathematica. The final
expression is,

- L3
Tin(br, p,v) = - = Ly Ly + 2 Ly In (v vp)

+ 2arcsinh? [[ﬁfl‘\ sin(cphb)} — (2mi) arcsinh“ﬁ'ﬁ] cos(gohb)}

2

+ E + Din(ny) + Din(—om) (2.86)

= 1
Zéht(bTa v, 6) = + z {LV - 2111(?)1 ) Uh)} ) (287)

€2

where ¢, denotes the azimuthal opening angle between the vectors 17,{' and gT. The function
Dy, is defined as

Din(0) = 4|Uh | / d¢ In [cot(¢ { cos(t + ¢) arcsin W
(2.88)

1+ |52

\/1—1—]1) 2sin%(0 + ¢)
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An analogous strategy is also applicable for the evaluations of the a =b=h and a = h #
b = h' cases, Zp, and Zpy, of figure 4c. Since rapidity divergences do not emerge from
those time-like gauge links, we can set the regulator § = 0 from the beginning and solve the
k*-integrals in the conventional dimensional regularisation. The results exhibit explicit z;
and z2 dependences, which are treated with the above MB-Tools [166, 168] to complete the
inverse MB transformations. Eventually, they yield,

h
Zhp(bp, pyv) =2 Ly + S S lél arcsinh(rf') — (2771)] , (2.89)
14 (r})?

, 2
Ze (o povie) = ==, (2.90)

- 4y - vy [ /Uh-vh/—l}
Zuw (b =1L tanh |4/ ——
hhe (b1 1, V) T (oo )2 =1 arctan o 1
1 hh! . ’ ’
+/0 d¢ " (0) = (Uh h > [4 arcsinh (r{fh ({)) - (27‘(’1)] ,

1+ () \i(©

(2.91)

/- 1 4y - vy Vp U — 1
ZM (b v €) = —= arctanh[ } , 2.92
c.t. ( T /‘1’ ) € (’Uh . ’Uh/)2 — 1 Uh . Uh/ _|_ 1 ( )

where
s s s h_ 7 =] hh' N ﬁﬁh’ (C)
Ve (€) = Cvpy + (1 = C) vpyr Ty =br - Uy, Ty (O:bT‘Zi- (2.93)
Vp (€)
During the calculations, we have exploited the on-shell conditions v? = vg = 1 and

introduced the definition BT = 5T /bp.

With all relevant coefficient functions Z,; at hand, together with the colour factors of
eq. (2.81), we can now establish the NLO soft function together with the renormalisation
constants Z[‘; - For the latter case, we have checked that the results in eqs. (2.84)—(2.92)
indeed satisfy the identity in eq. (2.76), where the hard and beam renormalisation constants
are extracted from [134] and [141, 142], respectively. Regarding the renormalised finite
parts Z,,, we compare our expressions with those from the CSS framework [66] at the scale
p=v=="b/ b?r and find full agreement. Furthermore, since during the derivation we did
not utilise the relationship o~ + 17% — 0 for simplification, the results in eqs. (2.84)(2.91)
are also comparable with the soft function in the process pp — ttH [148]. However, at
this moment, although the real parts of Z,, still coincide with those in [148], the signs in
front of the terms 27i in eq. (2.86), eq. (2.89), and eq. (2.91) are inverted. This purely
imaginary term does not enter the present calculation on the t¢ production or the comparison
with [66], as these imaginary contributions cancel through the momentum conservation
T+ 17#‘ = 0. Nonetheless, this difference can influence the transverse momentum spectrum
in ttH production, or similar processes, especially within the domain M,z 2 M,; ~ 2my.
We leave it to a forthcoming publication to elaborate on those processes and, in particular,
deliver a numeric comparison of our results, to those from [148], and a fixed-order QCD
calculation from SHERPA [169-171].
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3 Resummation

In the previous section we have analysed the dynamic regions contributing to the lead-
ing singularities in eq. (2.6) and established the corresponding factorisation formula in
impact parameter space. This section will now be devoted to the resummation of these

asymptotic behaviours.

3.1 Asymptotic behavior

We start with identifying the singular terms in eq. (2.43). Therefore, without loss of
generality, we parametrise the perturbative expansion of ¥,; as follows,

S~ Y al (Myg) Ly {$mon(Bir 20, Yig) + amn(signlbn ], g2 Vi) |, (3.1)

m,n

where Ly = log {bz M2

i R—7
order, there are two dimensionless coefficients, s, , and a,, . While both depend on j,7,

x¢, and Yy, Sp.p is independent of the magnitude and orientation of the impact parameter.

/ b(ﬂ collects all the relevant dimensionful quantities. Order by

Thus, we will refer them to the azimuthal symmetric terms (AST) hereafter. On the
other hand, in presence of the helicity-flipping beam radiation in eq. (2.36) and the wide
angle soft correlations from eqs. (2.38)—(2.39), 2,7 also contains contributions sensitive
to the orientation of the impact parameter, i.e. the azimuthal asymmetric term (AAT)
amn [67, 73]. Since the rejection component b, has been integrated out in eq. (2.42), the
orientation dependence is reduced to a dependence on the sign of bTH in eq. (3.1). Please
note, in deriving eq. (3.1), we have set the scales p = v = M,; in egs. (2.29)—(2.30) and
then extracted the Ly terms through dimensional analysis. Other scales choices {u, v} lead
to the same result after regrouping the dimensional quantities appropriately, on account of
the (rapidity) renormalisation group discussed in section 2.4.3.

From eq. (3.1), we can evaluate the ¢, spectrum by completing the inverse Fourier
transformation in eq. (2.43). Exploiting the fact that the function cos(br ¢r) is even under
the integral over bTH’ we have

dO’tg
dM2 2Pt dYy;dg,

~ Z/ db7'|| COS(bTH qT) L;\L/I {Sm,n(ﬁtfv T, n5)+am,n(8ign[b7\\ ]’ Bet, @t Y;‘f)}
(3.2)

= Z {QSm,n(Bt{a Lty )/tf)+a;,n(ﬂtfa It’Ysz)+a;1,n(ﬂtf? xt,th)} F7('n) (qTa Mtf) )

m,n

+

where a, ,, are the decomposition of the AAT components according to sign[bTH] and the

function ]-"T(n) is defined as,

FO (qr, M) = /0 by, cos(brqr) LYy (3.3)
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To appraise Fr) (g, M,;), we follow the strategy of [102] and introduce the generat-
ing function,

62 M2>7]

EOO " Fn > T
FT (777 dr, Mt{) = g ‘F’l(' )(q7'7 Mt{) = / deH COS (bTH qT) ( Hb2
n=0 """ 0 0

B _4*7162%:77 sin(7n) T'[2n 4 1] (W)n (3.4)

qr q?

Hence, ]—"T(n)(qT, M;;) corresponds to the n-th derivative of ¥, (n, ¢-, M,;) with respect to n
at the point n = 0. The results of the first few ranks read
FO (g7, Myz) = 0,
T

“/—-.7('1)(QT7Mtt7) ="

T

M2
fr(Q)(quMtf) = _ziln ltt] )
q

;|44
3T M2 3
G M) = 22 || -1

Fr(qr, Myp) . n [4q3] P (3.5)
4 M2 473 M2 647(s

Fqr, M) = ——1n® || — —In || + :

(@ i) qr 4@13 qr 4Qq2— qr

kr o 4 [ M2

F (ar Myy) = =~ "™ th;] T

Here we have focussed on the regime where ¢, is small, but always larger than 0. Otherwise,
contributions such as d[¢;] will enter the expressions above. From these results, it is observed
that the coefficients s, , and a}mn cannot induce any divergent behaviour by themselves as
exhibited in eq. (3.5), whilst the logarithmic terms L’If/[ produce the singular series up to
In*~1[M 2/(442)]/qr, i.e. the entire LP asymptotic behaviors of eq. (2.6). As a consequence,
the resummation of the ¢, spectrum can now be expressed as an exponentiation of the
Lyg, resembling the corresponding resummation in the Drell-Yan processes and Higgs
production [96-103, 107-109]. In section 3.2, we will use the solutions of RaGE and RGE
to accomplish this exponentiation.

It is interesting to note that, by analogy to the ¢, resummation, the leading singular
behaviour of the azimuthally averaged gt distribution is also governed by the characteristic
logarithmic terms from the impact space [64, 65], such that the R(a)GE framework is in
principle applicable therein as well to accomplish the resummation. However, aside from
those two observables, the transverse momentum resummation is generally more involved
on the pp — tt + X process. For instance, the singular behaviour of the double differential
observable do,;/dgr is not only contained in the logarithmic terms, but the AATs can also
make up in part the asymptotic series [67]. The appearance of these asymmetric divergent
terms can have non-trivial impacts on the pattern of the LP singularities and the choice of
resummation scheme. In appendix A, we will deliver a comparative study on this issue.
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3.2 Evolution equations

We will now elaborate on the evolution equations of the hard, beam, and soft functions
introduced in egs. (2.29)—(2.30).

The hard function, see egs. (2.31)—(2.32), contains the squared UV-renormalised ampli-
tudes multiplied by the IRC regulator. Considering that the scale dependences induced by
the UV renormaliation cancel fully within the amplitudes, the evolution equation of the hard
sector is governed solely by the IRC counterterm Z[},?i - According to the parametrisation
of [51, 134, 172], we have,

L7—(["1](M2—B*zt/¢):—0 Tr In [ 2]H[K(Mzﬁx 1)
dln,uQ af ttr Mttty [k] L cusp M2 ttr Pttty

7}[:.@] %[f] *
B’YH[K] lngvﬁtfvxtau)+ Ot’Y H ( lfzfvﬁtfthau) )

(3.6)

>

where the subscripts {«, 3,7} represent the colour indices in the set of colour basis in
egs. (2.33)—(2.34). The helicity indices involved in the gluonic channel have been omitted
for brevity. k runs over {gngn, qfl(j%, ¢t @}, indicating the partonic channel. Clx) denotes
the colour factor in QCD with

K € {gngn} : Cp =Ca, K € {q;(j%,q%q_ﬂ;} : Clyy=CF. (3.7)

Icusp is the cusp anomalous dimension. It is needed to three-loop accuracy [173] in this paper,
but is available to four-loop precision in the literature [174, 175]. A numeric estimation of

[ ]

dimension for the hard contribution. Their analytic expressmns up to N2LO can be found

the five-loop contribution is addressed in [176]. Analogously, 7; " is the non-cusp anomalous
in [134, 172] and progress towards the three-loop result has been made in [177].

The quark and gluon beam functions are given in egs. (2.35)—(2.36) in terms of the
SCETy; field operators. They are same as those participating into the Drell-Yan processes
and Higgs production. They admit the RGEs [98],

In B9 (1, b = Cp Feusp | {”} g 3.8
8ln,u,2 NSy (77 ) Ta,uay) F p I nn\/g s ( )
0 In B[gz]’h(nnagTa/LvV) =C4y I‘cusp In |: v ] +’Y£g} 5 (3 9)

Olny2 " on s

as well as the RaGEs [98],
2 0 : 2 0 . -
~Gr oingz B br ) =~ G B b )
b 2 g2
_ b\, [ 4 .

- [as (bT> " /uzT 12 Leusp [as(p)] . (3.10)

[9,9]

Here, 7, stands for the momentum fraction along the n direction. ;" and -, are the non-

cusp anomalous dimensions brought about in the virtuality and rapidity renormalisations,
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respectively. Their specific expressions are dependent on the choice of regularisation
prescription, and this work will use those that correspond with our choice of using the
exponential rapidity regulator [98]. They are known at N?LO accuracy [141, 142], which we
use in the following. N3LO results are also available in the literature [99, 143, 144, 178, 179],
and N*LO corrections [180-183] have appeared recently.

In order to derive the evolution equations for the soft sector, we utilise the scale
invariance condition in eq. (2.77) and the R(a)GEs above. It follows that

2
S[H] (b, 1, v) = — {CM Leusp In

(<] By
Oln p? + 2, } S (br, p, V)

’Yl[z} VAN
=20 | S ) TE A S ) (S50 | (31D

and

oN

b
]. 8 OZB B bfo b dﬂQ B
Cy dlno2 0 (rogi ) = [O‘S(bT)] + )" Gz Pewn los(B)] - (3.12)

[\J

For brevity, we make use of ’y[ I here to represent the virtuality anomalous dimensions in
egs. (3.8)—(3.9), more specifically,

W _ o)

K €{gngnt * Y [q]

ke {d. . hi} - =" (3.13)

As observed in egs. (3.11)—(3.12), since the anomalous dimensions herein are all indepen-
dently extracted from the hard and beam functions, these evolution equations provide a
non-trivial opportunity to examine our soft function of section 2.5 and in turn the factorisa-
tion in egs. (2.29)—(2.30). Substituting the expressions of eq. (2.81) into egs. (3.11)—(3.12),
we have checked that our results indeed satisfy the criteria above on the scale dependences.

Solving those RGEs and RaGEs permits us to bridge the intrinsic scales of the hard,
beam, and soft ingredients, thereby exponentiating the characteristic logarithmic terms in
eq. (3.1). Substituting these solutions into the master formula of eq. (2.43), we arrive at
the resummed ¢, spectrum,

doje
d‘]Mt%dQﬁtL dY;‘fdQT
(0
= k yres K] = Al B
B Z 1673 8,7 ];;i\M S Z/ deII cos T||QT) (bTHT’Mttvﬁttaxthtt)a (3.14)
sign|x¢]

where
Z;:S [qnq"](bTaMttaﬁttaiUuYtt) (3.15)

1 2
= (2]\7) [r(jjf]](bTaMtth“ha#ba,“’s,VbaVS) XB[q"] (nnabTv,ufb,Vb) B[qn](ﬁn,b’r,/u),l/b)

> {S[{Zﬁi}@““sv”s) [Vggno?;](ﬁtﬁxtyﬂsvﬂh)} VI (B, e, s, pin)
{8}

i gl
X%g];g;](MtEa Bii> Tt fin) },
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izgsy[gngﬁ](gTthfﬂ /Btfa xhi/tf) (316)

1 2 res @
- (]\72_1) [gngﬁ](bT7Mtt_7,u'h7Mb7u57Vbays) Z {S[glgi](bTuuS?VS)
¢ {a,B,h,h"}

X B}—Z;ﬂ%hn (nna br, b, Vb) Bgf};]’ﬁhﬁ (777_“ br, b, Vb) [V([xgln(f;] (Btfa Ly s, )uh)} Bﬁnﬁi g (Bttv Ly Ms, :uh)
X st o (Mo Bis s 1n) } :

res. 4,7 can be obtained from eq. (3.15) by adjusting the label momenta

The expression of E
of the beam—colhnear modes as appropriate. As is apparent in egs. (3.15)—(3.16), two sets of
auxiliary scales {pp, tp, pts } and {vp, vs} have been introduced to define the initial conditions
utilised in solving the RaGEs and RGEs above. An appropriate choice of their values
minimises the missing higher-order corrections, and in this paper, in a bid to minimise the
logarithmic dependences on the respective sectors, the following values will be taken as

defaults in this paper [97, 184],
i == My, = e = e = bo/|bry |- (3.17)

With the choices in eq. (3.17), the impact space integral in eq. (3.14) may approach or
cross the Landau singularity in the large |bTH| regime. In order to avoid the divergence, we
impose upper and lower boundaries [b | < b‘;h‘t =2GeV!in eq. (3.14) [184]. Alternative
schemes have been discussed in [107, 185].

Further, egs. (3.15)—(3.16) also include the kernels Dy and Vl B] to evolve the intrinsic

scales amongst the fixed-order functions. D[rs]s is induced by the diagonal anomalous

dimensions, such as Yeusp, 'yl[f}, and v, in egs. (3.6)—(3.10). Its definition reads

In ,D][rf:f(bT7 Mg, pny oy s Vb, Vs)

n: dp?
- 2 W{CM Teusp [avs (2 [ }4‘2% as )]}
b
] =}
- Cn I‘cus Qs In
/ui 7z O Teusp [0 (72)] [Mé
V2 u: o dp? _ V2 b
un ] i - (B)]. s
o1

[x]

V[ " accounts for the contributions from the non-diagonal anomalous dimension ;" 45 which,

in prlnciple can be extracted from the solutions of the RGE of the hard function in eq. (3.6).
[x]

to achieve a closed expression. Hence, in this work we adopt the perturbative approaches

However, in the presence of the non-diagonal elements in 7;~, it is somewhat challenging
suggested in [51, 186, 187]. The details on the implementation are collected in appendix B.

Equipped with egs. (3.15)—(3.16), we can calculate the resummed projected transverse
momentum distributions. In this work, we will present the results in particular at NLL/,
N2LL, and approximate N2LL’ levels. For NLL/, N2LL, and strict N2LL’ accurate calcula-

tions the required precisions for the various anomalous dimensions and fixed-order functions
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Logarithmic accuracy | H, S, B | Tcusp | Vh,s,b.r
NLL 0(ad) | 0(a?) | 0(ay)
NZLL Oa,) | O(ad) | 0a?)
NLL/ 0(c?) | 0(ad) | 0(a?)

Table 1. Precision prerequisites on the anomalous dimensions and the fixed-order functions for a
given logarithmic accuracy.

have been summarised in table. 1. In particular, for the N?LL’ result, the hard and soft
sectors need to be known at full N?LO accuracy. However, only the logarithmic terms,
which are derived from eq. (3.6) and egs. (3.11)—(3.12), are included in this work. We thus
label our results with this approximation as aN2?LL/ in the rest of this paper.

3.3 Observables

In eq. (3.14), we have presented the master formula of the resummed ¢, spectrum with a
general choice of 7. In section 4, we will investigate three observables, g1 out, ¢T,in, and A®;.
The calculations of the first two observables are immediate from eq. (3.14) by choosing the
reference vector T to be perpendicular or parallel with respect to the top-quark transverse
momentum 15},

e . Pt
qr = QT ,out » if 7T=+1x V%L R (3.19)
t
P’J_
4r = qTn; if 7=+ ‘Pﬁ : (3.20)
t

where the unit vector 77 characterises the flight direction of one of the colliding protons. Since
the value of ¢, only concerns the magnitude of the projected component, the calculation
with either + or — sign in eqgs. (3.19)—(3.20) gives the same result. In order to determine
the azimuthal distribution A®,z, it is worth noting that in the vicinity of Ad®,; — 7w, we are
able to perform the expansion in A¢,; = (7 — ADy;) ~ A,

+0(\2). (3.21)

pL.pL T
t
A®,; = arccos [ L L | g — Lhou

| P || P | P
In this work, only the leading kinematical effects will be taken into account, such that the
azimuthal spectrum can be calculated from the results on gt gut,

res
do -

‘ dM2 2P dYy; dgrous

dMZ d2Pt AV dAg,;

dotes .

t I +0O0). (3.22)
As demonstrated in section 3.1, all ¢, associated observables are free of azimuthal asymmetric
divergences in momentum space and so are the spectra of ¢t out, ¢T,in, and Ag¢,z. This
justifies our application of the resummation schemes in table 1 and also the R(a)GE
framework in egs. (3.14)—(3.16) during the calculation.
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3.4 Matching to fixed-order QCD

We are now ready to match the resummed predictions derived in the previous sections
to exact fixed-order QCD calculations. As the expansion in A; has been applied in the
derivation of the resummed results of eq. (3.14), its validation is maintained only within
the asymptotic domain. To continue the resummed spectra to the entire phase space, we
match eq. (3.14) onto the fixed-order result using a multiplicative scheme [188-190],

daf{(uf.o‘)
doQ

dopat { ldatrfs B dof(pt.o.)

dQ == dQ dQ 1 ftran(Qacmarm)"‘

} Rfs (Mf.o.)

dotes

:ftran(Qacmarm) ( dg ) Rfs(,uf.o.)

o (Nf.o.)+
—

(3.23)

+{1_ftran(Qacmarm)}

exp

where Q € {qT out ¢T,in, Az} Tepresents a general observable of our concern. dojs®/dQ is

the resummed differential distribution calculated from eq. (3.14). doj;/dQ stands for the
perturbative expansion of do}?*/dQ at the scale juf,, and also corresponds to the leading
singular terms in eq. (2.6). pufo. is the scale of the fixed-order expansion, and typically
identified with pr and pr in an exact QCD fixed-order calculation. In the numerical study

presented in the next section of this paper, we will take as default choice

Hite, = My (3.24)

res
tt
the fixed-order accuracy of the calculation that our result is matched to, as shown in the

Taking the difference between o;7° and o7; yields the pure resummation corrections beyond
square brackets of eq. (3.23). Multiplying this difference by the transition function fiyan
permits us to regulate the active range of the resummation through the shape of fi;an,
and avoid double counting at the same time. To accomplish a continuous and progressive
transition towards the exact result, this paper will employ the following piecewise form

Of ftrana

ftran(Qa Cm, rm) =

1; Qécm_rm; @ ‘*
(Q_Cm+rm)2 é :
1- 27'1211 , m—Tm < Q< cm; S;: ]
_ _ 2 g i
C. T

(Q ;;2 m) ) em < Q< e+ |
0, Cm+rm < Q, |
Q

(3.25)

~ 34—



where the parameters ¢, and 7y, are introduced to measure the focal point and the transition
radius, respectively. In our calculation, the following parameters will be taken by default,

3t =30 GeV,rdf =20 GeV,  if Q€ {qT.out, ¢Tin} 5 (3.26)
cdef — 0.3, rdef = 0.2, if Q¢ {A¢;}. (3.27)

Please note, that the focal point of our transition function, ¢, plays the role of a tradi-
tional matching scale for the gt oyt and grin spectra. As the A¢,; spectrum, however, is
dimensionless, ¢y, is dimensionless, and can thus not be directly connected to an “intrinsic”
scale of the scattering process. Instead, we choose it solely on the basis of the quality of the
approximation of the fixed-order expansion of eq. (3.14) w.r.t. the exact QCD result, see
section 4.2. Besides the resummed differential cross sections and its perturbative expansions
aforementioned, to compensate for the power corrections having been truncated during the
asymptotic expansions, eq. (3.23) also includes the ratio of the exact spectra to the leading
singular terms derived from SCETy; and HQET,

doy® (uro.)/dQ

Rfs(:ufﬂ) = da?i(ﬂf.o.)/dg '

(3.28)

Herein, affo' denotes the fixed-order QCD results assessed at the identical scale to that
of 037, and will be evaluated by the program SHERPA [169-171]. Starting from N2LO, the
fixed-order predictions are not positive definite on the whole range of Q, and indeed can
turn negative in the asymptotic domain that will be improved by our resummation. This
invariably leads to the vanishing denominators in eq. (3.28). We thus expand R in ais(puf.o.)

in the second step of eq. (3.23) following the spirit of [190].

4 Numerical results

4.1 Parameters and uncertainty estimates

In this part, we will present numeric results for the observables ¢t out; ¢T,in, and Ay,
which are calculated using the master formulae in eq. (3.14) and eq. (3.23). The resummed
result of eq. (3.14) comprises a convolution of the hard, beam, soft functions. We calculate
the NLO amplitudes of all the helicity and color configurations of the hard sector using
program RECOLA [135, 136], and then evolve them by means of the RGE in eq. (3.6)
to derive the logarithmic contributions at N?LO. We strictly adhere to the on-shell
prescription in renormalizing the top quark mass, and take its value from the Particle
Data Group (PDG) [191]. For computing the beam functions, the package HPOLY [192] is
embedded to calculate the harmonic poly-logarithms participating in the hard-collinear
coefficients in [142-144]. The partonic content of the proton is parametrised using the
NNPDF31_nnlo_as_0118 [193] parton distribution function, interfaced through LHAPDF [194,
195]. To be consistent, we use the corresponding value of the strong coupling with as(mz) =
0.118. The evaluation of the soft ingredients at NLO accuracy is straightforward from the
analytic expressions presented in section 2.5. To access the N?LO logarithmic terms, we
expand the solutions of egs. (3.11)—(3.12) up to O(a?). In addition to those fixed-order
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constituents, eq. (3.14) also requires the evolution kernels ngf and VL’% The analytic result

of ’[r:]s can be found with the approach of [196]. To appraise Vc[fﬁ], we first diagonalise the

one-loop anomalous dimension 'y,[f] (see eq. (3.6)) by means of Diag [197] to reach NLL
accuracy. Then, based on the perturbative scheme proposed in [51, 186, 187], we reinstate
the higher order corrections from y}w to address the N2LL requirements and beyond.

Combining these evolution kernels and fixed-order functions permits us to evaluate the
differential cross sections. To assess the phase-space and impact-space integrals therein, the
package Cuba is employed to manage the relevant multidimensional numerical integrations.
Over the course, to circumvent the threshold regime £, ~ 0, where the Coulomb singularity
manifests itself and sabotages the factorisation formula established in eq. (2.43), the
constraint M,z > 400 GeV, resulting in §,; 2 0.5, is imposed in the phase integral.

With the resummed spectra in hand, we can proceed with the matching procedure
formulated in eq. (3.23). The leading singular contribution do7};/dQ is obtained by expanding
do,#°/dQ in as. To calculate the exact fixed-order QCD differential cross sections, we use
SHERPA [169-171] together with RECOLA [135, 136] and RIVET [198, 199]. In particular, we

will restrict the fixed-order calculations to the domains

Q> 10_1 GeV if Qe {QT,ou‘mQT,in}a (41)
Q>1072, if Q€ {Ady} (4.2)

to avoid numerical inaccuracies. The NLO calculations involve only the tree level ampli-
tudes,® which can thus be generated by the built-in tree-level matrix element generator
AMEGIC [200] and then processed by RIVET to extract the observables ¢t out, ¢1,in, and
A¢,;. To access the N2LO results, RECOLA is used to compute the renormalised one-loop
virtual amplitudes of the relevant subprocesses, while the program AMEGIC calculates
the real emission corrections and performs the dipole subtraction in the Catani-Seymour
scheme [162, 201-203]. The subsequent event analysis procedures again proceed through
RIVET as in the NLO case.

Our calculations, eq. (3.14) and eq. (3.23), involve a set of auxiliary scales, {u;, v} =
{1h, s sy lif.0., Vb, Vs } and two shape parameters {cp,, m,} of the transition function in
the matching procedure. To estimate the theoretical uncertainties of choosing the default
values of those scales, as presented in egs. (3.17) and (3.24), we appraise the differential
cross sections with the scales varied to twice or half their default values independently.
The deviations from the calculation using the default scales are then combined in the
quadrature. The so estimated error is referred to as dgcale hereafter. Moreover, to investigate
the sensitivity to the shape parameters of the transition function of egs. (3.26)—(3.27), the
differential spectra are also calculated with the combinations,

{€m,™m} = {25 GeV, 15 GeV}, {35 GeV,25 GeV}, if @ € {¢rout,qT;in} (4.3)
{em,rm} = {0.25,0.15}, {0.35,0.25} , if Q€ {A¢y;), (4.4)

3In this work, the perturbative accuracy is counted with respect to the Born cross section. Thus, the
NLO contributions here correspond to the tree-level amplitudes of the process pp — tt + jet.
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Figure 5. The fixed-order results of the ¢r;, and the weighted gt i, spectra of the process
pp — tt + X at /s = 13TeV. NLO/N2LO represents the differential cross section calculated in
the full QCD, while NLOg/N2LOg encodes the leading singular behaviour derived from SCETy;
+HQET.

which amount to fixing the lower boundaries of fi;., but adjusting the descending gradients
around the central choice in egs. (3.26)-(3.27). Again, the deviation from the central value
using the default choices defines the uncertainty, which we denote by d¢an. The total
theoretical error is then obtained through 6t = /62, + 53

scale ran*

4.2 Validation

In this part, we will confront the differential cross sections derived from the factorisation
formula of eq. (2.43) with those evaluated in the full theory. At this point, it merits
reminding that in establishing eq. (2.43), the asymptotic expansion has been carried out in
A by means of the region expansion of [78-81], and only the leading singular contributions
have been taken into account in the approximate outputs. In order to assess the effectiveness
of this approximation, and in turn the resummation scheme of eqgs. (3.14)—(3.16), it is of
the crucial importance for this work to compare the numeric performances of the exact and
approximate spectra in the asymptotic regime.

Figure 5 exhibits the calculation of the gt and the weighted gt i, spectra at NLO and
N2LO precision. In the left panel, we focus on the distributions daft—/ dgr,in and da&—o' /dqT in,
in the notation of section 3.4. Please note that while the NLO fixed-order expansions are
strictly positive throughout, the N2LO ones are negative at small qT,in and only return to
the positive for ¢t i, 2 3 GeV. As shown in the top plot, owing to the singular contributions
from the asymptotic expansion of eq. (2.6), the absolute values of the NLOg and N2LO,
results are both in excellent agreement with the exact results in the low g ;, region. As the
value of gt i, grows, the acuteness of the singular terms becomes gradually alleviated, from
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which the overall cross-section is reduced. As a result, the NLOg and N?LOg approximations
show progressively larger deviations. The fluctuations visible around gt i, = 3 GeV are
caused by the slightly different crossing points from the negative to the positive realm of
the exact N?LO and approximate N?LOy results. At some point, far outside its validity
range, the approximate NLOg and N2LOg again become unphysical, e.g. at qr,in ~ 80 GeV
for the NLOg results.

Below the main plot, we show two ratios to highlight the relationship between the
exact and approximate spectra. Independent of the order of the expansion or the choice on
the scale, as indicated by their respective bands, excellent agreement is observed between
doy; /dgr in and da "/dgrin below grin = 1 GeV. Within a few percents of deviation,
this holds up to qum ~ 10 GeV for the NLOg bands and gt i, ~ 20 GeV in the N2LOg
results. Further increase in ¢, will render the power suppressed terms in eq. (2.6)
manifestly important, thereby developing appreciable discrepancies between the QCD and
EFT outcomes. For instance, it is seen that in the domain g7, ~ 30 GeV, the leading
singular terms only account for about 75% of the NLO and ~ 80% of the N2LO spectra.

In order to further ascertain the asymptotic properties in the gr;, — 0 limit, we
investigate the gt jn-weighted differential distributions do,;/dIn gty in figure 5b. Akin to
eq. (2.6), the asymptotic expansion can also be applied onto the present case,

_ o(My7)
do i Z [0‘ 1 ] e, ™ (M) + e, A In" (A7) + cf2, A2 In" () + . ..

dlan mmn T

LP NLP N2LP
(4.5)

Comparing with eq. (2.6), the power series of eq. (4.5) exhibits a less singular behaviour
in each order and power in A;. This characteristic is reflected by the shallower slopes of
the NLOg and NQLO curves in the main plot of figure 5b. More explicitly, Whilst the
magnitudes of dcr / dIn gty are nearly 10 times smaller than those of da / dgrin in
the vicinity of qTJn = 0, they approach each other when entering the area qum ~ 10 GeV.
On the other hand, differing from eq. (2.6), the leading power terms of do;z/dIngr
are expected to capture the entire singular behaviour of the spectrum as all subleading
power corrections are finite in the limit gt i, — 0. To verify this property and in turn
scrutinise our calculations of the leading singular contributions, the difference between the
full theory and the EFT results is addressed in the middle and bottom graphs, at NLO
and N2LO accuracy, respectively, of figure 5b. For the NLOg results, with the decrease
in grin, the difference between the full QCD result and our approximation continuously
decreases for all scale choices. In particular, in the vicinity of gt i, ~ 0.1 GeV, the gaps
between the NLO and NLOg results shrink to ~ 0.3 pb, almost a thousand times smaller
than the magnitudes of das(lc o )/ dIngriy. We thus conclude that all the singularities of

/ dIngr i, at NLO have been successfully incorporated in doj;/dIngr .. Analogous
behav10rs can also be found in the N2LOjy results from the region qT,in > 2 GeV, where the
uce for the difference N?LO — N2LOjy (indicated by the red
bars) are still under control. Further reducing gt i, leads to growing numerical uncertainties

Monte-Carlo integration errors e

in the calculation of this small residual difference of increasingly large individual weighted
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Figure 6. The fixed-order results of the g¢r oy and the weighted ¢rout spectra of the pro-
cess pp — tt + X at /s = 13TeV. NLO/N2LO represents the differential cross section calcu-
lated in the full QCD, while NLOg/N2LOg encodes the leading singular behaviour derived from
SCET +HQET.

cross sections. Nonetheless, numeric zero is still within a few standard deviations €,,, and,
thus, the EFT spectra can still be regarded as compatible with the exact results. It should
again be stressed that since the absolute values of the N2LOg curves are generally above
O(103) within the asymptotic domain, mitigating their absolute uncertainties down to the
same level as those in the NLOjg results necessitates the sub-permille relative accuracy in
running the programs, which is rather demanding in time and thus has to be postponed to
future research.

In figure 6, we illustrate the fixed-order results of the distributions doy;/dgr out and
doyz/d1n gt oue. Within the asymptotic regime, since the gt oyt Observable is subject to the
same factorisation formula as that in the g1, case, the general pattern of the ¢t oy and
the weighted spectra are similar to those of figure 5. Furthermore, due to the fact that the
double-logarithmic terms, induced by the cusp anomalous dimensions in eq. (3.18) which
dominate the leading singular behaviour, are independent of the choice of the reference
vector 7, the absolute values for doz/dgr out and doyz/dIn gt oue are close to those of ¢t in
in figure 5. In addition to the top diagrams focusing on the magnitudes of the respective
spectra, the lower two panels of figure 6 are again dedicated to the comparisons of the exact
and approximate results. It is seen that, up to statistical uncertainties, the leading singular
terms have suitably reproduced the asymptotic behaviour of the full theory in the small
qT,0out domain.

Figure 7 finally depicts the results for the do,;/dA¢,; and do,;/d In A¢,; spectra. Taking
into account the facts that the azimuthal distributions are in practice derived from the
4T ,out Spectrum by means of eq. (3.22) and also that the contributions from the region
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Figure 7. The fixed-order results of the A¢,; and the weighted A¢,; spectra of the process
pp — tt + X at /s = 13TeV. NLO/N2LO represents the differential cross section calculated in
the full QCD, while NLOg/N2LOg encodes the leading singular behaviour derived from SCETy;
+HQET.

P ~ 0(10%) GeV provide the bulk of the cross section [27, 28], we find that the do,;/dAg¢,;
and doy;/dIn Ag,; results in the interval Ag,; € [0.01, 1] of figure 7 present a corresponding
behaviour to the gt ou spectra within the gr oy € [1,100] GeV region of figure 6. For
example, the NLOg curves intercept the N2LOg ones around Ag,; = 0.01 and Ag,; = 0.1 in
figure 7, while similar intercepts also take place close to ¢Tout = 1 GeV and gt ous = 10 GeV
in figure 6. Finally, as before, figure 7 delivers the ratios of the A¢,; spectra as well as
the differences of the weighted A¢,; distributions, to compare the approximate and exact
spectra. As before, except for the calculations crossing from negative to positive cross
sections in the vicinity of A¢,; ~ 0.03 of figure 7a and the numerical instability observed
at A¢y; ~ 0.04 in figure 7b, we observe excellent agreement in the asymptotic domain
A¢y; < 0.1,

4.3 Resummation improved results

We now match our resummed calculation, validated in the previous section, to the exact
fixed-order result, according to eq. (3.23). To facilitate our calculations of the exact spectra,
lower cutoffs in the respective observable have been implemented as shown in eq. (4.1). They
are justified by the above findings, namely the agreement of the fixed-order expansion of
the approximation and the full QCD calculation, in the asymptotic domain. It is important
to note that the full theory calculation participates in the matching procedure through the
ratio R defined in eq. (3.28). As illustrated in figures ba, 6a, and 7a, this ratio approaches
unity in the asymptotic region for all observables investigated in this paper. Consequently,
for practical evaluations, we are justified to truncate the impact of the full theory below the
boundaries in eq. (4.1). Further lowering these boundaries in principle helps to suppress
the power corrections, which however entails much longer run time of our programs.
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Figure 8. The resummation improved spectra of ¢t i and ¢r out at NLL+NLO, N2LL+N2LO, and
approximate N?LL/+N?LO accuracies (aN2LL'+N2LO).

The other major ingredient in our matching procedure is the transition function firan
which, together with the shape parameters {cm,™m}, governs the active range of the
resummation. In light of the excellent agreement between QCD and EFT, see figures 5-7,
the chosen default values of {cy,™m} are given in eq. (3.26) and eq. (3.27). The transition
function ensures that the resummation of eq. (3.14) is fully operational in the asymptotic
regions. In the present paper, we choose these regions to be ¢t jyour) < 10GeV and
A¢;; < 0.1. The contribution of the resummation to the matched result is then continuously
reduced, reaching half its intrinsic value at the focal point ¢y, 30 GeV in the gt in(out)
spectra and 0.3 in the A¢,; spectrum. The resummation is eventually fully switched off
for @ > ¢ + Tm, 50 GeV for Q = qr jn(our) and 0.5 for @ = Ag,;. Alternative settings for
cm and ry, see eq. (4.3) and eq. (4.4), are assessed to estimate the associated theoretical
uncertainty of the matching processes.

In figure 8, we present the resummation improved differential cross sections do;z/dgr in
and doy;/dgT,out- Within the small gr j,(out) Tegimes, in contrast to the fixed-order results
of figures 5a-7a, where substantial N?LO contributions were observed, the resummed
spectra here have been stabilised at the respective accuracies. Especially, a reduction in the
theoretical uncertainties, detailed through their respective coloured bands, can be found
with the increase in the logarithmic accuracy. For example, in the limits gt — 0 and
qT,out — 0, the results on the aN?LL/+N2LO level, that constitute our best prediction,
possess relative uncertainties of about +1% and —5%. They are greatly reduced from the
uncertainties of the N2LL+N2LO calculations, being from +6% to —12%. For illustrational
purposes we also include the lowest order NLL+NLO calculation showing uncertainties of
+30%. The primary driver behind those theoretical uncertainties is the variation of the
beam scale .

On the other hand, as exhibited in figure 8, the central values in higher precision are
in general contained in the uncertainty bands at the lower accuracy and in particular,
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the central result of N2LL+N?LO almost coincides with that at aN?LL/+N?LO. At this
point, it merits reminding that with our default choice in eq. (3.17), the logarithmic
contributions from the fixed order functions are all diminished, such that the discrepancy
between N?LL+N?LO and aN?LL/4+N?LO central curves is determined by the constant
terms, which, in our case, are those from the beam sectors only. Further inclusion of the
N2LO constant terms from the hard and soft ingredients may alter this difference, which
nevertheless has to be verified by an exact N2LL/+N2LO calculation.

Departing from the asymptotic regime, the curves in figure 8 enter transitional period
ranging from gr iy (out) = 25 GeV 10 ¢ in(out) = 35 GeV, where the error bands are progres-
sively aligning as the different resummations are faded out and the fixed order contributions,
which are the same in the N2LL+N2LO and aN2LL'4+N2LO calculations, gradually take
over. The cause for the uncertainties in this interval is multifaceted, comprising the variation
of the beam scale pp, the fixed order scale s, , and the reshaping of the transition function
ftran through the inputs {cy,, 7 }. Further increasing the magnitudes of g jn(out) dives into
the tail domain, where the central values of the respective spectra are dominated by the
fixed order results and the uncertainties therein are ruled by the sensitivity to the scale ps ..
Improving the theoretical uncertainties at this moment is out of the scope of resummation
and entails a full N3LO QCD calculation of pp — tt + X.

Comparing the spectra of ¢t i, with the gr o4 ones, it is interesting to find that their
NLL+NLO results are in close agreement with each other, whereas those at N2LL+N2?LO
or aN?LL/+N2LO accuracy start to exhibit larger differences. In particular, the 4T 0ut
spectra are raised by ~ 1 pb/GeV with regard to the gt i, one in the asymptotic regime.
To interpret this, it is beneficial to remind that according to table 1, the NLL resummation
only involves the evolution kernels DiF and VI in eqs. (3.15)-(3.16), both of which, as

defined in eq. (3.18) and eq. (B.3), concern only the magnitude of ng‘ and thus fail to
differentiate between the ¢t oy and gt i, observables. However, starting from N2LL, the
7-dependent components, such as the soft function S, and the gluon beam sector B[g”(m],
come into play, thus including a non-trivial impact that the projected direction 7 can make
on the results.

Furthermore, contrary to the azimuthally averaged transverse momentum distributions
calculated in [65, 68], no Sudakov peak is formed in the projected transverse momentum
case, as displayed in figure 8. This originates in part from the kinematic differences of these
two observables. In the R(a)GE framework introduced in section 3.2, the resummed g7
distributions can be addressed as,

a4 > /dgT Jo(brar) S By, Mg, Bz, 20, Yig) (4.6)

where Jy stands for the zeroth-rank Bessel function. Taking the limit ¢p — 0, while the
integrand in eq. (4.6) approaches a constant value, the pre-factor ¢r linearly suppresses
the resummed spectra, which in turn leads to the formation of a Sudakov peak. Such a
linear factor is absent for ¢r iy and gt out. As formulated in eq. (3.14), the situation of the

— 492 —



pp — tE+ X (13 TeV LHC)

%2-5'1037\\H‘\H\‘HH‘\H\‘HH‘\H\‘HH‘HH‘HH‘H\L
z 5 NLL+NLO 1
S0 10° N2LL+N’LO
N r aN’LL+N?LO
° L ]
15:10° — —
1.0-103} {

500 [ .
o O H
) | |
% 12— =
F C =
- E =
Z 1E =
4 E E
5 o8E =
N E
o OA6T\H‘HH‘\\H‘\H\‘HH‘H\\‘HH‘HH‘HH‘\H?

S

005 01 015 02 025 03 035 04 045 05
Ay

Figure 9. The resummation improved azimuthal spectra do,;/dAg¢,; at NLL+NLO, N?LL+N2LO,
and approximate N?LL/+N?LO accuracies (aN?LL/+N2LO).

qr resummation is

dUtg
dg-

~3 / dby, cos(br,ar) S (b, 7, My, By, 3, Yig) (4.7)

Thus, the ¢, spectra here receive no kinematical suppressions in the asymptotic limit,
explaining the absence of the Sudakov peaks in figure 8.

Finally, in figure 9, we show the resummation improved azimuthal separations between
the top and anti-top quarks. Since at the leading power, the observable A¢,; exhibits the
same factorisation and resummation patterns as the gt ou and gr i spectra, the curves
from figure 9 present analogous behaviors to the ones in figure 8, including the converging
theoretical uncertainties with the increasing of the precision of the calculation. Due to the
same reasons as before, a Sudakov peak cannot be observed in the asymptotic domain. In
particular, the latter case appears to be in conflict with the finding in a similar observable
in Drell-Yan production [204] where Sudakov peaks were observed in the azimuthal spectra.
This contradiction is, however, found to be spurious. The constraints on the transverse
momentum that had been imposed on the final state in [204] through fiducial cuts and the
projection of the observable into multiple transverse momentum slices introduced an effective
kinematic damping factor through the shrinking phase space, thereby restoring a similar
Sudakov peak structure as observed in the azimuthally averaged transverse momentum
distribution of [204]. On the contrary, despite requiring M,; > 400 GeV in this paper and
the prefactor ]5} having emerged from the expansions in eq. (3.22), neither of them can
collapse the phase space for A¢,; — 0 sufficiently for such a structure to emerge.

5 Conclusions

In this paper, we investigated the projected transverse momentum spectrum g¢,, which can
be evaluated by integrating out the rejection components of ¢ with respect to the reference
unit vector 7. We focussed on its singular behaviour in the low ¢, domain in particular.
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Using the region expansion methods [78-81] we resolved the phase space and loop
integrals in terms of the dynamic regions that capture the asymptotic properties of do,;/dq,
in the vicinity of g = 0. It comprises the usual hard, beam-collinear, jet-collinear, and
soft domains. Then, in the context of the effective field theories, SCET; and HQET,
we enumerated the possible configurations constructed by those momentum modes, and
determined the power accuracy in each case by probing the corresponding factorisation
formulae. It is observed that the leading singular terms of the ¢, distribution are governed
by the hard, beam-collinear, and soft regions, akin to the ¢r spectrum [64-68, 74], whilst
the higher power regular terms entail the participations of the jet-collinear regime.

In the subsequent resummation, we focussed on the leading asymptotic behaviour
of do,;/dq,;. By inspecting the corresponding factorisation formula in impact space, we
illustrated that the driving factor of the singular behaviour in momentum space is the
characteristic logarithm lnk[bzH M t2£/ bg], for k > 1, which therefore permitted us to apply
the framework of RGE and RaGE [96-99] to accomplish the logarithmic exponentiation
and in turn the resummation. It is worth emphasizing that in presence of the azimuthal
asymmetric terms, this phenomenon is not general on the process pp — tt + X. The
¢r spectra and the azimuthally averaged case do,;/dgr are known to be the only two
observables which stem from the double-differential distribution do,;/dgr but are free of

the azimuthal asymmetric divergences.?

Although the derivation and findings summarised above hold for an arbitrary choice of
reference vector 7, we focussed on three specific observables to demonstrate the validity and
usefulness of our framework, ¢t in, ¢T,out, and A¢;z. The first two cases are obtained by
assigning T to be parallel and perpendicular with respect to the transverse momentum of the
top quark, respectively. The azimuthal spectrum do,;/dA¢,; is extracted from doyz/dgr out
according to the kinematical relationship in between. Owing to the independence from az-
imuthally asymmetric divergences, we were able to calculate those observables at NLL+NLO,
N2LL+N2LO, and approximate N?LL/4+N2LO (aN?LL/+N2L0O) accuracy. From the numer-
ical results, a manifest perturbative convergence is observed in the asymptotic regime, i.e.
the central values at the higher precisions are generally contained in the uncertainty bands
of the lower ones and the respective uncertainties are systematically reduced down to the
percent level at aN?LL/+N?LO. During our calculation, we have focussed on the domain
M,z > 400 GeV to evade Coulomb divergences which inevitably manifest themselves in the
higher order corrections. It is expected that our results can be compared against the very
recent measurement on the double differential spectra do,;/(dM;;dA¢,;) [21] within the
corresponding M,; slices upon the full publication of the experimental data. To expand
our results to the full phase space, including the threshold regime M,; < 400 GeV, the
emergence of Coulomb singularities at the ¢ production threshold necessitates a combined
resummation of the beam-collinear, soft, and Coulomb interactions, which we seek to address
in a future publication.

It is interesting to note that in a very recent calculation [205] on the semi-inclusive deep-inelastic
scattering (SIDIS), the observable g. is proposed and also demonstrated to be promising to cope with the
azimuthal asymmetric divergences. Within the asymptotic regime, the g. spectrum actually bears a close
resemblance to the gr out distribution used in this work, up to rapidity-dependent factors.
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A The double differential transverse momentum distribution d?c,;/d?gr

As discussed in section 3.1, in absence of the azimuthal asymmetric term (AAT), the
main task in resumming the singular behaviors on the g, spectra is to exponentiate the
characteristic logarithmic terms in impact space. Nevertheless, in light of the non-trivial
contributions of the helicity-flipping beam functions as well as the soft correlations, the
resummation of a general observable is more complicated. Hence, this appendix will calculate
the double differential spectrum as an example to illustrate the effect of the AATSs on the
fixed-order expansion and the organisation of the logarithmic terms. Alternative cases with
active AATs contributions can also be found in [66, 67, 72, 73, 206—209].

Considering that the contributions to the ¢r distributions from the hard jet regions,
Nj > 1, have been demonstrated to be power suppressed [74, 131], the factorisation formula
is now subject to only the Nj = 0 configuration at leading power. Therefore, they can
be extracted from eq. (2.26) after reducing the heavy parton correlation functions with
egs. (2.27)—(2.28). It follows that,

doy;

dM2 d2P- dYy; d2gr

_ Olin Php oxp (1 Br) S Be, Mg B Vi), (AL

= =% G ey [ e (fB) S M e Y (A)

sign[z;] K

where k € {gngn, qﬁl(j%, ¢t @} again denotes the partonic channel. The constituents of ii’g
have been specified in egs. (2.29)—(2.30) for each partonic channel. Upon the usage of the
identities in egs. (2.27)-(2.28), eq. (A.1) inherits the problems from Coulomb exchanges as
well, akin to eq. (2.43). To this end, we will constrain the following investigation within the
domain M;; > 400 GeV, or equivalently, 5,; 2 0.5, to circumvent the threshold regime.
Generically, the expressions of ) t't—“} at an arbitrary order in o5 can be parameterized as

St~ T el (M) L {sm(Bies 2, Yig) + am (b, B v, Vi) (A.2)

where L1 = log [b?rM t2£/ b%} and ET = I;T /br. The dimensionless coefficients s, , and am
encode the azimuthal symmetric and asymmetric contributions, respectively. Substituting
eq. (A.2) into eq. (A.1) permits us to evaluate the impact space integrals, namely,

dAM2d2PLay. A2 ~ Za;n(Mtf) {Sm,n(ﬁtb v, Yir) fr%n) (qr, Mt{)_‘_ASl:l) [JT, Mz, am,n} } .
tt t tt T mn

dUtt‘

(A.3)
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Herein, since the ASTs are all independent of the impact parameter I;T, we can factor
them out of the bp-integrals and apply the inverse Fourier transformations only onto the

logarithmic terms, i.e.
™ (g, M) = [ d% fr-br) L% Ad
Fr(ar, My) = T exp (gt - br) L. (A.4)

The calculation of ]_-én) follows a similar pattern to eq. (3.4). The corresponding generating
function now reads [102],

7 ) o\ [(VRMENT
Fr(n,qr, My) = Z *,-7: (qr, Myz) /d br exp (QT bT) < b2 tt)
0

n

_ Ame?en T[1 4 1) %ﬁ; (A5)
gt Tl \at ) '

.7-"%") can be extracted by expanding Fr(n, g, M;) in i as appropriate. The expressions of
the first few ranks are

F (qr, Myg) =0, (A.6)
4

F(Tl)(qﬂ My) = ——, (A.7)
qr
87 M2

F(qr, My) = ——5 In [ztt] ) (A-8)
qT qT

From eq. (A.6) it is seen that the ASTs themselves cannot induce any asymptotic behaviour
in the small g7 domain, whilst the logarithmic term L' (m > 1) is able to produce singular
contributions up to In™~[M?2 =/ ¢%]/g% after completing the inverse Fourier transformations.
This observation is found by analogy with eq. (3.5) and also the circumstances of the
azimuthally averaged observables in [64, 65, 68].

On the other hand, eq. (A.3) also includes contributions from the AATs ay, . In light
of their explicit dependence on the orientation of I;T, the inverse Fourier transformation
now comprises both a,, , and L7, that is,

A e M A] = [ @by exp (d1-Br) Lh () (A.9)

where A(¢gp) represents a generic function of the azimuthal d1ﬁerence ¢qp between the vector

bT and ¢, which thereafter participates in the functional AT as one of its arguments.
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Appraising A(Tn ) will benefit from its generational form as well,
AT [777 JTv Mtf) A]
n" )=
= Z E‘A(T)[QT?MU?? A}

b2 M2 n
/deT exp (QT bT) ( 02 tt> A(Pgp)
0

n

I'[2n + 2] e?En [Mft

a4 4n | ¢

n S;Q(H") o—imn [A(gb + g) _ A(g) _ %A/(E } 4 0;2(1+n) e imn [A((b + 7r>

A(327r> +C¢A’<3 )} T ;Q(Hn) i) {A(¢ %ﬂ) — A(%ﬂ) - s¢A’(327r)”

TEN 21" [ cos(m —1_ T -
_ain+2 [277+2] 2 [M;t] { (U)I‘_[ng U][A( >+A(3>}

T 4n 4T

isin(7mn)'[—n] 3T
_M{A(z) A(gﬂ}? (A.10)

where ¢4 = cos(¢) and s4 = sin(¢). In deriving eq. (A.10), the function A(dy,) is assumed
to be analytically continuous in the entire domain ¢4, € [0, 27|, and the result is expected

_l’_

to be applicable to any azimuthal asymmetric contributions that stem from the beam
functions, the soft sectors, or the products of these two cases. In the following discussion,
we will focus on scenarios of the beam constituent. The other two pieces observe the same
scaling manner but incur lengthier expressions.

As defined in eq. (2.36), the gluon beam function constitutes a 2 x 2 matrix in the
helicity space. With the choice of helicity bases of eq. (2.37), while the diagonal entries
characterise the ASTs, the off-diagonal ones, which are always proportional to et12¢t
encode the azimuthal asymmetric contributions, namely, A(¢pg) eFi2(Pavtia)  Here ¢y
(¢tq) signifies the azimuthal difference between the top quark with respect to the vector

by (gr). Plugging this expression into eq. (A.10) and then performing the expansions in 7,

it yields,

-/4’(19) ?T, M, eii2(¢qb+¢tq)_ - 47r eti2¢tq ’ (A.11)
L ] g4
) _ 2

AW | Gr, Mz, eXi2(Gartta) 2—4% In Mo + 1y eF20 (A.12)
L . qar qT
_ ; 2 2

AD [, My, F20wtow)] = AT [y % +21n % e (A.13)
L 4 qT qT qT

It is noted that the situation of A(T above is quite different from that for the Fp (m)
aforementioned. Firstly, as opposed to egs. (A.6)—(A.8), where the logarithmic contribution
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Figure 10. Comparison of the NLO double differential spectra do,;/(dgrdA®,x), shown as distribu-
tions of A®,x in slices of gr. Herein, NLO represents the QCD result calculated in SHERPA [169-171].
NLOg labels the azimuthally symmetric and NLOg,, marks the full, i.e. azimuthally symmetric and
asymmetric, contributions derived from SCET+HQET, respectively. The superscript “Azm.Avg”
denotes the azimuthally averaging operation on the exact and approximate spectra.

is the only driver for the singularities in the momentum space, eq. (A.11) illustrates that
the AAT itself can serve as a standalone factor to induce an asymptotic behavior. Secondly,
in comparison with egs. (A.7)—(A.8), the product of L7 (m > 1) and AATs can induce
asymptotic terms up to In" [M t%/ q%] /¢4, which are stronger than the case of ASTs by one

power in In [M 2/ q%] Thirdly, differing from eqgs. (A.6)—(A.8) concerning only the absolute

value of ¢, the expressions for A(Tm) additionally depend on the orientation of gr through
the phase factor exp(+2¢y,). It is worth emphasising that even though the gluon beam
function is utilised here as an example to derive the .Agfm)s above, as a matter of fact, the
phase factor exp(£k¢y,) (k € Z) can also participate in the soft sectors at an arbitrary
perturbative order upon which the spherical harmonics expansion was performed [67].
Given those non-trivial impacts from the AATs, the fixed-order results in the low gt regime
and the subsequent resummation may show a different behaviour from that solely driven
by the ASTs. The following paragraphs will take the NLO double differential spectrum
doy;/(dgrdA®,x) and its required ingredients for a NLL' resummation as examples to
elucidate this. Here A®,;x stands for the azimuthal separation between the top quark and
the total momentum of the emitted partons.

In figures 10-12, we display a comparison of the double differential spectra
do,;/(dgrdA®,x) among the exact NLO result, the approximate spectrum NLOg comprising
only the AST contributions, and the full EFT-derived spectrum NLOg,, including both
AST and AAT ingredients. As a first observable, figure 10 presents the A®;x distributions,
ranging from the parallel configuration, A®,;x = 0°, to the opposite one, Ad®;x = 180°,
within three ¢r intervals, ¢gp € [0.1,0.2] GeV, g1 € [1,2] GeV, and g1 € [10,20] GeV. As
observed in the left panel of figure 10, which focusses on the domain closest to the singularity,
gt € [0.1,0.2] GeV, the curves of NLO and NLOg, are in very good agreement and exhibit
a nearly cosinusoidal behaviour on account of the phase factors in egs. (A.11)—(A.13) and
those stemming from the soft functions. However, if we were to remove the AAT contri-
butions, leaving only the ASTs as active ingredients of our approximation, governed now
by egs. (A.6)—(A.8) which depend only on the magnitude of ¢r, the resulting curve NLOg
is independent of A®;x. After taking the azimuthal averaging operations upon the exact

and approximate spectra, however, it is interesting to note that the result of NLO?f:LAVg
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Figure 11. Comparison of the NLO double differential spectra do,;/(dgrdA®,x ), shown as distribu-
tions of gt in slices of A®;x. Herein, NLO represents the QCD result calculated in SHERPA [169-171].
NLOg labels the azimuthally symmetric and NLOg,, marks the full, i.e. azimuthally symmetric and
asymmetric, contributions derived from SCET+HQET, respectively.

coincides with that of NLOg, and both of them reproduce the exact NLOAZ™AVE result well.
This observation demonstrates that the asymptotic terms in eqs. (A.11)—(A.13) are indeed
able to be eliminated by completing the ¢y, integral, which confirms the discussions in [67]
at least at the NLO level. In the centre and right plots of figure 10, we move on to the slices
gr € [1,2] GeV and g7 € [10,20] GeV. Even though the general patterns herein follow that
in the left panel, it is seen that the power corrections gradually become more important
with the increase in gr. They give rise to the growing discrepancies between NLO and
NLOg44, results, and also lead to the deviations amid the azimuthally averaged curves.

In figure, 11, we exhibit the g distributions in slices of A®;x € [0°,10°], Ad;x €
[80°,100°], and A®,x € [170°,180°], which correspond to the peak and trough regions
in figure 10. We observe that for the majority of the ¢r range, the magnitudes of the
exact results are close to the approximate calculations NLOg and NLOgy,, however, only
the NLOgy, reproduces it well in the region of ¢gr < 1GeV. To interpret this, it is
worth noting that at NLO, the most singular terms generated by the ASTs and AATs are
o« In [M t%/ q%] /qr and 1/qr, respectively. In this regard, the asymptotic behaviors in the
low g regime are actually dominated by the AST contributions, which therefore is the
cause for the nearly coinciding curves in the main plot of figure 11. However, it should
be stressed that in spite of the minor roles played by AATs, their participations are still
of the crucial importance in reproducing the correct singular manner of the exact spectra.
As illustrated in the ratio diagrams of figure 11, whereas the AST contributions either
underestimate or overshoot the NLO results by ~ 2% in the vicinity of gr = 0.1 GeV, the
curves of NLOgy, achieve permille level agreement with the exact spectra for all three slices.
These phenomena can also be confirmed by figure 12, especially in the centre and bottom
diagrams therein.

In light of the non-trivial contributions of the AATs on the leading singular behaviour,
the subsequent task is to work out a consistent approach to embed their contributions in
the resummation. In circumstances where the singular behaviour is governed solely by the
ASTs, the resummation can proceed with exponentiating the characteristic logarithmic
terms in the impact space, as discussed in section 3. Considering that the AAT emergence
still preserves the factorisation formula and so the according R(a)GEs, we can still apply
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Figure 12. Comparison of the ¢p-weighted NLO double differential spectra grdo,;/(dgrdA®,x),
shown as distributions of gt in slices of A®;x. Herein, NLO represents the QCD result calculated
in SHERPA [169-171]. NLOs labels the azimuthally symmetric and NLOg;, marks the full, i.e.
azimuthally symmetric and asymmetric, contributions derived from SCET+HQET, respectively.

the logarithmic exponentiation onto the present situation, which then transforms eq. (A.2)
into the following expression,

iﬁ;"] ~exp | Lt fo(asLr) + fi(asLt) + as fa(asLr) + o fa(asLr) + . ..

x> ol {5 (B 20, Yig) + m (b, By w1, Vi) § (A.14)

where the coefficient functions fi(k > 0) are introduced to collect the logarithmic terms at
the respective accuracies. $,, and a,, stem from the coefficients in eq. (A.2) capturing the
azimuthally symmetric and asymmetric contributions, respectively. In spite of the similar
appearance of eq. (A.14) to the AST-driven result in eq. (A.2), it is worth emphasising that
the perturbative series in eq. (A.14) still possesses the constituents a,,, which can induce a
leading asymptotic behaviour after completing the gT—integral. To this end, it is of essence
to clarify the higher order performance of G, so as to determine the subsequent treatments
during the resummation. If, akin to the logarithmic contributions in eqs. (A.6)—(A.8),
4., invokes deteriorating singularities with the increase in ayg, a second exponentiating
procedure will be necessary to mitigate the theoretical uncertainty caused by the perturbative
truncation. Otherwise, after suitable adaptations, we are in principle able to regard the
AAT contributions in the similar manner to the ASTs.

To facilitate the discussion, we note that as for an arbitrary order in ag, the term a,,
exists as a function of ¢, and can thus be expanded in terms of the spherical harmonics,

dm(bTa ﬁtf7 T, Y;ﬁf) = Z a’gr’f) (/Btfv T, Y;Sf) elkon ) (A15)
k
where we have utilised the momentum conservation condition #; = —¥; to reduce the

dependence on the azimuthal angle ¢7,. Substituting this harmonic series into eq. (A.10)
and then repeating the derivation of egs. (A.11)—(A.13) yields

) ikoiq
ehow Ly & (A.16)
i
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As this consequence holds independent of the rank of the spherical harmonics or the
specific expression of a,,, we can now conclude that for all perturbative orders, the singular
behaviour induced by a,, is always o« 1/ q?r. Therefore, we can carry out a perturbative
truncation of the fixed-order functions in eq. (A.14).> According to eq. (1.1), there are
two kinds of customary prescriptions in the AST-driven resummation to truncate the
perturbative series, i.e. the N"LL and N™LL’ schemes. In the following paragraphs, we
will implement both methods separately for the resummation of the double differential
distribution doy;/(dgrdA®;x) at NLL and NLL' accuracy. Then we will compare their first
few perturbative terms against the solely AST governed case, e.g. ¢ resummation.

Based on the factorisation in eq. (A.2) and the exponentiated impact space cross section
in eq. (A.14), the resummed ¢p spectra at NLL can be organized as follows,

dgrdAd®;x

NLL

~ /d25T exp (ffT : ET) exp {LT fo(asLt) + fl(asLT)}

1 M2 1 1 M2

~agd —In ||+ — +a2{ —In®|—H
qr qTt qT qr qr
—_—— ~~

incomplete

2
+ i 1H2 [Mtf

qr a*

1 M2
+ — ln Ttt
qr qt

complete complete incomplete incomplete
1
T T (A.17)
ar
~—

incomplete

where in the second step, we expand the resummed result in «s and keep the first two
orders contributing to the low ¢ domain. For brevity, we omit the specific coefficient in
front of each singular term. With the underbraces, we manifest the status of each term.
For instance, in presence of the LL anomalous dimensions, the most singular behaviour
at each perturbative order can be exactly reproduced, whereas, for the lack of the AAT
correction and the N™LL, m > 2, anomalous dimensions, the terms 1/ qgf at NLO and those
of In[M 2/q3]/q%, k < 2, at N?LO are not complete and thus will receive further correction
once the calculation at the higher accuracy is performed.

A similar analysis can also be applied to the projected transverse momentum resumma-
tion with the help of eq. (3.14),

do,; 0
SO N/ db, cos (bTHqT) exp {LM folasLn) + fl(asLM)}

dar NLL 0

1, [M2 1 1 M2] 1 M2] 1 [M2

~ gy —In —2” + - —i—ag —In? —2“ + —1n? —2’% + —1In —2“

qT qT q’T qT q‘r qT qT q’T T

complete complete complete complete incomplete

1
+ ; } + ..., (A.18)
-

incomplete

®This sort of perturbative truncatablity has also been addressed in [67] in the context of the CSS
resummation framework [100].
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where Ly = log [bEHM tZE/ b%}. Herein, due to the absence of the AAT, the NLO singular
terms of the ¢, spectrum have been completely reproduced by the NLL expansions, while at
N2LO only the terms In*[M, E{/ ¢%]/g%, k > 2 can still be finalised by the occurring Sudakov
factor. This feature permits our matching procedure proceeding at the NLL+NLO precision
as illustrated in section 4. This, however, is infeasible for the double differential spectrum
do,;/(dgrdAd;x) as their NLO asymptotic behaviour is incomplete, as demonstrated
in eq. (A.17).

We now continue to explore the resummation at the NLL’ level. In comparison with
the NLL case, the present calculation entails an additional fixed-order constituent. It

follows that

dQTdAQtX

NLL/

~ /d25T exp (th : ET) exp [LT Jo(asLt) + fl(asLT)]

X {1 + [31(/357 1, Yip) + a1 (br, By, wt, Y;&f)} }

1. [ M2 1 1 M2] 1 M2 1 [M2
~agy —In —2“ + — —|—ag —In? —2“ + —1In? —2“ +—In | —&
qr qTt qr qr dTt qr qTt qr iy
— — ~
complete complete complete complete complete
1
+ — } + ..., (A.lg)
qr
-
incomplete
and
do;s 0
t N/ dby, cos (b‘rl\ q.r) exp {LM folasLy)+ f1 (asLM)]
dgr N9 A

X {1+as [gl(ﬁtta xt»Y;tf)_{'dl(Sign[bTH]aﬂtf’ xt’Y;tt)} }

1 M2 1 1 M2l 1 M2l 1 M2

~agd —In | =24+ — 4ol —In® |+ —In* |+ —In |1
qr qz qr qr qz qr qz qr qz
—_—— ~~

| I

complete complete complete complete complete
1
T (A.20)
qr
—~—
incomplete

Confronting eqgs. (A.19)—(A.20) with egs. (A.17)—(A.18), it is seen that the inclusion of the
fixed-order function can make up the missing singular parts at NLO, and that at N?LO the
asymptotic performance of the spectrum do;;/(dgrdA®,x) is aligned with the AST-driven
case, i.e. do;;/dg,. It should be stressed that this kind of alignment can also hold in the
perturbative series for other logarithmic accuracies, if one notes that as to a given precise
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NFLL’, k > 1, the missing AAT contributions caused by the perturbative truncation in

]§+1&k+1, which are mapped onto the singular terms a’;“ / q?f through

practice start from «
the inverse Fourier transformation and thus amount to the N¥HLL/, k > 1, corrections. To
this end, differing from the AST-driven observables, which are able to switch between the
unprimed and primed schemes flexibly, the double differential spectra do,;/(dgrdA®;x)
prefers the primed prescriptions in organising the relevant ingredients in regard to the intact
asymptotic series therein and so the improved matching precision.

Also, it is worth noting that the discussions above are subject to the condition that AATs
do not participate into the anomalous dimensions, which is true for the process pp — tt as
well as the associated productions pp — t¢tB(B = H, W+, Z ) as required by the consistency
condition in eq. (2.77), but can not be guaranteed in the processes with measured jet(s) in
the final state, e.g., [206, 207], where the azimuthally asymmetric anomalous dimensions
may emerge from the soft and coft decomposition and thereby invoke extra divergences
in the scale evolution. In the recent years, different strategies have been devoted to this
issue [206, 207], and it is also unveiled that, akin to the top-pair production in this paper,
the azimuthal decorrelation in the jet-boson [210-213] and dijet [214, 215] productions can
be utilized as well to circumvent the azimuthal asymmetric divergences, including those
stemming from the resummation exponentials.

B Evolution kernel for the non-diagonal anomalous dimension

(<]

In this part, we will elaborate on the calculation on the evolution kernel o which is

induced by the hard non-diagonal anomalous dimensions VLK]M in eq. (3.6). Here k runs

over {gngn, qiﬁ%, ¢t @}, indicating the partonic channel.

We define the perturbative series of ’y}[ﬂw below

K Qs ml K],(m
whe= X (52) ke (B.1)

where the fy,[f}ozgm) are the coefficients in each order. The N?LO expressions can be found

in [134, 172], while progress towards N3LO precision has been made in [177]. Other than
that, the resummation procedure also entails the QCD-g functions,

T = =20, Y (M) By (B.2)

k=0

where the §; characterise the anomalous dimensions for the strong coupling a,. By now,
they are known to five-loop accuracy [216].
Equipped with these expressions, we are now ready to calculate the kernel VL% At

NLL, according to table 1, the resummation only concerns the contribution of ’y,[f]o;(ﬁo) to the

kernel VL%, which is independent of either the scale evolution or the «a running, and thus

allows us to solve the hard RG equations in diagonal space. It yields,

. r%’ﬂ»(o) as (15)
=R- 1 A Ry, B.3
Ix] exp{ o5 {as(ﬂf)” 1] (B.3)

Vgﬂ(ﬁtﬂ Tty ,U’fa ,U”L)

NLL(")
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where V;LN] stands for the matrix representation of the evolution kernel Vo[fﬁ] rgf]’(o) de-
notes the resulting diagonal matrix of ,le,/(go) with the invertible transformation matrix
Rm, namely

r%ﬁ],(O) _ R[,{]’Y}[LHL(O)R[;}I . (B4)

However, the situation on the N2LL’ level is different on the ground that due to the
participation of 'y,[l'i]’(l) , factoring out all the scale dependent pieces is not straightforward
any longer. To this end, we resort to the perturbative resolution suggested in [51, 186, 187]
to introduce the correction matrices,

[%],(1)

W _ kL) s BP1 Thij
Ji' =TI ii 617 — ) (B5)
j h, P28 9p 1 r%(o) — rg:]ﬁo)

where ¢;; is the Kronecker delta function with the indices ¢ and j running over the set {1, 2}
({1,2,3}) for the quark (gluon) channel. rg{]’(l) is defined in the similar way of eq. (B.4)
: [<],(0) s [%],(1)
except for replacing ;, with ;) .
Combining the J¥! matrix above with eq. (B.3), we then arrive at the result for

N2LL/ precision,

ng] (615{7 Tty [of, MZ)

N2LL(")

R} {I + O‘S(W)J[H]] exp A n [QS(M] {I - OCS(M)JM] " B0
(%] A 280 as(py) 4m -

where I signifies the unit matrix.

C Decomposition of the theoretical uncertainty estimate

In section 4.3 the theoretical uncertainties of the resummation-improved differential cross
sections have been estimated by combining the results of the individual variations of each
auxiliary scale in eq. (3.17) or shape parameters in egs. (3.26)—(3.27) in quadrature. In the
following, we will take the do,;/dgr out Spectrum as an example to inspect the contributions
of the individual variations.

Figure 13 details the individual variations of the virtuality scales associated with the
beam-collinear, soft, and hard sectors, up, ps, and pp, respectively. They arise from the
renormalisation or subtraction of the virtuality divergences in each regime. As demonstrated
in [98], the beam scale y, is associated with both the QCD factorisation and the hard-
soft-collinear decomposition, such that any variations of u value will induce perturbative
corrections from both the solutions of the DGLAP equation [217-220] and the RGE in
egs. (3.8)—(3.9). Therefore, as observed in figure 13, a variation of the beam scale uy
generates a larger theoretical uncertainty than a variation of the soft or hard scales, that
are only governed by their respective RGEs only, as illustrated in eq. (3.6) and eq. (3.11).
It is interesting to note that the default choices for s and pp produce results that lie on
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Figure 13. Dependence on the virtuality scales associated with the beam-collinear, soft, and hard
sectors of the differential cross section doy;/dgr out-

one edge of their respective uncertainty interval, see figure 13b and figure 13c. This is
particularly noticable at NLL. This phenomenon can be interpreted through the evolution
kernel in eq. (3.18), more explicitly,

[ f,S]S(bTthfhu‘h7 def”u(;lef dEfv ;ief) | aS(Mtt_)l 9 /1,2
In def |, def ,def  def :C[H}F((t?l)sp 5in qerz | T
[](bTthtaluh My S ST, Ve)_ NLL dm 2 (u5,)
(C.1)
[ ng]s(bT,Mtt,,uh £ et s, vt wdet) as(My) 1 ©?
In | s def |, def ,def , def C[legg)sp oIn® | i
[](bT>Mtt7Mh s Hp ’Mse7 y Vs © )_ NLL 4 2 (lus )
(C.2)
wherein the perturbative expansion of the cusp dimension is given by
o0 o k
T = > T8, (32 (©3)
k=0 d

In egs. (C.1)—(C.2), we only present the leading contributions from the cusp dimension,
which dictates the scale dependences at NLL. We observe that at NLL, the default choice
of the hard (soft) scale is situated close to the saddle point of the evolution function i‘j]s,
such that any changes in the scale will only enhance (reduce) the cross section, prompting
the behaviour displayed in figure 13b and figure 13c. Further increasing the logarithmic
accuracy may bring in the fixed order contributions counterbalancing the alternations of

f}‘j}s In particular, as for the results at aN?LL/+N2LO, the inclining trends of the default
curves are nearly reversed in comparison to those at lower accuracies.

Figure 14 illustrates the variations induced by scales introduced by regulating the
rapidity divergences, v, and vg, respectively. Differing from the converging behaviour in
figure 13, the theoretical uncertainty here grows from NLL to N2LL. As exhibited in
table 1, NLL curves only comprise tree-level fixed order functions and thus the v; and
vp dependences are entirely determined by eq. (3.18), or, more specifically, the rapidity

anomalous dimension 7, in eq. (3.10). However, as presented in [98], 7, vanishes in the
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of the differential cross section do;z/dgr ous-
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Figure 15. Dependence on the fixed-order scale and the matching parameters of the differential
cross section do,z/dgr out-

exponential regularisation prescription at LO. Subsequently, there is no rapidity scale
dependence at NLL, as observed in figure 13, and the first non-trivial variation induced by
vs and v, occurs at N?LL. Confronting N?LL4+N?LO and aN2LL/4+N?LO shows that the
manifestly convergent behaviour is also found for the rapidity scale depedences.

At last, we present the variations of the auxiliary inputs pertinent to the matching
procedure, such as the fixed-order scale pf, and the shape parameters {c,,,} in the
transition function. In figure 15a, the us,, variation has been assessed. It is seen that
the theoretical uncertainties in the asymptotic regime are highly suppressed due to the
excellent agreement between QCD and EFT outputs, as demonstrated in figures 5-7, but
experience continuous growth with the increase in gt out, as a result of the manifesting
power corrections, until the stabilising resummation is switched off and the pure fixed-order
behaviour is recovered. The sensitivity of the g out spectrum on the matching transition
function parameters {cp,,r.,} is illustrated in figure 15b. It, in essence, reflects both
the size of the higher power corrections and fixed-order corrections. As expected, the
reduction in error bands is discovered along with the improvements on the logarithmic and
fixed-order precisions.

— 56 —



Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited. SCOAP? supports

the goals of the International Year of Basic Sciences for Sustainable Development.

References

[1]

2]

[9]

[10]

[11]

[12]

[13]

ATLAS collaboration, Measurement of the tt production cross-section using dilepton events
in pp collisions at \/s = 5.02 TeV with the ATLAS detector, ATLAS-CONF-2021-003 (2021).

ATLAS collaboration, Measurement of the tt production cross-section in pp collisions at

Vs =5.02 TeV with the ATLAS detector, CERN-EP-2022-119 (2022) [inSPIRE].

CMS collaboration, Measurement of the inclusive tt cross section in pp collisions at
Vs = 5.02 TeV using final states with at least one charged lepton, JHEP 03 (2018) 115
[arXiv:1711.03143] [INSPIRE].

CMS collaboration, Measurement of the inclusive tt production cross section in proton-proton
collisions at /s = 5.02 TeV, JHEP 04 (2022) 144 [arXiv:2112.09114] [INSPIRE].

CMS collaboration, Measurement of the tt Production Cross Section in the All-Jet Final
State in pp Collisions at /s =7 TeV, JHEP 05 (2013) 065 [arXiv:1302.0508] [INSPIRE].

CMS collaboration, Measurement of the tt production cross section in the eu channel in
proton-proton collisions at /s =7 and 8 TeV, JHEP 08 (2016) 029 [arXiv:1603.02303]
[INSPIRE].

ATLAS and CMS collaborations, Combination of inclusive top-quark pair production
cross-section measurements using ATLAS and CMS data at /s =7 and 8 TeV,
CERN-EP-2021-222 (2022) [arXiv:2205.13830][INSPIRE].

CMS collaboration, Measurement of the tt production cross section in the all-jets final state
in pp collisions at \/s =8 TeV, Eur. Phys. J. C 76 (2016) 128 [arXiv:1509.06076]
[INSPIRE].

CMS collaboration, Measurements of the tt production cross section in lepton + jets final
states in pp collisions at 8 TeV and ratio of 8 to 7 TeV cross sections, Eur. Phys. J. C 77
(2017) 15 [arXiv:1602.09024] [iNSPIRE].

ATLAS collaboration, Measurement of the tt production cross-section and lepton differential
distributions in ey dilepton events from pp collisions at /s = 13 TeV with the ATLAS
detector, Eur. Phys. J. C 80 (2020) 528 [arXiv:1910.08819] [INSPIRE].

ATLAS collaboration, Measurement of the tt production cross-section in the lepton+jets
channel at /s = 13 TeV with the ATLAS experiment, Phys. Lett. B 810 (2020) 135797
[arXiv:2006.13076] [INSPIRE].

ATLAS collaboration, Measurements of top-quark pair single- and double-differential
cross-sections in the all-hadronic channel in pp collisions at /s = 13 TeV using the ATLAS
detector, JHEP 01 (2021) 033 [arXiv:2006.09274| InSPIRE].

CMS collaboration, Measurement of the top quark pair production cross section in dilepton
final states containing one T lepton in pp collisions at /s = 13 TeV, JHEP 02 (2020) 191
[arXiv:1911.13204] [INSPIRE].

— 57 —


https://creativecommons.org/licenses/by/4.0/
https://cds.cern.ch/record/2754223
https://cds.cern.ch/record/2809724
https://inspirehep.net/literature/2105350
https://doi.org/10.1007/JHEP03(2018)115
https://arxiv.org/abs/1711.03143
https://inspirehep.net/literature/1635271
https://doi.org/10.1007/JHEP04(2022)144
https://arxiv.org/abs/2112.09114
https://inspirehep.net/literature/1991955
https://doi.org/10.1007/JHEP05(2013)065
https://arxiv.org/abs/1302.0508
https://inspirehep.net/literature/1217551
https://doi.org/10.1007/JHEP08(2016)029
https://arxiv.org/abs/1603.02303
https://inspirehep.net/literature/1426692
https://arxiv.org/abs/2205.13830
https://inspirehep.net/literature/2088291
https://doi.org/10.1140/epjc/s10052-016-3956-5
https://arxiv.org/abs/1509.06076
https://inspirehep.net/literature/1394164
https://doi.org/10.1140/epjc/s10052-016-4504-z
https://doi.org/10.1140/epjc/s10052-016-4504-z
https://arxiv.org/abs/1602.09024
https://inspirehep.net/literature/1424842
https://doi.org/10.1140/epjc/s10052-020-7907-9
https://arxiv.org/abs/1910.08819
https://inspirehep.net/literature/1759875
https://doi.org/10.1016/j.physletb.2020.135797
https://arxiv.org/abs/2006.13076
https://inspirehep.net/literature/1802524
https://doi.org/10.1007/JHEP01(2021)033
https://arxiv.org/abs/2006.09274
https://inspirehep.net/literature/1801434
https://doi.org/10.1007/JHEP02(2020)191
https://arxiv.org/abs/1911.13204
https://inspirehep.net/literature/1767671

[14]

[15]

[19]

[27]

28]

[29]

CMS collaboration, Measurement of the tt production cross section at 13 TeV in the all-jets
final state.

CMS collaboration, Measurement of the tt production cross section, the top quark mass, and
the strong coupling constant using dilepton events in pp collisions at \/s = 13 TeV, Eur. Phys.
J. C'79 (2019) 368 [arXiv:1812.10505] InSPIRE].

CMS collaboration, Measurement of differential tt production cross sections in the full
kinematic range using lepton+jets events from proton-proton collisions at /s = 13 TeV,
Phys. Rev. D 104 (2021) 092013 [arXiv:2108.02803] [INSPIRE].

CMS collaboration, First measurement of the top quark pair production cross section in
proton-proton collisions at /s = 13.6 TeV, CMS-PAS-TOP-22-012.

CMS collaboration, Measurement of tt normalised multi-differential cross sections in pp
collisions at \/s = 13 TeV, and simultaneous determination of the strong coupling strength,
top quark pole mass, and parton distribution functions, Eur. Phys. J. C' 80 (2020) 658
[arXiv:1904.05237] [iNSPIRE].

ATLAS collaboration, Measurements of differential cross-sections in top-quark pair events
with a high transverse momentum top quark and limits on beyond the Standard Model
contributions to top-quark pair production with the ATLAS detector at /s = 13 TeV, JHEP
06 (2022) 063 [arXiv:2202.12134] [INSPIRE].

CMS collaboration, Measurement of differential tt production cross sections using top quarks
at large transverse momenta in pp collisions at \/s = 13 TeV, Phys. Rev. D 103 (2021)
052008 [arXiv:2008.07860] [INSPIRE].

CMS collaboration, Measurement of differential cross sections for the production of top quark
pairs and of additional jets in pp collisions at /s = 13 TeV, CMS-PAS-TOP-20-006.

P. Nason, S. Dawson and R.K. Ellis, The Total Cross-Section for the Production of Heavy
Quarks in Hadronic Collisions, Nucl. Phys. B 303 (1988) 607 [INSPIRE].

W. Beenakker, H. Kuijf, W.L. van Neerven and J. Smith, QCD Corrections to Heavy Quark
Production in pp Collisions, Phys. Rev. D 40 (1989) 54 [INSPIRE].

W. Beenakker, W.L. van Neerven, R. Meng, G.A. Schuler and J. Smith, QCD corrections to
heavy quark production in hadron hadron collisions, Nucl. Phys. B 351 (1991) 507 [INSPIRE].

M.L. Mangano, P. Nason and G. Ridolfi, Heavy quark correlations in hadron collisions at
next-to-leading order, Nucl. Phys. B 373 (1992) 295 [nSPIRE].

M. Czakon, P. Fiedler and A. Mitov, Total Top-Quark Pair-Production Cross Section at
Hadron Colliders Through O(a%), Phys. Rev. Lett. 110 (2013) 252004 [arXiv:1303.6254]
[INSPIRE].

M. Czakon, D. Heymes and A. Mitov, High-precision differential predictions for top-quark
pairs at the LHC, Phys. Rev. Lett. 116 (2016) 082003 [arXiv:1511.00549] InSPIRE].

M. Czakon, P. Fiedler, D. Heymes and A. Mitov, NNLO QCD predictions for
fully-differential top-quark pair production at the Tevatron, JHEP 05 (2016) 034
[arXiv:1601.05375] [INSPIRE].

M. Czakon, D. Heymes and A. Mitov, fastNLO tables for NNLO top-quark pair differential
distributions, CAVENDISH-HEP-17-08 (2017) [arXiv:1704.08551] INSPIRE].

— H8 —


https://doi.org/10.1140/epjc/s10052-019-6863-8
https://doi.org/10.1140/epjc/s10052-019-6863-8
https://arxiv.org/abs/1812.10505
https://inspirehep.net/literature/1711626
https://doi.org/10.1103/PhysRevD.104.092013
https://arxiv.org/abs/2108.02803
https://inspirehep.net/literature/1901295
https://cds.cern.ch/record/2834110
https://doi.org/10.1140/epjc/s10052-020-7917-7
https://arxiv.org/abs/1904.05237
https://inspirehep.net/literature/1729144
https://doi.org/10.1007/JHEP06(2022)063
https://doi.org/10.1007/JHEP06(2022)063
https://arxiv.org/abs/2202.12134
https://inspirehep.net/literature/2037744
https://doi.org/10.1103/PhysRevD.103.052008
https://doi.org/10.1103/PhysRevD.103.052008
https://arxiv.org/abs/2008.07860
https://inspirehep.net/literature/1812091
http://cds.cern.ch/record/2803771
https://doi.org/10.1016/0550-3213(88)90422-1
https://inspirehep.net/literature/251743
https://doi.org/10.1103/PhysRevD.40.54
https://inspirehep.net/literature/264718
https://doi.org/10.1016/S0550-3213(05)80032-X
https://inspirehep.net/literature/296703
https://doi.org/10.1016/0550-3213(92)90435-E
https://inspirehep.net/literature/30595
https://doi.org/10.1103/PhysRevLett.110.252004
https://arxiv.org/abs/1303.6254
https://inspirehep.net/literature/1225282
https://doi.org/10.1103/PhysRevLett.116.082003
https://arxiv.org/abs/1511.00549
https://inspirehep.net/literature/1402357
https://doi.org/10.1007/JHEP05(2016)034
https://arxiv.org/abs/1601.05375
https://inspirehep.net/literature/1416179
https://arxiv.org/abs/1704.08551
https://inspirehep.net/literature/1597126

[30]

[31]

[32]

M. Czakon, D. Heymes, A. Mitov, D. Pagani, I. Tsinikos and M. Zaro, Top-pair production at
the LHC through NNLO QCD and NLO EW, JHEP 10 (2017) 186 [arXiv:1705.04105]
[INSPIRE].

S. Catani, S. Devoto, M. Grazzini, S. Kallweit, J. Mazzitelli and H. Sargsyan, Top-quark pair
hadroproduction at next-to-next-to-leading order in QCD, Phys. Rev. D 99 (2019) 051501
[arXiv:1901.04005] [iNSPIRE].

S. Catani, S. Devoto, M. Grazzini, S. Kallweit and J. Mazzitelli, Top-quark pair
hadroproduction at NNLO: differential predictions with the MS mass, JHEP 08 (2020) 027
[arXiv:2005.00557] INSPIRE].

J. Gao, C.S. Li and H.X. Zhu, Top Quark Decay at Next-to-Next-to Leading Order in QCD,
Phys. Rev. Lett. 110 (2013) 042001 [arXiv:1210.2808] InSPIRE].

M. Brucherseifer, F. Caola and K. Melnikov, O(a?) corrections to fully-differential top quark
decays, JHEP 04 (2013) 059 [arXiv:1301.7133] [InSPIRE].

S. Catani, S. Devoto, M. Grazzini, S. Kallweit and J. Mazzitelli, Top-quark pair production at
the LHC: Fully differential QCD predictions at NNLO, JHEP 07 (2019) 100
[arXiv:1906.06535] [INSPIRE].

A. Behring, M. Czakon, A. Mitov, A.S. Papanastasiou and R. Poncelet, Higher order
corrections to spin correlations in top quark pair production at the LHC, Phys. Rev. Lett. 123
(2019) 082001 [arXiv:1901.05407] [INSPIRE].

M. Czakon, A. Mitov and R. Poncelet, NNLO QCD corrections to leptonic observables in
top-quark pair production and decay, JHEP 05 (2021) 212 [arXiv:2008.11133] [INSPIRE].

W. Bernreuther and Z.-G. Si, Distributions and correlations for top quark pair production and
decay at the Tevatron and LHC., Nucl. Phys. B 837 (2010) 90 [arXiv:1003.3926] [InSPIRE].

J.H. Kiihn, A. Scharf and P. Uwer, Electroweak effects in top-quark pair production at hadron
colliders, Eur. Phys. J. C' 51 (2007) 37 [hep-ph/0610335] [INSPIRE].

W. Bernreuther, M. Fuecker and Z.-G. Si, Weak interaction corrections to hadronic top quark
pair production, Phys. Rev. D T4 (2006) 113005 [hep-ph/0610334] [INSPIRE].

J.H. Kiithn, A. Scharf and P. Uwer, Weak Interactions in Top-Quark Pair Production at
Hadron Colliders: An Update, Phys. Rev. D 91 (2015) 014020 [arXiv:1305.5773] [INnSPIRE].

W. Hollik and D. Pagani, The electroweak contribution to the top quark forward-backward
asymmetry at the Tevatron, Phys. Rev. D 84 (2011) 093003 [arXiv:1107.2606] [INSPIRE].

D. Pagani, I. Tsinikos and M. Zaro, The impact of the photon PDF and electroweak
corrections on tt distributions, Eur. Phys. J. C 76 (2016) 479 [arXiv:1606.01915] [iINSPIRE].

C. Giitschow, J.M. Lindert and M. Schénherr, Multi-jet merged top-pair production including
electroweak corrections, Eur. Phys. J. C' 78 (2018) 317 [arXiv:1803.00950] [INSPIRE].

A. Denner and M. Pellen, NLO electroweak corrections to off-shell top-antitop production
with leptonic decays at the LHC, JHEP 08 (2016) 155 [arXiv:1607.05571] [INSPIRE].

N. Kidonakis, NNNLO soft-gluon corrections for the top-quark pr and rapidity distributions,
Phys. Rev. D 91 (2015) 031501 [arXiv:1411.2633] [INSPIRE].

N. Kidonakis, Next-to-nezt-to-leading soft-gluon corrections for the top quark cross section
and transverse momentum distribution, Phys. Rev. D 82 (2010) 114030 [arXiv:1009.4935]
[INSPIRE].

— 59 —


https://doi.org/10.1007/JHEP10(2017)186
https://arxiv.org/abs/1705.04105
https://inspirehep.net/literature/1599076
https://doi.org/10.1103/PhysRevD.99.051501
https://arxiv.org/abs/1901.04005
https://inspirehep.net/literature/1713542
https://doi.org/10.1007/JHEP08(2020)027
https://arxiv.org/abs/2005.00557
https://inspirehep.net/literature/1794175
https://doi.org/10.1103/PhysRevLett.110.042001
https://arxiv.org/abs/1210.2808
https://inspirehep.net/literature/1190195
https://doi.org/10.1007/JHEP04(2013)059
https://arxiv.org/abs/1301.7133
https://inspirehep.net/literature/1216904
https://doi.org/10.1007/JHEP07(2019)100
https://arxiv.org/abs/1906.06535
https://inspirehep.net/literature/1740107
https://doi.org/10.1103/PhysRevLett.123.082001
https://doi.org/10.1103/PhysRevLett.123.082001
https://arxiv.org/abs/1901.05407
https://inspirehep.net/literature/1714024
https://doi.org/10.1007/JHEP05(2021)212
https://arxiv.org/abs/2008.11133
https://inspirehep.net/literature/1813241
https://doi.org/10.1016/j.nuclphysb.2010.05.001
https://arxiv.org/abs/1003.3926
https://inspirehep.net/literature/849672
https://doi.org/10.1140/epjc/s10052-007-0275-x
https://arxiv.org/abs/hep-ph/0610335
https://inspirehep.net/literature/729928
https://doi.org/10.1103/PhysRevD.74.113005
https://arxiv.org/abs/hep-ph/0610334
https://inspirehep.net/literature/729927
https://doi.org/10.1103/PhysRevD.91.014020
https://arxiv.org/abs/1305.5773
https://inspirehep.net/literature/1235441
https://doi.org/10.1103/PhysRevD.84.093003
https://arxiv.org/abs/1107.2606
https://inspirehep.net/literature/918247
https://doi.org/10.1140/epjc/s10052-016-4318-z
https://arxiv.org/abs/1606.01915
https://inspirehep.net/literature/1468062
https://doi.org/10.1140/epjc/s10052-018-5804-2
https://arxiv.org/abs/1803.00950
https://inspirehep.net/literature/1658475
https://doi.org/10.1007/JHEP08(2016)155
https://arxiv.org/abs/1607.05571
https://inspirehep.net/literature/1477042
https://doi.org/10.1103/PhysRevD.91.031501
https://arxiv.org/abs/1411.2633
https://inspirehep.net/literature/1327237
https://doi.org/10.1103/PhysRevD.82.114030
https://arxiv.org/abs/1009.4935
https://inspirehep.net/literature/871496

[48]

[49]

[50]

[51]

[55]

[56]

[61]

N. Kidonakis, Two-loop soft anomalous dimensions and NNLL resummation for heavy quark
production, Phys. Rev. Lett. 102 (2009) 232003 [arXiv:0903.2561] InSPIRE].

N. Kidonakis, NNNLO soft-gluon corrections for the top-antitop pair production cross section,
Phys. Rev. D 90 (2014) 014006 [arXiv:1405.7046] [INSPIRE].

N. Kidonakis, Top-quark double-differential distributions at approximate N3LO, Phys. Rev. D
101 (2020) 074006 [arXiv:1912.10362] [INSPIRE].

V. Ahrens, A. Ferroglia, M. Neubert, B.D. Pecjak and L.L. Yang, Renormalization-Group
Improved Predictions for Top-Quark Pair Production at Hadron Colliders, JHEP 09 (2010)
097 [arXiv:1003.5827] [INSPIRE].

A. Ferroglia, B.D. Pecjak and L.L. Yang, Soft-gluon resummation for boosted top-quark
production at hadron colliders, Phys. Rev. D 86 (2012) 034010 [arXiv:1205.3662] [INSPIRE].

A. Ferroglia, S. Marzani, B.D. Pecjak and L.L. Yang, Boosted top production: factorization
and resummation for single-particle inclusive distributions, JHEP 01 (2014) 028
[arXiv:1310.3836] INSPIRE].

B.D. Pecjak, D.J. Scott, X. Wang and L.L. Yang, Resummed differential cross sections for
top-quark pairs at the LHC, Phys. Rev. Lett. 116 (2016) 202001 [arXiv:1601.07020]
[INSPIRE].

M. Czakon et al., Resummation for (boosted) top-quark pair production at NNLO + NNLL’
in QCD, JHEP 05 (2018) 149 [arXiv:1803.07623] [INSPIRE].

P. Hinderer, F. Ringer, G.F. Sterman and W. Vogelsang, Toward NNLL Threshold
Resummation for Hadron Pair Production in Hadronic Collisions, Phys. Rev. D 91 (2015)
014016 [arXiv:1411.3149] [INSPIRE].

M. Beneke, M. Czakon, P. Falgari, A. Mitov and C. Schwinn, Threshold expansion of the
99(qq) = QQ + X cross section at O(al), Phys. Lett. B 690 (2010) 483 [arXiv:0911.5166]
[INSPIRE].

M. Beneke, P. Falgari and C. Schwinn, Threshold resummation for pair production of
coloured heavy (s)particles at hadron colliders, Nucl. Phys. B 842 (2011) 414
[arXiv:1007.5414] [INSPIRE].

M. Beneke, P. Falgari, S. Klein and C. Schwinn, Hadronic top-quark pair production with
NNLL threshold resummation, Nucl. Phys. B 855 (2012) 695 [arXiv:1109.1536] [INSPIRE].

M. Cacciari, M. Czakon, M. Mangano, A. Mitov and P. Nason, Top-pair production at hadron
colliders with next-to-next-to-leading logarithmic soft-gluon resummation, Phys. Lett. B 710
(2012) 612 [arXiv:1111.5869] [INSPIRE].

J. Piclum and C. Schwinn, Soft-gluon and Coulomb corrections to hadronic top-quark pair
production beyond NNLO, JHEP 03 (2018) 164 [arXiv:1801.05788] INSPIRE].

W.-L. Ju, G. Wang, X. Wang, X. Xu, Y. Xu and L.L. Yang, Top quark pair production near
threshold: single/double distributions and mass determination, JHEP 06 (2020) 158
[arXiv:2004.03088] [INSPIRE].

W.-L. Ju, G. Wang, X. Wang, X. Xu, Y. Xu and L.L. Yang, Invariant-mass distribution of
top-quark pairs and top-quark mass determination, Chin. Phys. C' 44 (2020) 091001
[arXiv:1908.02179] [INSPIRE].

— 60 —


https://doi.org/10.1103/PhysRevLett.102.232003
https://arxiv.org/abs/0903.2561
https://inspirehep.net/literature/815517
https://doi.org/10.1103/PhysRevD.90.014006
https://arxiv.org/abs/1405.7046
https://inspirehep.net/literature/1298396
https://doi.org/10.1103/PhysRevD.101.074006
https://doi.org/10.1103/PhysRevD.101.074006
https://arxiv.org/abs/1912.10362
https://inspirehep.net/literature/1772271
https://doi.org/10.1007/JHEP09(2010)097
https://doi.org/10.1007/JHEP09(2010)097
https://arxiv.org/abs/1003.5827
https://inspirehep.net/literature/850442
https://doi.org/10.1103/PhysRevD.86.034010
https://arxiv.org/abs/1205.3662
https://inspirehep.net/literature/1114986
https://doi.org/10.1007/JHEP01(2014)028
https://arxiv.org/abs/1310.3836
https://inspirehep.net/literature/1258608
https://doi.org/10.1103/PhysRevLett.116.202001
https://arxiv.org/abs/1601.07020
https://inspirehep.net/literature/1417004
https://doi.org/10.1007/JHEP05(2018)149
https://arxiv.org/abs/1803.07623
https://inspirehep.net/literature/1663444
https://doi.org/10.1103/PhysRevD.91.014016
https://doi.org/10.1103/PhysRevD.91.014016
https://arxiv.org/abs/1411.3149
https://inspirehep.net/literature/1327498
https://doi.org/10.1016/j.physletb.2010.05.038
https://arxiv.org/abs/0911.5166
https://inspirehep.net/literature/838222
https://doi.org/10.1016/j.nuclphysb.2010.09.009
https://arxiv.org/abs/1007.5414
https://inspirehep.net/literature/863752
https://doi.org/10.1016/j.nuclphysb.2011.10.021
https://arxiv.org/abs/1109.1536
https://inspirehep.net/literature/926616
https://doi.org/10.1016/j.physletb.2012.03.013
https://doi.org/10.1016/j.physletb.2012.03.013
https://arxiv.org/abs/1111.5869
https://inspirehep.net/literature/955207
https://doi.org/10.1007/JHEP03(2018)164
https://arxiv.org/abs/1801.05788
https://inspirehep.net/literature/1648618
https://doi.org/10.1007/JHEP06(2020)158
https://arxiv.org/abs/2004.03088
https://inspirehep.net/literature/1790238
https://doi.org/10.1088/1674-1137/44/9/091001
https://arxiv.org/abs/1908.02179
https://inspirehep.net/literature/1748178

[64]

[65]

[66]

[71]

[72]

[73]

[74]

[75]

[76]

[77]

[78]

[79]

[80]

[81]

H.X. Zhu, C.S. Li, H.T. Li, D.Y. Shao and L.L. Yang, Transverse-momentum resummation
for top-quark pairs at hadron colliders, Phys. Rev. Lett. 110 (2013) 082001
[arXiv:1208.5774] [INSPIRE].

H.T. Li, C.S. Li, D.Y. Shao, L.L. Yang and H.X. Zhu, Top quark pair production at small
transverse momentum in hadronic collisions, Phys. Rev. D 88 (2013) 074004
[arXiv:1307.2464] [INSPIRE].

S. Catani, M. Grazzini and A. Torre, Transverse-momentum resummation for heavy-quark
hadroproduction, Nucl. Phys. B 890 (2014) 518 [arXiv:1408.4564] [INSPIRE].

S. Catani, M. Grazzini and H. Sargsyan, Azimuthal asymmetries in QCD hard scattering:
infrared safe but divergent, JHEP 06 (2017) 017 [arXiv:1703.08468] [INSPIRE].

S. Catani, M. Grazzini and H. Sargsyan, Transverse-momentum resummation for top-quark
pair production at the LHC, JHEP 11 (2018) 061 [arXiv:1806.01601] [INSPIRE].

S. Alioli, A. Broggio and M.A. Lim, Zero-jettiness resummation for top-quark pair production
at the LHC, JHEP 01 (2022) 066 [arXiv:2111.03632] [INSPIRE].

J. Mazzitelli, P.F. Monni, P. Nason, E. Re, M. Wiesemann and G. Zanderighi,
Next-to-Next-to-Leading Order Event Generation for Top-Quark Pair Production, Phys. Rev.
Lett. 127 (2021) 062001 [arXiv:2012.14267] [INSPIRE].

J. Mazzitelli, P.F. Monni, P. Nason, E. Re, M. Wiesemann and G. Zanderighi, Top-pair
production at the LHC with MINNLOpg, JHEP 04 (2022) 079 [arXiv:2112.12135]
[INSPIRE].

P.M. Nadolsky, C. Balazs, E.L. Berger and C.P. Yuan, Gluon-gluon contributions to the
production of continuum diphoton pairs at hadron colliders, Phys. Rev. D 76 (2007) 013008
[hep-ph/0702003] [INSPIRE].

S. Catani and M. Grazzini, QCD transverse-momentum resummation in gluon fusion
processes, Nucl. Phys. B 845 (2011) 297 [arXiv:1011.3918] [INSPIRE].

J.C. Collins, Intrinsic transverse momentum: Nongauge theories, Phys. Rev. D 21 (1980)
2962 [INSPIRE].

G.F. Sterman, Mass Divergences in Annihilation Processes. I. Origin and Nature of
Divergences in Cut Vacuum Polarization Diagrams, Phys. Rev. D 17 (1978) 2773 [INSPIRE].

L.D. Landau, On analytic properties of vertex parts in quantum field theory, Nucl. Phys. 13
(1959) 181 [INSPIRE].

S. Coleman and R.E. Norton, Singularities in the physical region, Nuovo Cim. 38 (1965) 438
[INSPIRE].

M. Beneke and V.A. Smirnov, Asymptotic expansion of Feynman integrals near threshold,
Nucl. Phys. B 522 (1998) 321 [hep-ph/9711391] [INSPIRE].

V.A. Smirnov, Applied asymptotic expansions in momenta and masses, Springer Tracts Mod.
Phys. 177 (2002) 1 [INSPIRE].

V.A. Smirnov, Analytic tools for Feynman integrals, Springer Tracts in Modern Physics 250
(2012) [DOI] [INSPIRE].

B. Jantzen, Foundation and generalization of the expansion by regions, JHEP 12 (2011) 076
[arXiv:1111.2589] [INSPIRE].

— 61 —


https://doi.org/10.1103/PhysRevLett.110.082001
https://arxiv.org/abs/1208.5774
https://inspirehep.net/literature/1182523
https://doi.org/10.1103/PhysRevD.88.074004
https://arxiv.org/abs/1307.2464
https://inspirehep.net/literature/1242032
https://doi.org/10.1016/j.nuclphysb.2014.11.019
https://arxiv.org/abs/1408.4564
https://inspirehep.net/literature/1311638
https://doi.org/10.1007/JHEP06(2017)017
https://arxiv.org/abs/1703.08468
https://inspirehep.net/literature/1519166
https://doi.org/10.1007/JHEP11(2018)061
https://arxiv.org/abs/1806.01601
https://inspirehep.net/literature/1676437
https://doi.org/10.1007/JHEP01(2022)066
https://arxiv.org/abs/2111.03632
https://inspirehep.net/literature/1961440
https://doi.org/10.1103/PhysRevLett.127.062001
https://doi.org/10.1103/PhysRevLett.127.062001
https://arxiv.org/abs/2012.14267
https://inspirehep.net/literature/1838393
https://doi.org/10.1007/JHEP04(2022)079
https://arxiv.org/abs/2112.12135
https://inspirehep.net/literature/1995960
https://doi.org/10.1103/PhysRevD.76.013008
https://arxiv.org/abs/hep-ph/0702003
https://inspirehep.net/literature/743655
https://doi.org/10.1016/j.nuclphysb.2010.12.007
https://arxiv.org/abs/1011.3918
https://inspirehep.net/literature/877819
https://doi.org/10.1103/PhysRevD.21.2962
https://doi.org/10.1103/PhysRevD.21.2962
https://inspirehep.net/literature/8788
https://doi.org/10.1103/PhysRevD.17.2773
https://inspirehep.net/literature/6170
https://doi.org/10.1016/B978-0-08-010586-4.50103-6
https://doi.org/10.1016/B978-0-08-010586-4.50103-6
https://inspirehep.net/literature/4561
https://doi.org/10.1007/BF02750472
https://inspirehep.net/literature/48874
https://doi.org/10.1016/S0550-3213(98)00138-2
https://arxiv.org/abs/hep-ph/9711391
https://inspirehep.net/literature/451284
https://inspirehep.net/literature/582124
https://doi.org/10.1007/978-3-642-34886-0
https://inspirehep.net/literature/1218470
https://doi.org/10.1007/JHEP12(2011)076
https://arxiv.org/abs/1111.2589
https://inspirehep.net/literature/945404

[82]

[83]

[84]

[85]

[86]

[87]

[83]

[89]

[90]

[91]

[92]

C.W. Bauer, D. Pirjol and I.W. Stewart, Soft collinear factorization in effective field theory,
Phys. Rev. D 65 (2002) 054022 [hep-ph/0109045] [INSPIRE].

C.W. Bauer and I.W. Stewart, Invariant operators in collinear effective theory, Phys. Lett. B
516 (2001) 134 [hep-ph/0107001] [INSPIRE].

C.W. Bauer, S. Fleming, D. Pirjol and I.W. Stewart, An Effective field theory for collinear
and soft gluons: Heavy to light decays, Phys. Rev. D 63 (2001) 114020 [hep-ph/0011336]
[INSPIRE].

C.W. Bauer, S. Fleming and M.E. Luke, Summing Sudakov logarithms in B — Xy in
effective field theory., Phys. Rev. D 63 (2000) 014006 [hep-ph/0005275] [INSPIRE].

C.W. Bauer, S. Fleming, D. Pirjol, I.Z. Rothstein and I.W. Stewart, Hard scattering
factorization from effective field theory, Phys. Rev. D 66 (2002) 014017 [hep-ph/0202088|
[INSPIRE].

M. Beneke, A.P. Chapovsky, M. Diehl and T. Feldmann, Soft collinear effective theory and
heavy to light currents beyond leading power, Nucl. Phys. B 643 (2002) 431
[hep-ph/0206152] [INSPIRE].

M. Beneke and T. Feldmann, Multipole expanded soft collinear effective theory with
nonAbelian gauge symmetry, Phys. Lett. B 553 (2003) 267 [hep-ph/0211358] [INSPIRE].

C.W. Bauer, D. Pirjol and I.W. Stewart, Factorization and endpoint singularities in heavy to
light decays, Phys. Rev. D 67 (2003) 071502 [hep-ph/0211069] [INSPIRE].

B.O. Lange and M. Neubert, Factorization and the soft overlap contribution to heavy to light
form-factors, Nucl. Phys. B 690 (2004) 249 [hep-ph/0311345] [INSPIRE].

M. Beneke and T. Feldmann, Factorization of heavy to light form-factors in soft collinear
effective theory, Nucl. Phys. B 685 (2004) 249 [hep-ph/0311335] [INSPIRE].

E. Eichten and B.R. Hill, An Effective Field Theory for the Calculation of Matriz Elements
Involving Heavy Quarks, Phys. Lett. B 234 (1990) 511 [iNnSPIRE].

H. Georgi, An Effective Field Theory for Heavy Quarks at Low-energies, Phys. Lett. B 240
(1990) 447 [INSPIRE].

B. Grinstein, The Static Quark Effective Theory, Nucl. Phys. B 339 (1990) 253 [INSPIRE].

M. Neubert, Heavy quark symmetry, Phys. Rept. 245 (1994) 259 [hep-ph/9306320]
[INSPIRE].

J.-y. Chiu, A. Jain, D. Neill and I.Z. Rothstein, The Rapidity Renormalization Group, Phys.
Rev. Lett. 108 (2012) 151601 [arXiv:1104.0881] [INSPIRE].

J.-Y. Chiu, A. Jain, D. Neill and I.Z. Rothstein, A Formalism for the Systematic Treatment
of Rapidity Logarithms in Quantum Field Theory, JHEP 05 (2012) 084 [arXiv:1202.0814]
[INSPIRE].

Y. Li, D. Neill and H.X. Zhu, An exponential requlator for rapidity divergences, Nucl. Phys. B
960 (2020) 115193 [arXiv:1604.00392] INSPIRE].

Y. Li and H.X. Zhu, Bootstrapping Rapidity Anomalous Dimensions for
Transverse-Momentum Resummation, Phys. Rev. Lett. 118 (2017) 022004
[arXiv:1604.01404] [INSPIRE].

J.C. Collins, D.E. Soper and G.F. Sterman, Transverse Momentum Distribution in Drell-Yan
Pair and W and Z Boson Production, Nucl. Phys. B 250 (1985) 199 [INSPIRE].

— 62 —


https://doi.org/10.1103/PhysRevD.65.054022
https://arxiv.org/abs/hep-ph/0109045
https://inspirehep.net/literature/562452
https://doi.org/10.1016/S0370-2693(01)00902-9
https://doi.org/10.1016/S0370-2693(01)00902-9
https://arxiv.org/abs/hep-ph/0107001
https://inspirehep.net/literature/559421
https://doi.org/10.1103/PhysRevD.63.114020
https://arxiv.org/abs/hep-ph/0011336
https://inspirehep.net/literature/537516
https://doi.org/10.1103/PhysRevD.63.014006
https://arxiv.org/abs/hep-ph/0005275
https://inspirehep.net/literature/527930
https://doi.org/10.1103/PhysRevD.66.014017
https://arxiv.org/abs/hep-ph/0202088
https://inspirehep.net/literature/582803
https://doi.org/10.1016/S0550-3213(02)00687-9
https://arxiv.org/abs/hep-ph/0206152
https://inspirehep.net/literature/588622
https://doi.org/10.1016/S0370-2693(02)03204-5
https://arxiv.org/abs/hep-ph/0211358
https://inspirehep.net/literature/602846
https://doi.org/10.1103/PhysRevD.67.071502
https://arxiv.org/abs/hep-ph/0211069
https://inspirehep.net/literature/601423
https://doi.org/10.1016/j.nuclphysb.2005.06.019
https://arxiv.org/abs/hep-ph/0311345
https://inspirehep.net/literature/634068
https://doi.org/10.1016/j.nuclphysb.2004.02.033
https://arxiv.org/abs/hep-ph/0311335
https://inspirehep.net/literature/634059
https://doi.org/10.1016/0370-2693(90)92049-O
https://inspirehep.net/literature/282581
https://doi.org/10.1016/0370-2693(90)91128-X
https://doi.org/10.1016/0370-2693(90)91128-X
https://inspirehep.net/literature/294733
https://doi.org/10.1016/0550-3213(90)90349-I
https://inspirehep.net/literature/294416
https://doi.org/10.1016/0370-1573(94)90091-4
https://arxiv.org/abs/hep-ph/9306320
https://inspirehep.net/literature/355600
https://doi.org/10.1103/PhysRevLett.108.151601
https://doi.org/10.1103/PhysRevLett.108.151601
https://arxiv.org/abs/1104.0881
https://inspirehep.net/literature/894935
https://doi.org/10.1007/JHEP05(2012)084
https://arxiv.org/abs/1202.0814
https://inspirehep.net/literature/1087437
https://doi.org/10.1016/j.nuclphysb.2020.115193
https://doi.org/10.1016/j.nuclphysb.2020.115193
https://arxiv.org/abs/1604.00392
https://inspirehep.net/literature/1441208
https://doi.org/10.1103/PhysRevLett.118.022004
https://arxiv.org/abs/1604.01404
https://inspirehep.net/literature/1444349
https://doi.org/10.1016/0550-3213(85)90479-1
https://inspirehep.net/literature/203059

[101]

[102]

[103]

[104]

[105]

[106]

[107]

[108]

[109]

[110]

[111]

[112]

[113]

[114]

[115]

[116]

[117]

S. Catani, D. de Florian and M. Grazzini, Universality of nonleading logarithmic
contributions in transverse momentum distributions, Nucl. Phys. B 596 (2001) 299
[hep-ph/0008184] [INSPIRE].

G. Bozzi, S. Catani, D. de Florian and M. Grazzini, Transverse-momentum resummation and
the spectrum of the Higgs boson at the LHC, Nucl. Phys. B 737 (2006) 73 [hep-ph/0508068]
[INSPIRE].

G. Bogzzi, S. Catani, D. de Florian and M. Grazzini, Higgs boson production at the LHC:
Transverse-momentum resummation and rapidity dependence, Nucl. Phys. B 791 (2008) 1
[arXiv:0705.3887] [INSPIRE].

M.A. Ebert and F.J. Tackmann, Resummation of Transverse Momentum Distributions in
Distribution Space, JHEP 02 (2017) 110 [arXiv:1611.08610] [INSPIRE].

P.F. Monni, E. Re and P. Torrielli, Higgs Transverse-Momentum Resummation in Direct
Space, Phys. Rev. Lett. 116 (2016) 242001 [arXiv:1604.02191] [INSPIRE].

W. Bizon, P.F. Monni, E. Re, L. Rottoli and P. Torrielli, Momentum-space resummation for
transverse observables and the Higgs p, at N?LL+NNLO, JHEP 02 (2018) 108
[arXiv:1705.09127] [INSPIRE].

T. Becher and M. Neubert, Drell-Yan Production at Small qr, Transverse Parton
Distributions and the Collinear Anomaly, Eur. Phys. J. C 71 (2011) 1665
[arXiv:1007.4005] [INSPIRE].

M.G. Echevarria, A. Idilbi and I. Scimemi, Factorization Theorem For Drell-Yan At Low qr
And Transverse Momentum Distributions On-The-Light-Cone, JHEP 07 (2012) 002
[arXiv:1111.4996] [INSPIRE].

T. Becher and G. Bell, Analytic Reqularization in Soft-Collinear Effective Theory, Phys. Lett.
B 713 (2012) 41 [arXiv:1112.3907] [iNSPIRE].

J.C. Collins, D.E. Soper and G.F. Sterman, Factorization of Hard Processes in QCD, Adv.
Ser. Direct. High Energy Phys. 5 (1989) 1 [hep-ph/0409313] [INSPIRE].

A.V. Manohar and I.W. Stewart, The Zero-Bin and Mode Factorization in Quantum Field
Theory, Phys. Rev. D 76 (2007) 074002 [hep-ph/0605001] [INSPIRE].

B. Ananthanarayan, A. Pal, S. Ramanan and R. Sarkar, Unveiling Regions in multi-scale
Feynman Integrals using Singularities and Power Geometry, Eur. Phys. J. C' 79 (2019) 57
[arXiv:1810.06270] [INSPIRE].

J. Plenter and G. Rodrigo, Asymptotic expansions through the loop-tree duality, Fur. Phys. J.
C 81 (2021) 320 [arXiv:2005.02119] [INSPIRE].

G. Heinrich et al., Expansion by regions with pySecDec, Comput. Phys. Commun. 273 (2022)
108267 [arXiv:2108.10807] [iNSPIRE].

J.C. Collins and G.F. Sterman, Soft Partons in QCD, Nucl. Phys. B 185 (1981) 172
[INSPIRE].

J.C. Collins, D.E. Soper and G.F. Sterman, Factorization for Short Distance Hadron-Hadron
Scattering, Nucl. Phys. B 261 (1985) 104 [INSPIRE].

J.C. Collins, Proof of factorization for diffractive hard scattering, Phys. Rev. D 57 (1998)
3051 [hep-ph/9709499] [INSPIRE].

— 63 —


https://doi.org/10.1016/S0550-3213(00)00617-9
https://arxiv.org/abs/hep-ph/0008184
https://inspirehep.net/literature/531881
https://doi.org/10.1016/j.nuclphysb.2005.12.022
https://arxiv.org/abs/hep-ph/0508068
https://inspirehep.net/literature/689150
https://doi.org/10.1016/j.nuclphysb.2007.09.034
https://arxiv.org/abs/0705.3887
https://inspirehep.net/literature/751538
https://doi.org/10.1007/JHEP02(2017)110
https://arxiv.org/abs/1611.08610
https://inspirehep.net/literature/1500534
https://doi.org/10.1103/PhysRevLett.116.242001
https://arxiv.org/abs/1604.02191
https://inspirehep.net/literature/1444881
https://doi.org/10.1007/JHEP02(2018)108
https://arxiv.org/abs/1705.09127
https://inspirehep.net/literature/1601293
https://doi.org/10.1140/epjc/s10052-011-1665-7
https://arxiv.org/abs/1007.4005
https://inspirehep.net/literature/862424
https://doi.org/10.1007/JHEP07(2012)002
https://arxiv.org/abs/1111.4996
https://inspirehep.net/literature/946813
https://doi.org/10.1016/j.physletb.2012.05.016
https://doi.org/10.1016/j.physletb.2012.05.016
https://arxiv.org/abs/1112.3907
https://inspirehep.net/literature/1081751
https://doi.org/10.1142/9789814503266_0001
https://doi.org/10.1142/9789814503266_0001
https://arxiv.org/abs/hep-ph/0409313
https://inspirehep.net/literature/25808
https://doi.org/10.1103/PhysRevD.76.074002
https://arxiv.org/abs/hep-ph/0605001
https://inspirehep.net/literature/715628
https://doi.org/10.1140/epjc/s10052-019-6533-x
https://arxiv.org/abs/1810.06270
https://inspirehep.net/literature/1698450
https://doi.org/10.1140/epjc/s10052-021-09094-9
https://doi.org/10.1140/epjc/s10052-021-09094-9
https://arxiv.org/abs/2005.02119
https://inspirehep.net/literature/1794422
https://doi.org/10.1016/j.cpc.2021.108267
https://doi.org/10.1016/j.cpc.2021.108267
https://arxiv.org/abs/2108.10807
https://inspirehep.net/literature/1909860
https://doi.org/10.1016/0550-3213(81)90370-9
https://inspirehep.net/literature/10172
https://doi.org/10.1016/0550-3213(85)90565-6
https://inspirehep.net/literature/212922
https://doi.org/10.1103/PhysRevD.61.019902
https://doi.org/10.1103/PhysRevD.61.019902
https://arxiv.org/abs/hep-ph/9709499
https://inspirehep.net/literature/449041

[118] J.C. Collins and A. Metz, Universality of soft and collinear factors in hard-scattering
factorization, Phys. Rev. Lett. 93 (2004) 252001 [hep-ph/0408249] [INSPIRE].

[119] J.R. Gaunt, Glauber Gluons and Multiple Parton Interactions, JHEP 07 (2014) 110
[arXiv:1405.2080] [INSPIRE].

[120] M.D. Schwartz, K. Yan and H.X. Zhu, Factorization Violation and Scale Invariance, Phys.
Rev. D 97 (2018) 096017 [arXiv:1801.01138] [INSPIRE].

[121] S.-J. Chang and S.-K. Ma, Feynman rules and quantum electrodynamics at infinite
momentum, Phys. Rev. 180 (1969) 1506 [INSPIRE].

[122] G.F. Sterman, Mass Divergences in Annihilation Processes. II. Cancellation of Divergences
in Cut Vacuum Polarization Diagrams, Phys. Rev. D 17 (1978) 2789 [InSPIRE].

[123] A. Mitov and G. Sterman, Final state interactions in single- and multi-particle inclusive
cross sections for hadronic collisions, Phys. Rev. D 86 (2012) 114038 [arXiv:1209.5798]
[INSPIRE].

[124] 1.Z. Rothstein and I.W. Stewart, An Effective Field Theory for Forward Scattering and
Factorization Violation, JHEP 08 (2016) 025 [arXiv:1601.04695] INSPIRE].

[125] T.C. Rogers and P.J. Mulders, No Generalized TMD-Factorization in Hadro-Production of
High Transverse Momentum Hadrons, Phys. Rev. D 81 (2010) 094006 [arXiv:1001.2977]
[INSPIRE].

[126] J.F. Donoghue and D. Wyler, On Regge kinematics in SCET, Phys. Rev. D 81 (2010) 114023
[arXiv:0908.4559] [NSPIRE].

[127] C.W. Bauer, B.O. Lange and G. Ovanesyan, On Glauber modes in Soft-Collinear Effective
Theory, JHEP 07 (2011) 077 [arXiv:1010.1027] [INSPIRE].

[128] S. Fleming, The role of Glauber exchange in soft collinear effective theory and the
Balitsky-Fadin-Kuraev-Lipatov Equation, Phys. Lett. B 735 (2014) 266 [arXiv:1404.5672]
[INSPIRE].

[129] 1. Moult, S. Raman, G. Ridgway and I.W. Stewart, Anomalous Dimensions from Soft Regge
Constants, MIT-CTP 5448 (2022) [INSPIRE].

[130] R. Bonciani, S. Catani, M. Grazzini, H. Sargsyan and A. Torre, The gr subtraction method
for top quark production at hadron colliders, Eur. Phys. J. C 75 (2015) 581
[arXiv:1508.03585] [INSPIRE].

[131] J.C. Collins and D.E. Soper, Back-To-Back Jets in QCD, Nucl. Phys. B 193 (1981) 381
[INSPIRE].

[132] R.J. Hill and M. Neubert, Spectator interactions in soft collinear effective theory, Nucl. Phys.
B 657 (2003) 229 [hep-ph/0211018] [inSPIRE].

[133] M. Beneke, P. Falgari and C. Schwinn, Soft radiation in heavy-particle pair production:
All-order colour structure and two-loop anomalous dimension, Nucl. Phys. B 828 (2010) 69
[arXiv:0907.1443] [INSPIRE].

[134] A. Ferroglia, M. Neubert, B.D. Pecjak and L.L. Yang, Two-loop divergences of massive
scattering amplitudes in non-abelian gauge theories, JHEP 11 (2009) 062 [arXiv:0908.3676]
[INSPIRE].

[135] S. Actis, A. Denner, L. Hofer, A. Scharf and S. Uccirati, Recursive generation of one-loop
amplitudes in the Standard Model, JHEP 04 (2013) 037 [arXiv:1211.6316] [INSPIRE].

— 64 —


https://doi.org/10.1103/PhysRevLett.93.252001
https://arxiv.org/abs/hep-ph/0408249
https://inspirehep.net/literature/657122
https://doi.org/10.1007/JHEP07(2014)110
https://arxiv.org/abs/1405.2080
https://inspirehep.net/literature/1295494
https://doi.org/10.1103/PhysRevD.97.096017
https://doi.org/10.1103/PhysRevD.97.096017
https://arxiv.org/abs/1801.01138
https://inspirehep.net/literature/1646266
https://doi.org/10.1103/PhysRev.180.1506
https://inspirehep.net/literature/53070
https://doi.org/10.1103/PhysRevD.17.2789
https://inspirehep.net/literature/6171
https://doi.org/10.1103/PhysRevD.86.114038
https://arxiv.org/abs/1209.5798
https://inspirehep.net/literature/1188159
https://doi.org/10.1007/JHEP08(2016)025
https://arxiv.org/abs/1601.04695
https://inspirehep.net/literature/1415957
https://doi.org/10.1103/PhysRevD.81.094006
https://arxiv.org/abs/1001.2977
https://inspirehep.net/literature/843028
https://doi.org/10.1103/PhysRevD.81.114023
https://arxiv.org/abs/0908.4559
https://inspirehep.net/literature/829865
https://doi.org/10.1007/JHEP07(2011)077
https://arxiv.org/abs/1010.1027
https://inspirehep.net/literature/871900
https://doi.org/10.1016/j.physletb.2014.06.045
https://arxiv.org/abs/1404.5672
https://inspirehep.net/literature/1291957
https://inspirehep.net/literature/2107130
https://doi.org/10.1140/epjc/s10052-015-3793-y
https://arxiv.org/abs/1508.03585
https://inspirehep.net/literature/1388028
https://doi.org/10.1016/0550-3213(81)90339-4
https://inspirehep.net/literature/164211
https://doi.org/10.1016/S0550-3213(03)00116-0
https://doi.org/10.1016/S0550-3213(03)00116-0
https://arxiv.org/abs/hep-ph/0211018
https://inspirehep.net/literature/601233
https://doi.org/10.1016/j.nuclphysb.2009.11.004
https://arxiv.org/abs/0907.1443
https://inspirehep.net/literature/825249
https://doi.org/10.1088/1126-6708/2009/11/062
https://arxiv.org/abs/0908.3676
https://inspirehep.net/literature/829488
https://doi.org/10.1007/JHEP04(2013)037
https://arxiv.org/abs/1211.6316
https://inspirehep.net/literature/1204468

[136]

[137]

[138]

[139]

[140]

[141]

[142]

[143]

[144]

[145]

[146]

[147]

[148]

[149]

[150]

[151]

S. Actis, A. Denner, L. Hofer, J.-N. Lang, A. Scharf and S. Uccirati, RECOLA: REcursive
Computation of One-Loop Amplitudes, Comput. Phys. Commun. 214 (2017) 140
[arXiv:1605.01090] [INSPIRE].

L. Chen, M. Czakon and R. Poncelet, Polarized double-virtual amplitudes for heavy-quark
pair production, JHEP 03 (2018) 085 [arXiv:1712.08075] InSPIRE].

S. Di Vita, T. Gehrmann, S. Laporta, P. Mastrolia, A. Primo and U. Schubert, Master
integrals for the NNLO wvirtual corrections to qq — tt scattering in QCD: the non-planar
graphs, JHEP 06 (2019) 117 [arXiv:1904.10964] [INSPIRE].

S. Badger, E. Chaubey, H.B. Hartanto and R. Marzucca, Two-loop leading colour QCD
helicity amplitudes for top quark pair production in the gluon fusion channel, JHEP 06 (2021)
163 [arXiv:2102.13450] [INSPIRE].

M.K. Mandal, P. Mastrolia, J. Ronca and W.J. Bobadilla Torres, Two-loop scattering
amplitude for heavy-quark pair production through light-quark annihilation in QCD, JHEP 09
(2022) 129 [arXiv:2204.03466] [INSPIRE].

M.-X. Luo, X. Wang, X. Xu, L.L. Yang, T.-Z. Yang and H.X. Zhu, Transverse Parton
Distribution and Fragmentation Functions at NNLO: the Quark Case, JHEP 10 (2019) 083
[arXiv:1908.03831] [INSPIRE].

M.-X. Luo, T.-Z. Yang, H.X. Zhu and Y.J. Zhu, Transverse Parton Distribution and
Fragmentation Functions at NNLO: the Gluon Case, JHEP 01 (2020) 040
[arXiv:1909.13820] [INSPIRE].

M.-x. Luo, T.-Z. Yang, H.X. Zhu and Y.J. Zhu, Unpolarized quark and gluon TMD PDFs and
FFs at N3LO, JHEP 06 (2021) 115 [arXiv:2012.03256] [INSPIRE].

M.-x. Luo, T.-Z. Yang, H.X. Zhu and Y.J. Zhu, Quark Transverse Parton Distribution at the
Neat-to-Next-to-Next-to-Leading Order, Phys. Rev. Lett. 124 (2020) 092001
[arXiv:1912.05778] [INSPIRE].

D. Gutierrez-Reyes, S. Leal-Gomez, I. Scimemi and A. Vladimirov, Linearly polarized gluons
at next-to-next-to leading order and the Higgs transverse momentum distribution, JHEP 11
(2019) 121 [arXiv:1907.03780] [iNSPIRE].

S. Catani and P.K. Dhani, Collinear functions for QCD resummations, arXiv:2208.05840
[INSPIRE].

R. Angeles-Martinez, M. Czakon and S. Sapeta, NNLO soft function for top quark pair
production at small transverse momentum, JHEP 10 (2018) 201 [arXiv:1809.01459]
[INSPIRE].

S. Catani, I. Fabre, M. Grazzini and S. Kallweit, ttH production at NNLO: the flavour
off-diagonal channels, Eur. Phys. J. C 81 (2021) 491 [arXiv:2102.03256] [INSPIRE].

A. Pineda and J. Soto, Effective field theory for ultrasoft momenta in NRQCD and NRQED,
Nucl. Phys. B Proc. Suppl. 64 (1998) 428 [hep-ph/9707481] [INSPIRE].

N. Brambilla, A. Pineda, J. Soto and A. Vairo, Potential NRQCD: An Effective theory for
heavy quarkonium, Nucl. Phys. B 566 (2000) 275 [hep-ph/9907240] [iINSPIRE].

M. Beneke, Perturbative heavy quark-anti-quark systems, PoS hf8 (1999) 009
[hep-ph/9911490] [INSPIRE].

— 65 —


https://doi.org/10.1016/j.cpc.2017.01.004
https://arxiv.org/abs/1605.01090
https://inspirehep.net/literature/1455789
https://doi.org/10.1007/JHEP03(2018)085
https://arxiv.org/abs/1712.08075
https://inspirehep.net/literature/1644637
https://doi.org/10.1007/JHEP06(2019)117
https://arxiv.org/abs/1904.10964
https://inspirehep.net/literature/1731321
https://doi.org/10.1007/JHEP06(2021)163
https://doi.org/10.1007/JHEP06(2021)163
https://arxiv.org/abs/2102.13450
https://inspirehep.net/literature/1849008
https://doi.org/10.1007/JHEP09(2022)129
https://doi.org/10.1007/JHEP09(2022)129
https://arxiv.org/abs/2204.03466
https://inspirehep.net/literature/2064341
https://doi.org/10.1007/JHEP10(2019)083
https://arxiv.org/abs/1908.03831
https://inspirehep.net/literature/1748797
https://doi.org/10.1007/JHEP01(2020)040
https://arxiv.org/abs/1909.13820
https://inspirehep.net/literature/1756868
https://doi.org/10.1007/JHEP06(2021)115
https://arxiv.org/abs/2012.03256
https://inspirehep.net/literature/1835581
https://doi.org/10.1103/PhysRevLett.124.092001
https://arxiv.org/abs/1912.05778
https://inspirehep.net/literature/1770431
https://doi.org/10.1007/JHEP11(2019)121
https://doi.org/10.1007/JHEP11(2019)121
https://arxiv.org/abs/1907.03780
https://inspirehep.net/literature/1742969
https://arxiv.org/abs/2208.05840
https://inspirehep.net/literature/2134967
https://doi.org/10.1007/JHEP10(2018)201
https://arxiv.org/abs/1809.01459
https://inspirehep.net/literature/1692800
https://doi.org/10.1140/epjc/s10052-021-09247-w
https://arxiv.org/abs/2102.03256
https://inspirehep.net/literature/1845170
https://doi.org/10.1016/S0920-5632(97)01102-X
https://arxiv.org/abs/hep-ph/9707481
https://inspirehep.net/literature/446457
https://doi.org/10.1016/S0550-3213(99)00693-8
https://arxiv.org/abs/hep-ph/9907240
https://inspirehep.net/literature/503098
https://doi.org/10.22323/1.003.0009
https://arxiv.org/abs/hep-ph/9911490
https://inspirehep.net/literature/510747

[152]

[153]

[154]

[155]

[156]

[157]

[158]

[159]

[160]

[161]

[162]

[163]

[164]

[165)

[166]

[167]

[168]

[169]

[170]

[171]

M. Beneke, A. Signer and V.A. Smirnov, Top quark production near threshold and the top
quark mass, Phys. Lett. B 454 (1999) 137 [hep-ph/9903260] [INSPIRE].

W.-L. Ju and L.L. Yang, Resummation of soft and Coulomb corrections for tth production at
the LHC, JHEP 06 (2019) 050 [arXiv:1904.08744] [iNSPIRE].

S. Fleming and A.K. Leibovich, The Resummed Photon Spectrum in Radiative Upsilon
Decays, Phys. Rev. Lett. 90 (2003) 032001 [hep-ph/0211303] [INSPIRE].

S. Fleming and A.K. Leibovich, The Photon Spectrum in Upsilon Decays, Phys. Rev. D 67
(2003) 074035 [hep-ph/0212094] [INSPIRE].

T. Becher and G. Bell, The gluon jet function at two-loop order, Phys. Lett. B 695 (2011)
252 [arXiv:1008.1936] [INSPIRE].

P. Banerjee, P.K. Dhani and V. Ravindran, Gluon jet function at three loops in QCD, Phys.
Rev. D 98 (2018) 094016 [arXiv:1805.02637] [INSPIRE].

T. Becher and M. Neubert, Toward a NNLO calculation of the B — X,y decay rate with a
cut on photon energy: II. Two-loop result for the jet function, Phys. Lett. B 637 (2006) 251
[hep-ph/0603140] [INSPIRE].

R. Briiser, Z.L. Liu and M. Stahlhofen, Three-Loop Quark Jet Function, Phys. Rev. Lett. 121
(2018) 072003 [arXiv:1804.09722] [INSPIRE].

T. Becher, M. Neubert, L. Rothen and D.Y. Shao, Factorization and Resummation for Jet
Processes, JHEP 11 (2016) 019 [arXiv:1605.02737] [INSPIRE].

M. Balsiger, T. Becher and A. Ferroglia, Resummation of non-global logarithms in cross
sections with massive particles, JHEP 09 (2020) 029 [arXiv:2006.00014] [INSPIRE].

S. Catani and M.H. Seymour, A General algorithm for calculating jet cross-sections in NLO
QCD, Nucl. Phys. B 485 (1997) 291 [hep-ph/9605323] [INSPIRE].

V.A. Smirnov, Analytical result for dimensionally regularized massless on shell double box,
Phys. Lett. B 460 (1999) 397 [hep-ph/9905323] [INSPIRE].

J.B. Tausk, Nonplanar massless two loop Feynman diagrams with four on-shell legs, Phys.
Lett. B 469 (1999) 225 [hep-ph/9909506] [INSPIRE].

E. Bejdakic, Feynman integrals, hypergeometric functions and nested sums, Ph.D. Thesis,
Fakultét fiir Physik, Universitat Bielefeld (2009) [iNSPIRE].

M. Czakon, Automatized analytic continuation of Mellin-Barnes integrals, Comput. Phys.
Commun. 175 (2006) 559 [hep-ph/0511200] [INSPIRE].

M. Czakon, MBasymptotics.

M. Ochman and T. Riemann, MBsums — a Mathematica package for the representation of
Mellin-Barnes integrals by multiple sums, Acta Phys. Polon. B 46 (2015) 2117
[arXiv:1511.01323] [INSPIRE].

T. Gleisberg, S. Hoeche, F. Krauss, A. Schalicke, S. Schumann and J.-C. Winter, SHERPA 1.
alpha: A Proof of concept version, JHEP 02 (2004) 056 [hep-ph/0311263] INSPIRE].

T. Gleisberg et al., Fvent generation with SHERPA 1.1, JHEP 02 (2009) 007
[arXiv:0811.4622] [INSPIRE].

SHERPA collaboration, Event Generation with Sherpa 2.2, SciPost Phys. 7 (2019) 034
[arXiv:1905.09127] [NSPIRE].

— 66 —


https://doi.org/10.1016/S0370-2693(99)00343-3
https://arxiv.org/abs/hep-ph/9903260
https://inspirehep.net/literature/496245
https://doi.org/10.1007/JHEP06(2019)050
https://arxiv.org/abs/1904.08744
https://inspirehep.net/literature/1730345
https://doi.org/10.1103/PhysRevLett.90.032001
https://arxiv.org/abs/hep-ph/0211303
https://inspirehep.net/literature/602473
https://doi.org/10.1103/PhysRevD.67.074035
https://doi.org/10.1103/PhysRevD.67.074035
https://arxiv.org/abs/hep-ph/0212094
https://inspirehep.net/literature/604103
https://doi.org/10.1016/j.physletb.2010.11.036
https://doi.org/10.1016/j.physletb.2010.11.036
https://arxiv.org/abs/1008.1936
https://inspirehep.net/literature/864933
https://doi.org/10.1103/PhysRevD.98.094016
https://doi.org/10.1103/PhysRevD.98.094016
https://arxiv.org/abs/1805.02637
https://inspirehep.net/literature/1672021
https://doi.org/10.1016/j.physletb.2006.04.046
https://arxiv.org/abs/hep-ph/0603140
https://inspirehep.net/literature/712741
https://doi.org/10.1103/PhysRevLett.121.072003
https://doi.org/10.1103/PhysRevLett.121.072003
https://arxiv.org/abs/1804.09722
https://inspirehep.net/literature/1670170
https://doi.org/10.1007/JHEP11(2016)019
https://arxiv.org/abs/1605.02737
https://inspirehep.net/literature/1456938
https://doi.org/10.1007/JHEP09(2020)029
https://arxiv.org/abs/2006.00014
https://inspirehep.net/literature/1798660
https://doi.org/10.1016/S0550-3213(96)00589-5
https://arxiv.org/abs/hep-ph/9605323
https://inspirehep.net/literature/418649
https://doi.org/10.1016/S0370-2693(99)00777-7
https://arxiv.org/abs/hep-ph/9905323
https://inspirehep.net/literature/499792
https://doi.org/10.1016/S0370-2693(99)01277-0
https://doi.org/10.1016/S0370-2693(99)01277-0
https://arxiv.org/abs/hep-ph/9909506
https://inspirehep.net/literature/507760
https://inspirehep.net/literature/848166
https://doi.org/10.1016/j.cpc.2006.07.002
https://doi.org/10.1016/j.cpc.2006.07.002
https://arxiv.org/abs/hep-ph/0511200
https://inspirehep.net/literature/698125
https://doi.org/10.5506/APhysPolB.46.2117
https://arxiv.org/abs/1511.01323
https://inspirehep.net/literature/1402813
https://doi.org/10.1088/1126-6708/2004/02/056
https://arxiv.org/abs/hep-ph/0311263
https://inspirehep.net/literature/633702
https://doi.org/10.1088/1126-6708/2009/02/007
https://arxiv.org/abs/0811.4622
https://inspirehep.net/literature/803708
https://doi.org/10.21468/SciPostPhys.7.3.034
https://arxiv.org/abs/1905.09127
https://inspirehep.net/literature/1736301

[172]

[173]

[174]

[175]

[176]

[177]

7]

[179]

[180]

[181]

[182]

[183]

[184]

[185]

[186]

[187]

[188]

A. Ferroglia, M. Neubert, B.D. Pecjak and L.L. Yang, Two-loop divergences of scattering
amplitudes with massive partons, Phys. Rev. Lett. 103 (2009) 201601 [arXiv:0907.4791]
[INSPIRE].

S. Moch, J.A.M. Vermaseren and A. Vogt, The Three loop splitting functions in QCD: The
Nonsinglet case, Nucl. Phys. B 688 (2004) 101 [hep-ph/0403192] [INSPIRE].

J.M. Henn, G.P. Korchemsky and B. Mistlberger, The full four-loop cusp anomalous
dimension in N = 4 super Yang-Mills and QCD, JHEP 04 (2020) 018 [arXiv:1911.10174]
[INSPIRE].

A. von Manteuffel, E. Panzer and R.M. Schabinger, Cusp and collinear anomalous
dimensions in four-loop QCD from form factors, Phys. Rev. Lett. 124 (2020) 162001
[arXiv:2002.04617] INSPIRE].

F. Herzog, S. Moch, B. Ruijl, T. Ueda, J.A.M. Vermaseren and A. Vogt, Five-loop
contributions to low-N non-singlet anomalous dimensions in QCD, Phys. Lett. B 790 (2019)
436 [arXiv:1812.11818] [INSPIRE].

Z.L. Liu and N. Schalch, Infrared Singularities of Multileg QCD Amplitudes with a Massive
Parton at Three Loops, Phys. Rev. Lett. 129 (2022) 232001 [arXiv:2207.02864] [INSPIRE].

A A. Vladimirov, Correspondence between Soft and Rapidity Anomalous Dimensions, Phys.
Rev. Lett. 118 (2017) 062001 [arXiv:1610.05791] [nSPIRE].

M.A. Ebert, B. Mistlberger and G. Vita, Transverse momentum dependent PDFs at N3LO,
JHEP 09 (2020) 146 [arXiv:2006.05329] [iNSPIRE].

G. Das, S.-O. Moch and A. Vogt, Soft corrections to inclusive deep-inelastic scattering at four
loops and beyond, JHEP 03 (2020) 116 [arXiv:1912.12920] [INSPIRE].

C. Duhr, B. Mistlberger and G. Vita, Soft integrals and soft anomalous dimensions at N>LO
and beyond, JHEP 09 (2022) 155 [arXiv:2205.04493] [INSPIRE].

C. Duhr, B. Mistlberger and G. Vita, Four-Loop Rapidity Anomalous Dimension and FEvent
Shapes to Fourth Logarithmic Order, Phys. Rev. Lett. 129 (2022) 162001
[arXiv:2205.02242] [INSPIRE].

I. Moult, H.X. Zhu and Y.J. Zhu, The four loop QCD rapidity anomalous dimension, JHEP
08 (2022) 280 [arXiv:2205.02249] [INSPIRE].

D. Neill, I.Z. Rothstein and V. Vaidya, The Higgs Transverse Momentum Distribution at
NNLL and its Theoretical Errors, JHEP 12 (2015) 097 [arXiv:1503.00005] [INSPIRE].

D. Kang, C. Lee and V. Vaidya, A fast and accurate method for perturbative resummation of
transverse momentum-dependent observables, JHEP 04 (2018) 149 [arXiv:1710.00078]
[INSPIRE].

A.J. Buras, M. Jamin, M.E. Lautenbacher and P.H. Weisz, Effective Hamiltonians for
AS =1 and AB =1 nonleptonic decays beyond the leading logarithmic approzimation, Nucl.
Phys. B 370 (1992) 69 [INSPIRE].

G. Buchalla, A.J. Buras and M.E. Lautenbacher, Weak decays beyond leading logarithms, Rev.
Mod. Phys. 68 (1996) 1125 [hep-ph/9512380] [InSPIRE].

A. Banfi, P.F. Monni, G.P. Salam and G. Zanderighi, Higgs and Z-boson production with a
jet veto, Phys. Rev. Lett. 109 (2012) 202001 [arXiv:1206.4998] [INSPIRE].

— 67 —


https://doi.org/10.1103/PhysRevLett.103.201601
https://arxiv.org/abs/0907.4791
https://inspirehep.net/literature/827038
https://doi.org/10.1016/j.nuclphysb.2004.03.030
https://arxiv.org/abs/hep-ph/0403192
https://inspirehep.net/literature/646539
https://doi.org/10.1007/JHEP04(2020)018
https://arxiv.org/abs/1911.10174
https://inspirehep.net/literature/1766652
https://doi.org/10.1103/PhysRevLett.124.162001
https://arxiv.org/abs/2002.04617
https://inspirehep.net/literature/1779851
https://doi.org/10.1016/j.physletb.2019.01.060
https://doi.org/10.1016/j.physletb.2019.01.060
https://arxiv.org/abs/1812.11818
https://inspirehep.net/literature/1711839
https://doi.org/10.1103/PhysRevLett.129.232001
https://arxiv.org/abs/2207.02864
https://inspirehep.net/literature/2107152
https://doi.org/10.1103/PhysRevLett.118.062001
https://doi.org/10.1103/PhysRevLett.118.062001
https://arxiv.org/abs/1610.05791
https://inspirehep.net/literature/1492739
https://doi.org/10.1007/JHEP09(2020)146
https://arxiv.org/abs/2006.05329
https://inspirehep.net/literature/1800390
https://doi.org/10.1007/JHEP03(2020)116
https://arxiv.org/abs/1912.12920
https://inspirehep.net/literature/1773669
https://doi.org/10.1007/JHEP09(2022)155
https://arxiv.org/abs/2205.04493
https://inspirehep.net/literature/2079387
https://doi.org/10.1103/PhysRevLett.129.162001
https://arxiv.org/abs/2205.02242
https://inspirehep.net/literature/2077573
https://doi.org/10.1007/JHEP08(2022)280
https://doi.org/10.1007/JHEP08(2022)280
https://arxiv.org/abs/2205.02249
https://inspirehep.net/literature/2077547
https://doi.org/10.1007/JHEP12(2015)097
https://arxiv.org/abs/1503.00005
https://inspirehep.net/literature/1346973
https://doi.org/10.1007/JHEP04(2018)149
https://arxiv.org/abs/1710.00078
https://inspirehep.net/literature/1628112
https://doi.org/10.1016/0550-3213(92)90345-C
https://doi.org/10.1016/0550-3213(92)90345-C
https://inspirehep.net/literature/318544
https://doi.org/10.1103/RevModPhys.68.1125
https://doi.org/10.1103/RevModPhys.68.1125
https://arxiv.org/abs/hep-ph/9512380
https://inspirehep.net/literature/403867
https://doi.org/10.1103/PhysRevLett.109.202001
https://arxiv.org/abs/1206.4998
https://inspirehep.net/literature/1119064

[189]

[190]

[191]

[192]

193]

[194]

[195]

[196]

[197]

[198]

[199]

200]

[201]

[202]

[203]

[204]

[205)

206]

207]

A. Banfi, G.P. Salam and G. Zanderighi, NLL + NNLO predictions for jet-veto efficiencies in
Higgs-boson and Drell-Yan production, JHEP 06 (2012) 159 [arXiv:1203.5773] [INSPIRE].

W. Bizon et al., Fiducial distributions in Higgs and Drell-Yan production at N*LL+NNLO,
JHEP 12 (2018) 132 [arXiv:1805.05916] [INSPIRE].

PARTICLE DATA GROUP collaboration, Review of Particle Physics, PTEP 2022 (2022)
083C01 [INSPIRE].

J. Ablinger, J. Bliimlein, M. Round and C. Schneider, Numerical Implementation of
Harmonic Polylogarithms to Weight w = 8, Comput. Phys. Commun. 240 (2019) 189
[arXiv:1809.07084] [INSPIRE].

NNPDF collaboration, Parton distributions from high-precision collider data, Eur. Phys. J.
C 77 (2017) 663 [arXiv:1706.00428] [INSPIRE].

A. Buckley et al., LHAPDF6: parton density access in the LHC precision era, Eur. Phys. J.
C 75 (2015) 132 [arXiv:1412.7420] [INSPIRE].

E. Bothmann et al., Accelerating LHC' event generation with simplified pilot runs and fast
PDFs, Eur. Phys. J. C 82 (2022) 1128 [arXiv:2209.00843] [INSPIRE].

T. Becher, M. Neubert and B.D. Pecjak, Factorization and Momentum-Space Resummation
in Deep-Inelastic Scattering, JHEP 01 (2007) 076 [hep-ph/0607228] [INSPIRE].

T. Hahn, Routines for the diagonalization of complex matrices, MPP-2006-85 (2006)
[physics/0607103] [INSPIRE].

A. Buckley et al., Rivet user manual, Comput. Phys. Commun. 184 (2013) 2803
[arXiv:1003.0694] [NSPIRE].

C. Bierlich et al., Robust Independent Validation of Experiment and Theory: Rivet version 3,
SciPost Phys. 8 (2020) 026 [arXiv:1912.05451] INSPIRE].

F. Krauss, R. Kithn and G. Soff, AMEGIC++ 1.0: A Matriz element generator in C++,
JHEP 02 (2002) 044 [hep-ph/0109036] [INSPIRE].

S. Catani, S. Dittmaier, M.H. Seymour and Z. Trocsanyi, The Dipole formalism for
next-to-leading order QCD calculations with massive partons, Nucl. Phys. B 627 (2002) 189
[hep-ph/0201036] [INSPIRE].

T. Gleisberg and F. Krauss, Automating dipole subtraction for QCD NLO calculations, Eur.
Phys. J. C 53 (2008) 501 [arXiv:0709.2881] [INSPIRE].

M. Schonherr, An automated subtraction of NLO EW infrared divergences, Eur. Phys. J. C
78 (2018) 119 [arXiv:1712.07975] [INSPIRE].

W.-L. Ju and M. Schénherr, The qr and A¢ spectra in W and Z production at the LHC' at
N3LL' + N2LO, JHEP 10 (2021) 088 [arXiv:2106.11260] [INSPIRE].

A. Gao, J.K.L. Michel, I.W. Stewart and Z. Sun, A Better Angle on Hadron Transverse
Momentum Distributions at the EIC, MIT-CTP 5462 (2022) [arXiv:2209.11211] INSPIRE].

Y.-T. Chien, D.Y. Shao and B. Wu, Resummation of Boson-Jet Correlation at Hadron
Colliders, JHEP 11 (2019) 025 [arXiv:1905.01335] [INSPIRE].

R.F. del Castillo, M.G. Echevarria, Y. Makris and I. Scimemi, Transverse momentum
dependent distributions in dijet and heavy hadron pair production at EIC, JHEP 03 (2022)
047 [arXiv:2111.03703] [INSPIRE].

— 68 —


https://doi.org/10.1007/JHEP06(2012)159
https://arxiv.org/abs/1203.5773
https://inspirehep.net/literature/1094890
https://doi.org/10.1007/JHEP12(2018)132
https://arxiv.org/abs/1805.05916
https://inspirehep.net/literature/1673183
https://doi.org/10.1093/ptep/ptac097
https://doi.org/10.1093/ptep/ptac097
https://inspirehep.net/literature/2106994
https://doi.org/10.1016/j.cpc.2019.02.005
https://arxiv.org/abs/1809.07084
https://inspirehep.net/literature/1694684
https://doi.org/10.1140/epjc/s10052-017-5199-5
https://doi.org/10.1140/epjc/s10052-017-5199-5
https://arxiv.org/abs/1706.00428
https://inspirehep.net/literature/1602475
https://doi.org/10.1140/epjc/s10052-015-3318-8
https://doi.org/10.1140/epjc/s10052-015-3318-8
https://arxiv.org/abs/1412.7420
https://inspirehep.net/literature/1335438
https://doi.org/10.1140/epjc/s10052-022-11087-1
https://arxiv.org/abs/2209.00843
https://inspirehep.net/literature/2146367
https://doi.org/10.1088/1126-6708/2007/01/076
https://arxiv.org/abs/hep-ph/0607228
https://inspirehep.net/literature/722046
https://arxiv.org/abs/physics/0607103
https://inspirehep.net/literature/721476
https://doi.org/10.1016/j.cpc.2013.05.021
https://arxiv.org/abs/1003.0694
https://inspirehep.net/literature/847552
https://doi.org/10.21468/SciPostPhys.8.2.026
https://arxiv.org/abs/1912.05451
https://inspirehep.net/literature/1770135
https://doi.org/10.1088/1126-6708/2002/02/044
https://arxiv.org/abs/hep-ph/0109036
https://inspirehep.net/literature/562391
https://doi.org/10.1016/S0550-3213(02)00098-6
https://arxiv.org/abs/hep-ph/0201036
https://inspirehep.net/literature/581476
https://doi.org/10.1140/epjc/s10052-007-0495-0
https://doi.org/10.1140/epjc/s10052-007-0495-0
https://arxiv.org/abs/0709.2881
https://inspirehep.net/literature/761194
https://doi.org/10.1140/epjc/s10052-018-5600-z
https://doi.org/10.1140/epjc/s10052-018-5600-z
https://arxiv.org/abs/1712.07975
https://inspirehep.net/literature/1644633
https://doi.org/10.1007/JHEP10(2021)088
https://arxiv.org/abs/2106.11260
https://inspirehep.net/literature/1869515
https://arxiv.org/abs/2209.11211
https://inspirehep.net/literature/2155131
https://doi.org/10.1007/JHEP11(2019)025
https://arxiv.org/abs/1905.01335
https://inspirehep.net/literature/1733214
https://doi.org/10.1007/JHEP03(2022)047
https://doi.org/10.1007/JHEP03(2022)047
https://arxiv.org/abs/2111.03703
https://inspirehep.net/literature/1962932

[208]

[209]

[210]

[211]

[212]

[213]

214]

[215]

[216]

[217]
[218]

[219]

[220]

X.-B. Tong, B.-W. Xiao and Y.-Y. Zhang, Harmonics of Parton Saturation in Lepton-Jet
Correlations at the FIC, arXiv:2211.01647 [nSPIRE].

D.Y. Shao, C. Zhang, J. Zhou and Y. Zhou, Azimuthal asymmetries of muon pair production
in ultraperipheral heavy ion collisions, arXiv:2212.05775 [INSPIRE].

L. Chen et al., Study of Isolated-photon and Jet Momentum Imbalance in pp and PbPb
collisions, Nucl. Phys. B 933 (2018) 306 [arXiv:1803.10533] [INSPIRE].

Y.-T. Chien, R. Rahn, S. Schrijnder van Velzen, D.Y. Shao, W.J. Waalewijn and B. Wu,
Recoil-free azimuthal angle for precision boson-jet correlation, Phys. Lett. B 815 (2021)
136124 [arXiv:2005.12279] [INSPIRE].

H. Bouaziz, Y. Delenda and K. Khelifa-Kerfa, Azimuthal decorrelation between a jet and a Z
boson at hadron colliders, JHEP 10 (2022) 006 [arXiv:2207.10147] [INSPIRE].

Y.-T. Chien, R. Rahn, D.Y. Shao, W.J. Waalewijn and B. Wu, Precision boson-jet azimuthal
decorrelation at hadron colliders, arXiv:2205.05104 [INSPIRE].

A. Banfi, M. Dasgupta and Y. Delenda, Azimuthal decorrelations between QCD jets at all
orders, Phys. Lett. B 665 (2008) 86 [arXiv:0804.3786] [INSPIRE].

C. Zhang, Q.-S. Dai and D.Y. Shao, Azimuthal decorrelation for photon induced dijet
production in ultra-peripheral collisions of heavy ions, arXiv:2211.07071 [INSPIRE].

P.A. Baikov, K.G. Chetyrkin and J.H. Kiithn, Five-Loop Running of the QCD coupling
constant, Phys. Rev. Lett. 118 (2017) 082002 [arXiv:1606.08659] [INSPIRE].

L.N. Lipatov, The parton model and perturbation theory, Yad. Fiz. 20 (1974) 181 [INSPIRE].

V.N. Gribov and L.N. Lipatov, Deep inelastic e p scattering in perturbation theory, Sov. J.
Nucl. Phys. 15 (1972) 438 [INSPIRE].

G. Altarelli and G. Parisi, Asymptotic Freedom in Parton Language, Nucl. Phys. B 126
(1977) 298 [INSPIRE].

Y.L. Dokshitzer, Calculation of the Structure Functions for Deep Inelastic Scattering and
ete™ Annihilation by Perturbation Theory in Quantum Chromodynamics., Sov. Phys. JETP
46 (1977) 641 [INSPIRE].

- 69 —


https://arxiv.org/abs/2211.01647
https://inspirehep.net/literature/2175966
https://arxiv.org/abs/2212.05775
https://inspirehep.net/literature/2613333
https://doi.org/10.1016/j.nuclphysb.2018.06.013
https://arxiv.org/abs/1803.10533
https://inspirehep.net/literature/1664533
https://doi.org/10.1016/j.physletb.2021.136124
https://doi.org/10.1016/j.physletb.2021.136124
https://arxiv.org/abs/2005.12279
https://inspirehep.net/literature/1797843
https://doi.org/10.1007/JHEP10(2022)006
https://arxiv.org/abs/2207.10147
https://inspirehep.net/literature/2120631
https://arxiv.org/abs/2205.05104
https://inspirehep.net/literature/2079960
https://doi.org/10.1016/j.physletb.2008.05.065
https://arxiv.org/abs/0804.3786
https://inspirehep.net/literature/784090
https://arxiv.org/abs/2211.07071
https://inspirehep.net/literature/2181736
https://doi.org/10.1103/PhysRevLett.118.082002
https://arxiv.org/abs/1606.08659
https://inspirehep.net/literature/1472834
https://inspirehep.net/literature/91556
https://inspirehep.net/literature/73449
https://doi.org/10.1016/0550-3213(77)90384-4
https://doi.org/10.1016/0550-3213(77)90384-4
https://inspirehep.net/literature/119585
https://inspirehep.net/literature/126153

	Introduction
	Factorisation
	Kinematics and the factorised cross section
	Dynamic regions
	The case of NJ=0
	The case of NJ>=1
	The NJ=1 configuration
	The NJ>=2 configuration
	Summary and discussion

	The soft function with the exponential regulator

	Resummation
	Asymptotic behavior
	Evolution equations
	Observables
	Matching to fixed-order QCD

	Numerical results
	Parameters and uncertainty estimates
	Validation
	Resummation improved results

	Conclusions
	The double differential transverse momentum distribution dsigma/dqTvec
	Evolution kernel for the non-diagonal anomalous dimension
	Decomposition of the theoretical uncertainty estimate

