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Abstract

The square-root of Siegel modular forms of CHL ZN orbifolds of type II compactifications are de-
nominator formulae for some Borcherds-Kac-Moody Lie superalgebras for N = 1, 2, 3, 4. We study the 
decomposition of these Siegel modular forms in terms of characters of two sub-algebras: one is a ̂sl(2) and 
the second is a Borcherds extension of the ̂sl(2). This is a continuation of our previous work where we 
studied the case of Siegel modular forms appearing in the context of Umbral moonshine. This situation is 
more intricate and provides us with a new example (for N = 5) that did not appear in that case. We restrict 
our analysis to the first N terms in the expansion as a first attempt at deconstructing the Siegel modular 
forms and unravelling the structure of potentially new Lie algebras that occur for N = 5, 6.
© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons .org /licenses /by /4 .0/). Funded by SCOAP3.

1. Introduction

In this work, we continue the study of Siegel modular forms that are, in some cases, the 
denominator formulae for some Borcherds-Kac-Moody (BKM) Lie superalgebras. These Siegel 
modular forms include examples for which the Lie algebra connection is not yet known. For 
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such examples, the eventual goal is to prove (or disprove) the existence of Lie algebras whose 
denominator formulae are given by these Siegel modular forms.

In our previous work [1], we studied a family of Siegel modular forms that are associated 
with Umbral moonshine [2]. Here we consider Siegel modular forms that are associated with 
L2(11)-moonshine [3,4]. The squares of these Siegel modular forms are the generating function 
of quarter BPS states in CHL ZN orbifolds (for N = 1, 2, . . . , 6) [4–7]. The main tools to probe 
the structure of the Lie algebras are two subalgebras: one is a ̂sl(2) subalgebra and the other is 
a Borcherds extension of the ̂sl(2) subalgebra. We rewrite the Siegel modular forms in terms 
of characters of the sub-algebras – it enables us to cleanly track simple roots that appear in the 
denominator formulae.

For simplicity, we focus on the situations when N is prime, i.e., N = 2, 3, 5. These are modu-
lar forms of weight k(N) + 1 = 12/(N + 1) of a level N subgroup of Sp(4, Z). The connection 
with Mathieu and L2(11) moonshine leads to a product formula given in Eq. (2.12), for the Siegel 
modular forms [3,8,9]. For the prime cases, it is consistent with the product formulae given by 
David et al. [10] in the context of dyon counting. We rewrite the Siegel modular form as follows:

�
(N)
k(N)(Z) = s1/2 φ

(N)
k(N),1/2(τ, z) ×

[
1+

∞∑
m=1

sm �
(N)
0,m(τ, z).)

]
. (1.1)

The Jacobi forms �(N)
0,m(τ, z) will be the main object of our study. They are Jacobi forms of the 

congruence subgroup �0(N) with weight zero and index m. We obtain explicit formulae for these 
Jacobi forms in terms of standard modular forms for m ≤ N . The analogous expansion in our 
previous work [1] had non-vanishing terms only for indices that were multiples of N .

We wish to show that the Siegel modular forms �(N)
k(N)(Z) are extensions of the Kac-Moody 

Lie algebra g(A(N)) obtained from the Cartan matrix, A(N), defined in Eq. (2.5). We call the 
extension BCHL

N (A(N)) – the CHL refers to the fact that the squares of the modular forms 
are the generating functions of quarter BPS states in CHL ZN orbifolds [6,7,11]. The Cartan 
matrices A(N) are obtained from the walls of marginal stability in these models [12]. These 
have nice behaviour only for N = 1, 2, . . . , 6. The expectation is that for N ≤ 4, the extension 
BCHL

N (A(N)) is the usual Borcherds extension of g(A(N)) which leads to the sum side of the 
denominator formula given in Eq. (2.6). The Borcherds correction term is shown symbolically as 
T in this formula – it is the contribution that one obtains by adding imaginary simple roots i.e., 
roots with negative or zero norm.

A Cartan matrix can also be obtained as the matrix of inner products of simple root vectors 
which generate a root lattice. In all the six examples, the Cartan matrix has rank three and the 
root lattice is in Lorentzian space R2,1. A special feature of these lattices is that they admit 
a lattice Weyl vector �(N) with inner product 〈�(N), α〉 = −1 where α is a simple root. Such 
lattices have been studied by Nikulin and the corresponding Lie algebra connection by Gritsenko 
and Nikulin [13]. An important result from Gritsenko and Nikulin is that the cases of N ≤ 4
in our examples can admit Borcherds extensions. This is why we expect that BCHL

N (A(N)) are 
Borcherds extensions. Unlike the examples considered in our previous work [1], we are unaware 
of a proof that this is indeed the case for N ≤ 4.

The reason one hopes that there might be a Lie algebra for N = 5, 6 is a physical one. The 
dyon counting generating function provides us with Siegel modular forms that transform covari-
antly under the Weyl group of g(A(N)). We have three examples of this variety, one of which was 
considered in [1]. We restrict to the case of N = 5 for simplicity in this work commenting on 
2
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some aspects of the N = 6 example. Our goal in this work is a modest one. We study two sub-
algebras of BCHL

N (A(N)), one is an ̂sl(2) ∈ g(A(N)) and another is a Borcherds extension of the 
̂sl(2) that we call BCHL

N (̂sl(2)). Interestingly, these subalgebras are the best examples to under-

stand the idea behind the Borcherds extension. The positive roots of the Lie algebra BCHL
N (̂sl(2))

that are not in the sub-algebra will organise into a representation of the sub-algebra. This is the 
motivation for us to look into character decompositions of the �(N)

0,m(τ, z) in terms of ̂sl(2) and 

BCHL
N (̂sl(2)).
The goal of the present paper is a modest one. We would like to understand the structure of 

the irreducible roots that appear in the first N terms. The main result of this paper is that we 
are able to characterise all the roots that appear to this order and they are consistent with our 
expectations. There are some surprises. For instance, �(3)

0,2(τ, z) vanishes. This is due to perfect 
cancellations between two different terms. We see the appearance of a real simple fermionic 
root in the N = 5 example which has some peculiar properties. This is the first term that does 
not appear as a Borcherds extension. This is consistent with a no-go theorem of Gritsenko and 
Nikulin that suggests that modifications be needed for the cases of A(5) and A(6) [13].

The organisation of the paper is as follows. The introductory section is followed by section 2
where we provide the Lie algebra background as well as develop the notation used in the rest 
of the paper. Section 3 is where we obtain vector-valued modular forms (vvmf) of �0(N) by 
expanding in terms of ̂sl(2) and BCHL

N (̂sl(2)). The Fourier coefficients of the vvmf can be iden-
tified with the multiplicities of roots that appear. We closely track all roots of non-negative norm. 
For N = 5 this enables us to see the presence of a fermionic real simple root that does not fit a 
Borcherds extension. In section 4, we convert the vvmfs of �0(N) into vvmfs of the full modular 
group. For one example alone, we are able to identify the vvmf to be a solution of a modular 
differential equation studied by Gannon [14]. In all other situations, the rank of the vvmf is too 
large for us to numerically determine the modular differential equation. We conclude in sec-
tion 5 with some remarks. An appendix is devoted to providing the background necessary for the 
computations that we have done in this paper.

2. The Lie algebra background

A vector in R2,1 can be represented by a real symmetric 2 × 2 matrix [15,16].⎛⎝x

y

t

⎞⎠←→ v =
(

t + y x

x t − y

)
with norm 〈v, v〉 = −2 det(v) = 2(x2 + y2 − t2). Consider the two vectors given by

α1 =
(
2 1
1 0

)
and α2 =

(
0 −1

−1 0

)
. (2.1)

Starting from these two root vectors construct new root vectors as follows:

αa+2m =
(
γ (N)

)m · αa ·
(
(γ (N))T

)m

for a = 1,2, (2.2)

where γ (N) =
(
1 −1
N 1− N

)
. Note that γ (N) and −γ (N) have identical action on the αi . For 

N ≤ 3, γ (N) has finite order and infinite order for N > 3.
3
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Let XN denote the ordered sequence of distinct root vectors αi generated in this fashion.

XN = (αi) for i ∈ SN =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(1,2,3 mod 3) , N = 1

(0,1,2,3 mod 4) , N = 2

(0,1,2,3,4,5 mod 6) , N = 3

Z , N = 4,5,6

. (2.3)

There is a Weyl vector �(N)

�(N) =
(
1/N 1/2
1/2 1

)
, (2.4)

with norm 〈�(N), �(N)〉 = ( 12 − 2
N

) with 〈�(N), α〉 = −1 for all α ∈ XN .
Let A(N) for N = 1, 2, . . . , 6 denote matrices given by the Gram matrix of the root vectors 

XN

A(N) = (anm) := 〈αm,αn〉 . (2.5)

One has anm = 2 − 4
N−4 (λ

n−m
N + λm−n

N − 2), where λN is any solution of the quadratic equation

λ2 − (N − 2)λ + 1= 0 .

Let g(A(N)) denote the Kac-Moody algebra associated with the Cartan matrix A(N) [17]. 
Recall that the Kac-Moody algebra, g(A), associated with a Cartan matrix A = (amn) (with 
m, n ∈ I where I is the index set of all simple real roots) is given by the generators (em, hm, fm)

with Lie brackets

[em,fn] = δmn hm , [hm, en] = amn en , [hm,fn] = −amn fn , [hm,hn] = 0 ,

subject to the Serre relations

(ad em)−amn+1en = 0 , (ad fm)−amn+1fn = 0 m 
= n ,

where (adx)y = [x, y].
The Borcherds extension of a Kac-Moody algebra, a BKM Lie algebra, is obtained by adding 

imaginary simple roots to g(A(N)). A simple description is given by considering the Weyl de-
nominator formula which takes the form:

� =
∑
w∈W

det(w)w
[
T e−�

]
= e−�

∏
α∈L+

(1− e−α)mult(α) . (2.6)

In the above formula, W is the Weyl group generated by elementary reflections due to simple 
roots, � is the Weyl vector, L+ is the set of positive roots and mult(α) is the multiplicity of 
the root α. The case when T = 1 is for the case of Kac-Moody algebras. T is the Borcherds 
correction term that takes into account the presence imaginary simple roots. (See appendix B of 
[1] and references therein for a detailed description.) A key aspect of the Borcherds extension is 
that � is a suitable automorphic form that admits a product formula.

An example: Let A =
(

2 −2
−2 2

)
. Then, g(A) is the ̂sl(2) Kac-Moody Lie algebra with simple 

roots (α1, α2) and δ = α1 +α2 is an imaginary root with zero norm. We will consider a family of 
Borcherds corrections that appear in this work. For N = 1, 2, 3, 5, consider a situation where one 
has 12/(N +1) distinct imaginary simple roots of weight 1 (δ, 2δ, 3δ, . . .) and (12/(N +1)) −3
N

4



S. Govindarajan and M. Shabbir Nuclear Physics B 989 (2023) 116127
imaginary simple roots of weight (δ, 2δ, 3δ, . . .). The Borcherds correction factor due to these 
imaginary simple roots takes the form

TN(δ) =
∞∏

j=1

(
1− e

− jδ
N

) 12
N+1 (

1− e−jδ
)−3+ 12

N+1
.

For N = 5 a negative power appears in the second term in the infinite product. The imaginary 
simple roots in this case correspond to fermionic simple roots and we consider a superdenomi-
nator formula to account for this. Identifying e−δ ∼ q = exp(2πiτ), we obtain a function of τ . 
Let

TN(τ) =
∞∏

j=1

(
1− qj/N

) 12
N+1

(
1− qj

)−3+ 12
N+1

. (2.7)

Up to an overall power of q , TN(τ) can be expressed in terms of products of the Dedekind 
eta function. The automorphic form, that is denoted by � in Eq. (2.6), for these examples is 
given by the Jacobi form φk(N),1/2(τ, z) defined in Eq. (2.9). We will refer to these Borcherds-

Kac-Moody Lie algebras by BCHL
N (̂sl(2)). As can be seen, there can be several inequivalent 

Borcherds extensions of a Kac-Moody Lie algebra.

2.1. Embedding ̂sl(2) in g(A(N))

The Cartan matrices, A(N), considered in paper I [1] are identical to the ones that appear 
here as well. Thus, the embedding of ̂sl(2) into g(A(N)) works here as well. Let (e, h, f ) be the 
generators of sl(2). The affine Lie algebra ̂sl(2) is defined by

̂sl(2) = sl(2) ⊗C[t, t−1] ⊕C k̂ ⊕C d ,

where k̂ is the central extension and d = −td/dt is the derivation.
We identify the Lie subalgebra of g(A(N)) generated by e1, f1, e2, f2, h1, h2 and h3 with ̂sl(2)

Lie algebra. We choose the identification similar to the one considered by Feingold and Frenkel 
[15].

e ⊗ 1= e2 , f ⊗ 1= f2 , f ⊗ t = e1 , e ⊗ t−1 = f1 .

For the Cartan subalgebra of ̂sl(2), using the above identification, we obtain

h1 = −h ⊗ 1+ k̂ , h2 = h ⊗ 1 , h3 = −h ⊗ 1+ 4N d .

The inverse is

h ⊗ 1= h2 , k̂ = h1 + h2 , d = 1
(h2 + h3) .
4N

5
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2.2. The BCHL(A(N)) Lie algebras

Let BCHL(A(N)) denote an extension of the g(A(N)) whose denominator formula is given 
by the Siegel modular forms, �(N)

k(N)(Z) which we define next.1 Then the BKM Lie algebras 

BCHL
N (̂sl(2)) are naturally sub-algebras of BCHL(A(N)).
A connection with Mathieu and L2(11) moonshine leads to the following formula for a Siegel 

modular form [3,8,9]. Let g ∈ L2(11)B be an element of order N ≤ 6. A second-quantised ver-
sion of moonshine gives the following formula for �(N)

k(N)(Z) with s = e2πiτ ′
.

�
(N)
k(N)(Z) = s1/2φk(N),1/2(τ, z) exp

[
−

∞∑
m=1

smψ
(N)[1,g]
0,1 (τ, z)

∣∣∣T (m)

]
(2.8)

where the Hecke-like operator T (m) is defined as follows2

ψ
(N)[1,g]
0,1 (τ, z)

∣∣∣T (m) := 1

m

∑
ad=m

d−1∑
b=0

ψ
(N)[g−b,g]
0,1

(
aτ+b

d
, az

)
and

φk(N),1/2(τ, z) = θ1(τ, z)

η(τ )3
η[1,g](τ ) (2.9)

are index half Jacobi forms with the eta products η[1,g](τ ) defined in Table 1. It has been shown 
in ref. [4] that this leads to a Borcherds-type product formula for �(N)

k(N)(Z). Consider the Fourier 
expansion

ψ
[gb,gd ]
0,1 (τ, z) =

∑
n∈Z,n≥0

∑
�∈Z

c[b,d](n, �) q
n
N r� , (2.10)

where g is of order N , q = e2πiτ and r = e2πiz. Define c̃[α,d](n, �) as follows (with ωN =
exp(2πi/N))

c̃[α,d](n, �) = 1

N

N−1∑
b=0

(ωN)−αb c[b,d](n, �) . (2.11)

Then one has the product formula that provides the product side of the denominator formula that 
defines BCHL(A(N)).

�
(N)
k(N)

(Z) = q1/2Nr1/2s1/2 ×
∞∏

m=0

N−1∏
α=0

∏
n∈Z+ α

N
n≥0

∏
�∈Z

(1− qnr�sm)c̃
[α,m](nmN,�) . (2.12)

The modularity of the above formula is not manifest. A result in ref. [18] proves that it is indeed 
a Siegel modular form of a level N subgroup of Sp(4, Z).

1 Here Z =
(

τ z

z τ ′
)
is a point in the Siegel upper half space, H2. See appendix A.3.

2 Here ψ(N)[gs ,gr ]
0,1 is half the gr -twisted elliptic genus of K3 twined by the element gs . In other words, the trace is 

over the Hilbert space twisted by gr with insertion of gs (‘twined’) in the trace.
6
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Table 1
Eta products.
N 1 2 3 5

Cycle shape 112 1424 1333 1252

k(N) 5 3 2 1
η[1,g](τ ) η(τ )12 η(τ)4η(τ/2)4 η(τ)3η(τ/3)3 η(τ)2η(τ/5)2

The sum side of the Weyl denominator formula is usually obtained from an additive lift. There 
is a construction of Cléry and Gritsenko that leads to closely related Siegel modular form (at level 
N ) starting from a index half Jacobi form [19]. It has been shown in [3] that the expansion of this 
Siegel modular form about another cusp (given by the S-transform) matches with the product 
formula given in Eq. (2.12) to fairly high order. Combined with modularity, it is enough to prove 
that the two formulae are equivalent. It is not a clean formula in the sense that a closed formula 
was not given but the transformation rules for the Hecke operator were worked out on a case-by-
case basis.

2.3. Covariance under the extended Weyl group

The extended Weyl group of the root system XN is generated by three types of generators 
[4,6,7]

1. The Weyl group W of g(A(N)) is generated by all elementary Weyl reflections, sm, due to 
the simple roots αm for all m in SN (see Eq. (2.3) for its definition),

2. the generator γ (N), and

3. the generator ̂δ =
(−1 1

0 1

)
which acts on roots via the action α → δ̂ · α · δ̂ T . It acts on the 

simple roots in XN as an involution:

δ̂ : αm ↔ α3−m .

The action of the generators of the extended Weyl group can be translated into an action on upper 
half space with coordinates Z. With this in hand, one can show, using the modular properties of 
the Siegel modular forms, that

�
(N)
k(N)(sm ·Z) = −�

(N)
k(N)(Z) ,

�
(N)
k(N)(γ

(N) ·Z) = +�
(N)
k(N)(Z) ,

�
(N)
k(N)

(̂δ ·Z) = +�
(N)
k(N)

(Z) .

These properties show that the Siegel modular forms have the necessary covariance under the 
extended Weyl group.

3. Deconstructing the Lie algebra

The Siegel modular form defined in Eq. (2.8) can be expanded as a power series in the variable 
s. The leading term in the expansion is s1/2 φ

(N)
k(N),1/2(τ, z) which is the denominator formula for 

the sub-algebra BCHL(̂sl(2)).
N

7
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�
(N)
k(N)(Z) = s1/2 φ

(N)
k(N),1/2(τ, z)

[
1+

∞∑
m=1

sm �
(N)
0,m(τ, z)

]
. (3.1)

The above equations define the weight zero and index m Jacobi forms �(N)
0,m(τ, z). Explicit formu-

lae for the Jacobi forms can be obtained by expanding the exponential in Eq. (2.8). For instance, 
one obtains

�
(N)
0,1 (τ, z) = −ψ

(N)[1,g]
0,1 (τ, z) , (3.2)

�
(N)
0,2 (τ, z) = −1

2

(
ψ

(N)[1,g]
0,1 (τ, z)

∣∣∣T (2) − (ψ
(N)[1,g]
0,1 (τ, z))2

)
. (3.3)

We will be studying the first N terms in the expansion. They can be rewritten in terms of standard 
modular forms thereby enabling us to have formulae that can be directly used. A weak Jacobi 
form of �0(N), ξm, of weight zero and index m can be expanded as follows:

ξm(τ, z) =
m∑

j=0

αj (τ ) A(τ, z)m−jB(τ, z)j ,

where αj (τ ) are weight 2j modular forms of �0(N) and A(τ, z), B(τ, z) are defined in Eq. 
(A.13). However the �(N)

0,m(τ, z) are Jacobi forms of �0(N). Thus, we identify ξm with their 

transform �(N)
0,m(τ, z)|S as they are modular forms of �0(N). This method is useful as the gen-

erators of the ring of modular forms of �0(N) are well-known. We give the generators for the 
cases of interest in appendix A.2.

3.1. Details of the examples

We now present explicit formulae for the Jacobi forms �(N)
0,m(τ, z)|S for N = 2, 3, 5 and m =

1, . . . , N .

3.1.1. N = 2
The Weyl-Kac-Borcherds denominator formula is given by the weight three Siegel modular 

form of a level 2 subgroup of Sp(4, Z).

�
(2)
3 (Z) = s1/2 φ

(2)
3,1/2(τ, z)

[
1+ s �

(2)
0,1(τ, z) + s2 �

(2)
0,2(τ, z) + O(s3)

]
, (3.4)

where

φ
(2)
3,1/2(τ, z) = θ1(τ, z) η(τ )4η(τ/2)4

�
(2)
0,1(τ, z) = 1

3A(τ, z) − 1
3E

(2)
2 (τ/2)B(τ, z)

�
(2)
0,2(τ, z) = − 1

72A(τ, z)2 − 1
18E

(2)
2 (τ/2)A(τ, z)B(τ, z)

+
(

29
288E

(2)
2 (τ/2)2 − 1

32E4(τ/2)
)

B(τ, z)2

are Jacobi forms of �0(2). We expect to observe two real simple roots in �(2)
(τ, z).
0,2

8
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3.1.2. N = 3
The Weyl-Kac-Borcherds denominator formula is given by the weight two Siegel modular 

form of a level 3 subgroup of Sp(4, Z).

�
(3)
2 (Z) = s1/2 φ

(3)
2,1/2(τ, z)

[
1+s �

(3)
0,1(τ, z)+s2 �

(3)
0,2(τ, z)+s3 �

(3)
0,3(τ, z)+O(s4)

]
, (3.5)

where

φ
(3)
2,1/2(τ, z) = θ1(τ, z) η(τ )3η(τ/3)3

�
(2)
0,1(τ, z) = 1

4A(τ, z) − 1
4E

(3)
2 (τ/3)B(τ, z)

�
(3)
0,2(τ, z) = 0

�
(3)
0,3(τ, z) = 1

864A(τ, z)3 − 1
96E

(3)
2 (τ/3)A(τ, z)2B(τ, z)

+
(

25
1296E

(3)
2 (τ/3)2 − 5

2592E4(τ/3)
)

A(τ, z)B(τ, z)2

+ (− 145
11664E

(3)
2 (τ/3)3 + 85

23328E
(3)
2 (τ/3)E4(τ/3) + 1

1458E6(τ/3))B(τ, z)3

are Jacobi forms of �0(3). It is interesting to observe that �(3)
0,2(τ, z) = 0. This arises from a 

cancellation of multiple terms. The expectation is that there would have been no real simple 
roots and imaginary simple roots in this term. The vanishing says that there are no imaginary 
simple roots with negative norm. It could also be that there is a Bose-Fermi cancellation i.e., 
there are equal numbers of bosonic and fermionic roots. We expect to see two real simple roots 
in �(3)

0,3(τ, z) which is non-vanishing.

3.1.3. N = 5
The Weyl-Kac-Borcherds denominator formula is given by the weight one Siegel modular 

form of a level 5 subgroup of Sp(4, Z).

�
(5)
1 (Z) = s1/2 φ

(5)
1,1/2(τ, z)

[
1+

5∑
m=1

sm �
(5)
0,m(τ, z) + O(s6)

]
, (3.6)

φ
(5)
1,1/2(τ, z) = θ1(τ, z) η(τ/5)2η(τ)2

�
(5)
0,1(τ, z) = 1

5A(τ, z) − 1
5E

(5)
2 (τ/5)B(τ, z)

We have shortened A(τ, z), B(τ, z) to A, B to make equations more compact.

�
(5)
0,2(τ, z) = − 1

144A
2 − 1

72E
(5)
2 (τ/5)AB

+
(
− 53

7200E
(5)
2 (τ/5)2 + 1

2400E4(τ/5) − 19
200η(τ/5)4η(τ)4

)
B2

�
(5)
0,3(τ, z) = 1

864A
3 − 1

288E
(5)
2 (τ/5)A2B

+
(

17
4800E

(5)
2 (τ/5)2 − 1

14400E4(τ/5) + 19
1200η(τ/5)4η(τ)4

)
AB2

+
(
− 53

43200E
(5)
2 (τ/5)3 + 1

14400E
(5)
2 (τ/5)E4(τ/5)

− 19
1200E

(5)
2 (τ/5)η(τ/5)4η(τ)4

)
B3

�
(5)

(τ, z) = 1 A4 − 1 E
(5)

(τ/5)A3 B
0,4 20736 5184 2

9
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+
(

17
57600E

(5)
2 (τ/5)2 − 1

172800E4(τ/5) + 19
14400η(τ/5)4η(τ)4

)
A2 B2

+
(
− 53

259200E
(5)
2 (τ/5)3 + 1

86400E
(5)
2 (τ/5)E4(τ/5)

− 19
7200E

(5)
2 (τ/5)η(τ/5)4η(τ)4

)
AB3

+
(

2117
25920000E

(5)
2 (τ/5)4 − 1

28800E
(5)
2 (τ/5)2E4(τ/5)

+ 2641
360000E

(5)
2 (τ/5)2η(τ/5)4η(τ)4

+ 11
8640000E4(τ/5)2 + 779

60000η(τ/5)8η(τ)8
)

B4

are Jacobi forms of �0(5). We have not given an explicit formula for �(5)
0,5(τ, z) as the formula is 

big and unilluminating.

3.2. Characters of ̂sl(2) and BN(̂sl(2))

Consider the following roots

α
(N)
0 =

(
2N − 2 2N − 1
2N − 1 2N

)
and α

(N)
3 =

(
0 1
1 2N

)
. (3.7)

We will track these real simple roots as well as the zero-norm imaginary simple roots

δ′
N := (α

(N)
3 + α2) and δ′′

N := (α
(N)
0 + α1) . (3.8)

The subscript N is to emphasise that they change with N unlike the zero-norm imaginary simple 
root δ = (α1 + α2).

The normalised ̂sl(2) character at level k, χk,�(τ, z), is defined by

χk,�(τ, z) = θk+2,�+1(τ, z) − θk+2,−�−1(τ, z)

θ2,1(τ, z) − θ2,−1(τ, z)
for k, � ∈Z≥0 and 0≤ � ≤ k , (3.9)

where

θm,a(τ, z) :=
∑
k∈Z

qm(k+ a
2m )2rm(k+ a

2m ) .

For weights �̃ = aδ + bα2 + cδ′
N satisfying the condition 〈�̃, δ〉 < 0, the character of BN(̂sl(2))

when a = 0 is given by (see [1, Sec. 3.2] for a similar derivation)

χ̃k,� = q
1
8− (�+1)2

4(k+2)
χk,�

TN(τ)
, (3.10)

with k = 4Nc and � = −2b and the Borcherds correction term TN(τ) is defined in Eq. (2.7). The 
weights are such that a ∈ 1

N
Z≥0 and c ∈ 1

N
Z>0. The character with a 
= 0 is then qa χ̃k,�.

3.3. VVMFs from ̂sl(2) decomposition

The Jacobi forms �(N)
0,m can be expanded in terms of characters of ̂sl(2) and those of the 

Borcherds extension BN(̂sl(2)) The decomposition takes the form
10
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�
(N)
0,m(τ, z) =

m∑
j=−m

g
N,m
j+1 (τ )χ4m,2m+2j (τ, z) , (3.11)

=
m∑

j=−m

f
N,m
j+1 (τ ) χ̃4m,2m+2j (τ, z) , (3.12)

Further, one observes that gN,m
j+1 (τ ) = g

N,m
−j+1(τ ). This follows from the Z2 outer automorphism 

under which α1 ↔ α2 and α0 ↔ α3. Thus one has (m +1) independent functions that we organise
into a vector g := (g1, g2, . . . , gm+1)

T . These are rank (m + 1) vector valued modular forms of 
�0(N).
Remark: The multiplicities of roots are given the coefficients of the f N,m

j (τ ) which can be 

obtained from the gN,m
j (τ ) using Eq. (3.10).

3.4. The vvmfs

Below we give the ̂sl(2) decompositions for the N = 2, 3, 5 cases. The format is as follows:

(i) The vvmf gN,m has rank (m + 1). The power series expansion of all terms contains sm and 
the powers of q and r are determined by using Eq. (3.13).

(ii) the power of q shown as a pre-factor in every row is the one associated with k = 2m, � =
(2m − 2j) i.e., q

1
8− (�+1)2

4(k+2) as can be read off from Eq. (3.10).
(iii) The first entry of gN,m is associated with the ̂sl(2) character χ4m,2m,
(iv) subsequent entries of gN,m involve a pair of characters related by the involution (̂δ) and 

appear as χ4m,2m−2j (with highest weight �̃′
j = (j − m)α2 + m

N
δ′
N ) and χ4m,2m+2j (with 

highest weight �̃′′
j = (j − m)α1 + m

N
δ′′
N ) for j = 1, . . . , m.

In order to understand the powers of (q, r, s) associated with a given weight, we see that

e−aδe
−�̃′

j = e−aδ e−[(j−m)α2+ m
N

δ′
N ] = e−aδ e−[(j−m)α2+δ′

m] ∼ qa rm−j sm , (3.13)

with norm [2(m − j)2 − 8am]. Thus, when a = 0, the root has zero norm when j = m and 
positive norm when j < m. We carefully track all roots with positive and zero norm that appear 
in the character expansion.

3.4.1. N = 2
The coefficients of the Fourier series T2(τ ) give the mutiplicity of the imaginary simple roots 

δ′
2 and δ′′

2 . The coefficient of q
y gives the multiplicity of the roots y δ′

2 and y δ′′
2 . One has

T2(τ ) = 1−4 q1/2 + 1 q + O(q3/2)) .

We will see that the expansions below are consistent with these numbers.

g2,1(τ ) =
(

q−1/4(8q1/2 + 40q + 128q3/2 + 368q2 + 936q5/2 + 2176q3 + · · · )
q1/12(−4− 24q1/2 − 88q − 264q3/2 − 692q2 − 1656q5/2 + · · · )

)
Here q−1/4 and q1/12 that appear as prefactors are determined using point (ii) above. The leading 
term in the first row has a = 1/2 (as defined in Eq. (3.13)) corresponds to the imaginary simple 
roots (α(1) + 1δ) and (α(1) + 1δ) as the constant (i.e., a = 0) piece is vanishing. This is consistent 
3 2 0 2

11
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with simple real roots α(1)
3 and α(1)

0 not being present. In the second row, the leading term has 
multiplicity −4 and corresponds to the imaginary roots 12δ

′
2 and 12δ

′′
2 . All other terms correspond 

to imaginary simple roots with negative norm.

g2,2(τ ) =
⎛⎝ q−1/2(−4q1/2 + 2q − 16q3/2 − 2q2 − 56q5/2 + 2q3 − 144q7/2 + · · · )

q−1/10(−1+ 4q1/2 + q + 8q3/2 − 2q2 + 24q5/2 + 2q3 + 64q7/2 + · · · )
q1/10(1+ 8q1/2 + 28q3/2 + 80q5/2 − q3 + · · · )

⎞⎠
The leading term in the second row above is the multiplicity of the real simple roots α(2)

0 and α(2)
3 . 

They have multiplicity 1 and the minus sign comes from det(w) in the denominator formulae. 
The Lie algebra g(A(2)) has four real simple roots. Thus, there are no more simple real roots to 
track. In the third/last row, the leading term has multiplicity +1 and corresponds to the imaginary 
roots δ′

2 and δ′′
2 .

Definition 3.1. Let I denote the set of imaginary simple roots with negative norm whose 
multiplicities are given by the Fourier expansions of f N,m

j (τ ) for j = 1, . . . , (m + 1) and 
m = 1, . . . , N .

These are not the complete set of imaginary simple roots as more appear when m > N .

3.4.2. N = 3
The coefficients of the Fourier series T2(τ ) give the multiplicity of the imaginary simple roots 

proportional to δ′
3 and δ′′

3 . The coefficient of q
y gives the multiplicity of the roots y δ′

3 and y δ′′
3 . 

One has

T3(τ ) = 1−3 q1/3 + 0 q2/3−5 q + O(q4/3) .

g3,1(τ ) = 3η(τ)3

η(τ/3)3

(
1

−1

)
=
(

q−1/4 (3 q1/3 + O(q2/3)

q1/12 (−3+ O(q1/3)

)
(3.14)

The leading term in the first row corresponds to the imaginary simple roots (α(1)
3 + 1

3δ) and 

(α
(1)
0 + 1

3δ) as the constant piece is vanishing. This is consistent with simple real roots α(1)
3 and 

α
(1)
0 not being present. In the second row, the leading term has multiplicity −3 and corresponds 

to the imaginary roots 13δ
′
3 and 13δ

′′
3 . All other terms correspond to imaginary simple roots with 

negative norm.

g3,3(τ ) =

⎛⎜⎜⎝
q−3/4(14q + 42q4/3 + 126q5/3 + 308q2 + 714q7/3 + 1512q8/3 + · · · )
q−9/28(−3q1/3 − 9q2/3 − 38q1 − 99q4/3 − 252q5/3 − 549q2 + · · · )

q−1/28(−1− 3q1/3 − 9q2/3 − 35q − 75q4/3 − 180q5/3 − 372q2 + · · · )
q3/28(5+ 24q1/3 + 72q2/3 + 191q + 453q4/3 + 999q5/3 + · · · )

⎞⎟⎟⎠
For N = 2, 3, for the terms that we have studied we are able to see that the denominator term 

can be written as

�
(N)
k(N)(Z) =

∑
w∈W

det(w)w

[
(e−�

(
TN(δ) + (TN(δ′

N) − 1) + (TN(δ′′
N) − 1)

+
∑
a∈I

m(a) e−a + · · ·
)]

(3.15)
12
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where the set I is as defined in Definition 3.1. The ellipsis refers to contributions from higher 
orders. Additional terms may be added by incorporating the action of the symmetry γ (N) to make 
the right hand side manifestly invariant under the extended Weyl group. The symmetry under the 
action of ̂δ is already present. Terms such as these fit into the Borcherds extension of g(A(N)).

3.4.3. N = 5
The coefficients of the Fourier series T5(τ ) give the multiplicity of the imaginary simple roots 

δ′
5 and δ′′

5 . The coefficient of q
y gives the multiplicity of the roots y δ′

5 and y δ′′
5 . One has

T5(τ ) = 1−2 q1/5−1 q2/5 + 2 q3/5 + 1 q4/5 + 3 q + O(q6/5) .

These appear as the leading coefficient in the bottom row of each vvmf g5,m for m = 1, . . . , 5.

g5,1(τ ) =
(

q−1/4(q1/5 + 3q2/5 + 4q3/5 + 7q4/5 + 17q + 24q6/5 + 44q7/5 + · · · )
q1/12(−2− 3q1/5 − 9q2/5 − 12q3/5 − 21q4/5 − 35q + · · · )

)
For many purposes, it is useful to consider the leading terms in each row. In particular it is easy 
to extract the weight vector by inspection. In the first row, it is q1/5χ̃4,2 whose weight vector is 
( δ
5 − α2 + δ′

5) = δ
5 + α

(1)
3 which has norm 2(1 − 4/5) = 2/5. This is a real fermionic root. Let us 

call this root β . Note that β = 2�(5). One can show that

〈ρ,β∨〉 = +1 . (3.16)

where the co-root β∨ := 2β
〈β,β〉 . Note that this has the ‘wrong’ sign (in our convention) where 

simple real roots such as α1 are such that 〈ρ, α∨
1 〉 = −1.

g5,2(τ ) =
⎛⎝ q−1/2(q2/5 + q3/5 + 2q4/5 + q − 2q6/5 + 7q7/5 + 4q8/5 + 8q9/5 + · · · )

q−1/10(q1/5 − 2q2/5 − q3/5 − 3q4/5 + q + 5q6/5 − 8q7/5 − 3q8/5 + · · · )
q1/10(−1− 3q1/5 + q2/5 − 2q3/5 − q4/5 − 5q − 12q6/5 + · · · )

⎞⎠

g5,3(τ ) =
⎛⎜⎝ q−3/4(q3/5 + 4q4/5 + 9q + 14q6/5 + 33q7/5 + 52q8/5 + 126q9/5 + · · · )

q−9/28(−q2/5 − 3q3/5 − 15q4/5 − 25q − 37q6/5 − 74q7/5 − 106q8/5 + · · · )
q−1/28(−3q1/5 − 4q2/5 − 11q3/5 − 2q4/5 − 18q − 38q6/5 − 59q7/5 + · · · )

q3/28(2+ 9q1/5 + 17q2/5 + 41q3/5 + 53q4/5 + 110q + 201q6/5 + · · · )

⎞⎟⎠

g5,4(τ ) =

⎛⎜⎜⎜⎝
q−1(q4/5 + 2q + 5q6/5 + 8q7/5 − 2q8/5 + 16q9/5 + 13q2 + 68q11/5 + · · · )
q−5/9(2q3/5 − q4/5 − 11q − 11q6/5 + 24q7/5 − 11q8/5 + 11q9/5 + · · · )

q−2/9(−q2/5 − 10q3/5 − 7q4/5 − 18q − 18q7/5 − 103q8/5 − 59q9/5 + · · · )
(−2q1/5 − q2/5 + 14q3/5 + 5q4/5 + 19q − 14q6/5 + 6q7/5 + 123q8/5 + · · · )
q1/9(1+ 6q1/5 + 8q2/5 − 6q3/5 + 18q4/5 + 12q + 74q6/5 + 77q7/5 + · · · )

⎞⎟⎟⎟⎠

g5,5(τ ) =

⎛⎜⎜⎜⎜⎜⎝
q−5/4(q + 2q6/5 + 6q7/5 + 8q8/5 + 14q9/5 − 16q2 + 40q11/5 + 64q12/5 + · · · )

q−35/44(5q − 4q6/5 − 12q7/5 − 16q8/5 − 28q9/5 + 73q2 − 74q11/5 + · · · )
q−19/44(−21q + 6q6/5 + 18q7/5 + 24q8/5 + 42q9/5 − 194q2 + 112q11/5 + · · · )

q−7/44(−2q1/5 − 6q2/5 − 8q3/5 − 14q4/5 + 24q − 40q6/5 − 64q7/5 + · · · )
q1/44(−1+ 4q1/5 + 12q2/5 + 16q3/5 + 28q4/5 − 34q + 72q6/5 + · · · )

q5/44(3− 2q1/5 − 6q2/5 − 8q3/5 − 14q4/5 + 73q − 44q6/5 − 76q7/5 + · · · )

⎞⎟⎟⎟⎟⎟⎠
The leading root that appears in g5,5

4 is the γ (5) image of q1/5 and thus appears with the same 
multiplicity as q1/5. The leading term in the first row of all the vvmfs g5,m for m = 1, . . . , 5 is 
associated with the simple real root mβ , All appear with multiplicity +1 indicating the fermionic 
nature of the root. These terms are consistent with adding the following term in Eq. (3.15).
13
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1

1− e−β
= 1+

∞∑
m=1

e−mβ . (3.17)

This is the first term that cannot be a Borcherds correction due to the real nature of the root. 
However, it would be a Borcherds correction if β were a fermionic null root. The first five terms 
in the above expansion appear in our character expansions with the correct multiplicity. On the 
product side given by Eq. (2.12), we can see that the root β appears with multiplicity −1 with the 
roots mβ for m = 2 . . . not appearing to the extent that we have checked. This is also consistent 
with the claim in Eq. (3.17).

For N = 2, 3, it expected that BCHL
N (A(N)) is a BKM Lie superalgebra and a suitably enlarged 

set I should do the job. As far as we know, an explicit proof is not available in the literature. For 
N = 5, we expect a new set of real roots might appear at m = 10. In particular, it is known that 
following two real roots of norm 2 could appear as they are present in the product side.

α̃1 =
(
4 9
9 20

)
, α̃2 =

(
6 11
11 20

)
.

These are associated with the ̂sl(2) characters χ40,18 and χ40,22. They should appear as the 
leading coefficient in the ̂sl(2) character decomposition of �(5)

0,10(Z) given below. The relevant 
term in the second row is given in bold face and is vanishing.

g5,10(τ ) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

q−5/2(q2 + 2q11/5 + 5q12/5 + 12q13/5 + 27q14/5 + 114q3 + · · · )
q−85/42(0q2 + 8q11/5 + 27q12/5 + 20q13/5 + 17q14/5 − 603q3 + · · · )
q−67/42(35q2 − 66q11/5 − 207q12/5 − 228q13/5 − 345q14/5 + · · · )

q−17/14(2q7/5 − 8q8/5 − 26q9/5 − 326q2 + 104q11/5 + 461q12/5 + · · · )
q−37/42(5q − 16q6/5 − 54q7/5 − 40q8/5 − 34q9/5 + 1056q2 + · · · )

q−25/42(−35q + 66q6/5 + 207q7/5 + 228q8/5 + 345q9/5 + · · · )
q−5/14(−q2/5 + 4q3/5 + 13q4/5 + 164q − 80q6/5 − 318q7/5 + · · · )
q−1/6(2q1/5 + 9q2/5 − 4q3/5 − 25q4/5 − 397q + 102q6/5 + · · · )

q−1/42(8q1/5 − 27q2/5 − 20q3/5 − 17q4/5 + 603q − 352q6/5 + · · · )
q1/14(−3+ 14q1/5 + 45q2/5 + 44q3/5 + 59q4/5 − 812q + · · · )
q5/42(5− 16q1/5 − 54q2/5 − 40q3/5 − 34q4/5 + 1056q + · · · )

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
The leading term in row 1 has weight 10β and multiplicity one. This is consistent with the 
expansion of the term involving β conjectured in Eq. (3.17). The multiplicities are given by the 
BCHL
5 (̂sl(2)) character expansion. The coefficient of χ̃40,20 is

f
5,10
1 (τ ) = T5(τ )(q2 + 2q11/5 + 5q12/5 + 12q13/5 + 27q14/5 + 114q3 + O(q16/5) ,

= q2 + 2q13/5 + 3q14/5 + 63q3 + O(q16/5) .

The other potential real roots associated with q11/5 and q12/5 do not appear.

4. Vector-valued modular forms

In the previous section, we obtained vector-valued modular forms of the congruence group 
�0(N). We would like to obtain closed formulae for the Fourier coefficients of these modular 
forms. In [1], this was done by showing that the vvmfs satisfied a modular differential equation. 
However, those examples involved modular forms of the full modular group, PSL(2, Z). So 
14



S. Govindarajan and M. Shabbir Nuclear Physics B 989 (2023) 116127
we construct vector-valued modular forms for the whole group following a two-step procedure3

First, we convert the Jacobi forms of �0(N) into Jacobi forms of the full modular group. We 
obtain vector-valued Jacobi forms in this fashion. Next, we carry out the character decomposition 
of the these vector-valued Jacobi forms and obtain vector-valued modular forms of the whole 
modular group. The price we pay is that the rank of the vector-valued modular forms increases 
by the index of the subgroup in PSL(2, Z).

4.1. Vector-valued Jacobi forms

The Jacobi forms �(N)
0,m(τ, z) belong to J0,m(�0(N)). The Jacobi forms, obtained by the action 

of S, ψ(N)[1,g]
0,m (τ, z)

∣∣∣S ∈ J0,m(�0(N)). For prime N = 2, 3, 5, there are two cusps of width 1 and 
N respectively. We restrict our discussion to only these three cases. We form a rank (N + 1)
vector-valued Jacobi Form (vvJF) of the full modular group, PSL(2, Z). Let ψ ≡ �

(N)
0,m(τ, z)

and define

Ṽ(ψ) =

⎛⎜⎜⎜⎜⎜⎝
ψ(τ, z)|S
ψ(τ, z)

ψ(τ, z)|T
...

ψ(τ, z)|T N−1

⎞⎟⎟⎟⎟⎟⎠ .

The first entry is the contribution from the cusp at infinity and the other N are the contribution 
from the cusp at zero. Note that T N = 1 at the cusp at zero. The vvJF, Ṽ , is reducible with T
having an off-diagonal action. We first make a change of basis so that T is diagonal. Consider 
the Jacobi forms (with ωN = exp(2πi/N))

ψ̃i(τ, z) = 1

N

N−1∑
j=0

ω
ij
N ψ(τ, z)|T j , i = 0,1, . . . , (N − 1) mod N (4.1)

Now T has a diagonal action i.e.,

ψ̃i(τ, z)|T = (ωN)i ψ̃i and ψ(τ, z)|ST = ψ(τ, z)|S .

The rank (N + 1) vvJF Ṽ is reducible and decomposes into a Jacobi form for the full mod-
ular group and another one that is a rank N vvJF. The rank one Jacobi Form is given by the 
combination

A(N)(τ, z) := ψ(τ, z)|S + Nψ̃0(τ, z) . (4.2)

and the irreducible rank N vvJF is given by

V(N)(ψ) :=

⎛⎜⎜⎜⎜⎝
ψ(τ, z)|S − ψ̃0(τ, z)

ψ̃1(τ, z)
...

ψ̃N−1(τ, z)

⎞⎟⎟⎟⎟⎠ . (4.3)

3 We learned this method from the work of Borcherds who obtains modular forms for the full modular group in this 
fashion [20]. This procedure is called lifting by Bajpai in [21].
15
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The T matrix of the vvJF is

TV = diag(1,ωN, . . . , (ωN)N−1)

and the S-matrix can be obtained from the following formulae.

(
ψ(τ, z)|S − ψ̃0(τ, z)

) ∣∣∣S = − 1

N

(
ψ(τ, z)|S − ψ̃0(τ, z)

)+ N + 1

N

N−1∑
j=1

ψ̃j (τ, z)

ψ(τ + j, z)|S = ψ(τ − j ′, z) where j 
= 0 and jj ′ = 1 mod N .

For fixed N , the S-matrix is independent of the index of the Jacobi form, �0,m(τ, z) We thus 
give the S-matrices for the three cases of interest.

SN=2
V = 1

2

(−1 3
1 1

)
, SN=3

V = 1

3

⎛⎝−1 4 4
1 −1 2
1 2 −1

⎞⎠ (4.4)

SN=5
V = 1

5

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1 6 6 6 6

1 1
2

(
3− √

5
)

−1− √
5 −1+ √

5 1
2

(
3+ √

5
)

1 −1− √
5 1

2

(
3+ √

5
)

1
2

(
3− √

5
)

−1+ √
5

1
√
5− 1 1

2

(
3− √

5
)

1
2

(
3+ √

5
)

−1− √
5

1 1
2

(
3+ √

5
)

−1+ √
5 −1− √

5 1
2

(
3− √

5
)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
(4.5)

4.2. Vector-valued modular forms

The procedure of the previous sub-section can be applied to all the Jacobi forms, �(N)
0,m(τ, z). 

In the process we obtain one weight zero modular form that we denote by A(N)
m and a vvmf of 

weight zero and rank N that we denote by V(N)
m in obvious notation.

One can decompose the rank m Jacobi form V(N)
m in terms of ̂sl(2) characters, χ4m,2� for 

� = 0, . . . , 2m to obtain a rank (m +1)N vector-valued modular form for the full modular group, 
PSL(2, Z). Since the rank grows fast, we will first study the N = 2 case where we get vvmfs of 
rank 4 and rank 6. We are able to completely characterise the rank 4 example. The decomposition 
is as follows: (with x = (N − 1)(m + 1))

V(N)
m =

⎛⎝ g1 χ4m,2m + g2 (χ4m,2m−2 + χ4m,2m+2) + · · · + gm+1 (χ4m,0 + χ4m,4m)
...

gx+1χ4m,2m + gx+2 (χ4m,2m−2 + χ4m,2m+2) + · · · + gN(m+1)(χ4m,0 + χ4m,4m)

⎞⎠ ,

which leads to the vvmf G = (g1, g2, . . . , gN(m+1))
T . The S and T matrices are, however, easy 

to write out. Let S(m)
χ and T (m)

χ denote the matrices obtained from scalar Jacobi forms of index 
m as was considered in paper I [1]. Then, the S-matrix for the vvmf obtained from V(N)

m is given 
by

T = T
(N)
V ⊗ T (m)

χ and S = S
(N)
V ⊗ S(m)

χ (4.6)

In this fashion, we obtain the data needed to determine the modular differential equation of 
Gannon [14].
16



S. Govindarajan and M. Shabbir Nuclear Physics B 989 (2023) 116127
4.2.1. An example
Consider V (2)

1 which leads to a rank 4 example. We obtain the following T and S matrices.

T = diag
(
e− iπ

2 , e
iπ
6 , e

iπ
2 , e− i5π

6

)
, S = 1

2
√
3

⎛⎜⎜⎝
1 −2 −3 6

−1 −1 3 3
−1 2 −1 2
1 1 1 1

⎞⎟⎟⎠ (4.7)

The first few terms in the Fourier expansion of the vvmf are given below.

⎛⎜⎝q−1/4
(
1+ 36q + 375q2 + 2162q3 + 10017q4 + 38550q5 + 132446q6 + 413478q7 + · · · )

q−11/12
(−3q − 93q2 − 681q3 − 3723q4 − 15879q5 − 58974q6 − 195186q7 + · · · )

q−3/4
(−8q − 128q2 − 936q3 − 4784q4 − 19968q5 − 72432q6 − 236392q7 + · · · )

q−5/12
(
24q + 264q2 + 1656q3 + 7848q4 + 31104q5 + 108552q6 + 343992q7 + · · · )

⎞⎟⎠
Equipped with this data, we can determine the matrix differential equation of Gannon [14] to 
which G is one of the independent solutions. The data that we need for a rank d situation are the 
following:

1. an invertible set of exponents �, and
2. a d × d matrix χ defined by

�(τ) := (G1(τ ),G2(τ ), . . . ,Gd(τ )
)= q� (1d + χ q + O(q2)) (4.8)

For our rank four example, we obtain

� =
(

−1

4
,−11

12
,−3

4
,− 5

12

)
and (4.9)

χ =

⎛⎜⎜⎝
−8400 1296 36 −15876
72 24 −3 −32

−102 54 −8 432
1125 106 24 2800

⎞⎟⎟⎠ , (4.10)

leading to the four solutions (column 3 is our solution)

q�

⎡⎢⎣
⎛⎜⎝−8400q − 651744q2 1296q + 28512q2 1+ 36q + 375q2 −15876q − 2094498q2

72q + 43056q2 24q + 2064q2 −3q − 93q2 1− 32q − 50161q2

1− 102q − 30051q2 54q + 2268q2 −8q − 128q2 432q + 228096q2

1125q + 115650q2 1+ 106q + 3047q2 24q + 264q2 2800q + 518224q2

⎞⎟⎠+ O(q3)

⎤⎥⎦
4.2.2. Other examples

We are unable to determine the modular differential equations in the other cases. The next 
lowest rank is six and we need to numerically determine twelve unknown constants. Our attempts 
to numerically determine the modular differential equation failed. Until rank four, it is easy to 
determine the modular differential equation making use of an observation of Gannon in [14]
which enables us to generate three linearly independent solutions given a solution. This puts 
rank five within reach of numerical computation.
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4.3. The Jacobi forms A(N)
m

The A(N)
m are Jacobi forms for the full modular group. One can expand these as follows:

A(N)
m (τ, z) =

m∑
j=0

h2j (τ ) A(τ, z)m−jB(τ, z)j , (4.11)

where h2j (τ ) (j = 0, 1, . . . , m) are modular forms of weight 2j . Since the ring of modular forms 
of PSL(2, Z) is generated by polynomials in E4(τ ) and E6(τ ), we can characterise A(N)

m (τ, z)
by a few constants. h2(τ ) = 0 since there is no weight two modular form for the full modular 
group.

In this fashion, we can show that

A(N)
1 (τ, z) = A(τ, z) = U0,1(τ, z) for N = 2,3,5 ,

A(2)
2 (τ, z) = −U0,2(τ, z) .

In these two cases we obtain Umbral Jacobi forms defined in Eq. (A.14). That is not true in 
general. For instance,

A(3)
2 = 0 ,

A(3)
3 = 1

216
A(τ, z)3 + 5

72
E4(τ )A(τ, z)B(τ, z)2 − 2

27
E6(τ )B(τ, z)3 
= U0,3(τ, z) .

A(3)
3 is however a linear combination of two solutions of the matrix differential equation satisfied 

by the umbral Jacobi form [1]. We are not presenting the Jacobi forms that appear for N = 5.

5. Concluding remarks

In this paper, we have begun a study of the decomposition of the Siegel modular forms 
�

(N)
k(N)(Z) as denominator formulae for a Lie algebra under two sub-algebras of a Lie algebra, 

BCHL
N (A(N)), that we wish to understand. There is a natural product formula that provides the 

product side of the denominator formula – this provides a description of the positive roots with 
their multiplicities. The character decomposition that we study is a probe on the sum side of the 
denominator formula. The work is preliminary as we focused on the first N terms that appear. 
The N = 5 case provides the first example of something new. It is the simple real root that we 
called β with e−β ∼ q1/5rs. Roots of type mβ appear consistent with the expansion of

1

1− e−β
= 1+

∞∑
m=1

e−mβ .

The terms for m = 1, 2, 3, 4, 5, 10 that appear in our study agree with the above formula. A 
preliminary study shows that similar root with e−β ∼ q1/6rs appears for the N = 6 CHL orbifold. 
We have checked that it again fits the above formula – we have verified that the first six terms 
do appear with the correct multiplicity. While the evidence for this is compelling, an all-orders 
proof is lacking. What is the Lie algebraic interpretation of this kind of ‘correction’ term? There 
is a conflict between the following two properties of β .

1. The root β has positive norm which suggests that it is a real root and should generate a rank 
one osp(1, 2) Lie superalgebra.
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2. It appears on the sum side like a Borcherds correction term for an isotropic root. It should 
generate a rank one sl(1, 2) Lie superalgebra.

A resolution of this conflict will go a long way in understanding the Lie superalgebra that we 
seek.

We also need to work out the cases of N = 4, 6. The eventual goal is the following: (i) Rewrit-
ing the sum term in terms of orbits of the extended Weyl group, (ii) Verifying that the orbits are 
indeed Borcherds extensions for N ≤ 4, (iii) For the N = 5, 6 examples, we need to have a good 
description of all terms that don’t fit into a Borcherds extension.

The additive lift for the modular forms �(N)
k(N)

(Z)was studied in [4]. This was done by working 
out the S-transform of the Hecke operator appearing in an additive lift of Cléry and Gritsenko. 
This was done for a case by case basis. It would be interesting to carry it out for all cases and 
obtain a closed formula for the sum side. This might enable us to prove that the examples for 
N ≤ 4 are indeed Borcherds extensions of g(A(N)).

Our approach to arriving at modular differential equations was blighted by the large ranks that 
appeared when we constructed vvmfs for the full modular group. The ranks grew as N(m + 1) – 
the factor of N coming in this process. Is there a way to write modular differential equations for 
the congruence subgroup? The work of Bajpai might be a way to proceed [21]. Gottesman has 
studied rank 2 examples of �0(2) in his work [22].
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Appendix A. Automorphic forms

A.1. Modular forms

Let H = (τ | Im(τ ) > 0) denote the upper half plane.

Definition A.1. A modular form, of weight k and character χ , is a function f :H → C such that 

for γ =
(

a b

c d

)
∈ PSL(2, Z), one has
19
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f |kγ (τ ) = χ(γ ) f (τ) , (A.1)

where

f |kγ (τ ) := (cτ + d)−k f (γ · τ) ,

and γ · τ = aτ+b
cτ+d

.

The level N sub-group �0(N) ⊆ PSL(2, Z) comprises those γ with c = 0 mod N . Similarly, 
the subgroup �0(N) is defined by requiring b = 0 mod N .

The group SL(2, Z) is generated by two generators that are conventionally called the T and 
S. One has

T : τ → τ + 1 , S : τ → −1

τ
.

Let f (τ) be a modular form of PSL(2, Z) with weight k. Then, f (Nτ) is a modular form 
of �0(N) and f (τ/N) is a modular form of �0(N) with weight k [23]. Let j be such that 
(j, N) = 1. Then we have the following two identities that are very useful.

f (τ/N)
∣∣
k
S = Nk f (Nτ)

f
(

τ+j
N

) ∣∣
k
S = f

(
τ−j ′
N

) (A.2)

with jj ′ = 1 mod N . The second line follows from the observation that [24]

S · τ + j

N
= jτ − 1

Nτ
= G ·

(
τ − j ′

N

)
,

where G =
(

j (jj ′ − 1)/N
N j ′

)
∈ �0(N).

A.1.1. Examples
A very nice and practical introduction to modular forms is by Zagier [25]. We define the 

modular forms that appear in our work.

1. The Dedekind eta function η(τ) defined by (with q = exp(2πiτ))

η(τ) = q1/24
∞∏

m=1

(1− qm) , (A.3)

is a modular form of weight half and character given by a twenty-fourth root of unity.
2. The Eisenstein series: Let

E2(τ ) = 1− 24
∞∑

n=1

σ1(n) qn ,

E4(τ ) = 1+ 240
∞∑

n=1

σ3(n) qn , (A.4)

E6(τ ) = 1− 504
∞∑

n=1

σ5(n) qn .
20
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E4(τ ) and E6(τ ) are holomorphic modular forms of PSL(2, Z) with weights 4 and 6
respectively. They generate the ring of holomorphic modular forms of PSL(2, Z). Any holo-
morphic modular form of PSL(2, Z) can be expressed a polynomial of these two modular 
forms. E2(τ ) is not modular but

E∗
2 (τ ) = E2(τ ) − 2

Im(τ )
,

is a non-holomorphic modular form of weight 2.
3. The sub-group �0(N) (for N > 1) has a holomorphic modular form of weight 2 given by

E
(N)
2 (τ ) := 1

N − 1

(
NE∗

2 (Nτ) − E∗
2 (τ )

)= 1

N − 1
(NE2(Nτ) − E2(τ )) , (A.5)

where we observe that the non-holomorphic pieces cancel away in writing the definition in 
the second form. It is easy to show that

E
(N)
2 |S(τ) = − 1

N
E

(N)
2 (τ/N) .

4. Let ρ = 1a12a2 · · ·NaN be a cycle shape, for a conjugacy class of M24, with 
∑

j jaj = 24. 
Then, the product

ηρ(τ) :=
N∏

j=1

η(jτ)aj ,

is a modular form �0(N) with character given by an N -th root of unity [26] (also see [27]
for a slightly different version).

A.2. Ring of generators for �0(N)

Let M(�0(N)) denote the ring of holomorphic modular forms of �0(N). We list the genera-
tors of this ring for the cases of interest (obtained from [28]).

1. PSL(2, Z) has two generators: E4(τ ) and E6(τ ).
2. M(�0(2)) has two generators: E(2)

2 (τ ) and E4(2τ).

3. M(�0(3)) has three generators: E
(3)
2 (τ ), E4(3τ) and E6(3τ).

4. M(�0(5)) has three generators: E
(5)
2 (τ ), E4(5τ) and η1454 = η(τ)4η(5τ)4.

A.3. Siegel and Jacobi forms

The group Sp(4, Z) is the set of 4 × 4 matrices written in terms of four 2 × 2 matrices A, 

B , C, D (with integral entries) as M =
(

A B
C D

)
satisfying ABT = BAT , CDT = DCT and 

ADT − BCT = I . This group acts naturally on the Siegel upper half space, H2, as

Z =
(

τ z

z τ ′
)

�−→ M ·Z≡ (AZ+ B)(CZ+ D)−1 .

Definition A.2. A Siegel modular form, of weight k with character v with respect to Sp(4, Z), is 
a holomorphic function F : H2 → C satisfying
21



S. Govindarajan and M. Shabbir Nuclear Physics B 989 (2023) 116127
F |kM(Z) = v(M) F(Z) , (A.6)

for all M ∈ Sp(4, Z) where the slash operation is defined as

F |kM(Z) := det(CZ+ D)−k F (M ·Z) . (A.7)

A.4. Jacobi forms

In the limit τ ′ → i∞ or s = exp(2πiτ ′) → 0, a Siegel modular form �k(Z) has the following 
Fourier-Jacobi expansion:

�k(Z) =
∞∑

m=0

sm φk,m(τ, z) .

The Jacobi group �J is the sub-group of Sp(4, Z) that preserves the condition s = 0. The 
transformation of the Fourier-Jacobi coefficients, φk,m(τ, z), under the Jacobi group is a nat-
ural definition of a Jacobi form. It is generated by two sub-groups, one is the modular group 
PSL(2, Z) embedded suitably in Sp(4, Z) and the other is the Heisenberg group defined below.

The embedding of 
(

a b
c d

)
∈ PSL(2, Z) in Sp(4, Z) is given by

˜

(
a b

c d

)
≡

⎛⎜⎜⎝
a 0 b 0
0 1 0 0
c 0 d 0
0 0 0 1

⎞⎟⎟⎠ . (A.8)

The above matrix acts on H2 as

(τ, z, σ ) −→
(

aτ + b

cτ + d
,

z

cτ + d
, σ − cz2

cτ + d

)
, (A.9)

with det(CZ + D) = (cτ + d). The Heisenberg group, H(Z), is generated by Sp(2, Z) matrices 
of the form

[λ,μ,κ] ≡

⎛⎜⎜⎝
1 0 0 μ

λ 1 μ κ

0 0 1 −λ

0 0 0 1

⎞⎟⎟⎠ with λ,μ,κ ∈ Z (A.10)

The above matrix acts on H2 as

(τ, z, σ ) −→
(
τ, z + λτ + μ, σ + λ2τ + 2λz + λμ + κ

)
, (A.11)

with det(CZ + D) = 1.

Definition A.3. A Jacobi form of weight k and index m is a map φ :H×Z → C satisfying

�|kM(Z) = �(Z) ,

where �(Z) := smφk,m(τ, z).

The power of s cancels the phases that appear for the Heisenberg group in the usual definition.
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A.4.1. Examples
The genus-one theta functions are defined by

θ
[a
b

]
(τ, z) =

∑
l∈Z

q
1
2 (l+ a

2 )2 r(l+ a
2 ) eiπlb , (A.12)

where a, b ∈ (0, 1) mod 2. We define θ1 (τ, z) ≡ i θ
[
1
1

]
(τ, z), θ2 (τ, z) ≡ θ

[
1
0

]
(z1, z), 

θ3 (τ, z) ≡ θ
[
0
0

]
(τ, z) and θ4 (τ, z) ≡ θ

[
0
1

]
(τ, z).

The following two index 1 Jacobi forms (with weights 0 and −2 respectively) are important.

A0,1(τ, z) = 4

[
θ2(τ, z)

2

θ2(τ,0)2
+ θ3(τ, z)

2

θ3(τ,0)2
+ θ4(τ, z)

2

θ4(τ,0)2

]
= (r−1 + 10+ r) + O(q) ,

B−2,1(τ, z) = η(τ)−6θ1(τ, z)
2 = (r−1 − 2+ r) + O(q) . (A.13)

We usually drop writing the weight and index of these two basic Jacobi forms. All weak Jacobi 
forms are given by polynomials in these two Jacobi forms with coefficients given by modular 
forms of appropriate weight [29, see Prop. 6.1].

Let fi = θi(τ, z)/θi(τ, 0) for i ∈ {2, 3, 4}. The Umbral Jacobi forms at lambency � are weak 
Jacobi forms of weight zero and index (� − 1) [2]. We list the three that are relevant for us.

U0,1(τ, z) = 4(f 2
2 + f 2

3 + f 2
4 ) = ( 1

r
+ 10+ r

)+ · · · ,

U0,2(τ, z) = 2(f 2
2 f 2

3 + f 2
3 f 2

4 + f 2
4 f 2

2 ) = ( 1
r

+ 4+ r
)+ · · · ,

U0,3(τ, z) = 4f 2
2 f 2

3 f 2
4 = ( 1

r
+ 2+ r

)+ · · · .

(A.14)

A.5. Twisted-twining elliptic genera of K3

Let g denote a finite symplectic automorphism of K3 of order N . We denote one half of the 
elliptic genus of K3 twisted by gr and twined by gs by ψ [gs,gr ]

0,1 (τ, z)

ψ
[gs,gr ]
0,1 (τ, z) = N

2
F

(r,s)
(N)

(τ, z) , (A.15)

where F (r,s)
(N) (τ, z) are defined in [10] for prime N = 2, 3, 5 as follows:

F
(0,0)
(N) (τ, z) = 2

N
A(τ, z)

F
(0,s)
(N) (τ, z) = 2

N(N + 1)

[
A(τ, z) + NB(τ, z)E

(N)
2 (τ )

]
for 1≤ s ≤ (N − 1)

F
(r,rl)
(N) (τ, z) = 2

N(N + 1)

[
A(τ, z) − B(τ, z)E

(N)
2

(
τ+l
N

)]
for 1 ≤ r ≤ (N − 1), 0≤ l ≤ (N − 1).
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