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Abstract The measurement of quantum entanglement can
provide a new and most sensitive probe to physics beyond
the Standard Model. We use the concurrence of the top-quark
pair spin states produced at colliders to constrain the mag-
netic dipole term in the coupling between top quark and glu-
ons, that of τ -lepton pair spin states to bound contact inter-
actions and that of τ -lepton pairs or two-photons spin states
from the decay of the Higgs boson in trying to distinguish
between CP-even and odd couplings. These four examples
show the power of the new approach as well as its limita-
tions. We show that differences in the entanglement in the
top-quark and τ -lepton pair production cross sections can
provide constraints better than those previously estimated
from total cross sections or classical correlations. Instead,
the final states in the decays of the Higgs boson remain max-
imally entangled even in the presence of CP-odd couplings
and cannot be used to set bounds on new physics. We dis-
cuss the violation of Bell inequalities featured in all four
processes.

1 Entanglement at work in high-energy physics

Collider physics is all about the production of particles from
the interaction and the decay of other particles. Consider the
case of the production of just two of these particles: We can
study their momenta, energies and spin to reconstruct their
properties and compare them to those expected in the Stan-
dard Model (SM) – or in an extension of it. The same observ-
ables of the system of two particles partake in correlations
that are proper of their quantum state and that give rise to the
very characteristic property of entanglement (for a review,
see [1]). Because they are entangled, the two particles share
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properties – most notably, their spin correlations – that can
only be discussed in the system as a whole.

Though a preeminent feature in atomic physics, quantum
correlations among the components of a system has been
somewhat played down in quantum field theory because of
the fixed momentum representation of the states in Fock
space and the commuting nature of the momentum and occu-
pation number variables. Nevertheless, the quantum nature of
the particles produced in high-energy collisions is there and
their study could lead to new insights into their interaction.

Probing entanglement at collider was first proposed in
[2,3]. Tests in the high-energy regime of particle physics
have been suggested by means of neutral meson physics [4–
7], Positronium [8,9], Charmonium decays [10–12] and neu-
trino oscillations [13]. A discussion of some of these issues
also appears in [14,15].

The interest has been revived recently after entanglement
has been shown [16] to be present in top-quark pair produc-
tion at the LHC and it was argued [17] that Bell inequalities
violation is experimentally accessible in the same system.
Following this lead, there has been more work about top-
quark production [18–21], hyperons [22] and gauge bosons
from Higgs boson decay [23,24]. For all these particles, it
is possible to study entanglement and verify the violation of
Bell inequalities.

The same framework suggests the possibility of studying
what happens when the SM amplitudes are modified by intro-
ducing new physics beyond the SM. Because of its being so
very fragile, entanglement provides a very sensitive probe to
possible new physics in those cases where the SM states are
produced in an entangled state which the new physics tends
to lessen, modify or brake altogether. In general, by adding
extra terms to the SM interactions, the entanglement of the
states is modified and the amount of change is a sensitive
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function of the new physics present – which allows for direct
constraints to be set.

A first study of the impact of effective operators of dimen-
sion six – within the SM Effective Field Theory (SMEFT)
– has been presented in [25] for the entanglement of the
spins of top-quark pairs. In this work we want to provide a
comprehensive discussion for the case of bipartite, two-qubit
like systems available at colliders and explore to what extent
entanglement can provide a new tool in the search of physics
beyond the SM.

We find that entanglement provides a novel set of observ-
ables that could lead to improved constraints with respect to
those extracted from total cross sections or classical correla-
tions. Quantum correlations can readily be studied in a bipar-
tite system made of either two spin-1/2 particles or two mass-
less spin-1 (photons) [26–28]. Polarizations are measured at
colliders only for heavy fermions, the decays of which act as
their own polarimeters; for this reason, we study in detail the
system of top-quark and τ -lepton pairs produced at colliders.
For the τ -lepton pairs we also discuss the case of their coming
from the decay of the Higgs boson. In addition, we include
the case of the decay of the Higgs boson into two photons
because it can be modeled as a two-qubit system too and the
framework is analogous to that of two fermions. We model
the new physics by considering the effect of representative
operators not present within the SM and use the entanglement
observables to constrain the size of their contribution.

For all these four systems we also check the Bell inequal-
ities and find that they are maximally violated in the case of
the Higgs boson decays.

New analytical results for the polarization matrix of the
Drell–Yan processes qq̄ → τ τ̄ in the SM and beyond, as
well as the Higgs decay into τ+τ− and into two photons,
are provided in the Appendix, which also includes known
analytical results for the top-quark pair production qq̄ → t t̄ .

2 Methods

The quantum state of a bipartite system that can be mod-
eled as a two-qubit pair, can be represented by the following
Hermitian, normalized, 4 × 4 density matrix:

ρ = 1

4

[
1 ⊗ 1 +

∑
i

B+
i (σi ⊗ 1)

+
∑
j

B−
j (1 ⊗ σ j ) +

∑
i j

Ci j (σi ⊗ σ j )

]
, (1)

where σi are Pauli matrices, 1 is the unit 2 × 2 matrix, while
the sums of the indices i , j run over the labels representing
any orthonormal reference frame in three-dimensions.

The real coefficients B+
i = Tr[ρ (σi ⊗ 1)] and B−

j =
Tr[ρ (1 ⊗ σ j )] represent the polarization of the two qubits,

while the real matrix Ci j = Tr[ρ (σi ⊗σ j )] gives their corre-
lations. In the case of the particle pair system, B±

i andCi j are
functions of the parameters describing the kinematics of the
pair production. In addition, these coefficients need to satisfy
further constraints coming from the positivity request, ρ ≥ 0,
that any density matrix should fulfill; these extra conditions
are in general non-trivial, as they originate from requiring all
principal minors of the matrix ρ to be non-negative.

The two-qubit state ρ is separable if it can be expressed
as a convex combination of two-qubit product states:

ρ=
∑
i j

pi j ρ
(1)
i ⊗ ρ

(2)
j with pi j>0 and

∑
i j

pi j=1,

(2)

where ρ
(1)
i and ρ

(2)
j are single-qubit density matrices. All

states ρ that can not be written in the form of Eq. (2) are
called entangled and exhibit quantum correlations.

Correlations along only one direction in a given frame of
reference can only probe classical properties as in the case
of angular momentum conservation – the correlation in this
case being that if, say, spin up for one particle is measured in
the direction z, necessarily spin down will be measured in the
same direction for the other particle, assuming the initial state
has spin zero. It is only by the simultaneous measurement of
correlations along more axes (or different bases) that we can
probe quantum correlations, in particular, by measuring non-
commuting quantities for the two particles, as in the case of
the spin along the z direction for the first particle and the
spin along the x direction for the second one. This is the
reason why the full matrix Ci j is required in the study of
entanglement.

Quantifying the entanglement content of a quantum state
is in general a hard problem, but for bipartite systems made
of two qubits, an easily computable measure is available,
the concurrence [29,30]. It is constructed using the auxiliary
4 × 4 matrix

R = ρ (σ2 ⊗ σ2) ρ∗ (σ2 ⊗ σ2), (3)

where ρ∗ denotes the matrix with complex conjugated
entries. Although non-Hermitian, the matrix R possesses
non-negative eigenvalues; denoting with λi , i = 1, 2, 3, 4,
their square roots and assuming λ1 to be the largest, the con-
currence of the state ρ is defined as

C[ρ] = max
(
0, λ1 − λ2 − λ3 − λ4

)
. (4)

Concurrence vanishes for separable states, like those defined
in (2), reaching its maximum value 1 when ρ is a projection
on a pure, maximally entangled state.

The presence of entanglement in a quantum system, that
is of correlations among its constituents not accounted for
by classical physics, can lead to the violation of suitable
constraints, the so-called Bell inequalities, that are instead
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satisfied by certain local, stochastic completions of quantum
mechanics [26–28,31–35]. In the case of a two-qubit system
in the state (1), as a pair of spin-1/2 particles, a very useful
test is provided by the following inequality involving only
the correlation matrix C [36]:

∣∣∣n̂1 · C · (
n̂2 − n̂4

) + n̂3 · C · (
n̂2 + n̂4

)∣∣∣ ≤ 2, (5)

where n̂1, n̂2, n̂3 and n̂4 are four different three-dimensional
unit vectors determining four spatial directions, along which
the spins of the two particles can be measured. In order to test
this (generalized) Bell inequality one needs to maximize the
left-hand side of (5) by a suitable choice of the four spatial
directions. In practice, this maximization procedure can be
overcome by looking at the eigenvalues m1, m2, m3, of the
symmetric, non-negative, 3 × 3 matrix M = CTC , where
CT is the transpose of C , that can be ordered in decreasing
magnitude m1 ≥ m2 ≥ m3. At this purpose it is convenient
to introduce the operator m12[C] defined as

m12[C] ≡ m1 + m2. (6)

As proven in [36], given a two-qubit state ρ as in (1), with a
correlation matrix C satisfying the condition

m12[C] > 1. (7)

then there surely are choices for the vectors n̂1, n̂2, n̂3, n̂4

for which the left-hand side of (5) is larger than 2; in other
words, the two-qubit state (1) violates (5) if and only if the
sum of the two largest eigenvalues of M is strictly larger than
1.

In the following we concentrate on the two observables:

C[ρ] and m12[C]. (8)

We use the first to constrain possible new physics exten-
sion of the SM by studying spin correlations in top-quark
and τ -lepton pairs produced at colliders, the second to check
violations of the Bell inequalities in the same pair systems as
well as in the decay of the Higgs boson into τ -lepton pairs
and two photons.

Although other entanglement witnesses have been consid-
ered in high-energy physics [16,25], we stress that the con-
currence C[ρ] directly and fully quantifies the entanglement
content of the state ρ, it can be easily computed and readily
measured in experiments. The observable m12[C] witnesses
Bell non-locality and thus it is perfectly suited to test the
Bell inequality (5); indeed, as already remarked, it automat-
ically selects the best choice of the four units vectors n̂i that
maximizes the left-hand side of (5) and thus its violation.

2.1 Kinematics and projector operators

We consider the cross section for the process in which two
parton quarks go into two final fermions

q(q1) + q̄(q2) → f (k1) + f̄ (k2). (9)

The momenta k1 and k2 of the final fermion and anti-fermion,
and q1 and q2 of the entering quark and anti-quark, respec-
tively, can be written in the center-of-mass (CM) system as

k1 =
⎛
⎝ m f√

1 − β2
f

,
m f β f sin Θ√

1 − β2
f

, 0,
m f β f cos Θ√

1 − β2
f

⎞
⎠

k2 =
⎛
⎝ m f√

1 − β2
f

, −m f β f sin Θ√
1 − β2

f

, 0, −m f β f cos Θ√
1 − β2

f

⎞
⎠

q1 =
⎛
⎝ m f√

1 − β2
f

, 0, 0,
m f√

1 − β2
f

⎞
⎠

q2 =
⎛
⎝ m f√

1 − β2
f

, 0, 0, − m f√
1 − β2

f

⎞
⎠ , (10)

where m f is the mass of the final fermions and

β f =
√√√√1 − 4

m2
f

m2
f f̄

, (11)

where m f f̄ is the fermion-pair invariant mass, with Θ the
angle between the initial and final fermion momenta in the
CM frame.

Spin correlations, as embodied by the coefficients Ci j in
Eq. (1), are extracted from the cross section by taking the
product of the polarizations of the final fermions. This is done
by means of the usual projectors over definite polarizations
(for a fermion with momentum p, mass m f and polarization
vector ζ ):

u(p, ζ ) ⊗ ū(p, ζ ) = 1

2
(/p + m f )(1 − γ5/ζ ) and

v(p, ζ ) ⊗ v̄(p, ζ ) = 1

2
(/p − m f )(1 − γ5/ζ ), (12)

inserted in the square of the modulus of the amplitude. The
coefficients B±

i in Eq. (1) are instead obtained by keeping
only one of the two particle polarizations.

We adopt the orthonormal basis introduced in [37] in order
to describe the spin correlations thus obtained. Let p̂ the
unit vector along one of the proton beam directions in the
laboratory frame and denote with k̂ the direction of flight
of the final fermion in the fermion pair CM frame; then,
a convenient reference frame is defined by the three unit
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vectors:

r̂ = 1

r
( p̂ − yk̂) n̂ = 1

r
( p̂ × k̂), (13)

where

y = p̂ · k̂ = cos Θ r =
√

1 − y2 (14)

with Θ being the scattering angle. Notice, that at partonic
level the angle Θ is defined, according to the momenta in
Eq. (10), as the angle between initial quarks and final fermion.

The elements Ci j of the correlation matrix in Eq. (1) are
obtained on the various components of the chosen basis by
means of the polarizations vectors:

ζ k
1 =

⎛
⎝ β f√

1 − β2
f

,
sin Θ√
1 − β2

f

, 0,
cos Θ√
1 − β2

f

⎞
⎠

ζ k
2 =

⎛
⎝− β f√

1 − β2
f

,
sin Θ√
1 − β2

f

, 0,
cos Θ√
1 − β2

f

⎞
⎠

ζ r1 = ζ r2 = (0, − cos Θ, 0, sin Θ)

ζ n
1 = ζ n

2 = (0, 0, 1, 0) (15)

where the indices 1 and 2 stand for the final fermion and
anti-fermion.

The differential cross section for pair f f̄ production is
given by

dσ f f̄

dΩ
= β f |M|2

64π2 m2
f f̄

, (16)

where M is the amplitude for the production and β f is
defined in Eq. (11).

The parton level differential cross section for the two par-
tons – with fraction x1 and x2 of the available momentum
and momentum distribution (PDF) q(x) and q̄(x) – is given
by

dσ f f̄

dΩ dm f f̄
=2

∫
dσ f f̄

dΩ
q(x1)q̄(x2)δ(m

2
f f̄

−x1x2s) dx1dx2,

(17)

for CM energy
√
s. The cross section in Eq. (17) can be re-

written in terms of the parton luminosity function

Lqq̄(τ ) = 4τ√
s

∫ 1/τ

τ

dz

z
qq(τ z)qq̄

(
τ

z

)
(18)

by the change of variables x1 = τ/z and x2 = τ z, with
m2

f f̄
= τ 2s. In Eq. (18) there is an overall factor 2 due to the

symmetrization between quark and anti-quark. We use the
parton luminosity function in Eq. (18), as well as the corre-
sponding one for the case of having gluons as the partons, in
what follows. The differential cross section in Eq. (17) can

thus be written as

dσ f f̄

dΩ dm f f̄
= β f |M|2

64π2 m2
f f̄

Lqq̄(τ ), (19)

where Lqq̄(τ ) stands for the luminosity functions of the cor-
responding quark or gluon partons.

In the case of the Higgs boson H decay

H → f (k1) f̄ (k2), (20)

the same four-vectors in Eq. (10) can be used by imposing
m f f̄ = mh and puttingq1 andq2 at rest and equal; the vectors
k1 and k2 are back-to-back with no scattering angle depen-
dence. The polarization of the final states follows the same
structure as given in Eq. (12), with polarization vectors as in
Eq. (15). The corresponding Ci j elements are obtained in the
same way as above, by projecting on the various components
of the chosen basis for the polarization vectors in Eq. (15).

Regarding the Higgs boson decay into two photons

H → γ (k1) γ (k2), (21)

the projection in the product of the associated two photon
polarizations eλ1

μ (k1) and eλ2
μ (k2) (with both λ1 and λ2 indices

taking values 1 and 2) can be obtained in similar fashion by
expressing the corresponding density matrix ρμν for a photon
of generic momentum k and polarization eλ1

μ (k) as a function
of the Stokes parameters ξi :

ρμν(ξ) = eλ
μ(k)eλ′∗

ν (k) = 1

2
êTμ

(
1 + ξ · σ

)
êν

= 1

2

(
e(1)
μ e(1)

ν + e(2)
μ e(2)

ν

)
+ ξ1

2

(
e(1)
μ e(2)

ν + e(2)
μ e(1)

ν

)

− iξ2

2

(
e(1)
μ e(2)

ν − e(2)
μ e(1)

ν

)

+ξ3

2

(
e(1)
μ e(1)

ν − e(2)
μ e(2)

ν

)
, (22)

where the compact vectorial notation êμ ≡ (e(1)
μ , e(2)

μ ) is
adopted, with êTμ standing for the transpose, k the photon
4-momentum, and σi the Pauli matrices; the four-vectors
e(λ)
μ provide a basis for the linear polarizations, they are

two ortho-normal four-vectors orthogonal to the momentum:
e(λ) · e(λ′) = −δλ λ′

, e(λ)
μ · k = 0. To lighten the notation, we

removed the momentum dependence inside the polarization
basis.

For the two photon system, the product ρ(ξ (1))ρ(ξ (2)) of
the two density matrix enters, with ξ (1), ξ (2) the correspond-
ing Stokes parameters of the two photons. In this case the
correlation matrixCi j for the two photon system is expressed
on the basis of the Stokes parameters and it can be simply
extracted by selecting the terms proportional to ξ

(1)
i ξ

(2)
j in the

expression for the polarized amplitude square |M2| of the
process, and dividing them for the unpolarized |M̄2| con-
tribution. Analogously, for the B+

i or B−
i terms in Eq. (1),
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which can be extracted taking the linear terms proportional
to the corresponding Stokes parameters ξ

(1)
i or ξ

(2)
i respec-

tively, in the expression of |M2| and normalizing them by
|M̄2|.

2.2 Uncertainty estimates

The setting of bounds on physics beyond the SM is all about
the knowing the uncertainty of our limits. To estimate the
intrinsic uncertainty in the determination of observables in
Eq. (8) for the various processes we are going to consider, we
run 1000 pseudo-experiments according to the probability
distribution of the observables themselves.

For example, in comparing SM and new physics, from the
distributions of the observable value in the scattering angle
and the invariant mass obtained for the two cases, we can
obtain the significance with which we can separate the two.
To quantify this difference in terms of statistical significance,
we compute the p-value of the new physics distribution by
integrating the SM distribution from the mean value to −∞.

The significance is defined as Z = Φ−1(1 − p) where

Φ(x) = 1

2

[
1 + erf

(
x√
2

)]
. (23)

The value of Z assigns a statistical significance to the sep-
aration between the two distributions. We can take Z as the
number of standard deviations σ , in the approximation in
which the distribution is assumed to be Gaussian, and trans-
lates the number of standard deviations into a confidence
level (CL).

In the case of the Higgs boson decays, since there is no
kinematical variation, we simply draw a Gaussian dispersion
with σ = 1/

√
N , where N is taken from the corresponding

number of events generated by the production cross sections
and branching ratios multiplied for the benchmark luminosi-
ties. In those cases for which this number is very large, we
simply take 1000 events as an illustrative example.

As we comment further for the specific examples, all these
estimates of uncertainty are limited by being performed at
the level of primary parton production. They do not take into
account the additional uncertainty coming from the extrac-
tion of the entanglement observables from the actual data –
which are the angular distributions of the final states origi-
nating from the decays of the top quarks and τ -leptons. As
shown in [17] for the case of the top quark pairs, we do
expect a substantial additional uncertainty from systematic
errors in the reconstruction. In addition, there may also be
other confounding contributions from possible background
events.

3 Results: top quark pairs

Top quark pairs are routinely produced at the LHC and the
spin correlations among quark pairs has been shown [38–43]
to be a powerful tool in the physical analysis – limited aspects
of which have been already studied by the experimental col-
laborations at the LHC on data at 7 [44–47], 8 [48,49] and
13 TeV [50] of CM energy.

In this section we study the operators in Eq. (8) in the case
of top-quark pairs and use them to constrain new physics and
check the Bell inequalities.

3.1 Entanglement in t t̄ production

Before plunging into the actual analysis of spin correlations
in the top-quark pair production, it is useful to discuss qual-
itatively what the SM predicts for the entanglement content
of the t t̄-spin state as described by a density matrix ρt t̄ as in
(1).

The dependence of the entries of the matrix (1) on the
kinematic variables Θ , the scattering angle, and βt , as defined
in Eq. (11), is in general rather involved but it simplifies at
Θ = π/2 for which the top-quark pair is transversally pro-
duced and the entanglement is maximal. In this limit, we
choose the three vectors {r̂ , k̂, n̂} to point in the {x̂, ŷ, ẑ}
directions. In this frame, let us denote by |0〉 and |1〉 the
eigenvectors of the Pauli matrix σz with eigenvalues −1 and
+1, respectively; similarly, let |−〉 and |+〉 be the analogous
eigenvectors of σx and |L〉 and |R〉 those of σy .

Possible quark pair spin density matrices can be both pro-
jectors on pure, maximally entangled Bell states,

ρ(±) = |ψ(±)〉〈ψ(±)| |ψ(±)〉 = 1√
2

(|01〉 ± |10〉), (24)

and mixed, unentangled states,

ρ
(1)
mix = 1

2

(
|++〉〈++| + |−−〉〈−−|

)
(25)

ρ
(2)
mix = 1

2

(
|LR〉〈LR| + |RL〉〈RL|

)
(26)

ρ
(3)
mix = 1

2

(
|01〉〈01| + |10〉〈10|

)
. (27)

Let us treat separately the quark-antiquark qq̄ and gluon-
gluon gg production channels. For the qq̄ production chan-
nel, using the explicit expression collected in the Appendix
for the correlation coefficients Ci j , one obtains that the t t̄
spin density matrix can be expressed as the following con-
vex combination:

ρ
(qq̄)

t t̄ =λρ(+)+(1−λ)ρ
(1)
mix with λ= β2

t

2 − β2
t

∈ [0, 1]
(28)
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Fig. 1 Feynman diagrams for t t̄ production. The dot stands for the magnetic dipole vertex (see Eq. (37))

so that at high transverse momentum, βt → 1, the spins of the
t t̄ pair tend to be generated in a maximally entangled state;
this quantum correlation is however progressively diluted for
βt < 1, vanishing at threshold, βt = 0, as the two spin state
becomes a totally mixed, separable state.

The situation is different for the gg production channel, as
both at threshold and at high momentum the t t̄ spins result
maximally entangled, with ρ

(gg)
t t̄ = ρ(+) for βt → 1 and

ρ
(gg)
t t̄ = ρ(−) when βt = 0. For intermediate values of βt ,

the situation becomes more involved, and the two-spin den-
sity matrix can be expressed as the following convex combi-
nation:

ρ
(gg)
t t̄ = aρ(+) + bρ(−) + cρ(1)

mix + dρ(2)
mix (29)

with non-negative coefficients

a = β4
t

1 + 2β2
t − 2β4

t
b = (1 − β2

t )
2

1 + 2β2
t − 2β4

t

c = d = 2β2
t

(
1 − β2

t

)
1 + 2β2

t − 2β4
t

(30)

so that a + b + c + d = 1, while entanglement is less than
maximal.

Putting together the qq̄- and gg-contributions, as dis-
cussed below, leads to more mixing and therefore in general
to additional loss of quantum correlations. Nevertheless, this
preliminary analysis already indicates that in order to get
the larger t t̄-pair spin entanglement one has to look at the
kinematic region of high energy and large scattering angle.

3.2 Computing the observables

We compute all the entries of the correlation matrix Ci j for
the process

p + p → t + t̄ . (31)

with the unpolarized cross section given by

dσ

dΩ dmtt̄
= α2

s βt

64π2m2
t t̄

{
Lgg(τ ) Ãgg[mtt̄ , Θ]

+Lqq(τ ) Ãqq [mtt̄ , Θ]
}

(32)

where Lgg,qq(τ ) are the parton luminosity functions defined
in Eq. (18) of Sect. 2, τ = mtt̄/

√
s and αs = g2/4π .

The explicit expressions for Ãgg and Ãqq are given in the
Appendix.

The combination of the two channels (see Fig. 1) g+g →
t+t̄ andq+q̄ → t+t̄ in Eq. (32) is weighted by the respective
parton luminosity functions

Lgg(τ ) = 2τ√
s

∫ 1/τ

τ

dz

z
qg(τ z)qg

(
τ

z

)
and

Lqq(τ ) =
∑

q=u,d,s

4τ√
s

∫ 1/τ

τ

dz

z
qq(τ z)qq̄

(
τ

z

)
, (33)

where the functions q j (x) are the PDFs. Their numerical
values are those provided by a recent sets (PDF4LHC21)
[51] for

√
s = 13 TeV and factorization scale q0 = mtt̄ (we

have used for all our results the subset 40) (Fig. 2).
The correlation coefficients are given as

Ci j [mtt̄ , Θ]= Lgg(τ ) C̃gg
i j [mtt̄ , Θ]+Lqq(τ ) C̃qq

i j [mtt̄ , Θ]
Lgg(τ ) Ãgg[mtt̄ , Θ]+Lqq(τ ) Ãqq [mtt̄ , Θ] .

(34)

The explicit expression for the coefficient C̃gg
i j and C̃qq

i j for
the SM as well as for the new physics are collected in the
Appendix.

The expression in Eq. (34) must be expanded in the case
of new physics by retaining terms linear in the new physics
coefficient. As already remarked, the combination of differ-
ent terms in the cross section implies a decrease in entangle-
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Fig. 2 Parton luminosities: the gluon luminosity is about 9 times larger
than the quark luminosity at threshold, then decreasing to being about
30% larger around 1 TeV

ment. For this reason, the parton luminosities play an impor-
tant role.

3.3 Bell inequalities

Let us first discuss the violation of Bell inequalities coming
from the entanglement of the top-quark pair. This violation
has been already discussed in [17] by means of a numerical
simulation of the data of run2 at the LHC and finding an
estimate of m12[C] > 1 with a CL 95%. The estimate of the
operator m12[C] requires a correction for the inherent bias in
the numerical computation of the eigenvalues. The operator
is a consistent estimator and its use in testing the violation
of Bell inequalities, as in [17], valid. Such an analysis pro-
vides, as already mentioned, a more realistic estimate of the
uncertainty than that we are going to provide here which is
only based on the primary particle production.

Here we compute the violation of the Bell inequalities
directly from the analytical expression of m12[C] in Eq. (6).
Because the only off-diagonal term in the matrix

C =
⎛
⎝Cnn Cnr Cnk

Crn Crr Crk

Ckn Ckr Ckk

⎞
⎠ (35)

is Ckr , its eigenvalues are given by

C2
nn,

1

4

[
Ckk + Crr +

√
(C2

kk − Crr )2 + 4C2
kr

]2
,

1

4

[
Ckk + Crr −

√
(C2

kk − Crr )2 + 4C2
kr

]2
. (36)

The sum of the two largest among the three eigenvalues in
Eq. (36) give us the value of the operator m12[C].

The values of the observable m12[C] across the entire
kinematical space available are shown in the contour plot
in Fig. 3. In this and the following contour plots the values of
the observable are symmetric for 1 < 2Θ/π < 2. The figure
shows how the quantum entanglement increases as we con-
sider larger scattering angles and, as expected from the qual-
itative discussion in section III.A, is maximal for mtt̄ > 900.

Fig. 3 The observable m12[C] as a function of the kinematical vari-
ables Θ and mtt̄ across the entire available space

Table 1 Number of expected events in the kinematical region mtt >

900 GeV and 0.85 < x < 1

(Run 2) L = 140 fb−1 (Hi-Lumi) L = 3 ab−1

Events 463 9727

Therefore, we zoom in the kinematical window where the
observable m12[C] is larger, namely for mtt̄ > 900 GeV and
2Θ/π > 0.85. The mean value of m12[C] in this bin is 1.44
(Fig. 4).

We give in Table 1 the number of events for the two bench-
mark cases of the run 2 LHC and the future Hi-Lumi. Cross
sections are computed by running MADGRAPH5 [52] at the
LO and then correcting by the κ-factor given at the NNLO
[53]. These are events in which the two tops decay into lep-
tons (BR 2.3%)

To estimate the intrinsic uncertainty, we run 463 pseudo-
experiments according the probability distribution of our
observable. We find a significance of 55 for the hypothe-
sis m12[C] > 1 already with the 463 events from run2 at the
LHC.

A segmentation of the kinematical window into smaller
bins (the values of which can then be collected in a χ2 test)
improves the significance of the violation, as shown in [17].

The main source of theoretical uncertainty comes from
higher order QCD corrections to the LO values of the
Ci j matrix elements in Eq. (35). Following the results in
[39,40,54–56], where the NLO QCD corrections have been
computed, we find that the error induced by these miss-
ing corrections to the largest eigenvalues in Eq. (36) is of
the order of 8%, which gives approximatively a 10% uncer-
tainty on the main entanglement observables in the relevant
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Fig. 4 On the left: the
observable m12[C] in the
kinematical window mtt̄ > 900
GeV and 2Θ/π > 0.85. On the
right: the statistical distribution
for 463 events (with mean value
1.44 and dispersion σ = 0.008)
compared with the critical value
1 above which Bell inequalities
are violated

kinematic regions. Small sources of theoretical uncertainties
come from the PDF and the top-quark mass, but these are
negligible. By comparing results with two different set of
PDF, we estimate the related uncertainty to be of the order of
per mille. This is of the same order as the uncertainty induced
by top-quark mass, obtained by varying its mass within the
two standard deviation of its experimental value.

Concerning other sources of uncertainties, we stress here
that the analysis is not affected by possible backgrounds.
In the top-quark pair production, the background consists
of extra contributions to the �−�+νν̄bb̄ final state, which
are negligible once the kinematic of the two on-shell top
quarks is fully reconstructed. Further sources of background
include t t̄W or t t̄ Z as well as di-boson events, and misiden-
tification of leptons – which amount to a few percent of the
total. Another source of background is provided by the Z+jets
events, whose numbers, after the cuts, is comparable to the
other backgrounds aforementioned.

It goes without saying that this is an estimate that does
not take into account the systematic errors inherent in the
procedure of obtaining the observable from the actual data.
Taking the result in [17] as guidance, we must be ready to
see the significance drop by about one order of magnitude.

3.4 New physics: the magnetic dipole moment

As a benchmark in searching for new physics, we consider
the presence of a magnetic dipole operator in the coupling
between the top quark and the gluons:

Ldipole = −μ
gs

2mt
t̄ σμν T a t Ga

μν. (37)

In comparing our results with those following the conven-
tions of the SMEFT, with the magnetic dipole Lagrangian
for the top quark expressed in a SU (2)L invariant way as

L′
dipole = ctG

Λ2

(OtG + O†
tG

)
with

OtG = gs
(
Q̄L σμν T a tR

)
H̃Ga

μν, (38)

one finds

μ = −
√

2mtv

Λ2 ctG (39)

which implies that ctG/Λ2 = 0.1/[1TeV]2 corresponds to
μ = − 0.006. Notice the change of sign. Above, QL and
tR stands for the SU (2)L left-handed doublet of top-bottom
quarks and right-handed top quark fields respectively, while
H̃ is as usual the dual of the SU (2)L doublet Higgs field,
with SM vacuum expectation value v given by 〈0|H̃ |0〉 =
(v/

√
2, 0).

The addition of an effective magnetic dipole moment term
to the SM Lagrangian, gives rise in general to further mixture
contributions, thus counteracting the generation of entangle-
ment of the t t̄ spin state produced by the SM interaction.
Specifically, using the same notations introduced in Section
III.A and the coefficients collected in the Appendix, in the
qq̄ production channel, again for transversally produced top
quark pair (Θ = π/2), the two-spin density matrix can still
be expressed as the convex combination in (28), but with the
parameter λ replaced by

λ̃ = β2
t

2 − β2
t + 9μ fqq̄

� λ − μ
9 fqq̄β2

t

(2 − β2
t )

2
with

fqq̄ = N 2
c − 1

N 2
c

. (40)

At threshold, ρ(qq̄)

t t̄ is still the totally mixed, unentangled state

ρ
(1)
mix as before, but at high momentum, ρ

(qq̄)

t t̄ is no longer

maximally entangled as λ̃ = 1 − 9 μ fqq̄ < 1. Notice that the
convexity condition λ̃ ∈ [0, 1] requires μ ≥ 0.

The case of the gg production channel is more involved.
Nevertheless, at threshold the presence of the magnetic dipole
moment contribution is ineffective and ρ

(gg)
t t̄ = ρ(−), still

maximally entangled. On the other hand, for non-vanishing
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Fig. 5 On the left: concurrence C[ρ] in the SM as a function of the kinematical variables Θ and mtt̄ . On the right: concurrence with new physics
(NP): magnetic dipole moment with μ = 0.003

βt , the spin density matrix can be expressed, at least for βt ≥
1/

√
2, as the following mixture of four contributions:

ρ
(gg)
t t̄ = ãρ(+) + b̃ρ(−) + c̃ρ(1)

mix + d̃ρ
(3)
mix (41)

where

ã = Fgg

Ã
β2
t

(
2β2

t − 1
)

b̃ = Fgg + 7μ fgg

Ã
(1 − β2

t )

c̃ = 4Fgg

Ã
β2
t (1 − β2

t ) d̃ = 7μ fgg

Ã
β2
t (42)

with

Ã = Fgg
(
1 + 2β2

t − 2β4
t

) + 7μ fgg with

Fgg = N 2
c − 2

64Nc
and fgg = 1

Nc(N 2
c − 1)

. (43)

As βt → 1, ρ
(gg)
t t̄ remains a mixture of the density matri-

ces ρ(+) and ρ
(3)
mix, with mixing parameter ã = 1 − d̃ =

Fgg/(Fgg + 7μ fgg), and thus with entanglement content
no longer maximal. It is precisely the loss of entanglement
induced by the presence of a non-vanishing magnetic dipole
moment contribution both in the qq̄ and gg production chan-
nels that allows the bound on the magnitude of the extra,
effective parameter μ, to be obtained.

As Ldipole is here treated as a small perturbation to the
SM Lagrangian, only the lowest order contributions in μ

are retained in the evaluation of the top-pair spin state ρt t̄
and in the entries of the corresponding correlation matrix
Ci j = Tr[ρt t̄ (σi ⊗ σ j )]. As a consequence, the condition
of positivity of the matrix ρt t̄ might not be automatically
guaranteed, and therefore it needs to be imposed in order
to get physically tenable results: this might lead to possible
constraint on the range of the values that the parameter μ can
take.

The comparison between SM and new physics entangle-
ment is best done by means of the concurrence observable
C[ρ]. As before, the presence of only one off-diagonal matrix
element in the matrix C , as given in Eq. (35), makes possible
to write the concurrence in a simple analytic form as

C[ρ] = 1

2
max

[
0, |Crr+Ckk |

−(1−Cnn),

√
(Crr−Ckk)2+4C2

rk−|1−Cnn|
]

(44)

Figure 5 shows the concurrence in the whole kinematical
region for the SM and in the presence of the magnetic dipole
operator for the value of μ = 0.003. In both cases, the entan-
glement grows as we reach into larger energies and larger
scattering angles.

Figure 6 shows the kinematical region mtt̄ > 900 GeV
and 2Θ/π > 0.85 where the relative difference Δ between
SM and new physics (with μ = 0.003) is largest and equal to
about 3%. This result is in agreement with what found in [25]
(with ctG = −0.1 for Λ = 1 TeV). We concentrate on this
kinematical window to define the corresponding distribution
of the values of the concurrence. The distribution for the SM
has a central value 0.705, that in presence of the new physics
becomes 0.693.

As in the case of the operator m12[C], a segmentation
of the window into smaller bins improves the separation
between SM and new physics and can be implemented to
further strengthen the bound.

By running the toy Monte Carlo described in Sect. 2 for
the distributions corresponding to SM and new physics, we
find that, with the 463 events of LHC run2, a separation of
2.4σ is possible down to the value of μ = 0.003.

This result must be compared with current determinations
[57–68] based on single observables which find a weaker
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Fig. 6 On the left: percent difference in concurrence C[ρ] between SM
and new physics (μ = 0.003) in the kinematical window mtt̄ > 900
GeV and 2Θ/π > 0.85 where Δ is defined as the difference between

SM and new physics over the mean value of the SM. On the right: the
statistical distributions around the central values 0.705 and 0.693 for
the SM and the new physics, respectively

bound around μ = 0.02. It is comparable to that obtained
from the EFT global fit [69,70] which utilize multiple observ-
ables. We expect that when the new quantum probe of entan-
glement is added to the other data of the EFT global fit, it
will improve the overall sensitivity.

3.4.1 Consistency of the approximations

The estimates we have performed are based on three approx-
imations which must be verified for consistency.

First of all, the linear approximation in the inclusion of
the new physics is justified as long as the dipole operator,
which scales with the energy of the process, is much smaller
than the SM contribution. A rough estimate is provided by
taking mtt̄ � 1000 GeV (the upper bound of our kinematical
region) and μ � 0.003 (the benchmark value of the dipole).
We have that the new physics term is order

mtt̄ μ

2mt
� 0.01 (45)

smaller than the SM and therefore the linear approximation of
retaining only single insertions of the dipole operator seems
to be justified.

Since the chromo-magnetic operator is an effective oper-
ators of dimension 5, its effect grows with the energy. The
relevance of inserting twice this operator with respect to the
single insertion becomes relevant only in kinematic regions
of top-pair invariant masses that are close to the breaking
of the perturbative expansion of the effective theory. We
have restricted our analysis to effective scales below such a
region. In particular, in the plot of Fig. 5, the limit μ = 0.003

corresponds to an effective scale associated to the chromo-
magnetic operator of order 100 TeV, which is much above the
maximum range considered mtt̄ ∼ 2 TeV. Then, for invari-
ant masses mtt̄ < O(1 TeV), the quadratic contributions
of the magnetic-dipole operator is expected to be negligible
because proportional to terms of the order of O(m2

t t̄/Λ
2).

Accordingly, quadratic corrections are expected to be very
small. This is confirmed by the analysis in [25] at the LO
which shows that the effect of terms quadratic in the dipole
operator is negligible in the kinematical region we have con-
sidered. A NLO computation appeared recently in [71].

Secondly, the same estimate in Eq. (45) also shows that the
SMEFT operator expansion is justified even with an operator
like the magnetic dipole that grows with the CM energy. At
least for CM energies up to and around 1 TeV the correction
is perturbative.

Finally, a source of concern comes about the size of QCD
NLO terms with respect to the new physics term. The one-
loop QCD corrections give rise to a dipole operator with
coefficient

− αs

π

m2
t

m2
t t̄

log
m2

t t̄

m2
t

(46)

which, in the relevant kinematical window, is about 4 times
smaller than the NP term with μ = 0.003. Therefore, the
QCD contribution to the dipole operator can be neglected,
as we did, but a full QCD NLO estimate, though computa-
tionally challenging, will be necessary if the limit is to be
strengthened.
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3.5 The semi-leptonic decays of the top quark

The above analysis is done on the pseudo-observables defined
in terms of the top-quark pairs. In the final analysis, these
must be computed in terms of actual observables, namely
the momenta of the final leptons coming from the decay of
the top quarks. Introducing the angles

cos θa+ = �̂+ · â and cos θb− = �̂− · b̂, (47)

where b̂ = −â and â ∈ {k̂, r̂ , n̂}, the cross section is given
by

1

σ

dσ

dΩ+dΩ−
= 1

16π2

(
1+B−·�̂++B+·�̂−−�̂− · C · �̂+

)

(48)

so that, in the absence of acceptance cuts, the elements of the
matrix C can be expressed [43] as

Cab
[
mtt̄ , cos Θ

] = −9
1

σ

∫
dξab

dσ

dξab
ξab, (49)

where we defined

ξab = cos θa+ cos θb−, (50)

and with the residual dependence of the cross section σ on
intrinsic kinematic variables made explicit in the argument
of the matrix elements.

Such analysis based on the actual data can only be done
by the experimental collaborations. It requires the full sim-
ulation of the detector, an estimate of systematic errors and
the reconstruction efficiency. We are aware that a significant
deterioration in significance will take place.

4 Results: tau lepton pairs

The case in which the states produced by the interaction are
τ leptons can be discussed along the same lines as for the top
quarks. The dominant process is the Drell–Yan production
in which the quarks go either into a photon or a Z -boson
which, in turn, decay into the τ -lepton pair. In addition to the
production, in this case we also have the process in which the
τ leptons originate from the Higgs boson decay. We discuss
the possible role of quantum entanglement in both these two
physics processes.

4.1 Drell–Yan

The production of τ -lepton pairs via Drell–Yan in the SM
receives contributions from the s-channel photon, the Z -
boson and their interference. They provide an ideal labora-
tory for studying entanglement. Because the fewer the contri-
butions, the larger the entanglement (as mixing diminishes

quantum correlations), we expect this to be larger at low-
energies (where the photon diagram dominates) or around
the Z -boson pole (where the Z -boson diagram dominates).
At low energies, the cross section is dominated by the photon
term which produces entangled τ -lepton pairs, while at high-
energies all terms contribute and entanglement is suppressed.
Around the Z -boson pole the cross section is dominated by
the corresponding term with maximal entanglement.

4.2 Entanglement in τ τ̄ production

As in the case of the top-quark pair production, the two spin-
1/2 state is described by a density matrix of the general form
(1), whose entries depend on the kinematic variable βτ =√

1 − 4m2
τ /m

2
τ τ̄ , with mτ τ̄ the τ -pair invariant mass, and on

the scattering angle Θ .
Using the same reference frame and notation introduced

as for the top pair production in Section III.A, and again
focusing on the situation of transversally produced lepton
pairs (Θ = π/2), as previously mentioned, one can dis-
tinguish three kinematical regions: the first, at low energies,
mτ τ̄ � mZ , where photon exchange is dominating, the inter-
mediate one, mτ τ̄ � mZ , dominated by the Z exchange and
finally the high energy one, mτ τ̄ � mZ .

With the help of the results collected in the Appendix,
in the low-energy regime (for which mτ τ̄ � mZ ) and for
all quark production channels, the τ -pair spin state can be
represented by the convex combination as in (28),

ρτ τ̄ =λρ(+)+(1 − λ)ρ
(1)
mix with λ = β2

τ

2 − β2
τ

∈ [0, 1];
(51)

at threshold, βτ � 0, the state is a totally mixed one, with
no quantum correlations, while as βτ → 1, the spins of the
τ -lepton pair tend to be generated in a maximally entangled
state.

As the Z -channel starts to become relevant, this entangle-
ment is however progressively lost due to the mixing between
the photon and Z contribution. Nevertheless, a revival of
entanglement occurs as the Z channel become dominant,
mτ τ̄ � mZ ; in this region, with the notation and conventions
introduced in the Appendix, the two-spin density matrix can
be described by the following convex combination, for all
quark production channels:

ρτ τ̄ = λρ̃(+) + (1 − λ)ρ̃
(2)
mix

λ = (gτ
A)2 − (gτ

V )2

(gτ
A)2 + (gτ

V )2 (52)

where,

ρ̃
(2)
mix = 1

2

(
|RR〉〈RR| + |LL〉〈LL|

)
(53)
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while,

ρ̃(+) = |ψ̃(+)〉〈ψ̃(+)| |ψ̃(+)〉 = 1√
2

(
|+−〉 + |−+〉

)
, (54)

is a projector on a Bell state as in (24), but now expressed in
terms of the eigenvectors of σx . It turns out that λ � 1, so
that ρτ τ̄ is very close to the maximally entangled state ρ̃(+).

Finally, in the high energy regime (mτ τ̄ � mZ ) both pho-
ton and Z channel contribute, and their mixing lead to a rapid
depletion of entanglement. Indeed, for each qq̄ production
channel, the τ -pair spin correlations can be described in terms
of the following density matrix:

ρτ τ̄ = λqρ(+) + (1 − λq)ρ̃
(2)
mix

λq = 1 − Rq
−

1 + Rq
+

(55)

where ρ(+) is as in (24), while

Rq
± = χ2(m2

τ τ̄ )
[
(gqA) + (gqV )

][
(gτ

A) ± (gτ
V )

]
(Qq)2(Qτ )2 + 2 Reχ(m2

τ τ̄ ) Q
qQτ gqV g

τ
V

. (56)

Specifically, in the case of the u quark production channel,
one finds λu � 0.7, so that some entanglement is preserved,
while for the d quark production channel, as λd � 0.1, entan-
glement is essentially lost.

For completeness, it should be noticed that each τ lepton is
produced in a partially polarized state, as some of the single-
spin polarization coefficient B±

i in (1) are non-vanishing (see
Appendix). This is particularly relevant for the quark d pro-
duction channel, where the magnitude of these single parti-
cle terms is of the same order of the entries of the correlation
matrix Ci j , while for the u production channel they are about
one order of magnitude smaller. This implies that the full den-
sity matrix describing the τ -pair spin state ρτ τ̄ is really in this
case a mixture of (55) with additional states further reducing
in general its entanglement content.

In addition, as discussed below, the full correlation matrix
Ci j is obtained by putting together all relevant qq̄-production
channel contributions, weighted by suitable luminosity func-
tions and with appropriate normalization: this leads to further
mixing and in general to additional loss of entanglement.

4.3 Computing the observables

As before, we compute all the entries of the correlation matrix
Ci j from the process

p + p → τ− + τ+. (57)

with the unpolarized cross section given by

dσ

dΩ dmτ τ̄

= α2βτ

64π2m2
τ τ̄

{
Luu(τ ) Ãuu[mτ τ̄ , Θ]

+[
Ldd(τ ) + Lss(τ )

]
Ãdd [mτ τ̄ , Θ]

}
(58)

with Lqq(τ ) the parton luminosity functions of Sect. 2, τ =
mτ−τ+/

√
s and α = e2/4π . The explicit expressions for

Ãuu,dd(mτ τ̄ ) are given in the Appendix.
We combine the two channels (see Fig. 7) u + ū → τ− +

τ+ (which enters with factors function of Qu = 2/3) and
d + d̄ → τ−τ+ and s + s̄ → τ−τ+ (which enters with
factors function of Qd = −1/3) by weighting the respective
contributions through the parton luminosity functions

Lqq(τ ) = 4τ√
s

∫ 1/τ

τ

dz

z
qq(τ z)qq̄

(
τ

z

)
(59)

where the q(x) are the PDFs for respectively the u, d and s
quarks. As before, their numerical values are those provided
by PDF4LHC21 [51] for

√
s = 13 TeV and factorization

scale q0 = mτ τ̄ (see Fig. 8).
Therefore, we have that

Ci j [mtt̄ , Θ]

=
Luu(τ ) C̃uu

i j [mτ τ̄ , Θ]+[
Ldd (τ )+Lss(τ )

]
C̃dd
i j [mτ τ̄ , Θ]

Luu(τ ) Ãuu [mτ τ̄ , Θ]+[
Ldd (τ )+Lss(τ )

]
Ãdd [mτ τ̄ , Θ] ,

(60)

where the down-quark luminosities can be grouped together
because they multiply the same correlation functions. The
expression in Eq. (60) must be expanded in the case of new
physics by retaining the linear terms.

4.4 Bell inequalities

The values of the observable m12[C] are shown in Fig. 9
across the entire kinematical space. The figure confirms the

Fig. 7 Feynman diagrams for τ−τ+ production. On the right, the contact interaction (see Eq. (61))
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Fig. 8 Parton luminosity functions: The up quark luminosity is about 28% larger than the down quark luminosity at threshold, then increasing to
about 38% around the Z -boson pole and eventually reaching 70% around 1 TeV

Fig. 9 Eigenvalues m12[C] as a function of the kinematical variables
Θ and mtt̄ across the entire available space

Table 2 Number of expected events in the kinematical region 20 <

mτ τ̄ < 45 GeV and 2Θ/π > 0.80

(Run 2) L = 140 fb−1 (Hi-Lumi) L = 3 ab−1

Events 1.1 × 106 2.2 × 107

qualitative analysis of section IV.B. It shows that, for large
scattering angles, entanglement is close to maximal (that
is,m12[C] close to 2) where the invariant mass of the τ -lepton
pairs selects one of the two possible channels with either the
photon or the Z -boson exchange dominating.

We take the kinematical window where 20 < mτ τ̄ < 45
and 2Θ/π > 0.80 as the most favorable to test the Bell
inequalities and there estimate the operator m12[C]. In this
window the mean value of m12[C] is 1.88. The number of
expected events at the LHC is large (see Table 2 in which
the cross sections are computed by running MADGRAPH5
[52] at the LO and then correcting by the κ-factor given at
the NNLO [72]) and we show the statistical significance of

the hypothesis m12[C] > 1 (as obtained by running the toy
Monte Carlo described in Sect. 2) for the case of having
just 100 events (Fig. 10). The statistical significance is huge:
more than 100. Indeed, this seems to be the process where the
experimental confirmation of the violation of Bell inequali-
ties is most likely thanks to the large number of events avail-
able (as opposed to the scarcity of events with the required
energy in the case of the top quark).

The main source of theoretical uncertainty on the entan-
glement observables of the τ lepton pairs comes from the
choice of the PDF, which is negligible in the relevant kine-
matic regions and giving an effect of the order of a per mille.
As it was for the case of the top-quark pairs, here too the
possible backgrounds are negligible once the tagging on the
exclusive decays modes of the τ and the kinematic cuts to
reconstruct its on-shell mass are employed.

4.5 New physics: contact interactions

The simplest new physics that can enter the Drell–Yan pro-
cess is a contact interaction among quarks and τ -leptons.
Such a contact interaction mediates a process in which the
quarks directly produce the leptons (see Fig 7).

The most general contact operators for the production of
τ -leptons from quarks can be written, in chiral components,
as

Lcc = −4π

Λ2 ηLL(q̄Lγ αqL) (τ̄LγατL)

−4π

Λ2 ηRR(q̄Rγ αqR) (τ̄RγατR)

−4π

Λ2 ηLR(q̄Lγ αqL) (τ̄RγατR)

−4π

Λ2 ηRL(q̄Rγ αqR) (τ̄LγατL). (61)

These contact operators can be thought, in a UV complete
theory, as arising from the exchange of a scalar lepto-quark.
The scale Λ in Eq. (61) could be of the same order of the
mass scale of the corresponding new physics particles. The
exchange of a vector lepto-quark leads to contact operators
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Fig. 10 On the left: the
kinematical window
(20 < mτ τ̄ < 45,
2Θ/π > 0.80) where the Bell
inequality is to be tested. On the
right: the statistical distribution
for 100 events around the mean
value 1.88 with dispersion given
by σ = 0.006

with no interference terms with the SM diagrams, in the quark
and lepton massless limit, and therefore less constrained. The
scale Λ controls the size of these new-physics terms; the
factor 4π is conventional and is there to remind us that the
UV physics could come from a strong-coupling regime.

To gauge the effect of these terms is sufficient to take one
of them. The function Ã and C̃i j for the operator LR (the
third term in Eq. (61)) are given in Appendix with ηLR = 1.

Based on general grounds, all operators in Eq. (61) give
the same order of magnitude effect. Indeed, in model inde-
pendent analysis, it is customary to assume the contributions
from different operators to be uncorrelated, due to different
potential NP contributions to each of the corresponding Wil-
son coefficients. Therefore, the bounds obtained from each
separate contribution to the entanglement, are expected to be
the same order of the other operators, which only differs for
a different chirality structure.

The addition of such an effective contact interaction term
to the SM Lagrangian modifies the picture we drew about
the entanglement of the τ -lepton pairs in Section IV.B For a
given quark qq̄ production channel and in the high energy
regime (mτ τ̄ � mZ ), the τ -pair spin correlations can again
be described in terms of the convex combination in (55), but
with the parameter λq replaced by

λ̃q = λq
[

1 + η

(
R̃q

−
1 + Rq

+
− R̃q

+
1 − Rq

−

)]

R̃q
± = QqQτ ± χ(m2

τ τ̄ )
[
(gqA) + (gqV )

][
(gτ

A) ± (gτ
V )

]
(Qq)2(Qτ )2 + 2 Reχ(m2

τ τ̄ ) Q
qQτ gqV g

τ
V

. (62)

where η = m2
τ τ̄ /αΛ2. For the u-quark production channel

λ̃u � λu
(
1+η/4

)
, while for the d-quark production channel

one finds λ̃d � λd
(
1−3η

)
. As both λu and λd are less than 1

and η is small, one can get both an increase and a decrease of
the τ -pair spin correlations according to the sign of η, with-
out violating the requirement of the positivity of the density

matrix ρτ τ̄ . It is precisely this change in the entanglement
content of the τ -pair spin state induced by the presence of
the contact term contribution, both in the uū and dd̄ produc-
tion channels, that makes possible obtaining bounds on the
magnitude of the new physics scale Λ.

As we already discussed, the entanglement becomes larger
in the kinematical regions where either the photon or the Z -
boson diagram dominates (Fig. 11). Because the new physics
terms increase as the energy in the CM, these regions – being
as they are at relatively low-energies – are not favorable for
distinguishing between SM and new physics. It is at higher
energies, just below 1 TeV that the two can best be compared.
At these energies, the amount of entanglement is modest but
very sensitive to the addition of new terms in the amplitude.
We therefore consider the kinematical region mτ τ̄ > 800
as a compromise between having enough events and having
new-physics effects sizable.

As previously mentioned, a new feature of the τ -lepton
case is the non-vanishing of some single polarization B±

i
terms in the spin density matrix (1), which were instead all
zero in in the case of the top-quark pair spin states. Their pres-
ence makes the extraction of the concurrence C[ρ] possible
only numerically.

The left side of Fig. 12 shows the kinematical region
mτ τ̄ > 800 GeV and 0.85 < x < 1 where the relative dif-
ference Δ between SM and new physics (with Λ = 25 TeV)
is largest and equal to about 70%. The mean value of C[ρ]
for the SM is 0.25, 0.10 for the new physics, the dispersion
is about σ = 0.04. Such a large effect shows that the contact
interaction and its scrambling of the two τ -lepton polariza-
tions is a very effective way of changing the concurrence of
their spins.

The number of events at high-energy is shown in Table 3.
They turn out to be too few at LHC run2. The right side of
Fig. 12 shows how new physics can be distinguished from SM
with a significance of 3.7 for a contact interaction with a scale
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Fig. 11 On the left: concurrence C[ρ] in the SM as a function of the kinematical variables Θ and mtt̄ . On the right: concurrence with new physics
(NP) (with Λ = 25 TeV). The invariant squared mass is on a logarithmic scale in both figures

Fig. 12 On the left: percent
difference in concurrence C[ρ]
in the kinematical window
0.85 < 2Θ/π < 1 and
800 < mtt̄ < 1000 between the
SM and new physics (with
Λ = 25 TeV or, equivalently,
c = 0.02) where Δ is defined as
the difference between SM and
new physics over the mean
value for the SM. On the right:
statistical distributions for the
573 events expected at Hi-Lumi
for the SM (blue bins, mean
value 0.25) and the new physics
(red bins, mean value 0.10)

Table 3 Number of expected events in the kinematical regionmτ+τ− >

800 GeV and 0.85 < x < 1

(Run 2) L = 140 fb−1 (Hi-Lumi) L = 3 ab−1

Events 27 573

Λ = 25 TeV with 573 events (Hi-Lumi). This result com-
pares favorably with current determinations of four-fermion
operators [73,74] (see also, the review in [75]).

The value Λ = 25 TeV corresponds to c = 0.02 for Λ =
1 TeV in the SMEFT notation where the contact operator we
are considering is given by

c

Λ2 (q̄Lγ αqL) (τ̄RγατR). (63)

This value is such as to make the estimate in a region where
both the SMEFT expansion is safe and the NLO contributions
smaller. Contrary to the magnetic dipole momentum in the
top-quark case, in the τ -lepton case EW and QCD NLO cor-
rections are expected to be much smaller than the effect of
the contact interaction terms.

4.6 The τ -lepton decays

The τ lepton decays as

τ− → A + ντ

�A = e−ν̄e, μ−ν̄μ, π−, ρ−, a1 . . . (64)

with

BR (�−ν̄�ντ ) � 35%, BR (π−ντ ) � 11%, and

BR (ρ−/a1ντ ) � 26%. (65)

These decays taken together account for more than 80% of
all decays.

The angular distribution of the decay products can be used
to determine the polarization of the τ lepton. The decay mode
τ− → π−ντ has a distribution

1

Γ

dΓ

dz
= 1

2
(1 + Pτ z), (66)

where z = cos θ – the angle being defined with respect to the
charged final state. Equation (66) is the same as in the case of
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Fig. 13 Feynman diagrams for τ−τ+ production. On the right, a pos-
sible CP odd vertex

the top-quarks and the same procedure to compute the coef-
ficients Ci j can be used here. Unfortunately the branching
ratio for the two τ s to simultaneously decay in this channel
is small and around 1%. Yet the large number of expected
events around mτ τ̄ � 30 GeV makes the analysis of the Bell
inequalities violation possible.

The leptonic decay mode τ− → �−ν̄�ντ has a distribution

1

Γ

dΓ

dz
= 1

2
(1 − z)

[
(5 + 5z − 4z2)

+Pτ (1 + z − 8z2)
]
, (67)

which has only a weak dependence on the polarization [76].
Therefore one has to resort to the two decays τ → ρντ

and τ → a1ντ . The reconstruction of the coefficients Ci j

for these channels depends on that of the polarizations of the
mesons [76]. For this reason, the analysis can only be done
by means of a full simulation. The relevance of the physics
of entanglement we discussed might encourage the on-going
efforts in this direction by the experimental collaborations.
The effect is there – waiting to be extracted from the data.

4.7 Higgs boson decay

The decay of the Higgs boson into a pair of fermions (see,
Fig. 13) or – as we discuss in the next section, two photons
– provides a physical process very similar to those utilized
in atomic physics for studying entanglement. Because the
final states originate from a scalar state, their entanglement
is obvious as much as the correlation between their angular
momenta.

4.7.1 Bell inequalities

The interaction Lagrangian for the decay of the Higgs boson
into a pair of τ leptons is given by

LSM = mτ

v
τ̄ τ h, (68)

where v is the vacuum expectation value of the Higgs field
h. On the basis of this interaction term, the elements of the

Table 4 Number of expected events in the Higgs boson decay into
τ+τ− pairs

(Run 2) L = 140 fb−1 (Hi-Lumi) L = 3 ab−1

Events 2.3 × 105 5, 1 × 106

Fig. 14 Significance of the violation of Bell inequality in the decay of
the Higgs boson in τ−-τ+ and photon pairs (as discussed below). Given
the large number of events, the Gaussian distribution around the value
2 is very peaked (σ = 1/

√
N ) and the statistical significance large.

As an example, we draw the case N = 1000 for which the statistical
significance of m12[C] > 1 is 32

matrix Ci j entering the tau lepton-pair spin density matrix
(1) can be easily computed and given by

C =
⎛
⎝1 0 0

0 1 0
0 0 −1

⎞
⎠ , (69)

where the C matrix above is defined on the {n̂, r̂ , k̂} spin
basis as in Eq. (35). The sum of the square of the two largest
eigenvalues gives m12[C] = 2, so that the Bell inequality (5)
is maximally violated.

Since there is no kinematical dependence, we simply give
the uncertainty as 1/

√
N with N the number of events. Given

the maximal violation of Bell inequalities and the large num-
ber of events (see Table 4 in which the cross sections are
computed by running MADGRAPH5 [52] at the LO and
then correcting by the κ-factor given at the N3LO+N3LL
[77]), the significance can be huge. As shown in Fig 14 in
the case of 1000 events, the significance of the hypothesis
m12[C] > 1 is 10. Unfortunately in this kinematical region
the tail of the pole of the Z -boson still dominates and gives
a background that has to be reduced in order to proceed with
the physical analysis.

4.7.2 Constraints on new physics

We would like to study the entanglement of the two τ lep-
tons in the presence of new physics. The Higgs boson in the
SM is a scalar CP even state. A CP odd component can be
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introduced by a vertex as that in the Lagrangian [78–80]

LCPodd = i
mτ

v
τ̄γ5τ h. (70)

For a recent review on possible CP odd interactions of the
Higgs boson, see [82].

Combining the two interactions, mimicking for instance
the two doublet Higgs models, we have

cos ϕ LSM + sin ϕ LCPodd, (71)

where the parameter ϕ modulates the amount of new physics.
Taking the two vertices in Eq. (71) together should pro-

vide the means to constrain the new-physics CP odd vertex.
Absorptive contributions are for the moment excluded, so
that the coupling constants are assumed to be real.

Notice that, concerning the specific case of the on-shell
Higgs decay in two fermions, the new physics parametriza-
tion given in Eq. (71) is also the most general one. Indeed, in
the case of both the Higgs and fermions fields on-shell, the
potential contribution of Lorentz invariant operators of higher
dimensions can always be projected into the coupling struc-
ture provided by the renormalizable Lagrangian in Eq. (71).

With this generalized interaction Lagrangian, the elements
of the correlation matrix C in Eq. (35) become

C =

⎛
⎜⎜⎜⎜⎜⎝

β2
τ cos2 ϕ − sin2 ϕ

β2
τ cos2 ϕ + sin2 ϕ

− βτ sin 2ϕ

β2
τ cos2 ϕ + sin2 ϕ

0

βτ sin 2ϕ

β2
τ cos2 ϕ + sin2 ϕ

β2
τ cos2 ϕ − sin2 ϕ

β2
τ cos2 ϕ + sin2 ϕ

0

0 0 −1

⎞
⎟⎟⎟⎟⎟⎠

,

(72)

where now βτ =
√

1 − 4m2
τ /m

2
h . This result has already

been found in [78,81]. Then, the eigenvalues of the M =
CTC matrix are equal to (1, 1, 1) and the operator m12[C] =
2, showing a maximal violation of the Bell inequalities.

Similarly, the resulting concurrence is still maximal,

C[ρ] = 1 (73)

as it is independent from ϕ. This surprising result can be
understood as follows. At tree level, the interaction in (71)
produce pair of leptons that turn out to be totally unpolarized,
but highly correlated in spin. In fact, choosing the z-axis
along the τ− direction of flight in the Higgs rest frame, and
neglecting terms of order (mτ /mh)

2, so that βτ � 1, the spin
state of the τ -lepton pair turns out to be [79]:

|ψττ̄ 〉 = 1√
2

(
|01〉 + e2iϕ |10〉

)
(74)

where |0〉 and |1〉 are as before the eigenvectors of σz , repre-
senting the projection of the lepton spins along the z axis. As
the CP transformation reverses these spin projections, the
pure state (74) is a CP = 1 state for ϕ = 0, the usual SM

Fig. 15 Feynman diagrams for the Higgs boson h into two photons.
The dot stands for the CP-odd vertex

result, while it is a CP = −1 state for ϕ = π/2. In addi-
tion, it is maximally entangled for all values of ϕ: indeed, the
trace over either leptons of the corresponding density matrix
gives a totally unpolarized state: Tr1,2

[|ψττ̄ 〉〈ψττ̄ |
] = 1/2.

As a consequence, in this particular case, the entanglement
content of the lepton pair spin state can not be used to bound
CP-odd additions to the SM as the spin quantum correlations
are insensible to the angle ϕ.

A difference in entanglement shows in the concurrence
only in the presence of an absorptive term – it makes the
entanglement no longer unaffected by the CP odd term. This
result is reminiscence of what happens in the Kaon system
where we need both a CP-violating and a CP-conserving
phase in order to be able to see direct CP-violation.

Such an absorptive part can come in the SM from QED
loop correction to the vertex as the two final leptons exchange
a photon but is very small. A phase could also be produced
by the new physics term but we do not explore it further
since is model dependent and it unavoidably introduces extra
parameters and an uncertainty that is hard to judge.

5 Results: two photons

The entanglement of a system of two photon has been dis-
cussed in [83]. Here we examine it as the final states of the
decay of the Higgs boson (Fig. 15). In more than one way,
this system is even closer than the Higgs boson decay into
τ -lepton pairs discussed in the previous section to what is
done in atomic physics, where the polarizations of photons
originating in atomic transitions are discussed.

5.1 Bell inequalities

The Higgs boson h decays into two photons via an effective
coupling gγ γ h provided in the SM by loop contributions. The
Lagrangian is given by

L = −1

4
gγ γ h h FμνFμν, (75)
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Table 5 Number of expected events in the Higgs boson decay into two
photons

(Run 2) L = 140 fb−1 (Hi-Lumi) L = 3 ab−1

Events 8854 1.8 × 105

where Fμν is the field strength of the photon.
The corresponding polarized amplitude square is

|Mh |2 = |gγ γ h |2Vμν(k1, k2)V
ρσ (k1, k2)

×
[
ελ1
μ (k1)ε

λ′
1∗

ρ (k1)
] [

ελ2
ν (k2)ε

λ′
2∗

σ (k2)
]
, (76)

where Vμν(k1, k2) = gμν(k1 · k2) − kν
1k

μ
2 . Notice that,

gauge invariance is guaranteed by the Ward Identities
kμ

1 Vμν(k1, k2) = kν
2Vμν(k1, k2) = 0.

The projection on the linear polarizations can be per-
formed by substituting the terms in square brackets with
the corresponding density matrix ρμν given in Eq. (22), and
using the method explained in Sect. 2. After summing over all
photons polarizations, we obtain the unpolarized amplitude
square

|M̄h |2 = |ghγ γ |2m4
h/2, (77)

to which corresponds the width Γ = g2
hγ γm

3
h/(64π2).

After normalization over the unpolarized square ampli-
tude in Eq. (81), we find that the correlation matrix C is

C =
⎛
⎝1 0 0

0 −1 0
0 0 1

⎞
⎠ . (78)

in the basis of the Stokes parameters {ξ1, ξ2, ξ3} for the lin-
ear polarizations as defined in Eq. (22). For the matrix C in
Eq. (78), the operator m12[C] = 2 and the Bell inequalities
are maximally violated.

To estimate the uncertainty, we consider a Gaussian dis-
tribution around the value 2. The number of events expected
in the production and decay of the Higgs boson into two pho-
tons is shown in Table 5 in which the cross sections are esti-
mated at the LO by means of MADGRAPH5 [52] and then
corrected by the κ-factor as estimated at the N3LO+N3LL
[77]. Given the large number of events, this distribution has a
rather sharp peak. The statistical significance of the violation
is shown in Fig. 14 (Sect. 4.7) for 1000 events, the same way
we did for the case of the Higgs boson decaying into a pair
of τ -leptons. Already for this number of events the violation
is statistically significant. This a test well worth doing but it
requires the detection of the polarization of the two photons.

5.2 New physics

As discussed in the case of the decay into τ -leptons, the
Higgs boson could have a CP odd vertex from a new physics

contribution. In the case of two final photons, it would decay
just like the neutral pion π0 decays into two photons via the
anomaly. Then, it is useful to parametrize the corresponding
effective Lagrangian as

L′ = −1

4
g̃hγ γ h Fμν F̃μν, (79)

where F̃μν = 1/2εμναβFαβ is the dual field strength of the
photon, with εμναβ the Levi-Civita antisymmetric tensor sat-
isfying ε0123 = 1. Then, the corresponding polarized square
amplitude is given by

|M′
h |2 = |g̃γ γ h |2Ṽμν(k1, k2)Ṽ

ρσ (k1, k2)

×
[
ελ1
μ (k1)ε

λ′
1∗

ρ (k1)
] [

ελ2
ν (k2)ε

λ′
2∗

σ (k2)
]
, (80)

where Ṽμν(k1, k2) = εμναβkα
1 k

β
2 . Notice that, gauge invari-

ance of the amplitude is automatically guaranteed by the anti-
symmetric properties of εμναβ . For the unpolarized ampli-
tude square, we obtain

|M̄h |2 = |g̃hγ γ |2m4
h/2. (81)

If we now combine the two Lagrangians as

Ltotal = gγ γ h

4

[(
h FμνFμν

) + z
(
h Fμν F̃μν

)]
(82)

by collecting the respective coefficients in the parameter z ≡
g̃γ γ h/gγ γ h , we might expect to be able to study the effect of
the new physics on the entanglement of the two final photons.

A non-vanishing interference among the two contributions
arises in the polarized contributions to the square amplitude
generated by the Lagrangian in Eq. (82), while it vanishes in
the unpolarized case.

From the Lagrangian in Eq. (82) we obtain the correlation
matrix (in the Stokes parameter basis)

C =

⎛
⎜⎜⎜⎜⎝

1 − z2

1 + z2 0
2 z

1 + z2

0 −1 0

− 2 z

1 + z2 0
1 − z2

1 + z2

⎞
⎟⎟⎟⎟⎠ . (83)

Non-vanishing contributions to the Bi coefficients arise
due to the interference term; they are given by

B+
2 = −B−

2 = i
2|z|

1 + |z|2 , B±
1 = B±

3 = 0. (84)

They represents the polarization of the single photons. The Bi
coefficients are purely imaginary and cancel out in the matrix
R (see Eq. (3) in Sect. 2) which gives us the concurrence.

As in the case of the final two τ leptons, for real coef-
ficients in the Lagrangians in Eq. (82), our expectation of
extracting bounds on the new physics is frustrated and the
overall entanglement is not affected and
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C[ρ] = 1. (85)

even in the presence of new physics.
The presence of an absorptive part in one or both the two

couplings gγ γ h and g̃γ γ h , by inducing a phase δ = arg z,
would make the concurrence sensitive to the new physics. In
this case, the matrix C would become

C =

⎛
⎜⎜⎜⎜⎝

1 − |z|2
1 + |z|2 0

2|z| cos δ

1 + |z|2
0 −1 0

−2|z| cos δ

1 + |z|2 0
1 − |z|2
1 + |z|2

⎞
⎟⎟⎟⎟⎠ , (86)

and (for z and δ small) the concurrence is given by

C[ρ] = 1 − |z| δ, (87)

thus probing the presence of the CP-odd term.
A phase is present in the SM vertex and comes mainly

from the absorptive part of the b-quark loop in the effective
coupling between the Higgs boson and the two photons. In
particular, assuming the g̃γ γ h real, for the phase δ in the SM
framework we get δ ∼ −4 × 10−4. Even if included, this
contribution is too small to make a difference.

One may speculate about the presence of a phase in the
CP odd vertex. Since the size of it depends on the specific
model and the uncertainty would be hard to gauge, we do not
to pursue this possibility further.

5.3 Detecting photon polarizations

The possibility of measuring photon polarizations depends
on their energy. For high-energy photons, the dominant pro-
cess is pair production as the photons fly through matter.
There are two possible processes: the electron interacting
with the nuclei (A) or the atom electrons:

γ + A → A + e+ + e−

γ + e− → e− + e+ + e− , (88)

with the latter dominating in the energy range we are inter-
ested in.

For a polarized photon, the Bethe-Heitler cross section
for the Bremsstrahlung production of electron pairs depends
also on the azimuthal angles ϕ± of the produced electron and
positron [84,85] as

ds

dϕ+dϕ−
= σ0

[
Xun + Xpol Pγ cos(ϕ+ − ϕ−)

]
, (89)

where Pγ is the linear polarization fraction of the incident
photon, Xun and Xpol are the unpolarized and polarized coef-
ficients respectively, which depend on the kinematical vari-
ables. The explicit form of the cross section in Eq. (89) can
be found in [86]. The relevant azimuthal information comes

from the dependence of the cross section on the a-coplanarity
of the outgoing electron and positron. The measure of the rel-
ative angle between these momenta gives information on the
polarization of the photon.

Even though this possibility is not currently implemented
at the LHC, detectors able to perform such a measurement
are under discussion for astrophysical γ rays [87–89] and an
event generator to simulate the process already exists [90]
and has been implemented within GEANT [91] (for a recent
review, see [92]).

6 Summary and outlook

Our exploration of the use of quantum entanglement at collid-
ers shows that it can provide new tests of quantum mechanics
as well as a very promising new tool in the study of the SM
as well as its possible extensions leading to new physics.

The best system by far where to test the violation of Bell
inequalities is the decay of the Higgs boson. The decay of the
Higgs boson into a pair of τ -leptons seems already feasible
with the data of run2 at the LHC although one has to disen-
tangle this channel from the tail of the Z -boson pole that still
dominates at values of the invariant mass around the Higgs
boson mass. The decay of the Higgs boson into two pho-
tons, while equally promising, requires a dedicated detector
in order to measure the photon polarizations. A similar test
is also possible in the production of top-quark and τ -lepton
pairs, with the latter the most promising within the kinemat-
ical windows just above threshold and around the Z -boson
pole.

Searching for constraints to new physics is possible by
means of the entanglement between the spins of pairs of par-
ticles produced in the collisions. We find the concurrence
C[ρ] an observable very sensitive to any physics beyond the
SM. The use of this tool is illustrated by considering a mag-
netic dipole operator in the case of having top-quark pairs
and a contact interaction for the case of τ leptons. Because
the impact of the higher order operators corresponding to
this new physics grows with the energy of the process, they
must be tested at the highest energy available. In this regime,
the top-quark pairs are mostly entangled while the τ leptons
less so. Nevertheless, what counts is the relative change in
entanglement and both cases show a promising power in con-
straining the size of the new physics better than current limits
based on total cross sections or classical correlations.

Our analysis is about pseudo-observables at the level of
the parton production processes and decays. The last word
– comprising a full analysis of all uncertainties, statistical
as well as systematic – can only come from the extraction of
the entanglement observablesm12[C] and C[ρ] from the data
(or at least from a full simulation of them). Though this is a
challenging problem – which can only be properly addressed
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by the experimental collaborations – it is well worth the effort
because of the improved sensitivity to which the new tools
give access.
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Appendix A: Cross section functions

In this Appendix we provide the explicit expression for the
functions Ã, C̃i j and B̃i in the cross section of the processes
discussed in the main text. The tilde above these quantities
reminds us that they have to be normalized, like in Eq. (34)
and Eq. (60), dividing by the unpolarized cross section to give
the entries of Eq. (1).

Appendix A.1: Top-quark pairs

Appendix A.1.1: Standard Model

Below, we write the Ãqq̄ , B̃qq
i , and C̃qq

i j coefficients for the
t t̄ pair production via qq̄ and gg scattering in the SM frame-
work. These functions were calculated in [93,94]; we report
them for ease of reading:

Ãgg = Fgg
[
1 + 2β2

t sin2 Θ − β4
t

(
1 + sin4 Θ

) ]
, (A.1a)

C̃gg
nn = −Fgg

[
1 − 2β2

t + β4
t

(
1 + sin4 Θ

) ]
, (A.1b)

C̃gg
rr = −Fgg

[
1 − β2

t

(
2 − β2

t

) (
1 + sin4 Θ

) ]
, (A.1c)

C̃gg
kk = −Fgg

[
1 − β2

t
sin2 2Θ

2
− β4

t

(
1 + sin4 Θ

) ]
,

(A.1d)

C̃gg
kr = C̃gg

rk = Fgg β2
t

√
1 − β2

t sin 2Θ sin2 Θ (A.1e)

B̃gg
k = B̃gg

r = B̃gg
n = 0 , (A.1f)

with Fgg = N 2
c

(
1 + β2

t cos2 Θ
) − 2

64Nc
(
1 − β2

t cos2 Θ
)2 and

Ãqq̄ = Fqq̄
(

2 − β2
t sin2 Θ

)
, (A.2a)

C̃qq̄
nn = −Fqq̄ β2

t sin2 Θ, (A.2b)

C̃qq̄
rr = Fqq̄

(
2 − β2

t

)
sin2 Θ, (A.2c)

C̃qq̄
kk = Fqq̄

(
2 cos2 Θ + β2

t sin2 Θ
)
, (A.2d)

C̃qq̄
kr = C̃qq̄

rk = Fqq̄

√
1 − β2

t sin 2Θ, (A.2e)

B̃gg
k = B̃gg

r = B̃gg
n = 0 , (A.2f)

with Fqq̄ = 1

2N 2
c

.

Appendix A.1.2: New physics: magnetic moment dipole

Here, we collect the results for the coefficients Ãqq̄ , B̃qq
i , and

C̃qq
i j for the magnetic moment dipole in Eq. (37) in which we

retained only the interference with the corresponding SM
amplitudes. They were computed in [43]:

Ãgg = f (1)
gg

[
N 2
c

(
1 + β2

t cos2 Θ
)

− 2
]

μ, (A.3a)

C̃gg
nn = f (1)

gg

(
2 − N 2

c

)
μ, (A.3b)

C̃gg
rr = f (2)

gg

[
N 2
c

(
−1 + β4

t cos2 Θ sin4 Θ
)

+ (N 2
c − 2)β2

t

(
sin2 Θ + cos4 Θ

) + 2
]
μ, (A.3c)

C̃gg
kk = f (2)

gg
1

1 − β2
t

{
N 2
c

[
− 1 − β2

t

(−2 + cos4 Θ
)

+ β6
t cos2 Θ

(−1 − cos2 Θ + cos4 Θ
)

− β4
t

(
sin2 Θ − 2 cos4 Θ + cos6 Θ

)]

+ 2
[
1 + β4

t

(
1 + cos2 Θ − cos4 Θ

)

+ β2
t

(−2 − cos2 Θ + cos4 Θ
)]}

μ, (A.3d)

C̃gg
kr = C̃gg

rk = f (2)
gg

β2
t sin 2Θ

2
√

1 − β2
t

×
{
N 2
c

2

[
− 2 cos2 Θ − β4

t cos2 Θ sin2 Θ

+ β2
t

(
1 + 3 cos2 Θ − 2 cos4 Θ

)]
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− 1 +
(

2 − β2
t

)
cos2 Θ

}
μ, (A.3e)

B̃gg
k = B̃gg

r = B̃gg
n = 0, (A.3f)

and

Ãqq̄ = fqq̄
2

μ, (A.4a)

C̃qq̄
nn = 0, (A.4b)

C̃qq̄
rr = fqq̄

2

(
1 − cos2 Θ

)
μ, (A.4c)

C̃qq̄
kk = fqq̄

2
cos2 Θ μ, (A.4d)

C̃qq̄
kr = C̃qq̄

rk = fqq̄

(
2 − β2

t

)
sin 2Θ

8
√

1 − β2
t

μ, (A.4e)

B̃qq̄
k = B̃qq̄

r = B̃qq̄
n = 0 , (A.4f)

with f (1)
gg = 1

Nc(N 2
c − 1)

1

(1 − β2
t cos2 Θ)

,

f (2)
gg = 1

Nc(N 2
c − 1)

1

(1 − β2
t cos2 Θ)2

and fqq̄ = N 2
c − 1

N 2
c

.

Appendix A.2: τ -lepton pairs

Appendix A.2.1: Standard Model

Below, we write the Ãqq̄ , B̃qq
i , and C̃qq

i j coefficients for the
τ+τ− pair production viaqq̄ scattering in the SM framework:

Ãqq̄ = Fqq̄

{
Q2

q Q
2
τ

[
2 − β2

τ sin2 Θ
]

+ 2QqQτ Re
[
χ(m2

τ τ̄ )
] [
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q
Ag

τ
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τ
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) ]

+
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τ τ̄ )
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gq2
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A
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τ
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A
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)
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q
V g
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V g

q
Ag

τ
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, (A.5a)

C̃qq̄
nn = −Fqq̄β

2
τ sin2 Θ

{
Q2

q Q
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, (A.5b)
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, (A.5c)
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, (A.5d)

C̃qq̄
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nk = 0 , (A.5e)
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{
QqQτ Re

[
χ(m2

τ τ̄ )
]

×
[
βτ g

τ
Ag

q
V

(
1 + cos2 Θ

)
+ 2gqAg

τ
V cos Θ

]

+
∣∣∣χ(m2

τ τ̄ )

∣∣∣2 [
2gqAg

q
V

(
β2

τ g
τ2
A + gτ2

V

)
cos Θ

+βτ g
τ
Ag

τ
V

(
gq2
V + gq2

A

) (
1 + cos2 Θ

)] }
, (A.5f)
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, (A.5g)

B̃qq̄
n = 0 , (A.5h)

with Fqq̄ = 1

16
, Qq,τ the electric charges, βτ the τ± velocity

in their CM frame,

giV = T i
3 − 2 Qi sin2 θW , giA = T i

3 , (A.6)

and

Re
[
χ(q2)

] = q2(q2 − m2
Z )

sin2 θW cos2 θW
[
(q2−m2

Z )2+q4Γ 2
Z /m2

Z

] ,
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(A.7)∣∣∣χ(q2)

∣∣∣2 = q4

sin4 θW cos4 θW
[
(q2−m2

Z )2+q4Γ 2
Z /m2

Z

] ,

(A.8)

where θW is the Weinberg angle, mZ and ΓZ the mass and
total width of the Z boson respectively, and q2 = (q1 +q2)

2.

Appendix A.2.2: New physics: Contact interactions

Here, we write the results for the coefficients Ãqq̄ , B̃qq
i , and

C̃qq
i j for the contact interaction in Eq. (61) – for the benchmark

operator
4π

Λ2 (q̄Lγ αqL) (τ̄RγατR) – in which we retained only

the interference with the corresponding SM amplitudes:
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n = 0 , (A.9i)

where FΛ = m2
τ τ̄

8αΛ2 .
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