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1 Introduction and main results

Perturbative method is efficient for computing few-to-few scattering amplitudes in weakly
coupled field theories. But it may become unreliable [1–4] if the number n of particles in the
final state exceeds the inverse coupling constant λ−1 of the theory. Indeed, the count of tree
diagrams contributing to few→ n processes in models of scalar fields grows factorially [3–
5] with n, and l-loop corrections add even more — of order n!nl+1 — terms, see [6–8]
and figures 1a,b. As a consequence, perturbative series for the respective amplitudes are
proportional to n!, go in powers of λn instead of λ, and explode at n & λ−1 [8–10]. This
simplified bookkeeping is supported by explicit calculations in the scalar field theories at
tree [5, 11–14] and one-loop [6, 7, 15, 16] levels, both at the mass threshold of n final
particles and for their nonzero spatial momenta [8, 17, 18]. It also agrees with the intuition
acquired from one-dimensional quantum mechanics [19–21].

Later, it was observed [8] that the parts of perturbative series going in powers of λn
can be resummed into an exponent of a universal “holy grail” function F . Consider, say,
the scalar λφ4 theory and inclusive probability Pn(E) of producing n scalar quanta with
total energy E from the few-particle initial state Ô|0〉. At n ∼ λ−1 � 1 this probability is
expected to have the form [8],

Pn(E) ≡
∑
f

|〈f ;E,n|Ŝ Ô|0〉|2 ∼ eF (λn, ε)/λ , (1.1)
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Figure 1. Examples of (a) tree and (b) one-loop diagrams describing creation of n = 5 bosons
from one off-shell particle in the scalar λφ4 theory. The numbers of such graphs grow with the
final-state multiplicity as ∼ n! and ∼ n2n!, respectively. (c), (d) Processes few → n for different
operators Ô in eq. (1.1).

where the sum covers all final states with given n and E, Ŝ is the S-matrix, and the exponent
in the right-hand side collects all leading terms of the perturbative series at fixed λn. The
initial state operator Ô may create two φ-quanta — then Pn is proportional to the famil-
iar 2→ n cross section (figure 1c). Otherwise, one can take Ô ∝ φ̂(0) if the off-shell φ-boson
is initially produced in an external collision, see figure 1d. In any case, the exponent F is
conjectured to be universal [22], i.e. independent of the operator Ô as long as the latter cre-
ates� λ−1 particles from the vacuum. This makes F a function of two variables: the com-
bination λn ∼ O(1) and mean kinetic energy ε ≡ E/n−m of final particles with mass m.

To date, the form (1.1) of the probability and universality of the exponent are con-
firmed in the λφ4 theory [8, 22] for the two leading terms of F expansion in λn, for many
expansion orders in the analogous quantum mechanics [20, 21], and for the sister processes
of underbarrier tunneling between the few-particle and multiparticle states1 [24–27]. All
these tests are nonperturbative because the right-hand side of eq. (1.1) includes arbitrarily
high powers of λ even in the simplest case when F is cropped to O(λn) and O(λn)2 terms.
At the same time, no reliable first-principle calculation of the exponent has yet been per-
formed at n ∼ λ−1 in any field theoretical model, see refs. [28–37] for similar results in the
case of tunneling.

Expression (1.1) reveals exponential sensitivity of the scattering probability to the
number of particles in the final state. One asks [1, 2] whether it may become unsuppressed
at sufficiently large n ∼ λ−1. Recently, this question was acutely posed in the context of
the so-called “Higgsplosion” scenario [38–40]: the exponent for producing n nonrelativistic
Higgs bosons from two colliding gluons was suggested to have the form,

FHiggsplosion ≈ λn ln λn4 + 3
2λn ln ε

3πm + λn

2 + 0.854 (λn)3/2 at n ≤ n∗ . (1.2)

Here m, λ, and ε � m are the mass, quartic constant, and mean kinetic energy of the
final-state Higgs bosons, E = n(m + ε) is the collision energy, and n∗ is defined by
FHiggsplosion(λn∗) = 0. Importantly, eq. (1.2) was derived semiclassically at n ∼ λ−1,
albeit with daring assumptions on the structure of semiclassical solutions [39, 40]. It may
well be valid in the entire region of multiplicities n ≤ n∗ ∼ 3.08λ−1 ln2(ε/m) where the
exponent is non-positive — then the transitions become unsuppressed at n ≈ n∗. At larger
n corrections to eq. (1.2) should prevail [38, 41] and unitarize the theory because the prob-

1In the latter case universality of the exponent is called Rubakov-Son-Tinyakov conjecture [23].
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ability Pn cannot be exponentially large,2 cf. [44–46]. But even in its limited parameter
space eq. (1.2) can drastically change the entire Higgs phenomenology predicting explo-
sive production of these particles in high-energy collisions and in decays of new heavy
resonances [38, 47], cf. [48].

On the other hand, one finds this outstanding possibility challenging from the consis-
tency side of quantum theory. Indeed, recall that the inclusive probability of high-energy
scattering is related — by optical theorem and dispersion relations — to the Green’s func-
tion of few field operators at low momenta. If the transitions from “few” to “many” were
unsuppressed at high energies, the Green’s functions would receive sizeable contributions
from virtual multiparticle states, and that would break perturbative expansion at small
momenta [9, 44]. This argument may be brushed off as inconclusive [43], but it certainly
raises the stakes: either eq. (1.2) is invalid or one of the building blocks of a consistent
quantum field theory — dispersion relations or the perturbative method — should be
abandoned. We will return to this issue in the Discussion section.

Another warning comes from simulations of classical waves. If the probability of mul-
tiparticle production were of order one, the time-reversed processes, namely, conversion
of many particles into few highly energetic quanta would also proceed classically [49–51].
The latter conversion was not, however, observed in evolutions of classical wave packets —
read, collisions of multiparticle states — despite Monte Carlo optimization over the avail-
able parameter space [52]. A possible loophole here is a different model: unbroken λφ4

theory in ref. [52] as compared to the spontaneously broken case used for deriving eq. (1.2).
In this paper we numerically compute the exponent F (λn, ε) at arbitrary λn from first

principles in the scalar field theory. Up to our knowledge, no calculation of this kind was
performed before, see ref. [53] for the accompanying work. We exploit the same semiclassical
method [54] as in the studies on “Higgsplosion” [39, 40], but do not make additional
assumptions on the structure of saddle-point solutions. We consider (3 + 1)-dimensional
λφ4 theory with positive mass term m2 > 0 and no spontaneous symmetry breaking:

S = 1
2λ

∫
d4x

(
−φ�φ−m2φ2 − φ4/2

)
, (1.3)

where the coupling λ� 1 appears in front of the action and hence governs loop expansion;
one can bring it in front of the φ4 term using the field redefinition φ→ φ

√
λ.

We rely on the semiclassical technique of D.T. Son [54] developed as an adaptation
of L.D. Landau method for calculating matrix elements in quantum mechanics [55]; see
also [56–59]. It applies at n � 1 and λ � 1 and is based on the universality of the
exponent in eq. (1.1). Namely, since F is independent of the few-particle operator Ô, we
can take it in the form

Ô = exp
{
− 1
λ

∫
d3x J(x) φ̂(0, x)

}
(1.4)

that describes a classical source J(x) acting at t = 0. The latter source creates O(J2/λ)
particles from the vacuum, i.e. a few-particle initial state with multiplicity � λ−1

2Also, large-n asymptotic of eq. (1.2) is inconsistent with locality of quantum theory [42, 43].
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at J � O(λ0). Then the universality conjecture guarantees that the limit

F (λn, ε) = lim
J→0

FJ(λn, ε) (1.5)

exists and is independent of the source profile, where FJ in the right-hand side is computed
at nonzero J(x).

The above observation opens up a way to the semiclassical description because
at O(J2/λ)� 1 and n� 1 both the initial and final states of the process include many
particles. Therefore, one can compute FJ semiclassically and then take the limit J → 0,
thus arriving at the exponent of the few→ n production probability. We stress that the last
limit brings the initial multiplicity to the region 1� O(J2/λ)� λ−1 where the exponent
is already universal but the semiclassical method is still applicable.

At finite J , the standard semiclassical machinery [23, 54, 60] works in the following
way. One writes the probability (1.1) in the form of a path integral and evaluates the latter
in the saddle-point approximation. The respective saddle-point configurations φcl(t, x)
are generically complex. They satisfy the classical field equation in the presence of an
external source J(x) and the boundary conditions at t→ ±∞ depending on ε and λn.
Once the semiclassical solutions are found, FJ can be computed using the value of the
action functional on φcl(t, x). Notably, the semiclassical configurations become singular
in the limit J → 0; that is why the overall technique is called the method of singular
solutions [54]. Previously, it was shown [9, 54] that this method correctly reproduces tree-
level and one-loop multiparticle amplitudes at the threshold (ε = 0) in the λφ4 theory.
Besides, in ref. [61] it was used to calculate tree-level suppression exponent at λn� 1 and
arbitrary ε. But apart from the controversial “Higgsplosion” studies, the most interesting
case n & λ−1 was never considered.

In this paper we numerically find the saddle-point solutions φcl(t, x) at arbitrary λn
and ε in the model (1.3). We make no assumptions on their properties or analytic structure.
We reliably select physically relevant configurations that give dominant contributions to
the probability. Namely, at certain nonzero J the out-particles are mainly produced by the
classical source itself, while the interaction of the scalar field can be ignored. In this case the
physical solutions can be found in the free theory with a source. Switching on interaction
and gradually decreasing J to zero at fixed λn and ε, we arrive at a continuous branch of
relevant saddle-point configurations. The subsequent extrapolation J → 0 gives the sought-
for singular solutions and their suppression exponent F in the broad range of n� 1 and ε.

Our result for the exponent F (λn, ε) is demonstrated in figure 2a (circles) at the
exemplary value ε = 3m with numerical accuracy better than the circle size. We see
that F monotonically decreases with λn. As expected, at λn � 1 it coincides with the
contribution of tree-level diagrams [62] (dashed line), see also [53]. In the opposite limit
λn� 1 our numerical data are well fitted by the linear function (solid line in the figure):

F → λnf∞(ε) + g∞(ε) or Pn → enf∞(ε)+g∞(ε)/λ at λn→ +∞ , (1.6)

where f∞ and g∞ are negative. In the main text we will show that results at other ε have
similar qualitative behavior, although f∞ and g∞ depend on ε. In particular, figure 2b
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Figure 2. (a) The exponent F (λn, ε) of the multiparticle production probability in the model (1.3)
at ε = 3m. Numerical data (circles) interpolate between the tree-level result at λn� 1 (dashed
line and eq. (4.4) from the main text) and linear asymptotic (1.6) at λn� 1 (solid line). (b) The
slope f∞(ε) of the exponent at large λn as a function of ε.

demonstrates the slope f∞(ε) < 0 increasing with energy. It can be approximated by the
expression (solid line in the figure)

f∞(ε) ≈ −3
4 ln

[
(d1m/ε)2 + d2

]
, di ≈ {10.7, 30.7} (1.7)

that has physically motivated asymptotics at ε→ 0, +∞; see the main text for derivation.
Minimal slope f∞ → −2.57± 0.06 is achieved in the ultrarelativistic limit ε→ +∞.

It is remarkable that the probability (1.1) can be used to calculate the amplitude An
of producing n particles at the mass threshold. Indeed, in the limit ε → 0 a single out-
state remains: the one with zero spatial momenta of all final particles. The amplitude
of transition to this state is determined by the ratio of the inclusive probability to the
n-particle phase volume Vn(ε)/n! at ε→ 0:

|An|2 ∼ lim
ε→0

n!
Vn

eF/λ ∼ n!m4−2n e2FA(λn)/λ , (1.8)

where the factor n! explicitly accounts for particle identity, the standard expression for Vn is
given in the main text, and the last equality fixes the expected parametric form of the am-
plitude at n ∼ λ−1. Extrapolating numerical results to ε = 0, we get the exponent FA(λn)
which is displayed by circles with errorbars in figure 3a. At small λn these data are close
to the tree-level exponent of ref. [5] (dotted line) and even closer to the one-loop result of
refs. [6, 8] (dashed line). At large λn the data deviate from the perturbative results, but
they are well fitted by the function with linear asymptotic as λn → +∞ (solid line and
eq. (4.10) from the main text). In the latter large-λn region the amplitude equals

|An| ∼ m2−n√n! enf ′∞+g′∞/λ , f ′∞ = −0.062± 0.026 , g′∞ = −9.7± 1.2 at n� λ−1 .

(1.9)
We will explain below that eq. (1.9) does not contradict to unitarity of quantum theory
despite the factorial dependence on n.
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Figure 3. (a) Suppression exponent FA(λn) of the amplitude to produce n particles at the mass
threshold, see eq. (1.8). (b) Complex time contour A0B for the semiclassical boundary value problem
(thick solid line) and the singularities t∗(x), t′∗(x), t′′∗(x) of the semiclassical solutions (thin lines
starting from crossed circles or filled points); not to scale.

In a nutshell, our results prove that the probability of producing n� 1 particles from
few colliding quanta is exponentially suppressed in the unbroken λφ4 theory. In addition
to already presented data, below we visualize the suppression exponent at different ε, fit it
with a convenient formula at finite λn, and provide tabulated raw data in the supplementary
material.3 We also confirm universality of the exponent by comparing results at different
source profiles J(x). Finally, we will discuss self-consistency of eqs. (1.6) and (1.9), physi-
cal constraints on F , and reiterate interconnections between the multiparticle probability,
unitarity, perturbative series, and dispersion relations.

An important part of our study is the analysis of configurations φcl(t, x) saturating
the probability (1.1). Although being complex and with no immediate physical meaning,
they characterize the dynamics of the process and specify its most probable final state.
Studying the analytic structure of the solutions, we find out that one of the assumptions
underlying the “Higgsplosion” scenario [39, 40] is not generic. This puts eq. (1.2) on shaky
ground despite the fact that it was obtained in a different model.

The rest of this paper is organized as follows. We review the semiclassical method of
singular solutions and formulate it on the lattice in section 2. Section 3 explains our tech-
niques for selecting physically relevant solutions and for extrapolating the data to J → 0.
We present results in section 4 and discuss them in section 5. Appendices A,B, and C pro-
vide details of numerical methods, saddle-point solutions in the linear theory, and analysis
of singularities, respectively.

3Supplementary material: “info.pdf” describes published data, “finite_J.dat” provides numerical
results at finite source J(x), “zero_J.dat” — results of extrapolation to J = 0, “large_n.dat” — func-
tions f∞(ε), g∞(ε), and f(ε), “solution.mp4”, “solution_white.mp4”, and “video_poles.mp4” — the
movies [65].
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2 Semiclassical method

2.1 Saddle-point equations

We start by reviewing equations for the saddle-point configurations φcl(t, x) saturating
path integral for the probability (1.1) at λ � 1 and large n, see [23, 40, 54, 60] for
derivation.

Generically, φcl are complex and satisfy the field equation

�φcl +m2φcl + φ3
cl = iJ(x) δ(t) , (2.1)

where the source in the right-hand side originates from the operator Ô in the form (1.4).
Boundary conditions for this equation are related to the initial and final states of the
process.

It will be convenient to analytically continue φcl(t, x) onto the complex time con-
tour A0B in figure 3b, i.e. perform a partial Wick rotation. Then the first boundary
condition requires the field to vanish in the infinite past along the Euclidean time axis:

φcl(t, x)→ 0 as t→ +i∞ . (2.2)

This corresponds to initial vacuum in eq. (1.1). In the infinite future t → +∞, the semi-
classical solution describes a state of n free particles. Hence, it should linearize into a
superposition of free waves:

φcl(t, x)→
∫

d3k eikx
(2π)3/2√2ωk

[
ake−iωkt + b∗−keiωkt

]
as t→ +∞ , (2.3)

where ωk ≡
√
k2 +m2 and ak and bk are the negative- and positive-frequency amplitudes,

respectively. The second boundary condition relates the amplitudes:

ak = e−θ+2ωkT bk . (2.4)

One can show [23] that this equation corresponds to inclusive final state with given energy
and multiplicity in eq. (1.1). Parameters T and θ in its right-hand side are the Lagrange
multipliers related to E and n via the standard expressions

λE =
∫
d3kωk akb

∗
k , λn =

∫
d3k akb

∗
k . (2.5)

We will also use kinetic energy per final particle ε ≡ E/n−m.
It is worth noting that a complete Wick rotation to the Euclidean axis cannot be

performed. Indeed, bk cannot vanish for all k at nonzero E and n due to eqs. (2.5).
Thus, the positive-frequency part of the solution (2.3) grows exponentially at t → −i∞,
ruins linearity and makes it impossible to impose free-wave boundary conditions in that
region. On the other hand, the semiclassical equations can be consistently formulated on
the contour A0B, and the source J(x)δ(t) can be placed right in its corner at t = 0. The
latter fact is made explicit by integrating eq. (2.1) across t = 0. We get,

∂tφcl(+0, x)− ∂tφcl(+i0, x) = iJ(x) , φcl(+0, x) = φcl(+i0, x) at t = 0 . (2.6)
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Hence, one can find the solutions of eq. (2.1) with zero right-hand side on the parts A0
and 0B of the time contour and then glue them at t = 0 using eq. (2.6).

Equations (2.1)–(2.5) form a complete boundary value problem for the semiclassical
configuration φcl(t, x) and Lagrange multipliers T , θ. Once the equations are solved, one
calculates the suppression exponent [54],

FJ = 2λET − λnθ − 2λImS[φcl]− 2Re
∫
d3x J(x)φcl(0, x) , (2.7)

where the first two terms come from the non-vacuum final state, the classical action (1.3)
in the third term is evaluated on φcl, and the last term accounts for the insertion of
the operator Ô. Note that the semiclassical equations involve λ, n, and E only in the
combinations λn and λE, see eq. (2.5). This makes the rescaled classical action λS[φcl]
and the semiclassical exponent FJ depend on two parameters: λn and ε ≡ E/n−m.

It is also worth pointing out that the Lagrange multipliers T and θ automatically
satisfy Legendre transform relations [54]:

2T = ∂FJ
∂(λE) , θ = − ∂FJ

∂(λn) . (2.8)

This discloses them as derivatives of the suppression exponent FJ(λn, λE). We will use
eqs. (2.8) as a cross-check of the numerical method and a cheap way to increase precision.

The last step of the semiclassical method is to send J → 0. Let us demonstrate [54]
that the semiclassical solutions become singular in this limit. Consider their energy

E(t) = 1
2λ

∫
d3x

[
(∂tφcl)2 + (∂xφcl)2 +m2φ2

cl + φ4
cl/2

]
, (2.9)

which separately conserves on the Euclidean and Minkowski parts A0 and 0B of the time
contour. Namely, E = 0 on the part A0 and E = E on the part 0B due to boundary
conditions (2.2) and (2.5). The energy jumps at t = 0 due to presence of the classical
source J . We therefore obtain,

λE = λE(+0)− λE(+i0) = i

2

∫
d3x J(x) [∂tφcl(+0, x) + ∂tφcl(+i0, x)] , (2.10)

where eqs. (2.6) were used in the last equality. Now, it is clear that ∂tφcl should become
singular at t = 0 in the limit J → 0, or the energy E would vanish.

Another clarification of the analytic structure comes from the solution at λn = λE = 0
and J = 0 which is known analytically [5, 54]. It is spatially homogeneous:

φcl(t, x) = −im
√

2
/

sin(mteiε′) at λn = λE = 0 , (2.11)

where ε′ → +0 is a regulator. One can check that eq. (2.11) solves the field equation
with zero source, has ak = 0, and satisfies the boundary conditions (2.2), (2.3), and (2.4)
at θ = +∞. Expressions (2.5) then give zero quantum numbers of the final state. We see a
singularity of φcl at t = 0 — or, rather, a flat three-dimensional singularity hyperplane in
the four-dimensional spacetime. But the configuration (2.11) is also singular at the chain
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of points t = πk e−iε′/m with integer k which reside somewhat below the real time axis
at k > 0. Below we will demonstrate numerically that the spatial homogeneity of solutions
is broken at nonzero E and n, but the qualitative singularity structure remains. Namely,
the singularities form [9, 54] chains of hypersurfaces t = t∗(x), t′∗(x), etc. shown in figure 3b.
The first — “main” — hypersurface t∗(x) passes the point t∗ = x = 0 at J = 0 and shifts
to Im t∗ < 0 at nonzero source. This corresponds to singular and regular solutions on the
contour A0B, respectively. We pictured the “main” singularity in figure 3b by the solid
(J = 0) and dashed (J 6= 0) lines starting at the crossed circles.

It is worth noting that the original paper [54] took one step forward and tried to derive
boundary value problem for the actual singular solutions at J = 0. We will not use such
reformulation, as it is inconvenient for numerical implementation.

To sum up, our semiclassical method consists of solving eqs. (2.1) — (2.5) and evalu-
ating the exponent (2.7). The last step is extrapolation of results to J → 0 according to
eq. (1.5), which will be also done numerically.

2.2 Numerical implementation

Now, we reformulate the semiclassical boundary value problem on the lattice. We switch
to dimensionless units with m = 1 and consider a Gaussian source

J(x) = j0 e−x2/2σ2 (2.12)

of strength j0 and width σ. Eventually, we will send j0 → 0 and σ → 0 at a fixed j0/σ.
This will make the source local in space and small in amplitude, i.e. similar to the vanishing
delta function J → (2π)3/2 j0σ

3 δ(3)(x) used in [54]. Comparing results at different j0/σ,
we will test universality of the semiclassical exponent.

We assume spherical symmetry of the saddle-point configurations: φcl = φcl(t, r),
where r ≡ |x|. This Ansatz passes the saddle-point equations (2.1) — (2.5) and agrees
with all previously known semiclassical solutions [9, 54, 61]. Spherical symmetry also com-
plies with insensitivity of the semiclassical exponent to the few-particle initial state: taking
the latter isotropic, one can make the entire process rotationally invariant. On the other
hand, the spherical Ansatz leaves only two coordinates t and r and hence significantly
simplifies numerical calculations.

We introduce temporal and spatial lattices with sites tj and ri covering the complex
contour4 A0B in figure 3b and a finite spherical box 0 ≤ ri ≤ R, where −1 ≤ j ≤ Nt + 1
and 0 ≤ i ≤ Nr − 1. The complex field φj, i ≡ φcl(tj , ri) is stored at the lattice sites. We
considerably decrease the time steps |tj+1 − tj | near the origin t = 0, i.e. in the vicinity of
the “main” singularity. On the other hand, our spatial lattice is uniform. Practice shows
that this choice is optimal for achieving reasonable accuracy at restricted computational
resources.

We discretize the boundary value problem using the standard second-order scheme, see
appendix A for details. To this end we notice that the field equation (2.1) can be obtained

4At large λn the chain singularities of the solutions approach the real time axis and inflate numerical
errors. In that case we deform the “Minkowskian” part of the time contour to the line 0B′B shown in
figure 3b (dotted).
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by extremizing the classical action with the source term,

SJ = S[φ] + i

λ

∫
d3x J(x)φ(0, x) . (2.13)

Discretizing the latter functional, we arrive at a nonlinear function SJ of φj,i and the lattice
field equation

Gj, i ≡
∂SJ
∂φj, i

= 0 . (2.14)

The Dirichlet boundary condition in the infinite past (2.2) can be imposed at the very first
time site t = t−1 — the point A of the time contour: φ−1, i = 0. Numerical implementation
of the condition in the asymptotic future (2.4) is far less trivial. In appendix A we show
that it relates the field values at the two very last time sites t = tNt and tNt+1. Indeed, in
the continuous case ak and b∗k can be obtained by Fourier-transforming φcl and ∂tφcl and
taking appropriate linear combinations of their images, see eq. (2.3). On the lattice, one can
express the field and its time derivative in terms of φNt, i and φNt+1, i, thus turning eq. (2.4)
into a linear relation between them. The last two equations for the Lagrange multipliers T
and θ are obtained by substituting lattice versions of ak and b∗k into eqs. (2.5). Finally, the
result for FJ is given by eq. (2.7) with the discretized action.

To sum up, our lattice formulation of the semiclassical boundary value prob-
lem includes 2Nr(Nt + 3) + 2 real nonlinear equations for the same number of un-
knowns yα ≡ {Reφj, i, Imφj, i, T, θ}. We solve them using Newton-Raphson numerical
method [63]. Namely, suppose a crude approximation y(0)

α to the solution is known. Then
the correction δyα = yα − y(0)

α satisfies the linear system

Gα(y(0)) +
∑
β

δyβ
∂Gα
∂yβ

∣∣∣
y(0)

= 0 , (2.15)

where Gα are the left-hand sides all lattice equations: eq. (2.14), the boundary condi-
tions, and equations for T and θ. Once eqs. (2.15) are solved, we refine the approxima-
tion, y(0)

α → y
(0)
α + δyα, and solve them, again, until the procedure converges. Note that the

Newton-Raphson method is very picky to the first choice of y(0), but converges quadrati-
cally fast [63] if the latter is sufficiently close to the solution. We will discuss selection of
that configuration in the next section.

Computationally, the most time-consuming part of the problem is to solve the sparse
linear system (2.15). We do this using the elimination algorithm of refs. [26, 36] and
GPU-accelerated linear algebra package [64].

In practical computations we fixed Nr = 256 and varied the size of the spatial box
between R = 100 at ε = 0.35 and R = 6.5 at ε = 5; recall that m = 1 in our units. This
allowed us to encompass long-wave parts of nonrelativistic configurations and, in the case
of large ε, resolve high-frequency modes of more compact and energetic solutions. The time
steps were |∆t| ∼ 10−2 ÷ 10−3 near the ends of the contour and two orders of magnitude
smaller near t = 0. We always selected the Minkowskian contour length tNt+1 comparable
to R because out-waves move inside the lightcone. The Euclidean part |Im t−1| was shorter
by a factor of few. The resulting temporal lattices had Nt = 7061÷ 12201 sites.
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We controlled numerical precision by changing the lattice parameters Nr, R, Nt, Im t−1,
and tNt+1. This had led to variability of the suppression exponent of order 10−3 in the center
of the parameter region and up to 2% in the worst cases. The errors were mainly coming
from the finite size and spatial discretization effects, while dependence on the temporal
lattice was ten times weaker. The absolute accuracies of T and θ were always better
than 10−2, and relations (2.8) held to the same precision. We monitored the conservation
of energy (2.9) on the Euclidean and real-time parts of the contour. It remained stable at
the 1% level except for the cases of the lowest and highest ε when 6÷24% nonconservation
was observed near t = 0. Linearization of the out-waves was checked by comparing the exact
and linear energies, eqs. (2.9) and (2.5), respectively, at t ≈ tNt+1, i.e. at the point B of
the time contour. The relative deviation of these quantities was always smaller than 0.4%.

It is worth noting that all numerical artefacts described above are subdominant with
respect to the extrapolation errors originating from evaluation of the limits J → +0,
λn→ +∞, and ε→ 0. Errorbars on the plots display the latter inaccuracies.

3 A way to singular solutions

The above numerical technique allows one to reconstruct the entire branch
of saddle-point configurations from a single representative solution. Indeed,
let y(0)

α = {φ(0)
cl (t, x), T (0), θ(0)} is a solution with parameters λn(0), ε(0), j(0)

0 , and σ(0),
where the last two values characterize the Gaussian source J(x). Slightly changing one or
several parameters, e.g. ε = ε(0) + δε, we numerically search for the new solution yα using
y

(0)
α as the first approximation. If the change of parameters is small enough, the approxima-
tion is good and the iterative method converges. After that we reload y(0) with the newly
found solution and repeat the procedure, making another step in the parameter space and
finding yet another solution, etc. In this way we can cover all accessible parameter region
with solutions.

The question is: where to get the very first configuration y(0)? We need a physical one
giving the dominant contribution to the path integral for the probability.

It is clear that in a certain regime the quartic interactions are irrelevant and the
particles in the final state are created by the classical source J(x). This situation is
opposite to the target limit J → 0 when all particles are produced by the interaction
vertices and the result is insensitive to the source profile. Ignoring the φ3

cl term in the field
equation (2.1), we obtain the semiclassical solution in the linear theory,

φ
(lin)
cl (t, x) = −

∫
d3k

(2π)3
J∗(k)
2ωk

eiωkt−ikx+θ−2ωkT − i
∫

d4k

(2π)4
J(−k) eikx
k2 −m2 + i0 , (3.1)

where the first term satisfies the homogeneous equation and the second equals Feynman’s
Green function convoluted with the source; J(k) is a Fourier image of the latter. Hereafter
we assume that this solution is continued analytically from the parts t < 0 and t > 0 of
the real time axis to the intervals A0 and 0B of the complex contour in figure 3b, see
explicit expressions in appendix B. It is straightforward to check that eq. (3.1) satisfies
the boundary conditions (2.2) and (2.4) in the asymptotic past and future. Indeed, its
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two terms both vanish exponentially as t → +i∞ but represent different, positive- and
negative-frequency components of φcl as t → +∞. As usual, the parameters T and θ

are related to λn and ε by eqs. (2.5), and the suppression exponent FJ is obtained by
substituting eq. (3.1) into eq. (2.7) in the non-interacting case; see appendix B for details.

It is clear that the above linear solution is proportional to the amplitude j0 of the
source, whereas λn and λE are quadratic in the field and thus proportional to j2

0 . The
interaction term φ3

cl ∝ j3
0 in the equation is hence irrelevant in the limit of

linear theory: j0 → 0, λn ∝ j2
0 at fixed ε and σ . (3.2)

We thus expect that at small j0 and λn the configuration (3.1) approximately satisfies the
full nonlinear boundary value problem.

Importantly, the solution in the free theory is unique and definitely physical,5 as
the path integral in this case is Gaussian. We therefore use eq. (3.1) as the very first
approximation for the numerical procedure described above. Namely, setting y

(0)
α =

{φ(lin)
cl , T (lin), θ(lin)} at sufficiently small j0, λn ∼ O(j2

0), and finite σ and ε, we observe that
the iterations converge fast to the nonlinear solution with the same parameters. Comput-
ing the suppression exponent FJ of the latter, we display it with the circle S0 in figure 4a.
After that we start increasing j0 and λn ∝ j2

0 in small steps and finding numerical solu-
tions at every step, until the configurations with λn ∼ O(1) are obtained; see the chain
of circles S0S leading to the solution S in the figure. The configurations with large j0 and
λn are visibly different from the ones in the free theory; we will discuss them in the next
section. In figure 4a we compare their suppression exponents with the prediction of the
linear theory (dotted line and eq. (B.4) from appendix B). As expected, the two graphs
are close at small j0 but start to deviate at large values of this parameter.

Independently changing the parameters λn, ε, j0, and σ in small steps, we reproduce
the entire continuous branch of numerical solutions and compute the exponent FJ .

The final but nontrivial part of our procedure consists of evaluating the few-particle
limit J → 0 or, more precisely,

few-particle: j0 → 0, σ ∝ j0 at fixed ε and λn. (3.3)

We have already argued that the semiclassical configurations become singular in this limit.
They cannot be resolved on the lattice. Say, the lower branch SS1 of numerical solutions in
figure 4a (circles) is obtained from S by decreasing j0 in accordance with eq. (3.3). The last
representative S1 of this branch already has poor precision, and solutions at even smaller j0
cannot be obtained with acceptable accuracy. We will explicitly visualize the singularities
of the solutions below.

A way out is to extrapolate results to j0 = 0 using valuable analytic input summarized
in appendix C. Indeed, it is clear [54] that weak and narrow source affects the solutions

5We checked this explicitly: calculated the matrix elements 〈f ; E, n| exp{−
∫
d3x Jφ̂/λ}|0〉 using the

algebra of creation and annihilation operators in the linear theory and then performed the final-state sum in
eq. (1.1) via the steepest descent method. The resulting value of FJ coincided with that for the semiclassical
solution (3.1).
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Figure 4. (a) The exponent FJ versus the source strength j0 at ε = 3. The chain S0S of solutions
(circles) is obtained by increasing j0 at given λn/j2

0 ≈ 10−2 and σ ≈ 0.13, while the solutions from
the lower branch SS1 (also circles) have fixed λn ≈ 2.51 and j0/σ ≈ 120. Dotted and solid lines
show the suppression exponent (B.4) in the linear theory and the polynomial extrapolation (3.4)
to j0 = 0, respectively. (b) Extrapolations j0 → 0 at different j0/σ for ε = 3 and λn = 2.51 (lines
passing through the data circles). We use units with m = 1.

locally in the vicinity of (t, x) = 0 making them regular, i.e. slightly shifting their “main”
singularities t∗(x) to the lower complex time plane, see the dashed line with the crossed
circle in figure 3b. Analyzing the solutions near the singularity, we can extract their
dependence on j0. In appendix C we argue that the saddle-point configuration itself, its
Lagrange multipliers T , θ, and the exponent FJ can be expressed as power series in j2

0 ; e.g.,

FJ(λn, ε) = F + F1 j
2
0 + F2 j

4
0 + F3 j

6
0 + . . . , (3.4)

where the coefficients Fi(λn, ε) are independent of j0.
In practice, for every chosen λn and ε we compute the solutions at several small values

of j0 but the same j0/σ. Then we fit their exponents FJ and the parameters T , θ with
cubic polynomials of j2

0 , i.e. the four first terms in eq. (3.4). This procedure is illustrated
in figure 4a where eq. (3.4) (solid line) correctly describes the numerical data SS1 (circles).
The few-particle exponent F and the respective values of T and θ are given by the first
coefficients of the polynomials (filled square F in the figure).

We finish this section with the test of the suppression exponent universality. Recall
that the universality conjecture [22, 23] declares insensitivity of F to the few-particle initial
state, in particular, to the profile of the vanishingly small source J(x) and its relative
width σ/j0. In figure 4b we confirm that this is the case, indeed. Namely, performing three
independent polynomial fits (lines) of the data with different j0/σ (circles), we arrive at
the same result for F (filled square). It is worth stressing that the universality assumption
lies in the basis of our semiclassical method [54].

Note that the extrapolation J → 0 generates the largest errors in our numerical pro-
cedure. We estimate them by changing the numbers of data points and j0 intervals in the
fits. The respective scatter of the extrapolation results essentially depends on ε and λn

and is highly sensitive to the discretization errors adding a pseudorandom component to
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Figure 5. Semiclassical solution with λn ≈ 0.63, ε = 0.5, j0 = 0.6, and σ ≈ 0.18 in units
with m = 1. Color indicates complex phase of φcl.

the data. Typically, the final result for F is stable within 0.7% precision interval which,
however, grows to 6% at the highest and lowest ε and largest multiplicities. The accuracy
of the extrapolated T and θ is better than 8% in the center of our parameter region but
deteriorates to 13− 20% for the smallest6 ε and λn. We display extrapolation errors with
errorbars in plots whenever they are larger than the point size.

4 Numerical results

4.1 Semiclassical solutions

In figure 5 we display the saddle-point solution with relatively small out-state multiplicity
λn ≈ 0.63 and low kinetic energy ε = 0.5, see also the movie [65(a)] and recall that m = 1
in our units. Three-dimensional surface in this figure shows the absolute value of φcl as
a function of the radial coordinate r and a parameter Re t− Im t along the time contour7

A0B, while the color marks complex phase of φcl. We see that the solution decreases
exponentially towards the left side of the graph, i.e. as t→ +i∞. Besides, it has a sharp
peak near the origin t = r = 0 where the weak source J(x) is situated. Note that the latter
source is nonzero in all our visualized configurations. At t > 0 the solution in figure 5
describes complex-valued outgoing wave packet that moves inside the light cone. Figure 6
demonstrates two solutions with other values of λn and ε.

The solutions in figures 5 and 6 have relatively large j0 and are still far from being
singular. Their parts near the origin t = r = 0, however, strongly depend on the source and
turn into high and narrow peaks once the value of j0 gets smaller. Indeed, in appendix C
we derive general form of solutions near their singularities t = t∗(r) [cf. eq. (2.11)],

φcl ≈
−i
√

2
t− t∗(r)

, t∗(r) = t∗, 0 + t∗, 2 r
2 +O(r4) at small |t− t∗|, r and small j0 ,

(4.1)
where t∗, k are generic Taylor coefficients. We confirm this prediction in figure 7a. Namely,
our numerical solution (circles) is correctly described by eq. (4.1) (line) at t = +0 and
small r.

6Formally, the relative error of T exceeds 100% at high ε where this parameter is small.
7We never show solutions along the deformed contour A0B′B; cf. figure 3b.

– 14 –



J
H
E
P
0
2
(
2
0
2
3
)
2
0
5

0

arg φcl

π

Re t− Im t

r
|φcl|

-4
0

4

0

5

-4
0

4

0

5
(a) (b)

Figure 6. Two semiclassical solutions obtained from the one in figure 5 by increasing (a) the
out-state multiplicity λn and after that — (b) the mean energy ε of out-particles. The peak of the
solution (b) at t, r ≈ 0 is cropped off for visualization purposes. The parameters of the solutions
are (a) λn ≈ 18.8, ε = 0.5, j0 = 7.8, σ ≈ 0.41 and (b) λn ≈ 18.8, ε = 3, j0 = 12, σ ≈ 0.2. Recall
that the color encodes complex phase of φcl(t, r) and we exploit units with m = 1.
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Figure 7. (a) Inverse field Re [φcl(0, r)]−1 at t = +0 and small r. Numerical data (circles) are
fitted with quadratic polynomial in eq. (4.1) (line). The solution has parameters λn ≈ 2.51, ε = 3,
j0 = 6, and σ = 0.05. (b) The tip t∗(0) of the “main” singularity surface versus j0. This graph
corresponds to j0/σ = 120 and the same out-state parameters as in figure (a). The solid line is a
parabola t∗(0) ∝ j2

0 . Units with m = 1 are used in both figures.

Moreover, in appendix C we also argue that t∗(0) = O(j2
0) at small j0 and finite j0/σ.

This means that the “tip” of the singularity surface marked by the cross in figure 3b touches
the origin t = 0 in the limit of vanishing source. To check the latter behavior, we computed
the singularities t∗(0) of our numerical solutions. Namely, we solved the field equation along
the imaginary time axis from t = +0 to Im t < 0 until φcl(t, 0) became comparatively large,
and then fitted its time dependence with eq. (4.1). The resulting values of t∗(0) (circles in
figure 7b) are proportional to j2

0 (line), indeed.
With growth of λn, the solutions become visibly larger in size and more nonlinear in

the region of finite |t| and r, see figure 6a. Besides, they develop extra peaks near the
second singularity surfaces t′∗(r) from the chain in figure 3b. This last property suggests
that the additional singularities come closer to the real time axis and start to affect the
field evolution. Also, at λn� 1 the amplitudes of the out-waves are visibly larger. We
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Figure 8. Rescaled occupation numbers akb
∗
k/(λn) of the final state versus the particle energy ωk.

The two graphs correspond to λn ≈ 2.51 and λn = 12.57 at ε = 3 and j0 = 0. We use units with
m = 1.

observe the following scaling in the linear region:

φcl(t, r) ≈
√
λn · φ̃(t, r) at t→ +∞ and λn� 1 , (4.2)

where φ̃ does not depend on the multiplicity. Indeed, let us have a look at the rescaled final-
state occupation numbers akb∗k/(λn) in figure 8, where

∫
d3k akb

∗
k = λn. Their dependence

on the particle energy ωk has the same form at essentially different λn in accordance with
the above prediction.

We envision that the asymptotic property (4.2) may be valid in a wide class of models.
Besides, the distribution of the out-particles in figure 8, which is independent of n, may
serve as a useful benchmark signature for multiparticle production, if the latter will be ever
considered in the experimental context.

The above scaling is no longer valid in the interaction region where the φ3 term of the
field equation (2.1) cannot be neglected. Indeed, the Ansatz (4.2) would make this term
dominant and uncompensated in the limit λn → +∞. We estimate the size rint of the
nonlinear region by observing that at ε & O(m) the out-waves go away with decreasing
amplitudes φcl ∝

√
λn / r roughly along the lightcone r ∼ t. Then the φ3 term is essential in

the interaction region: r . rint ∼
√
λn

(ε2 + 2mε)1/2 and t . rint . (4.3)

This expectation is supported by our numerical results. In particular, figure 9a shows the
inverse field |φcl(0, r)|−1 at t = 0 as a function of r/rint for three large values of λn. With
growth of multiplicity, the graphs at r < rint approach a particular almost flat profile of
height φ−1

cl . m
−1. Recall that small value of φ−1

cl (0, r) estimates the position t∗(r) of the
singularity surface which is, therefore, also flat at large λn and r . O(λn)1/2; see eq. (4.1).
At r ∼ rint and beyond this point, the graphs in figure 9a sharply increase indicating
entrance into the linear region with small φcl.

We visualize the nonlinear stage of evolution by showing the energy density |ρE | of
the solution — the integrand in eq. (2.9) — at different moments of time t in figure 9b.
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Figure 9. (a) Inverse field |φcl(0, r)|−1 as a function of the rescaled radial coordinate r/rint at
t = 0. All the graphs have ε = 1, j0 = 12, and σ ≈ 0.19. (b) Energy density |ρE | depending
on r/rint for the solution with λn ≈ 37.7. The other parameters are the same as in figure (a). Units
with m = 1 are used.

-100

-50

0

0 10 20

(a)

F

λn

ε = m/2
ε = m

-100

-50

0

0 10 20

(a)

F

λn

ε = 3m
ε = 5m

(b)

ε f(ε) f∞(ε) g∞(ε)
m/2 −3.46 −4.47± 0.20 −9.7± 3.8
m −2.81 −3.66± 0.31 −17.0± 10.4
3m −2.11 −2.88± 0.19 −13.8± 5.3
5m −1.92 −2.35± 0.54 −32.8± 29.2

Figure 10. (a) Suppression exponent F as a function of λn at fixed ε. Points demonstrate numerical
data, lines are the fits (4.5). (b) Parameters in eq. (4.5).

Apparently, the source and the nearby singularity create a huge localized peak of ρE at t = 0
which evolves to larger r remaining narrow and essentially interacting until it crosses the
boundary rint ∝

√
λn of the nonlinear region (dotted vertical line). At r ∼ rint the peak

quickly linearizes and starts to satisfy eq. (4.2), see the graph with t = 5m−1 in figure 9b.
Such nonlinear evolution of a narrow shock supports the “thin wall” Ansatz suggested in
ref. [58] and used in the papers on “Higgsplosion” [39, 40].

Figure 6b demonstrates the solution with high mean energy ε of the out-particles. This
configuration is essentially sharper and has narrow outgoing wave packet localized on the
light cone r ∼ t. One may assume that such solutions with ε� m can be obtained in the
massless theory, and the parameter m2 can only cause their small deformation. We will
further justify this observation in the next section.
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4.2 Suppression exponent

We had already presented main results for the exponent F (λn, ε) in the Introduction. Here
we study its asymptotic, fit the data with convenient formulae, and show remaining numer-
ical results in figure 10a (points). Recall that we confirmed universality of the exponent in
section 3 and figure 4b.

Start with the regime λn� 1. It corresponds to perturbative limit because the series
in λn can be viewed as expansion in λ. Main contributions in this case come from the
tree-level diagrams giving [5, 8, 54],

tree: F (ε, λn) = λn ln λn16 − λn+ f(ε)λn+O (λn)2 , (4.4)

where O(λn)2 contains loop corrections and the function f(ε) is computed numerically in
ref. [61]. We determine f(ε) using half-analytic O(4) approximation of ref. [62] which works
extremely well [61] in our parametric region ε ≤ 5m. Results for this function are tabulated
in the first column of figure 10b. The overall tree-level exponent (4.4) is shown at ε = 3m
in figure 2a (dotted line). As expected, it is close to the numerical data (circles) at λn� 1.

We performed more indicative comparison with the perturbative results in the accom-
panying paper [53]. In there, we extracted f(ε) by fitting the numerical data for F at
small λn with eq. (4.4). The result agreed with the tree-level exponent of refs. [61, 62].

In the opposite limit of large λn the tree-level exponent (4.4) becomes positive which
may be naively taken [1, 2] for a signal of unsuppressed multiparticle production. But
in fact, the value of F is dominated at λn & 1 by loop corrections and has the oppo-
site behavior: it decreases monotonically with the multiplicity and approaches the linear
asymptotic (1.6) at λn� 1, see figure 2a. The slope f∞(ε) < 0 and shift g∞(ε) of the
asymptotic strongly depend on ε, cf. figure 2b. In practice, it is convenient to approximate
the numerical data at finite λn and ε with the interpolating formula

F ≈ λnf∞(ε)− λn

2 ln
[( 16

λn

)2
e2−2f(ε)+2f∞(ε) − 2g∞(ε)

λn
+ 1

]
, (4.5)

which reduces to eqs. (4.4) and (1.6) in the limits of small and large multiplicity. Indeed,
fits with eq. (4.5) (lines in figure 10a) pass through all the data points. The best-fit values
of f∞(ε) and g∞(ε) are tabulated in figure 10b and plotted in figure 2b. We checked
that they are consistent with the results of simple linear fits8 (1.6) at λn � 1. Note also
that f(ε) is fixed by an independent tree-level calculation and remains constant in the fits.

Now, consider the limit ε → 0 in which all final particles are produced at the mass
threshold. The scattering amplitude An is expected to have a finite limiting value corre-
sponding to zero outer momenta [5, 11–14]. Then the inclusive probability factorizes at

8We performed another strong test of eq. (4.5). Relations (2.7) and (2.8) give the saddle-point value of the
classical action in terms of the exponent and its λn derivative at ε = const: 2λImS[φcl] = F − ∂F/∂ ln(λn),
where J = 0. This expression turns eq. (4.5) into an interpolating formula for 2λImS. Approximating the
numerical data at J = 0 with the latter, we extracted g∞(ε) and f∞(ε) which agreed with the values in
figure 10b.
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low ε into Pn ≈ |An|2 Vn/n!, where [54]

Vn
n! ≈

m2n−4

n! exp
{3n

2 ln
(

ε

3πm

)
+ 3n

2 − n ln 2 + nε

4m

}
, ε� m (4.6)

is the total phase volume of n identical nonrelativistic particles. Using the above observa-
tion, we extract the exponent FA, eq. (1.8), of the amplitude from the probability as follows:

FA(λn) = 1
2 lim
ε→+0

[
F (λn, ε)− λ ln(Vnm4−2n)

]
. (4.7)

With the ideal data, one might be able to evaluate this limit directly, by fitting the com-
bination in the right-hand side with polynomials of ε and extracting constant terms. But
that is hard to do in practice, since our values of F already have essential inaccuracies due
to previous extrapolation j0 → 0. We increase precision by recalling that the semiclassical
procedure conveniently provides the ε derivative of the exponent ∂F/∂ε = 2λnT , see
eqs. (2.8). Recall that we obtain the values of T on par with the numerical solutions, and
we also extrapolate them to j0 = 0. It is straightforward to see that the O(ε) term cancels
out in the Taylor series expansion of the combination

F − λ ln(Vnm4−2n)− 2λnεT + λn(3/2 + ε/4m) = 2FA + ε2FA, 2 + ε3FA, 3 +O(ε4) (4.8)

because λε∂ε lnVn ≈ λn(3/2 + ε/4m) according to eq. (4.6). Note that FA in the right-
hand side of eq. (4.8) is our target exponent of the threshold amplitude and we denoted the
other expansion coefficients by FA, i. In practice, the three-parametric fit of the quantity
in the left-hand side of eq. (4.8) with the sparse polynomial in the right-hand side is much
more stable and leads to smaller errors than direct numerical evaluation of eq. (4.7).

We thus arrive at the amplitude exponent FA(λn) shown by the circles in figure 3a.
At λn . 10 these data are close to the perturbative expression (dashed line),

FA = λn

2
[
ln(λn/8)− 1

]
− (λn)2 33/2

32π2 ln(2 +
√

3) +O(λn)3 at ε = 0 , (4.9)

which includes the tree-level result [5] (dotted line) and one-loop correction [6, 9] in the
first and second terms, respectively. In the opposite case of large λn we expect linear
asymptotic FA → λnf ′∞ + g′∞ previewed in eq. (1.9). Hence, it is convenient to merge
small- and large-λn behavior in a single interpolating formula [cf. eq. (4.5)]

FA = λnf ′∞ −
λn

4 ln
[( 8

λn

)2
e2+4f ′∞ − 4g′∞

λn
+ 1

]
, (4.10)

which correctly describes all the numerical results (solid line in figure 3a). Best-fit values
of f ′∞ and g′∞ are given in eq. (1.9).

Now, consider the limit of highly ultrarelativistic particles in the final state ε→ +∞.
The respective numerical solutions are sharper, and their time and space derivatives visibly
grow with ε, see figure 6b. In this regime it is natural to treat the parameter m2 in the
field equation perturbatively. On dimensional grounds one finds,

T = T−1
ε

+T3
m2

ε3 +O(ε−5) , hence F = F0+2λnT−1 ln ε

m
−λnT3

m2

ε2 +O(ε−4) , (4.11)
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Figure 11. Lagrange multiplier T as a function of ε at λn ≈ 18.8 and j0 = 0 (circles). Solid line
demonstrates the asymptotic T ∝ ε−3 at large ε.

where the dimensionless coefficients Ti in the series depend on λn and we used the Legendre
relation ∂F/∂ε = 2λnT in the second equality, cf. eqs. (2.8). As we will prove later, F
cannot decrease with energy, i.e. T ≥ 0 and T−1 ≥ 0. This is compatible with eq. (4.11)
only if T−1 = 0: otherwise, the suppression exponent would be positive and break unitarity
at sufficiently high energies. We conclude that at ε→ +∞ the exponent is ε-independent
and T ∝ ε−3. The latter scaling is confirmed in figure 11.

Since parametric behavior of the exponent at low and high ε is fixed, we can con-
struct an interpolating formula for its dependence on energy or, equivalently, for its
tilt f∞ = f∞(ε) at large λn. In practice we fit f∞(ε) with the expression (1.7) that ap-
proaches a constant as ε → +∞ and a logarithm 3

2 ln (ε/m) from the phase volume at
low ε. With the appropriately chosen parameters, this formula correctly describes all the
numerical data, cf. the circles and the solid line in figure 2b.

We finish this section with a remark that our numerical data are not limited to the four
lines in figure 10a. In the supplementary material3 we provide extra raw data at ε/m =
{0.35, 0.75, 1.5, 2, 2.5, 3.5, 4, 4.5} and different λn, j0, σ, results of their extrapolation to
j0 = 0, values of f(ε) and best-fit results for f∞ and g∞.

5 Discussion

In this paper we computed the probabilities of processes few → n in the unbroken (3 + 1)-
dimensional λφ4 theory. To this end we numerically implemented D.T. Son’s semiclassical
method of singular solutions. Our data cover a wide range of final-state multiplicities n� 1
and total collision energies E. They show that the multiparticle probabilities fall off mono-
tonically with n and approach the decreasing exponent (1.6) at n� λ−1. Up to our
knowledge, no consistent calculation of this kind was performed before in a full-fledged
field-theoretical model.

We have already presented main results in the Introduction. Here, we critically analyze
their consistency. First, the probability (1.1) cannot exceed unity:

Pn ∼ eF/λ ≤ 1 , and hence F (λn, ε) ≤ 0 . (5.1)
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Note that breaking of eq. (5.1) in any parametric region would undermine credibility of
the entire method; cf. eq. (1.2). But in reality it is satisfied by all our numerical data. In
particular, the asymptotic of the exponent at large λn is negative: F → λn f∞(ε)+g∞(ε) <
0 at λn→ +∞, see figure 2b and table in figure 10b.

It is worth reminding that our semiclassical method relies on the universality conjec-
ture [8, 20–27] for the exponent in eq. (5.1). Namely, the value of F (λn, ε) does not depend
on the details of the initial state as long as the latter includes few, i.e. � λ−1, particles.
We explicitly tested this assumption in section 3, see figure 4b. Its consequence is that the
cross section σn ∝ exp(F/λ) of 2→ n scattering is suppressed by the same universal func-
tion F as the probability Pn. Indeed, consider a collision of two particles in a particular
state described by wave packets with large spatial extent L� n/E. This collision creates
n quanta with the probability9 Pn ∼ σn/(πL2), i.e. the same exponential suppression. The
inequality (5.1) then means that the physical cross section σn cannot be exponentially large.

Second, consider the exotic process of two independent few-particle collisions creat-
ing n1 and n2 particles in two spatially separated regions. The overall probability for this
to happen is Pn1(E1)Pn2(E2), where E1 and E2 are the respective energies. In fact, such a
two-collision event can be regarded as a subprocess contributing to the inclusive probabil-
ity (1.1). Indeed, its initial state is not important by the universality conjecture and the
final state including two widely separated particle sets is exclusive. Since Pn(E) is larger
than the probability of a subprocess, we conclude [52],

F (λn1 + λn2, E1 + E2) ≥ F (λn1, E1) + F (λn2, E2) , (5.2)

where the exponents are now expressed as functions of E instead of ε.
Using eq. (5.2), it is easy to show that F grows with energy. Indeed, take λn2 � 1.

Then the second collision is not exponentially suppressed at any E2: F (λn2, E2) ∼ O(λn2)
according to eq. (4.4). The inequality (5.2) transforms into F (λn1, E1 + E2) ≥ F (λn1, E1)
implying that ∂EF ∝ T is positive. Our numerical results do satisfy this criterion. Specif-
ically, f∞(ε) in figure 2b grows with ε and approaches the maximal value f∞ → −2.57
at ε→ +∞.

Another particular case of eq. (5.2) corresponds to a fixed mean energy of final parti-
cles E1/n1 = E2/n2 = ε+m at arbitrary multiplicities. We obtain the inequality

F (λn1 + λn2, ε) ≥ F (λn1, ε) + F (λn2, ε) , (5.3)

which means that the negative exponent cannot decrease at large multiplicities faster
than linearly. Indeed, the power-law behavior F ∝ −(λn)γ is consistent with eq. (5.3)
at λn→ +∞ only if γ ≤ 1. Our numerical calculation strongly suggests linear asymptotic
F → λnf∞ + g∞ that saturates this last condition. Then eq. (5.3) reduces to g∞(ε) ≤ 0
which is also true for our data, see the table in figure 10b.

9This argument is rougher than the famous Froissart bound [66], as it assumes that the transition
amplitude is insensitive to the scattering momenta at scales below L−1. But it applies to our processes at
a given n and large enough L because the inequality |L−1 ∂E lnAn| . 1 leads to LE & |d lnAn/d lnE| ∼
(E∂EF )/λ ∼ O(n).
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ΣV /n

n

n−1ln(cVn/n!)

∝ n−2/5

(a)

Re(mt)

Im
(m

t) arg ϕcl(t, 0)

(b)

0

-1
2 4

π 0

Figure 12. (a) Entropy ΣV (n, E) of n free nonrelativistic particles with total energy E ≈ nm in
a finite volume V (solid line, not to scale). Dashed line is the logarithm of the phase volume (4.6).
(b) Complex phase arg φcl(t, 0) of the saddle-point configuration as a function of complex time
at r = 0 (color). Black solid lines indicate singularities of φcl. We do not perform computations
in the white regions below them. The solution has parameters λn = 2.51, ε = m/2, j0 = 0.053m2,
and σ = 0.29m−1.

Third, one may be surprised by the fact that the amplitude (1.9) of creating n particles
at the mass threshold still grows factorially with n at λn & 1. This effect is purely
kinematical and consistent with unitarity: recall that the amplitude was extracted from the
exponentially small probability. Indeed, the factor n! comes from the phase volume Vn/n!
which has questionable physical interpretation in the limit n→ +∞. To see this, consider
a finite spatial volume V . The number of nonrelativistic n-particle states in that region
is given by the exponent of the thermodynamical entropy exp{ΣV (n, E)} (solid line in
figure 12a). The latter, in turn, is proportional to the phase volume exp(ΣV ) = cVn/n!
with coefficient c ∼ (2mV )n/m4 (dashed line in the figure), but only at low multiplicities.
At large n & nBEC the wave functions of the gas particles start to overlap, Bose-Einstein
condensation occurs, and the entropy stops being related to Vn/n! at all. To the contrary,
it grows slowly [67], as ΣV ∝ n3/5, with n because new states reluctantly appear in the
overpacked Bose gas. In such a situation, the probability Pn exp(−ΣV ) of transition to a
given finite-volume state has almost the same suppression F ∼ λnf∞ < 0 as the inclusive
probability. We conclude that the threshold amplitude (1.9) should be interpreted with
care at large n due to non-commutative nature of large-volume and large-multiplicity limits.

The above finite-volume picture resembles well-known result in quan-
tum mechanics. Namely, consider one-dimensional particle in the potential
VQM (x) = m2

QMx
2/2 + λQMx

4/4. Its transition from the ground state to the n-th
energy level occurs with the “probability” [56, 68]

P(QM)
n = |〈n|Ô|0〉|2 ∼ exp

{
−πn+O(n1/3λ

−2/3
QM )

}
at n� O(λ−1

QM ) , (5.4)

where the prefactor is ignored and we assume that the operator Ô does not depend on n.
Amusingly, the asymptotic formula (5.4) does not involve the parameters λQM and mQM

of the potential. In this regard, it bears resemblance with our result for the multiparticle

– 22 –



J
H
E
P
0
2
(
2
0
2
3
)
2
0
5

probability Pn ∼ exp{nf∞ + g∞/λ} which is dominated at λn � 1 by the λ-independent
factor exp{nf∞}. Moreover, as we argued above, Pn at large n can be interpreted as
the probability of transition to one of the few accessible n-particle states in a large finite
box. This makes the analogy even stronger. But there are significant differences. In field
theory, the slope f∞ = f∞(ε) of the exponent depends on energy and the subdominant
term g∞(ε)/λ ∼ O(n0/λ) is different.

Forth, let us reproduce powerful argument [9, 37, 44] suggesting exponential suppres-
sion of multiparticle probabilities at arbitrary values of parameters: F < 0 at any n� 1
and E. Couple the scalar theory to the massless external fermions via Yukawa interac-
tion yφψ̄ψ with tiny coupling y. Then dispersion relation and optical theorem express
the amputated Green’s function Π(Q2) of two φ-operators in terms of the total fermion
annihilation cross section σtot(E): ψψ̄ → anything [44],

d2

(dQ2)2 Π(Q2)
∣∣∣
Q2=0

= − 8
πy2

∫
dE

E

(
1− m2

E2

)2

σtot(E) +O(y2) . (5.5)

Here, the integral in the right-hand side converges because the physical cross section is
related to the probability and cannot grow fast with energy. Now, recall that the standard
perturbation theory reliably calculates the two-point function at low Euclidean momenta,
and all nonperturbative corrections are suppressed as exp(−const/λ). This means that the
contributions of the multiparticle intermediate states are also exponentially small, as well
as the ψψ̄ → n cross sections σn ≤ σtot in the right-hand side. We arrive to the conclusion
that F ∼ λ ln σn < 0 at arbitrary n � 1 and E, which is hard to avoid. For example,
nihilistic approach [41, 43] of dismissing the dispersion relations altogether barely helps:
the theory cease to be sane if the sums over the intermediate states diverge.

Fifth and finally, a notable application of our results exploits the saddle-point solu-
tions themselves. With the proper numerical input, we can establish their reliable proper-
ties and form the basis for future half-analytic studies. In particular, refs. [38–40] derived
the controversial formula (1.2) for the “Higgsplosion” scenario using a set of assumptions
on the semiclassical configurations at λn � 1. We can confirm one conjecture: at large
multiplicities the energy densities of our numerical solutions form relatively narrow spher-
ical shells of width ∆r ∝ (λn)0 that travel inside parametrically large “interaction” re-
gions r . O(λn)1/2, see section 4.1, figure 9, and eq. (4.3). In the linear regions t → +∞
our solutions satisfy even simpler scaling φcl ∝

√
λn, see eq. (4.2). This supports the “thin-

wall” approach of refs. [39, 58].
On the other hand, we observe that the analytic structure of our semiclassical solutions

is different from the one assumed in refs. [38–40]. An important step of the latter calculation
is a deformation of the time contour to the lower half-plane, see the dotted (Higgsplosion)
line in figure 13a. That would be legitimate if the singularities of solutions were not crossed
on the way, or if they were the poles and their contributions could be added back to the ex-
ponent F . But in fact, all our computed saddle-point configurations have infinite chains of
singularities t∗(x), t′∗(x), etc., below the real time axis (at Re t > 0), as is already clear from
the simplest solution (2.11) at E = n = 0. In figure 12b we visualized the analytic structure
of a particular numerical configuration, see also the movie [65(b)]. Starting from the real
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Figure 13. (a) Contours and singularity surfaces in the complex time plane (not to scale). (b) Com-
plex phase of the numerical solution φcl(t1, r) as a function of r at the point t = t1 of the second chain
singularity: t′∗(r1) = t1. The vicinity of r1 is indicated by vertical shaded strip. The two graphs
(line-points) are obtained using analytic continuations along the contours C1 and C2 in figure (a).
The solution has the following parameters: λn = 2.51, ε = m/2, j0 = 0.053m2, and σ = 0.29m−1.

time axis where this solution was originally found, we analytically continued it to Im t < 0
and Im t > 0 using the field equation. Then we displayed the complex phase of φcl(t, 0)
(color in the figure) and marked the singularities — values of t corresponding to large
|φcl(t, r)| at some r — by black solid lines. Three of them are clearly visible in figure 12b.

The problem is that these singularities are not poles. In appendix C we show that the
general solution of the field equation (2.1) has the following structure in the vicinity of any
singularity:

φcl = C−1(x)
τ

+ C0(x) + C1(x) τ + C2(x) τ2 +
[
B(x)− 1

5R3(x) ln(mτ)
]
τ3 + . . . . (5.6)

Here τ = it − it′∗(x) is the Euclidean time interval to, e.g., the second singularity sur-
face t′∗(x), the functions t′∗(x) and B(x) are the arbitrary Cauchy data, and all other
coefficients Ci and R3 are expressed in their terms via the field equation. Importantly,
the last term with R3 6= 0 includes the logarithm ln(mτ) with a branch cut. Moreover,
one can show that higher powers of ln(mτ) appear in higher orders. This means that the
jumps at the branch cuts are nontrivial and the surfaces t∗, t′∗, etc., are the essential sin-
gularities. The latter feature is a benchmark property of nonintegrable theories [69] which
distinguishes them from exactly solvable cases. We checked it by numerically continuing
one of the solutions to the two sides of the branch cut at the singularity point t = t1,
where t′∗(r1) = t1; see the contours C1 and C2 in figure 13a. Complex phases of the two
resulting configurations φcl(t1, r) are shown by line-points in figure 13b, while gray vertical
strip marks the region near the singularity r ≈ r1. We see that although the two graphs
coincide at large r, they are different at r < r1 in compliance with the existing branch cut.

It is worth noting that incorrect choice of the solution branch is very dangerous, as
it may give unphysical results for the probability. Thus, it is worth applying our reliable
numerical method to the φ4 theory with spontaneously broken symmetry. This will provide
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a direct test of eq. (1.2) and give valuable information on the structure of the respective
semiclassical solutions.

Recall that our semiclassical solutions with ε � m are not sensitive to the opera-
tor m2φ2 in the Lagrangian. This suggests that our ultrarelativistic results may be rele-
vant to the spontaneously broken case as well. If this is indeed the case, the multiparticle
probability in the broken λφ4 theory may be given at high ε and large λn by our expression
Pn ∼ exp{f∞,max n} ∼ exp{−2.57 × n}. As the probability grows with energy, we obtain
an upper bound Pn(ε) ≤ Pn(∞) at arbitrary ε in the broken case.

From the general perspective, we believe that our numerical approach is scalable and
can be used to describe multiparticle processes in other bosonic field theories. It may be
even helpful in distinct, but conceptually similar situations, like semiclassical calculations
at large U(1) charge [70, 71].

Acknowledgments

This work is supported by the RFBR grant № 20-32-90013. Numerical calculations were
performed on the Computational cluster of the Theoretical Division of INR RAS.

A Lattice formulation

Let us describe details of the numerical method. It is convenient to rescale the spherically-
symmetric field as φ(t, r) = χ(t, r)/r. The action (2.13) takes the form,

λSJ
2π =

∫
dt

∞∫
0

dr

[
(∂tχ)2 − (∂rχ)2 − χ2 − χ4

2r2

]
+
∞∫
0

dr

[
2irJχ

∣∣
t=0 − χ∂tχ

∣∣
tNt+1

]
, (A.1)

where m = 1, we integrated by parts and ignored boundary terms at r → +∞ and
t→ +i∞: the field vanishes exponentially in these regions. We have kept, however, the
boundary term at the final time t = tNt+1.

We use uniform spatial lattice. It has Nr = 256 sites ri ≡ i · ∆r indexed by an inte-
ger 0 ≤ i ≤ Nr − 1. The sites fill the spherical spatial box of size R = 6.5÷ 100. Spacing
between them equals ∆r = R/(Nr − 1). On the other hand, our temporal lattice {tj} is
essentially inhomogeneous with steps∣∣∆tj∣∣≡ ∣∣tj+1− tj

∣∣= ∆t′
{
1+αtanh

[
β(j−N0−N1)

]
−αtanh

[
β(j−N0 +N1)

]}
, (A.2)

where |∆tj | ≈ ∆t′ at infinity, the site N0 corresponds to the moment tN0 = 0 when the
source acts, and the lattice is denser at N0 −N1 . j . N0 +N1 in a way controlled by the
parameters α and β. Recall that tj cover the complex time contour10 A0B in figure 3b.
Hence, ∆tj = −i|∆tj | are purely imaginary at j < N0 and real at larger j. In practice,
we choose sufficiently small ∆t′ to resolve the out-waves and make the steps near the
source |∆tN0 | = ∆t′

[
1− 2α tanh(βN1)

]
approximately two orders of magnitude smaller.

10As we explained in Footnote 4, in certain cases the contour at j > N0 is deformed into the dotted
line 0B′B in figure 3b. Then the complex phase of ∆tj is determined by the contour tilt.
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We specify the region of good resolution with values of N1 and β and then tune α to
the value α tanh(βN1)− 1/2 ∼ 10−2. Once the lattice parameters are chosen, we compute
the sites tj and integers N0, Nt by integrating eq. (A.2). Our typical lattices have sizes
in the range 7061 ≤ Nt ≤ 12201, indices N0 ∼ Nt/3 of the t = 0 site, denser regions
with N1 ∼ Nt/4, and β−1 ∼ 103, and deformation coefficients α ≈ 0.57.

We discretize the action using the field values χj, i = riφj, i at the lattice sites and the
second-order finite-difference expressions

∂tχ→ (χj+1, i − χj, i)/∆tj , ∂rχ→ (χj, i+1 − χj, i)/∆r , ∆tj ≡ tj+1 − tj . (A.3)

These derivatives are associated with the centers (j + 1/2, i) and (j, i + 1/2) of time and
space links, respectively. We also replace the integrals in eq. (A.1) by the trapezoidal sums.
Say, ∫

dtL(t) →
Nt∑

j=−1
∆tj Lj+1/2 or

Nt+1∑
j=−1

∆t̄j Lj , (A.4)

where the first expression is used for the kinetic term L = (∂tχ)2 and the second one —
for all the other terms. In eq. (A.4) we introduced ∆t̄j = (∆tj−1 + ∆tj)/2 at the inner
lattice sites and ∆t̄−1 = ∆t−1/2 and ∆t̄Nt+1 = ∆tNt/2 at the boundaries. Discretization
of the radial integrals is performed in a similar way, but with the uniform spacing ∆r, steps
∆r̄i = ∆r at the inner sites, and ∆r̄0 = ∆r̄Nr−1 = ∆r/2.

We impose Neumann condition ∂rφ = 0 at the spatial boundary r = R and require
regularity of φ at the origin r = 0. In terms of χ(t, r) this reads,

∂rχ(t, R) = R−1 χ(t, R) and χ(t, 0) = 0 . (A.5)

To put such conditions on the same footing with the field equation, we add the
term λ∆SJ/2π =

∫
dt
[
χ2(t, R)/R− 2χ(t, 0)∂rχ(t, 0)

]
to the classical action (A.1). Af-

ter that eqs. (A.5) are obtained by extremizing SJ with respect to χ(t, R) and χ(t, 0).
This modification of the action does not change the value of the suppression exponent
because the saddle-point value of χcl(t, R) is exponentially small and χcl(t, 0) is zero. We
discretize the extra term ∆SJ in the same way as the others.

Substitutions (A.3) and (A.4) give the lattice action,

λSJ
2π =

Nt∑
j=−1

Nr−1∑
i=0

∆r̄i
∆tj

(χj+1, i−χj, i)2−
Nt+1∑
j=−1

Nr−2∑
i=0

∆t̄j
∆r (χj, i+1−χj, i)2 +2i

Nr−1∑
i=0

∆r̄i riJiχN0, i

−
Nt+1∑
j=−1

Nr−1∑
i=0

∆t̄j∆r̄i
(
χ2
j, i+

χ4
j, i

2r2
i

)
+
Nt+1∑
j=−1

∆t̄j
(
χ2
j,Nr−1
R

− 2
∆rχj,0χj,1

)
(A.6)

−
∞∫
0

drχ∂tχ
∣∣
tNt+1

,

where Ji ≡ J(ri) and the boundary term at t = tNt+1 is still written in the continuous form:
we will discretize it later. Lattice field equations and boundary conditions at r = 0, R are
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obtained by extremizing the first two lines of eq. (A.6) with respect to χj, i at 0 ≤ j ≤ Nt

and ignoring the last boundary term; see eq. (2.14).
Next, we derive finite-difference boundary conditions in the asymptotic past and future.

Equation (2.2) can be imposed at the very first time site,

χ−1, i = 0 . (A.7)

At large positive times, the evolution is linear and the time lattice is almost uniform:
∆tj ≈ ∆t′. The lattice field equation simplifies,

χj+1, i + χj−1, i − 2χj, i
∆t′2 −

∑
i′

∆i, i′χj, i′ + χj, i = 0 at large tj , (A.8)

where the three-diagonal matrix ∆i, i′ replacing the Laplacian can be explicitly deduced
from the above action. We solve eq. (A.8) using the basis of eigenvectors ψ(l)

i diagonal-
izing the matrix: ∆ψ(l) = −k2

l ψ
(l)≡ −

(
ω2
l − 1

)
ψ(l), where kl are the discrete analogs of

momenta and l is an integer. The solution

χj, i =
Nr∑
l=1

ψ
(l)
i√
2ωl

(
al e−iµltj + b∗l eiµltj

)
, µl = 2

∆t′ arcsin
{∆t′

2 ωl

}
(A.9)

is parametrized by arbitrary complex amplitudes al and b∗l of terms oscillating with lattice
frequencies ±µl. In the continuous limit, the eigenvectors turn into spherical harmonics,
ψ

(l)
i ∝ sin(klri), the frequencies start to obey the standard dispersion relation µ2

l → k2
l + 1,

and al and bl become proportional to the negative- and positive-frequency amplitudes. This
discloses eq. (A.9) as a discrete version of the free wave decomposition (2.3). In practice, we
numerically compute the spectrum {ψ(l), k2

l ≡ ω2
l − 1} of ∆i, i′ and extract the amplitudes

from the field values at the two last time sites:

al = ieiµltNt+1
√
ωl√

2 sin(µl∆t′)

Nr−1∑
i=0

∆r̄i ψ(l)
i

(
χNt+1, i e−iµl∆t′ − χNt, i

)
, (A.10)

b∗l = e−iµltNt+1
√
ωl

i
√

2 sin(µl∆t′)

Nr−1∑
i=0

∆r̄i ψ(l)
i

(
χNt+1, i eiµl∆t′ − χNt, i

)
,

where normalization11 ∑
i ∆r̄i ψ(l)

i ψ
(l′)
i = δll′ is assumed. The final boundary condi-

tions (2.4) in the discrete form12

al = e−θ+2ωlT bl (A.11)

impose a set of linear relations on χNt, i and χNt+1, i.
11This scalar product is related to the fact that the matrix ∆r̄i ∆i, i′ is symmetric, while ∆i, i′ itself is

not, cf. eqs. (A.6) and (A.8).
12One eigenvector of ∆i, i′ has the form ψ

(Nr)
i ∝ δ0,i due to our choice of the boundary term at i = 0

in eq. (A.6). In this case eq. (A.11) together with the boundary condition χj, 0 = 0 ascertain that aNr =
bNr ≡ 0 for all our solutions.
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The last term in the action (A.6) is discretized by replacing

∞∫
0

drχ∂tχ
∣∣
tNt+1

→
Nr−1∑
i=0

Nr∑
l=1

∆r̄iχNt+1, iψ
(l)
i

(
χ̃Nt+1, l− χ̃Nt, l

∆tNt

−∆tNt

2 ω2
l χ̃Nt+1, l

)
, (A.12)

where χ̃j, l ≡
∑
i ∆r̄i ψ(l)

i χj, i is the field in the basis of free waves on the lattice. One can
check that eq. (A.12) is the second-order discretization in ∆tj by performing Taylor series
expansion in this parameter and using eq. (A.9).

Given the representation (A.9), we immediately write parameters of the final state as

λE = 4π
∑
l

ωlalb
∗
l , λn = 4π

∑
l

alb
∗
l . (A.13)

It is straightforward to see that these expressions reproduce eqs. (2.5) in the continuous
limit. In particular, the continuous occupation numbers equal

akb
∗
k ≈

alb
∗
l

k2
l ∆kl

, (A.14)

where ∆kl = kl − kl−1 ≈ π/R. We exploit this matching to plot figure 8.
Discretized field equation (2.14) with the boundary conditions (A.7), (A.11) and ex-

pressions (A.13) for λE and λn form an algebraic system of nonlinear equations Gα = 0
for the unknowns yα ≡ {φj, i, T, θ}. We solve this system as described in the main text.
After finding the solution, we compute the suppression exponent FJ using eqs. (2.7), (A.6),
and (A.12).

It is worth noting that the nonlinear energy (2.9) is discretized in the same way as the
classical action. We check its conservation along the parts A0 and 0B of the time contour
to determine the discretization errors. Also, difference between the exact and free-wave
energies, eqs. (2.9) and (A.13), estimates nonlinear effects in the final state which should
be small.

B Solutions in the linear theory

In this appendix we perform semiclassical calculations in the free theory with a source.
Start with the solution (3.1). Evaluating the integral over k0 in its second term, we get,

φ
(lin)
cl = −

∫
d3k

(2π)3
eiωkt−ikx

2ωk

[
J(−k) + J∗(k) eθ−2ωkT

]
at t < 0 , (B.1)

φ
(lin)
cl = −

∫
d3k

(2π)3
eikx
2ωk

[
J(k) e−iωkt + J∗(−k) eiωkt+θ−2ωkT

]
at t > 0 . (B.2)

We analytically continue this function from t < 0 to the upper half of imaginary axis t = i|t|.
Clearly, it decreases as t → +i∞ in accordance with eq. (2.2). At t > 0, the configura-
tion (B.2) explicitly satisfies the boundary conditions in the infinite future (2.3), (2.4) with
ak = −J(k)/

√
2ωk(2π)3 and bk = −J(k) eθ−2ωkT /

√
2ωk(2π)3.
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Given ak and bk, we evaluate the out-state parameters (2.5) as

λE = eθ
∫

d3k

2(2π)3 |J(k)|2 e−2ωkT λn = eθ
∫

d3k

2ωk(2π)3 |J(k)|2 e−2ωkT . (B.3)

One can express θ from the second of these equations. Then the first relates T to ε =
E/n−m. Finally, the exponent

FJ = 2λET − λnθ + Re
∫

d3k

(2π)3
J(k)
2ωk

[
J(−k) + J∗(k) eθ−2ωkT

]
(B.4)

is obtained by substituting eq. (3.1) into eqs. (1.3) and (2.7) and ignoring the interaction
term.

We use the above expressions in the following way. For given λn and ε, we express θ
and get a nonlinear equation for T = T (ε) from eqs. (B.3). The latter equation is solved
by binary search [63] and numerical computation of the k integrals. Recall that we always
exploit the Gaussian source (2.12) with the Fourier image

J(k) ≡
∫
d3x J(x) e−ikx = j0 (2πσ2)3/2 e−k2σ2/2 . (B.5)

We determine the starting configuration for the main numerical procedure of this paper
by computing the k integrals in eqs. (B.1), (B.2) at every lattice point (tj , ri = |x|i). The
exponent in the linear theory is given by eq. (B.4). This result for FJ is displayed with the
dotted line in figure 4a.

C Singularity structure and the limit J → 0

Let us analyze the structure of semiclassical solutions near their singularities t = t∗(x).
This will establish their j0 dependence and allow us to perform extrapolation j0 → 0. Also,
we will be able to prove that the “main” singularity surface touches the physical contour
at j0 = 0.

We introduce Euclidean time interval to the singularity,

τ = i [t− t∗(x)] , (C.1)

and change the coordinates in the field equation (2.1) to τ and x. This gives:

−
[
1− (∂kt∗)2

]
∂2
τφcl + 2i∂kt∗ ∂k∂τφcl + i∆t∗ ∂τφcl −∆φcl +m2φcl + φ3

cl = 0 , (C.2)

where k = 1, 2, 3 indexes spatial coordinates, ∆ is the Laplacian, and we so far ignore the
source in the right-hand side of eq. (2.1). In the vicinity of the singularity, it is natural to
use the power series in τ :

φcl(τ, x) =
+∞∑
n=−1

Cn(τ, x) τn , (C.3)

where the first τ−1 term is motivated by the solution (2.11). Soon we will see that the
coefficients Cn of the above expansion are either τ -independent or depend slowly (logarith-
mically) on this coordinate.
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We substitute eq. (C.3) into the field equation and solve it order-by-order in τ . The
leading order gives C−1 =

√
2− 2(∂kt∗)2, and in the next orders we obtain the following

equations (
−∂2

τ + 6τ−2
)

(τnCn) = τn−2Rn . (C.4)

Here Rn depend on t∗(x) as well as on the coefficients Cm with lower index m ≤ n − 1;
one can explicitly deduce these right-hand sides from eq. (C.2). It is clear that eq. (C.4)
sequentially determines Cn. In particular,

Cn = −Rn[t∗, Cn−1, Cn−2, . . . ]
(n+ 2)(n− 3) with n = 0, 1, or 2 (C.5)

do not depend on τ . They can be expressed in terms of t∗(x) and its derivatives by
substituting all previous Cm with m ≤ n− 1 into Rn.

But there are two subtleties. First, the operator in the left-hand side of eq. (C.4)
annihilates the function

δφcl = iC−1
τ2 δt∗(x) +B(x) τ3 (C.6)

for arbitrary δt∗(x) and B(x). This is the freedom of solving eqs. (C.4): we can change the
singularity surface t∗ → t∗(x)+δt∗(x) and add τ -independent part B(x) to C3. Second, the
coefficient C3 itself cannot be τ -independent, or eq. (C.4) would not be satisfied at n = 3.
Indeed, the left-hand side of this equation equals zero for C3 = B(x) in disagreement with

R3(x) = 2
C3
−1

∂k (−4iC−1C2 ∂kt∗ + C−1 ∂kC1 − C1 ∂kC−1) 6= 0 . (C.7)

In particular, R3(0) = 2
√

2 [m∆t∗(0)/3]2 6= 0 at x = 0 in the spherically-symmetric case.
Solving eq. (C.4) at n = 3, we obtain,

C3(τ, x) = B(x)− 1
5 R3(x) ln(mτ) , (C.8)

where the logarithmic term is important for establishing the analytic structure of the
solution. Now, it is clear that the singularity t = t∗(x) is a branching point.

One can demonstrate that at higher orders n ≥ 4 the coefficients Cn(τ, x) include
powers of ln(mτ) coming from nonlinear terms in the right-hand sides Rn. This tells
us that t = t∗(x) is an essential singularity with a branch cut. It is worth reminding
that existence of such singularities in the general solution is a benchmark property of
nonintegrable models like our scalar λφ4 theory.

To sum up, the recurrent relations (C.4) express all Cn(τ, x) in terms of two arbitrary
functions t∗(x) and B(x). This is the precisely the amount of Cauchy data required for
the second-order field equation; hence, general solution of the latter has the form (C.3)
near every singularity, indeed. Thereby, we justified eq. (5.6) from the main text. Rep-
resentation (C.3) with logarithmically dependent coefficients is known in the literature as
logarithmic Ψ series [69].

Now, let us restore the source J(x) at t = 0 in the right-hand side of the field equation.
The respective solution consists of two analytic functions φ−cl(t, x) and φ+

cl(t, x) defined on
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the intervals A0 and 0B of the complex time contour. The functions are sewed at t = 0
according to eqs. (2.6). Assuming that φ±cl have singularities near t = x = 0, we can write
them as the series (C.3) in the vicinity of this point. We thus parametrize the two parts of
the solution with t±∗ (x) and B±(x). To the leading order in t∗, the sewing conditions give,

t+∗ − t−∗ ≈ −
J(x) t3∗(x)

5
√

2
, B+ −B− ≈ − J(x)

5 t2∗(x) . (C.9)

We see that the difference between the two singularity surfaces t±∗ ≈ t∗ is parametrically
suppressed by both t3∗(x) and J(x), whereas the jump of the parameter B may be large [54].
This justifies eq. (4.1) which includes a single singularity surface.

Next, we extract j0 dependence of the solution using the expression (2.10) for energy.
Indeed, since the source is narrow, the integral in that expression is saturated in the small
vicinity of t = x = 0 where we can adopt the approximation (4.1): use the leading sin-
gular term φ±cl ≈

√
2/τ of the solution and ignore difference between the two singularity

surfaces t±∗ (x) ≈ t∗, 0 + t∗, 2 x
2. Here the complex parameters t∗,0 and t∗, 2 ≡ ∆t∗(0)/6 char-

acterize shift and curvature of the singularity surface at x = 0. Expression (2.10) takes
the form,

λE ≈ −
∫

J(x) d3x
√

2
(t∗, 0 + t∗, 2 x2)2 = 4πj0

√
2

(it∗,0)1/2(it∗, 2)3/2

[
π

4 eζ (1 + 2ζ) erfc
√
ζ −
√
πζ

2

]
, (C.10)

where in the second equality we calculated the integral for the Gaussian source (2.12)
of strength j0 and width σ. We also introduced a combination ζ = t∗, 0/(2t∗, 2 σ2) and
exploited the complementary error function erfc(z).

Suppose the singularity surface remains smooth in the limit j0 → 0 and j0/σ = const,
i.e. t∗, 2 is finite. Then finiteness of energy E in this limit implies that t∗, 0 → O(j2

0) and ζ
tends to a constant. This result is used in section 4.1 and numerically confirmed13 in fig-
ure 7b. It implies, in particular, that the singularity surface touches the point t = x = 0 and
the semiclassical solutions are truly singular at j0 = 0. Besides, together with eqs. (C.9) this
scaling establishes sewing condition between the two parts of solutions at zero source [54]:
their singularity surfaces should coincide, t+∗ = t−∗ , and the jump of B(x) should be propor-
tional to the δ-function: B+ −B− = λE δ3(x)/5

√
2. Note that the latter condition should

be taken cautiously, as powers of B are present in the higher-order terms of the Ψ series.
We are ready to conclude that the semiclassical solution and all its characteristics FJ , θ,

and T can be expressed as power series in j2
0 at j0/σ = const. Indeed, although rela-

tion (C.10) was derived in the leading order, corrections to it go in powers of t∗(x) ∝ j2
0 .

Thus, the solution t∗, 0 of this equation can be expressed as series in j2
0 at a fixed energy.

Expanding the coefficients in eq. (C.3) — nonlinear functions of t∗(x) — in corrections, one
turns the entire solution into series in j2

0 . This fact was used in section 3 for extrapolating
results to j0 = 0, see eq. (3.4).

13We performed a stronger test. To this end we computed the singularity surfaces of the numerical
solutions at different j0/σ and small j0. The combinations j0/(t2∗, 0t

3
∗, 2) and ζ were related by eq. (C.10).
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