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1 Introduction

The extensive characterization of the Higgs boson properties achieved at the LHC [1–3]
following the tenth anniversary of its discovery [4, 5] represents a powerful example of
the unique potential that precision measurements have in unveiling hypothetical signals
of beyond the Standard Model (BSM) physics in high-energy collisions. This potential
motivates ongoing efforts within the theory and experimental communities to develop novel
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frameworks, tools, and analysis techniques that enhance the sensitivity of precision LHC
measurements to BSM signals in comparison with more traditional approaches.

Since the early days of quantum field theory, effective field theories (EFTs) have proven
a robust framework to describe the low-energy limits of theories whose ultraviolet comple-
tions are either unknown or with which the computation of predictions is too challenging.
Of particular relevance for the model-independent interpretation of LHC measurements is
the Standard Model effective field theory (SMEFT) [6–8] (see also the reviews in [9–13]),
which extends the SM while preserving its (exact) symmetries and its field content. In order
to maximize the constraining power of this framework and explore the broadest possible
region in the parameter space, it is advantageous to integrate the information contained in
different types of processes within a coherent global SMEFT analysis. Several groups have
presented combined SMEFT interpretations of LHC data from the Higgs, top-quark, and
electroweak sectors, eventually complemented with the information from low-energy elec-
troweak precision observables (EWPOs) and/or flavor data from B-meson decays, e.g. [14–
20]. These analyses rely on unfolded binned distributions provided by the experiments, that
is, they are based on reinterpreting “SM measurements” within the SMEFT framework.

In addition to such a combination of multiple datasets and processes, another avenue
towards improved SMEFT analyses is provided by the design of tailored observables charac-
terized by enhanced, or even maximal, sensitivity to the underlying Wilson coefficients for a
given process. Optimal observables are able to maximally exploit the kinematic information
contained within a given measurement, event by event, to carry out parameter inference by
comparing with the corresponding theoretical predictions. The low-multiplicity final states
present in electron-positron collisions make them particularly amenable to this strategy, and
optimal observables have been used in the context of parameter fitting at LEP, e.g. [21, 22],
and for future lepton collider studies [23]. Constructing optimal observables is instead more
difficult in hadron collisions, where the higher complexity and multiplicity of the final state,
the significant QCD shower and non-perturbative effects, and the need to account for detec-
tor simulation make difficult the evaluation of the event-by-event likelihood. This is one of
the reasons why most LHC measurements are presented as unfolded binned cross-sections,
with the exact statistical model [24] replaced by a multi-Gaussian approximation.

Despite technical challenges associated to their definition and their presentation [25],
there is growing evidence that at the LHC unbinned multivariate observables accounting for
the full event-by-event kinematic information are advantageous to constrain the SMEFT
parameters. As an illustration, the most stringent limits on top quark EFT operators from
CMS data are those arising from unbinned detector-level observables [26, 27]. As compared
to traditional measurements, unbinned observables enhance the sensitivity to EFT coeffi-
cients by preventing the information loss incurred when adopting a specific binning or when
restricting the analysis to a subset of the possible final-state kinematic variables. Construct-
ing such observables for hadronic collisions can be achieved with the analytical evaluation of
the event likelihood using e.g. the Matrix Element Method (MEM) [28–32] or numerically
by means of Monte Carlo (MC) simulations. In the latter case, Machine Learning (ML)
techniques provide a powerful toolbox to efficiently construct high-sensitivity observables
for EFT studies [33–48], see also [49–53] for related work. Such optimal observables are rel-
evant in other contexts beyond EFTs such as PDF fits [54, 55], see [56] for a recent example.
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In this work we develop a general framework enabling the integration of tailored un-
binned multivariate observables from LHC processes within global SMEFT fits. Our strat-
egy, implemented in the python open source package ML4EFT, combines machine learning
regression and classification techniques to parameterize high-dimensional likelihood ratios
for an arbitrary number of kinematic inputs and EFT coefficients. Once the likelihood
ratio is parametrized in terms of neural networks trained on MC simulations, the posterior
probability distributions in the EFT coefficients can be inferred by means of Nested Sam-
pling. The Monte Carlo replica method is used to estimate methodological uncertainties,
such as those associated to the finite number of training events, and to propagate them
to the inferred confidence level intervals. A key feature of ML4EFT is that the number of
networks to be trained, which scales quadratically with the number of EFT parameters,
can be fully parallelized. While previous studies of ML-assisted optimized observables for
EFT fits consider relatively small operator bases, our framework is hence well-suited to
construct general unbinned multivariate observables which depend on up to tens of EFT
coefficients as required in global fits.

As a proof of concept of the ML4EFT framework, we construct unbinned multivariate
observables for two processes relevant for global EFT interpretations of LHC data: inclusive
top-quark pair production and Higgs boson production in associated with a Z boson, in
the b`+ν`b̄`−ν̄` (dilepton) and bb̄`+`− final states respectively. We consider fiducial regions
where these measurements are statistically-limited and therefore systematic errors can be
neglected. Whenever possible, we compare the results based on the ML parametrization
with those provided by the analytical evaluation of the exact event-by-event likelihood.
We demonstrate the improved constraints that these unbinned multivariate observables
provide on the SMEFT parameter space as compared to their binned counterparts, and
study the information gain associated to the inclusion of multiple kinematic inputs. Our
analysis motivates and defines a possible roadmap towards the measurement (and delivery)
of unbinned observables tailored to SMEFT parameters at the LHC.

The outline of this paper is as follows. First of all, section 2 introduces the statis-
tical framework which is adopted to construct unbinned multivariate observables. Then
section 3 discusses how this general framework applies to the SMEFT and how machine
learning is deployed to parametrize high-dimensional likelihood functions. Section 4 de-
scribes our pipeline for the MC simulation of LHC events in the SMEFT and the settings
of the pseudo-data generation. Our results are presented in section 5, which quantifies the
constraints on the EFT parameter space provided by unbinned observables in tt̄ and in
hZ production. Finally, in section 6 we summarize and discuss possible future avenues.
Appendix A presents the main features of the open source ML4EFT framework, while
appendix B discusses the Asimov dataset in the case of unbinned observables.

2 From binned to unbinned likelihoods

We begin by presenting the statistical framework that will be adopted in this work in order
to construct unbinned observables in the context of global EFT analyses. While we focus
on applications to the SMEFT, we emphasize that this formalism is fully general and can
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be deployed to also construct unbinned observables relevant e.g. to the determination of
SM parameters such as the parton distribution functions.

2.1 Binned likelihoods

Let us consider a dataset D. The corresponding theory prediction T will in general depend
on np model parameters, denoted by c = {c1, c2, . . . , cnp}, and hence we write these predic-
tions as T (c). The likelihood function is defined as the probability to observe the dataset
D assuming that the corresponding underlying law is described by the theory predictions
T (c) associated to the specific set of parameters c,

L(c) = P (D|T (c)) . (2.1)

This likelihood function makes it possible to discriminate between different theory hy-
potheses and to determine, within a given theory hypothesis T (c), the preferred values
and confidence level (CL) intervals for a given set of model parameters. In particular,
the best-fit values of the parameters ĉ are then determined from the maximization of the
likelihood function L(c), with contours of fixed likelihood determining their CL intervals.

The most common manner of presenting the information contained in the dataset D
is by binning the data in terms of specific values of selected variables characteristic of each
event, such as the final state kinematics. In this case, the individual events are combined
into Nb bins. Let us denote by ni the number of observed events in the i-th bin and by νi(c)
the corresponding theory prediction for the model parameters c. For a sufficiently large
number of events ni per bin (typically taken to be ni & 30) one can rely on the Gaussian
approximation. Hence, the likelihood to observe n = (n1, . . . , nNb

) events in each bin,
given the theory predictions ν(c), is given by

L(n;ν(c)) =
Nb∏
i=1

exp
[
−1

2
(ni − νi(c))2

νi(c)

]
, (2.2)

where we consider only statistical uncertainties and neglect possible sources of correlated
systematic errors in the measurement (uncorrelated systematic errors can be accounted
for in the same manner as the statistical counterparts). This approximation is justified
since in this work we focus on statistically-limited observables, e.g. the high-energy tails of
differential distributions. The binned Gaussian likelihood eq. (2.2) can also be expressed as

− 2 logL(n;ν(c)) =
Nb∑
i=1

(ni − νi(c))2

νi(c)
≡ χ2(c) , (2.3)

that is, as the usual χ2 corresponding to Gaussianly distributed binned measurements. The
most likely values of the parameters ĉ given the theory hypothesis T (c) and the measured
dataset D are obtained from the minimization of eq. (2.3).

The Gaussian binned likelihood, eq. (2.3), is not appropriate whenever the number of
events in some bins becomes too small. Denoting by ntot the total number of observed
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events and νtot(c) the corresponding theory prediction, the corresponding likelihood is the
product of Poisson and multinomial distributions:

L(n;ν(c)) = (νtot(c))ntot e−νtot(c)

ntot!
ntot!

n1! . . . nNb
!

Nb∏
i=1

(
νi(c)
νtot(c))

)ni

, (2.4)

where the total number of observed events (and the corresponding theory prediction) is
equivalent to the sum over all bins,

νtot(c) =
Nb∑
i=1

νi(c) , ntot =
Nb∑
i=1

ni . (2.5)

When imposing these constraints, eq. (2.4) simplifies to

L(n;ν(c)) =
Nb∏
i=1

νi(c)ni

ni!
e−νi(c) , (2.6)

which is equivalent to the likelihood of a binned measurement in which the number of
events ni in each bin follows an independent Poisson distribution with mean νi(c). As in
the Gaussian case, eq. (2.3), one often considers the negative log-likelihood, and for the
Poissonian likelihood of eq. (2.6) this translates into

− 2 logL(n;ν(c)) = −2
Nb∑
i=1

(ni log νi(c)− νi(c)) , (2.7)

where we have dropped the c-independent terms. In the limit of large number of events
per bin, ni � 1, it can be shown that the Poisson log-likelihood, eq. (2.7), reduces to its
Gaussian counterpart, eq. (2.3). Again, the most likely values of the model parameters, ĉ,
are those obtained from the minimization of eq. (2.7).

Confidence level intervals. In order to determine confidence level intervals associated
to the model parameters for both the Gaussian and the Poisson likelihood one can adopt,
rather than the likelihood L(c), the profile likelihood ratio (PLR) as test statistic of choice.
The PLR is defined as

qc ≡ −2 log L(c)
L(ĉ) , (2.8)

where as mentioned above ĉ denotes the maximum likelihood estimator of the theory
parameters c given the observed dataset D. By construction, the PLR qc is semi-positive
definite for any value of the theory parameters. Larger values of qc indicate increasing
incompatibility between theory predictions T (c) and observed data D, while lower values
(down to qc = 0) correspond to improved compatibility. One important difference between
the absolute likelihood L(c) and the profile likelihood ratio qc is that the latter can only
be constructed after having determined ĉ.

Adopting the profile likelihood ratio as test statistic is advantageous, particularly in
light of the powerful result due to Wilks [57] stating that qc is distributed according to
a χ2 distribution under the null hypothesis, that is, under data D whose underlying law
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is described by the theory predictions T (c). Furthermore, in the large sample limit and
assuming specific regularity conditions, the profile likelihood ratio eq. (2.8) follows a χ2

distribution with np degrees of freedom, χ2
np . The main benefit of the profile likelihood

ratio is hence that it allows for an efficient limit setting procedure given that one has direct
access to the asymptotic probability distribution. For instance, for the Gaussian likelihood
we can determine the endpoints of the 100(1 − α)% confidence level (CL) intervals by
imposing the condition

pc ≡ 1− Fχ2
np

(qc) = α (2.9)

on the p-value pc, where Fχ2
k
(y) is the cumulative distribution function of the χ2

k distribution
with k degrees of freedom,

Fχ2
k
(qc) = P

(
χ2
k ≤ qc

)
, (2.10)

and recall that both χ2
k and qc are semi-positive-definite quantities. For instance, α = 0.05

corresponds to the calculation of the 95% CL intervals of the theory parameters c. Isolating
qc from eq. (2.9) gives

qc = F−1
χ2

np
(1− α) , (2.11)

and hence the resulting confidence level intervals satisfy

χ2(c) = χ2(ĉ) + F−1
χ2

np
(1− α) . (2.12)

The determination of the CL contours on the theory parameter space for the binned Gaus-
sian likelihood is obtained by solving eq. (2.12) for c. Working with qc directly, the same
result is obtained by demanding eq. (2.11). A similar derivation can be used to determine
CL intervals in the case of the Poisson likelihood, eq. (2.7).

2.2 Unbinned likelihood

The previous discussion applies to binned observables, and leads to the standard Gaus-
sian and Poisson likelihoods, eqs. (2.2) and (2.6) respectively, in the case of statistically-
dominated measurements. Any binned measurement entails some information loss by con-
struction, since the information provided by individual events falling into the same bin is
being averaged out. To eliminate the effects of this information loss, one can construct
unbinned likelihoods that reduce to their binned counterparts eqs. (2.2) and (2.6) in the
appropriate limits.

Instead of collecting the Nev measured events into Nb bins, when constructing un-
binned observables one treats each event individually. We denote now the dataset under
consideration as

D = {xi} xi = (xi,1, xi,2, . . . , xi,nk
) , i = 1, . . . , Nev , (2.13)

with xi denoting the array indicating the values of the nk final-state variables that are
being measured. Typically the array xi will contain the values of the transverse momenta,
rapidities, and azimuthal angles of the measured final state particles, but could also be
composed of higher-level variables such as in jet substructure measurements. Furthermore,
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the same approach can be applied to detector-level quantities, in which case the array xi
contains information such as energy deposits in the calorimeter cells.

As in the binned case, we assume that this process is described by a theoretical frame-
work T (c) depending on the np model parameters c = {c1, c2, . . . , cnp}. The kinematic
variables of the events constituting the dataset eq. (2.13) are independent and identically
distributed random variables following a given distribution, which we denote by fσ (x, c),
where the notation reflects that this probability density will be given, in the cases we are
interested in, by the differential cross-section evaluated using the null hypothesis (theory
T (c) in this case). For such an unbinned measurement, the likelihood factorizes into the
contributions from individual events such that

L(c) =
Nev∏
i=1

fσ (xi, c) . (2.14)

It is worth noting that in eq. (2.14) the data enters as the experimentally observed values
of the kinematic variables xi for each event, while the theory predictions enter at the level
of the model adopted fσ (x, c) for the underlying probability density.

By analogy with the binned Poissonian case, the likelihood can be generalized to
the more realistic case where the measured number of events Nev is not fixed but rather
distributed according to a Poisson with mean νtot(c), namely the total number of events
predicted by the theory T (c), see also eq. (2.4). The likelihood eq. (2.14) then receives an
extra contribution to account for the random size of the dataset D which reads

L(c) = νtot(c)Nev

Nev! e−νtot(c)
Nev∏
i=1

fσ (xi, c) . (2.15)

Eq. (2.15) defines the extended unbinned likelihood, with corresponding log-likelihood given
by

logL(c) =−νtot(c)+Nev logνtot(c)+
Nev∑
i=1

logfσ (xi,c) =−νtot(c)+
Nev∑
i=1

log(νtot(c)fσ (xi,c)) ,

(2.16)
where again we have dropped all terms that do not depend on the theory parameters c since
these are not relevant to determine the maximum likelihood estimators and confidence level
intervals. The unbinned log-likelihood eq. (2.16) can also be obtained from the Poissonian
binned likelihood eq. (2.7) in the infinitely narrow bin limit, that is, when taking ni → 1 (∀i)
and Nb → Nev, where νi(c)→ νtot(c)fσ (xi, c). Indeed, in this limit one has that

logL(n;ν(c))
∣∣∣
binned

=
Nb∑
i=1

(ni log νi(c)− νi(c)) (2.17)

→
Nev∑
i=1

[log (νtot(c)fσ (xi, c))− νtot(c)fσ (xi, c)] = −νtot(c) +
Nev∑
i=1

log (νtot(c)fσ (xi, c)) ,

as expected, where we have used the normalization condition for the probability density
Nev∑
i=1

fσ (xi, c) = 1 . (2.18)
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Hence one can smoothly interpolate between the (Poissonian) binned and unbinned likeli-
hoods by reducing the bin size until there is at most one event per bin. Again, we ignore
correlated systematic errors in this derivation.

As mentioned above, the probability density associated to the events that constitute
the dataset eq. (2.13) and enter the corresponding likelihood eq. (2.16) is, in the case of
high-energy collisions, given by the normalized differential cross-section

fσ (x, c) = 1
σfid(c)

dσ(x, c)
dx

, (2.19)

with σfid(c) indicating the total fiducial cross-section corresponding to the phase space
region in which the kinematic variables x that describe the event are being measured. By
construction, eq. (2.19) is normalized as should be the case for a probability density. We
can now use eq. (2.16) together with eq. (2.19) in order to evaluate the unbinned profile
likelihood ratio, eq. (2.8):

qc = −2 log L(c)
L(ĉ) = 2

[
νtot(c)− νtot(ĉ)−

Nev∑
i=1

log
(
dσ(xi, c)

dx

/
dσ(xi, ĉ)

dx

)]
. (2.20)

For convenience of notation, let us we define

rσ(xi, c, ĉ) ≡
dσ(xi, c)

dx

/
dσ(xi, ĉ)

dx
and rσ(xi, c) ≡ rσ(xi, c,0) . (2.21)

The latter is especially useful in cases such as the SMEFT, where the alternative hypotheses
corresponds to the vanishing of all the theory parameters (the EFTWilson coefficients), and
T reduces to the SM. In terms of this notation, we can then express the profile likelihood
ratio for the unbinned observables eq. (2.20) as

qc = 2
[
νtot(c)−

Nev∑
i=1

log rσ(xi, c)
]
− 2

[
νtot(ĉ)−

Nev∑
i=1

log rσ(xi, ĉ)
]
. (2.22)

One can then use either eq. (2.20) or eq. (2.22) to derive confidence level intervals associated
to the theory parameters c in the same manner as in the binned case, namely by imposing
eq. (2.11) for a given choice of the CL range.

Provided double counting is avoided, binned and unbinned observables can simultane-
ously be used in the context of parameter limit setting. In this general case one assembles
a joint likelihood which accounts for the contribution of all available types of observables,
namely

L(c) =
ND∏
k=1
Lk(c) =

N
(ub)
D∏
k=1
L(ub)
k (c)

N
(bp)
D∏
j=1
L(bp)
j (c)

N
(bg)
D∏
`=1
L(bg)
` (c) , (2.23)

where we have ND = N
(ub)
D +N

(bp)
D +N

(bg)
D datasets classified into unbinned (ub), binned

Poissonian (bp), and binned Gaussian (bg) datasets, where the corresponding likelihoods
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are given by eq. (2.15) for unbinned, eq. (2.6) for binned Poissonian, and eq. (2.2) for
binned Gaussian observables. The associated log-likelihood function is then

logL(c) =
ND∑
k=1

logLk(c) =
N

(ub)
D∑
k=1

logL(ub)
k (c) +

N
(bp)
D∑
j=1

logL(bp)
j (c) +

N
(bg)
D∑
`=1

logL(bg)
` (c) , (2.24)

which can then be used to construct the profile likelihood ratio eq. (2.8) in order to test
the null hypothesis and determine confidence level intervals in the theory parameters c.

The main challenge for the integration of unbinned observables in global fits using the
framework summarized by eq. (2.24) is that the evaluation of L(ub)

k (c) is in general costly,
since the underlying probability density is not known in closed form and hence needs to
be computed numerically using Monte Carlo methods. In this next section we discuss
how to bypass this problem by adopting machine learning techniques to parametrize this
probability density (the differential cross-section) and hence assemble unbinned observables
which are fast and efficient to evaluate, as required for their integration into a global
SMEFT analysis.

3 Unbinned observables from machine learning

In this section we describe our approach to construct unbinned multivariate observables
tailored for global EFT analyses by means of supervised machine learning. We discuss how
neural networks are deployed as universal unbiased interpolants in order to parametrize
likelihood ratios associated to the theoretical models of the SM and EFT differential cross-
sections, making possible the efficient evaluation of the likelihood functions for arbitrary
values of the Wilson coefficients as required for parameter inference. We emphasize the
scalability and robustness of our approach with respect to the number of coefficients and
to the dimensionality of the final state kinematics, and validate the performance of the
neural network training.

3.1 Differential cross-sections

Following the notation of section 2.2, we consider a given process whose associated mea-
surement D consists of Nev events, each of them characterized by nk final state variables,

D = {xi} xi = (xi,1, xi,2, . . . , xi,nk
) , i = 1, . . . , Nev . (3.1)

The kinematic variables (features) x under consideration depend on the type of measure-
ment that is being carried out. For instance, for a top quark measurement at the parton
level, one would have that the xi are the transverse momenta and rapidities of the top
quark, while for the corresponding particle-level measurement, one would use instead b-jet
and leptonic kinematic variables. Likewise, xi could also correspond to detector-level kine-
matic variables for measurements carried out without unfolding. The inclusive cross-section
case corresponds to nk = 0 when one integrates over all final state kinematics subject to
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fiducial cuts. The probability distribution associated to the events constituting D is given
by the differential cross-section

fσ (x, c) = 1
σfid(c)

dσ(x, c)
dx

, (3.2)

in terms of the model parameters c.
In general not all nk kinematic variables that one can consider for a given process will

be independent. For example, 2→ 2 processes with on-shell particles (like pp→ tt̄ before
decay) are fully described by three independent final-state variables. For more exclusive
measurements, nk grows rapidly yet the final-state variables remain partially correlated
to each other. The best choice of x and nk should in this respect be studied separately
from the impact associated to the use of unbinned observables as compared to their binned
counterparts. Furthermore, in the same manner that one expects that the constraints
provided by a binned observable tend to those from unbinned ones in the narrow bin
limit, these constraints will also saturate once nk becomes large enough that adding more
variables does not provide independent information.

In the specific case of the SMEFT, the parameters of the theory framework T (c) are
the Wilson coefficients associated to the neft higher dimensional operators that enter the
description of the processes under consideration for a given set of flavor assumptions. Given
that a differential cross-section in the dimension-six SMEFT exhibits at most a quadratic
dependence with the Wilson coefficients, one can write the differential probability density
in eq. (3.2) as1

fσ(x, c) = fσ(x,0) +
neft∑
j=1

f (j)
σ (x)cj +

neft∑
j=1

neft∑
k≥j

f (j,k)
σ (x)cjck , (3.3)

where fσ(x,0) corresponds to the SM cross-section, f (j)
σ (x) indicates the linear EFT cor-

rections arising from the interference with the SM amplitude, and f (j,k)
σ (x) corresponds to

the quadratic corrections associated to the square of the EFT amplitude. We note that
while fσ(x,0) and f (j,k)

σ (x) arise from squared amplitudes and hence are positive-definite,
this is not necessarily the case for the interference cross-section f (j)

σ (x).
The SM and EFT cross-sections fσ(x,0), f (j)

σ (x), and f
(j,k)
σ (x) can be evaluated in

perturbation theory, and one can account for different types of effects such as parton shower,
hadronization, or detector simulation, depending on the observable under consideration.
The SM cross-sections fσ(x,0) can be computed at NNLO QCD (eventually matched to
parton showers) for most of the LHC processes relevant for global EFT fits, while for
the EFT linear and quadratic corrections the accuracy frontier is NLO QCD [58]. The
settings of the calculation should be chosen to reproduce as close as possible those of
the corresponding experimental measurement, while aiming to minimize the associated
theoretical uncertainties. In this work we evaluate the differential cross-sections fσ(x, c)
numerically, cross-checking with analytic calculations whenever possible.

1We adopt a notation where the cutoff scale Λ is being reabsorbed into a redefinition of the Wilson coef-
ficients. Therefore, the coefficients c in eq. (3.3) are to be understood as c̃i/Λ2 in terms of the dimensionless
coefficients c̃i entering the SMEFT Lagrangian.
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In order to construct unbinned observables in an efficient manner it is advantageous to
work in terms of the ratio between EFT and SM cross-sections, eq. (2.21), which, accounting
for the quadratic structure of the EFT cross-sections in eq. (3.3), can be expressed as

rσ(x, c) ≡ fσ(x, c)
fσ(x,0) = 1 +

neft∑
j=1

r(j)
σ (x)cj +

neft∑
j=1

neft∑
k≥j

r(j,k)
σ (x)cjck , (3.4)

where we have defined the linear and quadratic ratios to the SM cross-section as

r(j)
σ (x) = f

(j)
σ (x)

fσ(x,0) , r(j,k)
σ (x) = f

(j,k)
σ (x)
fσ(x,0) . (3.5)

Parameterizing the ratios between the EFT and SM cross-sections, eq. (3.4), is beneficial
as compared to directly parameterizing the absolute cross-sections since in general EFT
effects represent a moderate distortion of the SM baseline prediction.

As indicated by eq. (2.22), the profile likelihood ratio used to derive limits on the EFT
coefficients can be expressed in terms of the ratio eq. (3.4). Indeed, in the case of the
dimension-six SMEFT the PLR reads

qc = 2

νtot(c)−
Nev∑
i=1

log

1 +
neft∑
j=1

r(j)
σ (xi)cj +

neft∑
j=1

neft∑
k≥j

r(j,k)
σ (xi)cjck


−2

νtot(ĉ)−
Nev∑
i=1

log

1 +
neft∑
j=1

r(j)
σ (xi)ĉj +

neft∑
j=1

neft∑
k≥j

r(j,k)
σ (xi)ĉj ĉk

 . (3.6)

where the ĉ denotes the maximum likelihood estimator of the Wilson coefficients. We
emphasize that in this derivation the SM serves as a natural reference hypothesis in the
EFT parameter space - ratios expressed with respect to another reference point, say c′, are
trivially equivalent according to the following identity

rσ(x, c) = fσ(x, c)
fσ(x,0) = fσ(x, c)

fσ(x, c′)
fσ(x, c′)
fσ(x,0) . (3.7)

The main challenge in applying limit setting to unbinned observables by means of the
profile likelihood ratio of eq. (3.6) is that the evaluation of the EFT cross-section ratios
r

(j)
σ (x) and r(j,k)

σ (x) is computationally intensive, and in many cases intractable, specifically
for high-multiplicity observables and when the number of events considered Nev is large.
As we explain next, in this work we bypass this challenge by parameterizing the EFT
cross-section ratios in terms of feed-forward neural networks, with the kinematic variables
x as inputs, trained on the outcome of Monte Carlo simulations.

3.2 Cross-section parametrization

As first introduced in section 2, the profile likelihood ratio provides an optimal test statistic
in the sense that no statistical power is lost in the process of mapping the high-dimensional
feature vector x onto the scalar ratio rσ(x, c). Performing inference on the Wilson coeffi-
cients using the profile likelihood ratio from eq. (3.6) requires a precise knowledge about
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the differential cross section ratio rσ(x, c) for arbitrary values of c. However, in general
one does not have direct access to rσ(x, c) whenever MC event generators can only be run
in the forward mode, i.e. used to generate samples. The inverse problem, namely statistical
inference, is often rendered intractable due to the many paths in parameter space that lead
from the theory parameters c to the final measurement in the detector. In the machine
learning literature this intermediate (hidden) space is known as the latent space.

Feed-forward neural networks are suitable in this context as model-independent un-
biased interpolants to construct a surrogate of the true profile likelihood ratio. Consider
two balanced datasets Deft(c) and Dsm generated based on the theory hypotheses T (c)
and T (0) respectively, where by balanced we mean that the same number of unweighted
Monte Carlo events are generated in both cases. We would like to determine the decision
boundary function g(x, c) which can be used to classify an event x into either T (0), the
Standard Model, or T (c), the SMEFT hypothesis for point c in parameter space. We can
determine this decision boundary by using the balanced datasets Deft(c) and Dsm to train
a binary classifier by means of the cross-entropy loss-functional, defined as

L[g(x, c)] = −
∫
dx
dσ(x, c)
dx

log(1− g(x, c))−
∫
dx
dσ(x,0)
dx

log g(x, c) . (3.8)

In practice, the integrations required in the evaluation of the cross-entropy loss eq. (3.8)
are carried out numerically from the generated Monte Carlo events, such that

L[g(x, c)] = −σfid(c)
Nev∑
i=1

log(1− g(xi, c))− σfid(0)
Nev∑
j=1

log g(xj , c) , (3.9)

where σfid(c) and σfid(0) represent the integrated fiducial cross-sections in the SMEFT
and the SM respectively. Recall that we have two independent sets of Nev events each
generated under T (0) and T (c) respectively, and hence in eq. (3.9) the first (second) term
in the r.h.s. involves the sum over the Nev events generated according to T (c) (T (0)).

It is also possible to adopt other loss functions for the binary classifier eq. (3.8), such
as the quadratic loss used in [33]. The outcome of the classification should be stable with
respect to alternative choices of the loss function, and indeed we find that both methods lead
to consistent results, while the cross entropy formulation benefits from a faster convergence
due to presence of stronger gradients as compared to the quadratic loss.

In the limit of an infinitely large training dataset and sufficiently flexible parametriza-
tion, one can take the functional derivative of L with respect to the decision boundary
function g(x, c) to determine that it is given by

δL

δg
= 0 =⇒ g(x, c) =

(
1 + dσ(x, c)

dx

/
dσ(x,0)
dx

)−1

= 1
1 + rσ(x, c) , (3.10)

and hence in this limit the solution of the classification problem defined by the cross-entropy
function eq. (3.8) is given by the EFT ratios rσ(x, c) that need to be evaluated in order to
determine the associated profile likelihood ratio. Hence our strategy will be to parametrize
rσ(x, c) with neural networks, benefiting from the characteristic quadratic structure of the

– 12 –



J
H
E
P
0
3
(
2
0
2
3
)
0
3
3

EFT cross-sections, and then training these machine learning classifiers by minimizing the
loss function eq. (3.8).

In practice, one can only expect to obtain a reasonably good estimator ĝ of the true
result due to finite size effects in the Monte Carlo training data Deft and Dsm and in the
neural network architecture. Since EFT and SM predictions largely overlap in a significant
region of the phase space, it is crucial to obtain a decision boundary trained with as much
precision as possible in order to have a reliable test statistic to carry out inference. The
situation is in this respect different from usual classification problems, for which an imper-
fect decision boundary parameterized by g can still achieve high performances whenever
most features are disjoint, and hence a slight modification of g does not lead to a significant
performance drop. In order to estimate the uncertainties associated to the fact that the
actual estimator ĝ differs from the true result g(x, c), in this work we use the Monte Carlo
replica method described in section 3.3.

Given the quadratic structure of the EFT cross-sections and their ratios to the SM
prediction, eqs. (3.3) and (3.4) respectively, once the linear and quadratic ratios r(j)

σ (x)
and r(j,k)

σ (x) are determined throughout the entire phase space one can straightforwardly
evaluate the EFT differential cross sections (and their ratios to the SM) for any point in the
EFT parameter space. Here we exploit this property during the neural network training by
decoupling the learning problem of the linear cross section ratios from that of the quadratic
ones. This allows one to extract r(j)

σ and r
(j,k)
σ independently from each other, meaning

that the neural network classifiers can be trained in parallel and also that the training
scales at most quadratically with the number of EFT operators considered neft.

To be specific, at the linear level we determine the EFT cross-section ratios r(j)
σ (x) by

training the binary classifier from the cross-entropy loss eq. (3.8) on a reference dataset
Dsm and an EFT dataset defined by

Deft(c = (0, . . . , 0, c(tr)
j , 0, . . . , 0)) , (3.11)

and generated at linear order, O
(
Λ−2), in the EFT expansion with all Wilson coefficients

set to zero except for the j-th one, which we denote by c(tr)
j . For such model configuration,

the EFT cross-section ratio can be parametrized as

rσ(x, c(tr)
j ) = 1 + c

(tr)
j NN(j)(x) , (3.12)

where only the individual coefficient c(tr)
j has survived the sum in eq. (3.4) since all other

EFT parameters are switched off by construction. Comparing eq. (3.12) and eq. (3.4) we
see that in the large sample limit

NN(j)(x)→ r(j)
σ (x) . (3.13)

In practice, this relation will only be met with a certain finite accuracy due to statistical
fluctuations in the finite training sets. This limitation is especially relevant in phase space
regions where the cross-section is suppressed, such as in the tails of invariant mass distribu-
tions, and indicates that it is important to account for these methodological uncertainties
associated to the training procedure. By means of the Monte Carlo replica method one can
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estimate and propagate these uncertainties first to the parametrization of the EFT ratio
rσ and then to the associated limits on the Wilson coefficients.

Concerning the training of the EFT quadratic cross-section ratios r(j,k)
σ , we follow

the same strategy as in the linear case, except that now we construct the EFT dataset
at quadratic order without any linear contributions. By omitting the linear term, we
reduce the learning problem at the quadratic level to a linear one. Specifically, we generate
events at pure O

(
Λ−4) level, without the interference (linear) contributions, in the EFT

by switching off all Wilson coefficients except two of them, denoted by c(tr)
j and c(tr)

k ,

Deft(c = (0, . . . , 0, c(tr)
j , 0, . . . , 0, c(tr)

k , 0, . . .)) , (3.14)

and parametrize the cross-section ratio as

rσ(x, c(tr)
j , c

(tr)
k ) = 1 + c

(tr)
j c

(tr)
k NN(j,k)(x) , (3.15)

where only purely quadratic terms with both c
(tr)
j and c(tr)

k have survived the sum. Note
that when j 6= k, this parametrization of the cross-section ratio rσ(x, c(tr)

j , c
(tr)
k ) depends

only on the product cjck, whereas when j = k it depends only on terms proportional to c2
j .

The cross-section ratio is parametrized in this way to facilitiate separate training of the c2
j ,

c2
k and cjck terms, and we make use of training data in which the contributions from each
of these terms has been separately generated, as discussed in more detail in section 4.1.
By the same reasoning as above, in the large sample limit we will have that

NN(j,k)(x)→ r(j,k)
σ (x) . (3.16)

We note that in the case that the Monte Carlo generator used to evaluate the theory
predictions T (c) does not allow the separate evaluation of the EFT quadratic terms, one can
always subtract the linear contribution numerically by means of the outcome of eq. (3.13).

By repeating this procedure neft times for the linear terms and neft(neft + 1)/2 times
for the quadratic terms, one ends up with the set of functions that parametrize the EFT
cross-section ratio eq. (3.4),

{NN(j)(x)} and {NN(j,k)(x)} , j, k = 1, . . . , neft , k ≥ j . (3.17)

The similar structure that is shared between eq. (3.12) and eq. (3.15) implies that param-
eterizing the quadratic EFT contributions in this manner is ultimately a linear problem,
i.e. redefining the product c(tr)

j c
(tr)
k as c̃(tr)

j,k maps the quadratic learning problem back to a
linear one:

rσ(x, c̃(tr)
j,k ) = 1 + c̃

(tr)
j,k NN(j,k)(x) . (3.18)

Eq. (3.17) represents the final outcome of the training procedure, namely an approximate
parametrization r̂σ(x, c) of the true EFT cross-section ratio rσ(x, c),

r̂σ(x, c) = 1 +
neft∑
j=1

NN(j)(x)cj +
neft∑
j=1

neft∑
k≥j

NN(j,k)(x)cjck , (3.19)
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valid for any point in the model parameter c, as required to evaluate the profile likelihood
ratio in eq. (2.22) and to perform inference on the Wilson coefficients. Below we provide
technical details about how the neural network training is carried out and how uncertainties
are estimated by means of the replica method.

Cross-section positivity during training. While the differential cross-section fσ (x, c)
(and its ratio to the SM) is positive-definite, this is not necessarily the case for the linear
(interference) EFT term, and hence in principle eq. (3.12) is unbounded from below.

At the level of the training pseudo-data, we avoid the issue of negative cross-sections
by generating our pseudo-data at fixed values of the Wilson coefficients, specifically chosen
such that the differential cross sections are always positive. For example, in the case
of negative interference between the EFT and the SM, we generate our training pseudo-
data assuming a negative Wilson coefficient such that the net effect of the EFT is an
enhancement relative to the SM. The choices of Wilson coefficients used in our study will
be further discussed in section 4.5 and in table 6.

It only then remains to ensure that the physical requirement of cross-section positivity
is satisfied at the level of neural network training, and hence that the parameter space region
leading to negative cross-sections is avoided. Cross-section positivity can be implemented
at the training level by means of adding a penalty term to the loss function whenever the
likelihood ratio becomes negative through a Lagrange multiplier. That is, the loss function
is extended as

L[g]→ L[g] + λReLU
(
g(x, c)− 1
g(x, c)

)
= L[g] + λReLU (−rσ(x, c)) , (3.20)

where ReLU stands for the Rectified Linear Unit activation function. Such a Lagrange
multiplier penalizes configurations where the likelihood ratio becomes negative, with the
penalty increasing the more negative rσ becomes. The value of the hyperparameter λ
should be chosen such that the training in the physically allowed region is not distorted.
This is the same method used in the NNPDF4.0 analysis to implement PDF positivity and
integrability [59, 60] at the training level without having to impose these constraints in at
the parametrization level.

However, the Lagrange multiplier method defined by eq. (3.20) is not compatible with
the cross-entropy loss function of eq. (3.8), given that this loss function is only well defined
for 0 < g(x, c) < 1 corresponding to positive likelihood ratios. We note that this is not the
case for other loss-functions for which configurations with rσ(x, c) < 0 are allowed, such
as the quadratic loss-function used by [33], making them in principle compatible with the
Lagrange multiplier method to ensure cross-section positivity.

Instead of using the Lagrange multiplier method, in this work we introduce an alter-
native parameterization of the cross section ratio rσ such that cross-section positivity is
guaranteed by construction. Specifically, we modify eq. (3.12) to enforce positivity, namely
the condition

rσ(x, c) =
(
1 + c

(tr)
j ·NN(j)(x)

)
> 0 , (3.21)
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for any value of x and c, by transforming the outcome of the neural network NN(j)(x) as
follows

NN(j)(x)→ ÑN
(j)

(x; c(tr)
j ) =

ReLU(NN(j)(x))− 1/c(tr)
j + ε, if c(tr)

j > 0
−ReLU(NN(j)(x))− 1/c(tr)

j − ε, if c(tr)
j < 0

, (3.22)

where ε is an infinitesimal positive constant to ensure rσ(x, c) > 0 when the linear contri-
bution becomes negative, NN(j)(x) < 0. The transformation of eq. (3.22) can be thought
of as adding a custom activation function at the end of the network such that the cross-
entropy loss is well-defined throughout the entire training procedure. We stress that it is
the transformed neural network ÑN

(j)
which is subject to training and not the original

NN(j). Regarding imposing cross-section positivity at the quadratic level, we note that the
transformation of eq. (3.22) applies just as well in the quadratic case by virtue of eq. (3.18),
and therefore the same approach can be taken there. The main advantage of eq. (3.22) as
compared to the Lagrange multiplier method is that we always work with a positive-definite
likelihood ratio as required by the cross-entropy loss function.

3.3 Neural network training

Here we describe the settings of the neural network training leading to the parametrization
of eq. (3.7). We consider in turn the choice of neural network architecture, minimizer,
and other related hyperparameters; how the input data is preprocessed; the settings of the
stopping criterion used to avoid overfitting; the estimate of methodological uncertainties
by means of the Monte Carlo replica method; the scaling of the ML training with respect
to the number of EFT parameters; and finally the validation procedure where the machine
learning model is compared to the analytic calculation of the likelihood ratio.

Architecture, optimizer, and hyperparameters. Table 1 specifies the training set-
tings that are adopted for each process, e.g. the features that were trained on, the archi-
tecture of the hidden layers, the learning rate η and the number of mini-batches. Given a
process for which the SMEFT parameter space is spanned by neft Wilson coefficients, there
are a maximum of Nnn = (n2

eft + 3neft)/2 independent neural networks to be trained. In
practice, this number can be smaller due to vanishing contributions, in which case we will
mention this explicitly. We have verified that we select redundant architectures, meaning
that training results are stable in the event that a somewhat less flexible architecture were
to be adopted. For every choice of nk kinematic features, these Nnn neural networks share
the same hyperparameters listed there. The last column of table 1 indicates the average
training time per replica and the corresponding standard deviation, evaluated over the
Nnn ×Nrep networks to be trained for a given process. In future work one can consider an
automated process to optimize the choice of the hyperparameters listed in table 1 along
the lines of the strategy adopted for the NNPDF4.0 analysis [60, 61].

We train these neural networks by performing (mini)-batch gradient descent on the
cross-entropy loss function eq. (3.9) using the AdamW [62] optimizer. Training was imple-
mented in PyTorch [63] and run on AMD Rome with 19.17 HS06 per CPU core. We point
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process features hidden layers learning rate nbatch time (min)

pp→ tt̄
mtt̄ 25×25×25 10−3 5 17.3±13.9

mtt̄,ytt̄ 25×25×25 10−3 5 16.4±12.7

pp→ tt̄→ bb̄`+`−ν`ν̄`

p`
¯̀
T 25×25×25 10−3 1 46.8±35.0

p`
¯̀
T ,η` 25×25×25 10−3 1 53.7±29.9

18 100×100×100 10−4 50 5.4±2.7

pp→hZ→ bb̄`+`−
pZT 100×100×100 10−3 100 9.4±9.0

7 100×100×100 10−4 50 14.1±8.7

Table 1. Overview of the settings for the neural network trainings. For each of the processes
to be described in section 4, we specify the nk kinematic features x used for the likelihood ratio
parametrization, the architecture, the learning rate, the number of mini-batches, and the training
time per network averaged over all replicas. As indicated by eq. (3.19), given a process for which
the parameter space is spanned by neft Wilson coefficients, there are (n2

eft + 3neft)/2 independent
neural networks to be trained. For each choice of nk kinematic features, these neural networks share
the settings listed here.

the interested reader to appendix A and the corresponding online documentation where
the main features of the ML4EFT software framework are highlighted.

Data preprocessing. The kinematic features x that enter the evaluation of the likeli-
hood function fσ(x, c) and its ratio rσ(x, c) cannot be used directly as an input to the
neural network training algorithm and should be preprocessed first to ensure that the in-
put information is provided to the neural nets in their region of maximal sensitivity. For
instance, considering parton-level top quark pair production at the LHC, the typical invari-
ant masses mtt̄ to be used for the training cover the range between 350GeV and 3000GeV,
while the rapidities are dimensionless and restricted to the range ytt̄ ∈ [−2.5, 2.5]. To
ensure a homogeneous and well-balanced training, especially for high-multiplicity observ-
ables, all features should be transformed to a common range and their distribution in this
range should be reasonably similar.

A common data preprocessing method for Gaussianly distributed variables is to stan-
dardize all features to zero mean and unit variance. However, for typical LHC process
the kinematic distributions are highly non-Gaussian, in particular invariant mass and pT
distributions are very skewed. In such cases, one instead should perform a rescaling based
on a suitable interquartile range, such as the 68% CL interval. This method is particularly
interesting for our application because of its robustness to outliers at high invariant masses
and transverse momenta, in the same way that the median is less sensitive to them than
the sample mean. In our approach we use a robust feature scaler which subtracts the me-
dian and scales to an inter-quantile range, resulting into input feature distributions peaked
around zero with their bulk well contained within the [−1, 1] region, which is not necessar-
ily the case for the standardized Gaussian scaler. Further justification of this choice will
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be provided in section 4. See also [64] for a recent application of feature scaling to the
training of neural networks in the context of PDF fits.

Stopping and regularization. The high degree of flexibility of neural networks in su-
pervised learning applications has an associated risk of overlearning, whereby the model
ends up learning the statistical fluctuations present in the data rather than the actual
underlying law. This implies that for a sufficiently flexible architecture a training with a
fixed number of epochs will result in either underlearning or overfitting, and hence that
the optimal number of epochs should be determined separately for each individual training
by means of a stopping criterion.

Here the optimal stopping point is determined separately for each trained neural net-
work by means of a variant of the cross-validation dynamical stopping algorithm introduced
in [65]. Within this approach, one splits up randomly each of the input datasets Dsm and
Deft into two disjoint sets known as the training set and the validation set, in a 80%/20%
ratio. The points in the validation subset are excluded from the optimization procedure,
and the loss function evaluated on them, denoted by Lval, is used as a diagnosis tool to
prevent overfitting. The minimization of the training loss function Ltr is carried out while
monitoring the value of Lval. One continues training until Lval has stopped decreasing fol-
lowing np (patience) epochs with respect to its last recorded local minimum. The optimal
network parameters, those with the smallest generalization error, then correspond to those
at which Lval exhibits this global minimum within the patience threshold.

The bottom-left plot of figure 1 illustrates the dependence of the training and vali-
dation loss functions in a representative training. While Ltr continues to decrease as the
number of epochs increases, at some point Lval exhibits a global minimum and does not
decrease further during np epochs. The position of this global minimum is indicated with
a vertical dashed line, corresponding to the optimal stopping point. The parameters of
the trained network are stored for each iteration, and once the optimal stopping point has
been identified the final parameters are assigned to be those of the epoch where Lval has
its global minimum.

Uncertainty estimate from the replica method. In general the ML parametrization
r̂σ(x, c) will differ from the true EFT cross-section ratio rσ(x, c) for two main reasons:
first, because of the finite statistics of the MC event samples used for the neural network
training, leading to a functional uncertainty in the ML model, and second, due to residual
inefficiencies of the optimization and stopping algorithms. In order to quantify these sources
of methodological uncertainty and their impact on the subsequent EFT parameter inference
procedure, we adopt the neural network replica method developed in the context of PDF
determinations [66–69].

The basic idea is to generate Nrep replicas of the MC training dataset, each of them
statistically independent, and then train separate sets of neural networks on each of these
replicas. As explained in section 3.2, we train the decision boundary g(x, c) from a balanced
sample of SM and EFT events. If we aim to carry out the training of r̂σ on a sample of Nev
events (balanced between the EFT and SM hypotheses), one generates a total of Nev×Nrep
events and divides them into Nrep replicas, each of them containing the same amount of
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information on the underlying EFT cross-section rσ. Subsequently, one trains the full set
of neural networks required to parametrize r̂σ separately for each of these replicas, using in
each case different random seeds for the initialization of the network parameters and other
settings of the optimization algorithm.

In this manner, at the end of the training procedure, one ends up instead of eq. (3.19)
with an ensemble of Nrep replicas of the cross-section ratio parametrization,

r̂(i)
σ (x, c) ≡ 1 +

neft∑
j=1

NN(j)
i (x)cj +

neft∑
j=1

neft∑
k≥j

NN(j,k)
i (x)cjck , i = 1, . . . , Nrep (3.23)

which estimates the methodological uncertainties associated to the parametrization and
training. Confidence level intervals associated with these uncertainties can then be deter-
mined in the usual way, for instance by taking suitable lower and upper quantiles. In other
words, the replica ensemble given by eq. (3.23) provides a suitable representation of the
probability density in the space of NN models, which can be used to quantify the impact
of methodological uncertainties at the level of EFT parameter inference. For the processes
considered in this work we find that values of Nrep between 25 and 50 are sufficient to esti-
mate the impact of these procedural uncertainties at the level of EFT parameter inference.

Scaling with number of EFT parameters. If unbinned observables such as those
constructed here are to be integrated into global SMEFT fits, their scaling with the num-
ber of EFT operators neft considered should be not too computationally costly, given that
typical fits involve up to neft ∼ 50 independent degrees of freedom. In this respect, ex-
ploiting the polynomial structure of EFT cross-sections as done in this work allows for an
efficient scaling of the neural network training and makes complete paralellisation possible.
We note that most related approaches in the literature, such as e.g. [70], are limited to
a small number of EFT parameters and hence not amenable to global fits. In other ap-
proaches, e.g. [33], the proposed ML parametrization is such that the coefficients of the
linear and the quadratic terms mix, and in such case no separation between linear and
quadratic terms and between different Wilson coefficients is possible. This implies that
in such approaches all neural networks parameterizing the likelihood functions need to be
trained simultaneously and hence that parallelization is not possible.

Within our framework, assembling the parametrization of the cross-section ratio
eq. (3.7) involves neft independent trainings for the linear contributions followed by
neft(neft + 1)/2 ones for the quadratic terms. Hence the total number of independent
neural network trainings required will be given by

Nnn = n2
eft + 3neft

2 , (3.24)

which scales polynomially (n2
eft) for a large number of EFT parameters. Furthermore,

since each neural net is trained independently, the procedure is fully parallelizable and the
total computing time required scales rather as n2

eft/nproc with nproc being the number of
available processors. Thanks to this property, even for the case in which neft ∼ 40 in a
typical cluster with ∼ 103 nodes the computational effort required to construct eq. (3.7)
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is only 50% larger as compared to the case with neft = 1. This means that our method is
well suited for the large parameter spaces considered in global EFT analyses.

Furthermore, for each unbinned multivariate observable that is constructed we repeat
the training of the neural networks Nrep times to estimate methodological uncertainties.
Hence the maximal number of neural network trainings involved will be given by

# trainings = Nrep ×Nnn = Nrep
(
n2

eft + 3neft
)

2 . (3.25)

For example, for hZ production with quadratic EFT corrections we will have neft = 7
coefficients and Nrep = 50 replicas, resulting into a maximum of 1750 neural networks to
be trained.2 While this number may appear daunting, these trainings are parallelizable
and the total integrated computing requirements end up being not too different from those
of the single-network training.

Validation with analytical likelihood. As will be explained in section 4, for relatively
simple processes one can evaluate the cross-section ratios eq. (3.7) also in a purely analytic
manner. In such cases, the PLR and the associated parameter inference can be evaluated
exactly without the need to resort to numerical simulations. The availability of such
analytical calculations offers the possibility to independently validate its machine learning
counterpart, eq. (3.19), at various levels during the training process.

Figure 1 presents an overview of representative validation checks of our procedure that
we carry out whenever the analytical cross-sections are available. In this case the process
under consideration is parton-level top quark pair production, to be described in section 4,
where the kinematic features are the top quark pair invariant mass mtt̄ and rapidity ytt̄,
that is, the feature array is given by x = (mtt̄, ytt̄). The neural network training shown
corresponds to the quadratic term NN(j,j) with j being the chromomagnetic operator ctG.

First, we display a point-by-point comparison of the log-likelihood ratio in the ML
model and the corresponding analytical calculation, namely comparing eqs. (3.19) and (3.7)
evaluated on the kinematics of the Monte Carlo events generated for the training in the
specific case of ctG = 2. One obtains excellent agreement within the full phase space consid-
ered. Then we show the median value (over replicas) of the ratio between the analytical and
machine learning calculations of NN(j,j) evaluated in the (mtt̄, ytt̄) kinematic feature space,
with j again being the chromomagnetic operator ctG. We also show the pull between the
analytical and numerical calculations in units of the Monte Carlo replica uncertainty. From
the median plot we see that the parametrized ratio r̂σ reproduces the exact result within
a few percent except for low-statistics regions (large |ytt̄| and mtt̄, ytt̄ tails), and that these
differences are in general well contained within the one-sigma MC replica uncertainty band.

The bottom right plot of figure 1 displays the resultant decision boundary g(x, c) for
ytt̄ = 0 as a function of the invariant mass mtt̄ in the training of the quadratic cross-
section ratio proportional to c2

tG in the specific case of also for ctG = 2. The band in the
ML model is evaluated as the 68% CL interval over the trained MC replicas, and is the

2In this case the actual number of trainings is smaller, # trainings = 1500, given that some quadratic
cross-terms vanish.
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Figure 1. Validation of the machine learning parametrization of the EFT cross-section ratios
when applied to the case of parton-level top quark pair production to be described in section 4.
The results shown here correspond to the training of the quadratic neural network NN(j,j)(mtt̄, ytt̄)
in eq. (3.19) with j indicating the chromomagnetic operator ctG. From left to right and top to
bottom we display a point-by-point comparison of the log-likelihood ratio in the ML model and
the corresponding analytical calculation; the median of the ratio between the ML model and the
analytical calculation and the associated pull in the (mtt̄, ytt̄) feature space; the evolution of the
loss function split in training and validation sets for a representative replica as a function of the
number of training epochs; and the resultant decision boundary g(x, c) for ctG = 2 including MC
replica uncertainties at the end of the training procedure.

largest at high mtt̄ values where statistics are the smallest. Again we find that the ML
parametrization is in agreement within uncertainties when compared to the exact analytical
calculation, further validating the procedure. Similar good agreement is observed for other
EFT operators both for the linear and for the quadratic cross-sections.

4 Theoretical modeling

We describe here the settings adopted for the theoretical modeling and simulation of un-
binned observables at the LHC and their subsequent SMEFT interpretation. We consider
two representative processes relevant for global EFT fits, namely top-quark pair production
and Higgs boson production in association with a Z-boson. We describe the calculational
setups used for the SM and EFT cross-sections at both the parton and the particle level,
justify the choice of EFT operator basis, motivate the selection and acceptance cuts applied
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to final-state particles, present the validation of our numerical simulations with analytical
calculations whenever possible, and summarize the inputs to the neural network training.

4.1 Benchmark processes and simulation pipeline

We apply the methodology developed in section 3 to construct unbinned observables for
inclusive top-quark pair production and Higgs boson production in association with a Z-
boson in proton-proton collisions. We evaluate theoretical predictions in the SM and in
the SMEFT for both processes at leading order (LO), which suffices in this context given
that we are considering pseudo-data. For particle-level event generation we consider the
fully leptonic decay channel of top quark pair production,

p + p→ t+ t̄→ b+ `+ + ν` + b̄+ `− + ν̄` , (4.1)

and that of the Higgs decaying to a pair of bottom quarks and with the Z-boson decaying
leptonically,

p + p→ h+ Z → b+ b̄+ `+ + `− . (4.2)

The evaluation of the SM and SMEFT cross-sections at LO is carried out with
MadGraph5_aMC@NLO [71] interfaced to SMEFTsim [72, 73] with NNPDF31_nnlo_as_0118
as the input PDF set [74]. As discussed in section 3.2, at the quadratic level in the EFT we
parametrize the cross-section ratio such that we have separate neural networks for terms
proportional to c2

j and for the quadratic mixed terms cjck.3 In addition to eq. (4.1), we
also carry out tt̄ simulations at the undecayed parton level with the goal of comparing
with the corresponding exact analytical calculation of the likelihood ratio for benchmark-
ing purposes. Such analytical evaluation becomes more difficult (or impossible) for realistic
unbinned multivariate measurements presented in terms of particle-level or detector-level
observables.

The flow chart in figure 3 describes the pipeline adopted to evaluate the analytical
expressions for the parton level analysis at LO in the QCD expansion. First, we generate
a FeynArts [75] model file from the SMEFTsim top U3l UFO model in the {mW ,mZ , GF }
input scheme [73]. This amounts to a U(3)l×U(3)e flavor symmetry in the leptonic sector
and U(2)q×U(3)d×U(2)d in the quark sector, consistent with the flavor assumptions made
in the SMEFiT analysis [15]. Then we use FeynArts to construct the diagrams associated
to a given production process before passing pass them on to FormCalc_v9.9 [76] interfaced
to Mathematica, that ultimately produces the analytical differential cross section in the
SMEFT.

Satisfactory agreement is found between the analytical SM and SMEFT calculations
and the outcome of the corresponding MadGraph5_aMC@NLO simulations both at the linear
and quadratic EFT level for all processes considered here. This agreement is illustrated by

3To generate the corresponding training sample we make use of the MadGraph5_aMC@NLO syntax which
allows for the evaluation of cross sections dependent only on the product cjck, for example

p p > t t~ NP<=1 NP^2==2 NPc[j]^2==1 NPc[k]^2==1 .

– 22 –



J
H
E
P
0
3
(
2
0
2
3
)
0
3
3

q̄

q

O
(8)
tu

t t

t

t̄

OtG

OtG

t̄ t̄

t

t̄

OtG

q̄

q

t

t̄

OtG

t

t̄
OtG

g g

g

g

g

g

g

g

g

g

Figure 2. Representative Feynman diagrams for parton-level top-quark pair production in the
SMEFT, indicating some of the corrections induced by the OtG and O(8)

tu operators. These operators
both modify existing SM interaction vertices, such as gtt̄, and induce new ones, such as ggtt̄. The
operators considered do not modify top quark decays.

figure 4, comparing numerical and analytical SMEFT predictions for the mtt̄ distribution
in top-quark pair production for some of the values of the ctG and c

(8)
tu coefficients used

for the neural network training. Similar agreement is found for other distributions and
other points in the EFT parameter space. These analytical calculations also make possible
validating the accuracy of the neural network training, as exemplified in figure 1, and
indeed the agreement persists at the level of the training of the decision boundary g(x, c).

Dominance of statistical uncertainties. As discussed in section 2, we restrict our
analysis to measurements dominated by statistical uncertainties for which correlated sys-
tematic uncertainties can be neglected. This condition can be enforced by restricting the
fiducial phase space such that the number of events per bin satisfies

δσ
(stat)
i

σi(0) = 1√
νi(0)

≥ δ(stat)
min , i = 1, . . . , Nb , (4.3)

where νi(0) is the number of expected events in bin i according to the SM hypothesis after
applying selection, acceptance, and efficiency cuts. The threshold parameter δ(stat)

min is set to
δ

(stat)
min = 0.02 for our baseline analysis. We have verified that our qualitative findings are not
modified upon moderate variations of its value. Since eq. (4.3) must apply for all possible
binning choices, it should also hold for Nb = 1, namely for the total fiducial cross-section.
Therefore, we require that the selection and acceptance cuts applied lead to a fiducial
region satisfying (δσ(stat)

fid /σfid) ≥ δ
(stat)
min . This condition implies that the requirement of

eq. (4.3) will also be satisfied for any particular choice of binning, including the narrow bin
limit, i.e. the unbinned case.

Within our approach there are two options by which the condition eq. (4.3) can be
enforced when applied to the fiducial cross-section, given by

νtot(0) = Lint × σfid(0) . (4.4)

– 23 –



J
H
E
P
0
3
(
2
0
2
3
)
0
3
3

smeftsim_main.fr

SMEFTsim
Flavor = topU3l,
Scheme=MwScheme

FeynArts .mod file FeynArts .gen file

FeynArts: draw
topologies and
insert fields

FormCalc: compute
|Msm +Meft(c)|2

Mathematica:
compute dσ(c)

Analytical dσ(c)

Figure 3. Flow diagram displaying the pipeline adopted to evaluate at LO analytical expressions
of differential distributions in the SMEFT for the LHC processes considered. These analytical cross-
sections provide access to the exact likelihood ratio to benchmark the numerical MC simulations
and the performance of the ML algorithm.

The first option is adjusting the integrated luminosity Lint corresponding to this measure-
ment. In this work we will take a fixed baseline luminosity Lint = 300 fb−1, corresponding
to the integrated luminosity accumulated at the end of Run III. The second option is to
adjust the fiducial region such that eq. (4.3) is satisfied. Taking into account eqs. (4.3)
and (4.4), for a given luminosity Lint the fiducial (SM) cross-section should satisfy

σfid(0) ≥
[(
δ

(stat)
min

)2
Lint

]−1
. (4.5)

In this work we take the second option, imposing kinematic cuts restricting the events to
the high-energy, low-yield tails of distributions, such as by means of a strong mtt̄ cut in the
case of top quark pair production, see table 3. It is then possible to generalize the results
presented in this work for Lint = 300 fb−1 to higher integrated luminosities by making the
cuts that define the fiducial region more stringent.
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Figure 4. Parton level mtt̄ distribution in the analytical calculation of top-quark pair production
at LO based on the pipeline of figure 3 compared with the corresponding numerical simulations
based on MadGraph5_aMC@NLO. We display the SM predictions and those of the SMEFT for
non-zero values of the ctG and c

(8)
tu coefficients in the linear-only and quadratic-only cases. The

bottom panels display the ratio between the numerical and analytical calculations.

4.2 Top-quark pair production: parton level

For inclusive top quark pair production with stable tops the MadGraph5_aMC@NLO
calculation is accompanied by and benchmarked against the analytical evaluation of the
likelihood, see also figure 4. We consider the effects of two representative dimension-six
SMEFT operators modifying inclusive top quark pair production, namely the chromomag-
netic dipole operator OtG and the two-light-two-heavy four-fermion color-octet operator
O(8)
tu defined as in [73] in the topU3l flavor scheme:

O(8)
tu = (t̄γµTAt)(ūγµTAu) ,
OtG = (Q̄σµνT at)H̃Gaµν . (4.6)

Representative Feynman diagrams displaying SMEFT corrections associated to these oper-
ators in top-quark pair production are shown in figures 2. The dipole operator OtG modifies
the gtt̄ coupling as well as induces new four-body ggtt̄ interactions, while the four-fermion
octet operator O(8)

tu leads to a new q̄qt̄t vertex.
At the level of undecayed tops, a 2 → 2 process such as top quark pair production is

uniquely determined by specifying three independent kinematic variables, since the four-
momenta pµt and pµ

t̄
satisfy the mass-shell conditions and transverse momentum conserva-

tion. We refer to these kinematic variables as features in the context of ML classification
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Figure 5. The diagonal entries of the Fisher matrix corresponding to the operators that enter
the calculation of the LHC tt̄ production at 8TeV and 13TeV (top) and of the hZ production
at 13TeV (bottom) [15], where each row is normalized to 100. The dark blue entry indicates the
operator that dominates the Fisher information, and those marked in red are selected to construct
the unbinned observables.

problems. We choose the three independent features to be the transverse momentum of
the top quark, ptT , and the invariant mass and rapidity of the top quark pair, mtt̄ and ytt̄
respectively. It can be verified how considering additional variables does not improve the
sensitivity to the EFT parameters given the redundancy of the extra features. No fiducial
cuts are imposed in the MadGraph5_aMC@NLO calculation to facilitate the comparison
with the analytical result.

Concerning the event generation settings, for each point in the EFT parameter space
c that enters the neural network training we generate Nrep = 50 independent sets of events
(replicas) containing Ñev = 105 events each, for a total of 5 × 106 events, see also the
overview in table 6. Note that we adopt the convention whereby Ñev denotes Monte Carlo
events generated to train the machine learning classifier while Nev = νtot indicates the
physical events that enter the EFT parameter inference. The former can be made as
large as one wants, while the latter is fixed by the assumed integrated luminosity and the
value of the fiducial cross-section, eq. (4.4). In addition, for each replica we generate an
independent set of 105 SM events. This is required so that the two terms of the cross-
entropy loss function eq. (3.9) are properly balanced, and results in a training set of 2×105

events per replica. Similar settings are used by the particle level processes described next,
and we have verified that the size of this Monte Carlo dataset is sufficient to ensure a stable
and accurate parametrization of the likelihood ratio.

4.3 Top-quark pair production: particle level

In the particle-level case, where the top-quark events generated from the diagrams in
figure 2 are decayed into the b`+ν`b̄`−ν̄` final state, one considers a broader set of kine-
matic features. As in the parton level case, SM and EFT events are simulated with Mad-
Graph5_aMC@NLO at LO in the QCD expansion, though now the analytical calculation
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operator SMEFiT SMEFTsim SMEFT@NLO Definition

OtG ctG −ctGRe/gs ctG igs(Q̄τµνTAt)ϕ̃GAµν +h.c.

O1,8
Qq c81qq cQj18 cQq18

∑
i=1,2

c
1(i33i)
qq +3c3(i33i)

qq

O3,8
Qq c83qq cQj38 cQq38

∑
i=1,2

c
1(i33i)
qq −c3(i33i)

qq

O8
tq c8qt ctj8 ctq8

∑
i=1,2

c
8(ii33)
qu

O8
tu c8ut ctu8 ctu8

∑
i=1,2

2c(i33i)
uu

O8
Qu c8qu cQu8 cQu8

∑
i=1,2

c
8(33ii)
qu

O8
td c8dt ctd8 = ctb8 ctd8

∑
j=1,2,3

c
8(33jj)
ud

O8
Qd c8qd cQd8 = cQb8 cQd8

∑
j=1,2,3

c
8(33jj)
qd

Table 2. The SMEFT operators entering inclusive top-quark pair production. We indicate their
definition in terms of the SM fields and the notation used for corresponding Wilson coefficients in
SMEFTsim (in the topU3l flavor scheme), SMEFiT, and SMEFT@NLO. The = sign indicates
that two coefficients are fixed to the same value [73].

is not available as a cross-check. In order to select the relevant EFT operators, we adopt the
following strategy. Since we consider a single process, it is only possible to constrain a subset
of operators, which are taken to be the neft Wilson coefficients with the highest Fisher infor-
mation value, namely those that can be better determined from the fit. In the upper part of
figure 5 we display the diagonal entries of the Fisher information matrix corresponding to
the operators that enter the calculation of the LHC tt̄ production measurements at 8TeV
and 13TeV from [15], where each row is normalized to 100. The dark blue entry indicates
the dominating operator, while the operators listed in red are those with the highest Fisher
information and selected to construct the unbinned observables. Constraining additional
Wilson coefficients would require extending the analysis to consider unbinned observables
for processes such as tt̄V which span complementary directions in the parameter space.

In table 2 we indicate the SMEFT operators entering inclusive top-quark pair produc-
tion and listed in figure 5. For each operator we provide its definition in terms of the SM
fields and the notation used to refer to the corresponding Wilson coefficients in SMEFTsim
(in the topU3l flavor scheme), SMEFiT, and SMEFT@NLO [58]. These operator defini-
tions are consistent with those used in the SMEFiT global analyses [15, 77] as required for
the eventual integration of the unbinned observables there.

The selection and acceptance cuts imposed on the final-state particles of the tt̄ →
bb̄`+`−ν`ν̄` process are adapted from the Run II dilepton CMS analysis [78] and listed
in table 3. Concerning the array of kinematic features x, it is composed of nk = 18
features: pT of the lepton p`T , pT of the antilepton p

¯̀
T , leading p`T , trailing p`T , lepton

pseudorapidity η`, antilepton pseudorapidity η¯̀, leading η`, trailing η`, pT of the dilepton
system p`

¯̀
T , invariant mass of the dilepton system m`¯̀, absolute difference in azimuthal
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kinematic feature cut
mtt̄ > 1.45TeV

p`T (leading) > 25GeV
p`T (trailing) > 20GeV

pjT > 30GeV
|ηj | < 2.5
m`¯̀ m`¯̀> 106GeV, or m`¯̀< 76GeV and m`¯̀> 20GeV

∆R(j, `) > 0.4
pmiss
T > 40GeV

Table 3. Selection and acceptance cuts imposed on the final-state particles of the tt̄→ bb̄`+`−ν`ν̄`
process.

angle |∆φ(`, ¯̀)|, difference in absolute rapidity ∆η(`, ¯̀), leading pT of the b-jet, trailing pT
of the b-jet, pseudorapidity of the leading b-jet ηb, pseudorapidity of the trailing b-jet ηb, pT
of the bb̄ system pbb̄T , and invariant mass of the bb̄ system mbb̄. These features are partially
correlated among them, and hence maximal sensitivity of the unbinned observables to
constrain the EFT coefficients will be achieved for nk < 18.

Since no parton shower or hadronization effects are included, the b-quarks can be recon-
structed without the need of jet clustering and assuming perfect tagging efficiency. These
simulation settings are not suited to describe actual data but suffice for the present analysis
based on pseudo-data, whose goal is the consistent comparison of the impact on the EFT
parameter space of unbinned multivariate ML observables with their binned counterparts.

4.4 Higgs associated production with a Z-boson

The second process that we consider is Higgs production in association with a Z-boson in
the bb̄`+`− final state, for which representative Feynman diagrams indicating the impact
of the EFT operators considered are displayed in figure 6. Following the same strategy as
for top quark pair production, the bottom panel of figure 5 indicates in red the selected
neft = 7 operators with the largest value of the Fisher information matrix when evaluated
on the 13TeV LHC hZ production data. The definition of these operators, again consistent
with those in [15], is listed in table 4 and includes the bottom Yukawa coupling Obϕ, purely
bosonic operators such as OϕW and OϕWB, and operators modifying the couplings between
quarks and vector bosons such as Oϕu and Oϕd.

The selection and acceptance cuts imposed on the final-state particles of the hZ →
bb̄`+`− process are collected in table 5 and have been adapted from the ATLAS Run II anal-
ysis [79]. In addition to these cuts, another cut on the jet cone radius ∆R in the bb̄ system is
applied depending on the value of pZT , with ∆R(b1, b2) < 3.0, 1.8, 1.2 for pZT ∈ (75, 150]GeV,
(150, 200]GeV, and (200,∞)GeV respectively. The array of kinematic features x for this
process is composed of the following nk = 7 features: the transverse momentum of the Z
boson pZT , that of the b-quark pbT , that of the bb̄ pair pbb̄T , the angular separation ∆Rbb̄ of
the b-quarks, their azimuthal angle separation ∆φb,bb̄, the rapidity difference between the
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Figure 6. Same as figure 2 for Higgs associated production with a Z-boson, hZ → bb̄`+`−,
indicating representative corrections arising from the SMEFT operators considered. For this process
SMEFT effects modify also particle decays, in particular via the Yukawa interaction relevant for
h→ bb̄.

operator SMEFTsim SMEFiT Definition

Oϕu cHu cpui
∑
i=1,2(ϕ†iDµϕ)(ūiγµui)

Oϕd cHd cpdi
∑
i=1,2(ϕ†iDµϕ)(d̄iγµdi)

O(1)
ϕq cHj1 −

∑
i=1,2 i(ϕ†

↔
Dµϕ)(q̄iγµqi)

O(3)
ϕq cHj3 c3pq

∑
i=1,2 i(ϕ†

↔
DµτIϕ)(q̄iγµτ Iqi)

O(−)
ϕq cHj1 − cHj3 cpqMi −

Obϕ cbHRe cbp (ϕ†ϕ)Q̄bϕ+ h.c.

OϕW cHW cpW (ϕ†ϕ)Wµν
I W I

µν

OϕWB cHWB cpWB (ϕ†τIϕ)BµνW I
µν

Table 4. Same as table 2 for Higgs associated production in the hZ → bb̄`+`− final state. Only
the operators selected by the Fisher information analysis of figure 5 are displayed.

dilepton and the bb̄ system ∆ηZ,bb̄, and the azimuthal angle separation ∆φ`b. Again, most
of these features are correlated among them and hence there will be a degree of redundancy
in the analysis.

4.5 Inputs to the neural network training

Figure 7 displays the differential distributions in the kinematic features used to parametrize
the likelihood ratio eq. (3.19) in the hZ → bb̄`+`− process. We compare the SM predictions
with those obtained in the SMEFT when individual operators are activated for the values of
the Wilson coefficients used for the neural network training. Results are shown separately
at the linear-only and quadratic-only level, to highlight how in our approach the learning
strategy separates the training of the linear from the quadratic cross-section ratios, see also
section 3.2. In order to illustrate shape (rather than normalization) differences of the NN
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kinematic feature cut
leading b-tagged jet pbT pbT > 45GeV

mbb̄ 115 < mbb̄ < 135GeV
m`¯̀ 81 < m`¯̀< 101GeV
p`

¯̀
T p`

¯̀
T > 75GeV

p`1T p`1T > 27GeV
p`2T p`1T > 7GeV

Table 5. Selection and acceptance cuts imposed on the final-state particles of the hZ → bb̄`+`−

process.

inputs, all distributions are normalized by their fiducial cross-sections. The corresponding
comparisons at the level of the tt̄ → bb̄`+`−ν`ν̄` process, displaying the complete set of
nk = 18 kinematic features used to train the cross-section ratio at the quadratic-only level,
are shown in figure 8.

From figures 7 and 8 one can observe how each operator modifies the qualitative
shape of the various kinematic features in different ways. Furthermore, in general the
EFT quadratic-only corrections enhance the shift with respect to the SM distributions as
compared to the linear ones. The complementarity of the information provided by each
kinematic feature motivates the inclusion of as many final-state variables as possible when
constructing unbinned observables, though as mentioned above the limiting sensitivity will
typically be saturated before reaching the total number of kinematic features used for the
training.

As mentioned in section 3.3, an efficient neural network training strategy demands
that the kinematic features x entering the evaluation of the rσ(x, c) cross-section ratios
are preprocessed to ensure that the input information is provided to the neural networks in
the region of maximal sensitivity. That is, all features should be transformed to a common
range and their distribution within this range should be reasonably similar. Here we use
a robust scaler to ensure that this condition is satisfied. Figure 9 displays the comparison
between two different preprocessing schemes applied to the input features before the neural
network training of the hZ → bb̄`+`− likelihood is carried out. We display results for a
Standardized Gaussian scaler and for a robust scaler: the latter subtracts the median and
scales to the 95% inter-quantile range, while the former rescales all features to have zero
mean and unit variance. The robust scaler leads to input feature distributions peaked
around zero with their bulk contained within the [−1, 1] region, which is not the case in
general for the Standardized Gaussian scaler. Therefore our default robust scaler facilitates
the incorporation of new kinematic features, since the shapes of the input distributions are
such that their bulk belongs to the high-sensitivity region of the neural networks.

Table 6 summarizes the settings adopted for the neural network training of the likeli-
hood ratio function eq. (3.19) for the processes considered. For each process, we indicate
the number of replicas Nrep generated, the values of the EFT coefficients that enter the
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Figure 7. Differential distributions in the kinematic features used to parametrize the likelihood
ratio in the hZ → bb̄`+`− process. We compare the SM predictions with those obtained in the
SMEFT when individual operators are activated for coefficient values used for the neural network
training. Results are shown separately at the linear-only level (upper) and quadratic-only (bottom
panels) level and normalized to their fiducial cross-sections.
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Figure 8. Same as the bottom panels in figure 7 (quadratic-only EFT effects included) for
the nk = 18 kinematic features entering the parametrization of the likelihood ratio in the
tt̄→ bb̄`+`−ν`ν̄` process.

training as specified in eqs. (3.12) and (3.15), the number of Monte Carlo events generated
Ñev for each replica, and the number of neural networks to be trained per replica Nnn. The
values of the Wilson coefficients are chosen to be sufficiently large so as to mitigate the effect
of MC errors that might otherwise dominate the SM-EFT discrepancy. Furthermore, the
sign of each Wilson coefficient is chosen such that the effect of the EFT is an enhancement
relative to the SM, and therefore the differential cross sections are consistently positive.
For example, in the case of negative EFT-SM interference, we select negative values of
Wilson coefficients. Cross-section positivity must also be maintained during training of the
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Figure 9. Comparison between two different data preprocessing schemes applied to the input
features in the neural network training of the hZ → bb̄`+`− likelihood: a Standardized Gaussian
scaler and a robust scaler adopting a 95% inter-quantile range.

neural networks, and this is further discussed in section 3.2. The last column indicates the
total number of trainings required to assemble the full parametrization including the Nrep
replicas, namely #trainings = Nrep×Nnn. For parton- and particle-level top-quark pair pro-
duction and for hZ production our procedure requires the training of 200, 1000, and 1500
networks respectively in the case of the quadratic EFT analysis.4 As discussed in section 3
these trainings are parallelizable and the overall computational overhead remains moderate.

The values listed in the last two columns of table 6 correspond to the case of quadratic
EFT fits, since as will be explained in section 5 at the linear level the presence of degenerate
directions requires restricting the subset of operators for which inference can be performed.
For each process, the total number of Monte Carlo events in the SMEFT that need to be
generated is therefore Ñev×Nrep×Nnn, and in addition the training needs a balanced SM
sample composed by Ñev × Nrep events. For example, in the case of hZ production the
total number of SMEFT events to be generated is 105 × 50× 30 = 1.5× 108 events.

5 EFT constraints from unbinned multivariate observables

We now present the constraints on the EFT parameter space provided by the unbinned
observables constructed in section 3 in comparison with those provided by their binned
counterparts. We study the dependence of these results on the choice of binning and on
the kinematic features. We also quantify how much the EFT constraints are modified when
restricting the analysis to linear O(Λ−2) effects as compared to when the quadratic O(Λ−4)
contributions are also included.

4We note that the actual value of #trainings can differ from the maximum value Nrep × Nnn since some
quadratic cross-terms vanish.
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Process Nrep c
(tr)
j Ñev (per replica) Nnn #trainings

pp→ tt̄ 50
ctG =−10

c
(8)
tu = 10

105 4 200

pp→ tt̄→ bb̄`+`−ν`ν̄` 25

c
(8)
td = 10

c
(8)
Qd = 10

c
(1,8)
Qq = 10

c
(3,8)
Qq = 10

c
(8)
Qu = 10

ctG =−10

c
(8)
qt = 10

c
(8)
tu = 10

105 40 1000

pp→hZ→ bb̄`+`− 50

cϕu = 10

cϕd =−10

c
(1)
ϕq =−10

c
(3)
ϕq = 10

cbϕ =−10

cϕW = 10

cϕWB = 10

105 30 1500

Table 6. Overview of the settings for the neural network training of the likelihood ratio eq. (3.19).
For each process, we indicate the number of replicas Nrep, the values of the EFT coefficients that
enter the training as specified in eqs. (3.12) and (3.15), the number of Monte Carlo events generated
Ñev for each replica, and the number of neural networks to be trained per replica Nnn taking
into account that some EFT cross-sections vanish at the linear level. The values of the Wilson
coefficients are chosen such that the EFT has a large effect relative to the SM, mitigating the effect
of MC errors that could otherwise dominate the SM-EFT discrepancy. The signs of the Wilson
coefficients are chosen such that the EFT always leads to an enhancement relative to the SM; for
example, negative Wilson coefficients are chosen to compensate for negative SM-EFT interference.
This ensures positive differential cross-sections throughout the training samples. The last column
indicates the total number of trainings required, #trainings = Nrep × Nnn. The last two columns
correspond to the case of quadratic EFT fits; at the linear EFT level the presence of quasi-flat
directions restricts the subset of operators for which inference can be performed. For each process,
the total number of Monte Carlo EFT events generated is Ñev × Nrep × Nnn, and in addition we
need balanced SM samples requiring Ñev ×Nrep events.
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First, we describe the method adopted to infer the posterior distributions of the EFT
parameters for a given observable, either binned or unbinned. Second, we present results
for parton-level inclusive top quark pair production, described in section 4.2. The moti-
vation for this is to validate our machine learning methodology by comparing it with the
results of parameter inference based on the analytical calculation of the likelihood. Then
we consider the analogous process, now at the particle level in the dilepton final state (sec-
tion 4.3), and quantify the information gain resulting from unbinned observables and its
dependence on the choice of kinematic features used in the training. This is followed by the
corresponding analysis for hZ production (section 4.4). Finally, we will discuss the impact
of methodological uncertainties, discussed in section 3.3, on the constraints we obtain on
the EFT parameter space. The results presented here can be reproduced and extended to
other processes by means of the ML4EFT framework, summarized in appendix A.

5.1 EFT parameter inference

For each of the LHC processes considered in section 4, Monte Carlo samples in the SM and
the SMEFT are generated in order to train the decision boundary g(x, c) from the mini-
mization of the cross-entropy loss function eq. (3.8). See tables 3 and 5 for the pseudodata
generation settings. The outcome of the neural network training is a parametrization of
the cross-section ratio r̂σ(x, c), eq. (3.19), which in the limit of large statistics and perfect
training reproduces the true result rσ(x, c), eq. (3.4). To account for finite-sample and finite
network flexibility effects, we use the Monte Carlo replica method as described in section 3.3
to estimate the associated methodological uncertainties. Therefore, the actual requirement
that defines a satisfactory neural network parametrization r̂σ is that it reproduces the exact
result rσ, within the 68% CL replica uncertainties evaluated from the ensemble eq. (3.23).

From the exact result for the cross-section ratio rσ(x, c), or alternatively its ML rep-
resentation r̂σ(x, c), one can carry out inference on the EFT Wilson coefficients by means
of the profile likelihood ratio eq. (2.22) applied to the Nev generated pseudo-data events.
We emphasize that the Nev events entering in eq. (2.22), or alternatively in eq. (3.6), are
the physical events expected after acceptance and selection cuts for a given integrated
luminosity Lint, see also the discussion in section 4.1. The Monte Carlo events used to
train the ML classifier are instead different: in general, the classifier is trained on a larger
event sample than the one expected for the actual measurement. Once the machine learn-
ing parametrization of the cross-section ratio, eq. (3.19), has been determined alongside its
replica uncertainties, the profile likelihood ratio eq. (2.22) can be used to infer the posterior
probability distribution in the EFT parameter space and thus determine confidence level
intervals associated to the unbinned observables. The same method is applied to binned
likelihoods and eventually to extended likelihoods which combine the information provided
by binned and unbinned observables, eq. (2.24).

In this work, the EFT parameter inference based on the machine learning parametriza-
tion of the PLR is carried out by means of the Nested Sampling algorithm, in particular
via the MultiNest implementation [80]. We recall that this is the baseline sampling al-
gorithm used in the SMEFiT analysis [15] to determine the posterior distributions in the
EFT parameter space composed of neft = 36 independent Wilson coefficients. The choice

– 35 –



J
H
E
P
0
3
(
2
0
2
3
)
0
3
3

of MultiNest is motivated from its previous applications to EFT inference problems of com-
parable complexity to those relevant here, and also to facilitate the integration of unbinned
observables into global EFT fits. The posterior distributions provided by MultiNest are
represented by Ns samples in the EFT parameter space, where Ns is determined by requir-
ing a given accuracy in the sampling procedure. From this finite set of samples, contours
of the full posterior can be reconstructed via the kernel density estimator (KDE) method,
also used e.g. in the context of Monte Carlo PDF fits [81, 82].

Methodological uncertainties associated to the Nrep replicas are propagated to the con-
straints on the EFT parameter space in two complementary ways. Firstly, after evaluating
the neural networks on the Nev events entering into the inference procedure, we calculate
the median of each NN(j)

i (x) and NN(j,k)
i (x) in eq. (3.23). The corresponding median pro-

file likelihood ratio is then calculated and used in the Nested Sampling algorithm, from
which contours of the posterior distribution are obtained. The results shown in the follow-
ing sections 5.2, 5.3 and 5.4 have been produced using this method. Alternatively, one can
assess the impact of the 2-σ methodological uncertainties on these contours. We do so by
defining Nrep profile likelihood ratios, one from each of the Nrep replicas, and performing
Nested Sampling for each, resulting in Nrep sets of Ns samples from the EFT posterior
distribution. The samples are then combined, and the KDE method used to determine
contours of the posterior distribution. In section 5.5 we will assess the differences observed
between these two methodologies.

5.2 Top-quark pair production: parton level results

Figure 10 displays the 95% CL contours in the (ctG, c(8)
tu ) plane obtained from the parton-

level top quark pair production process described in section 4.2. We compare the results
based on EFT calculations at the linear level with those also including quadratic contri-
butions. The black cross indicates the SM result, which is the hypothesis assumed in the
generation of the pseudo-data that enters the inference procedure. The results shown here
and in the remainder of this section correspond to a center-of-mass energy of

√
s = 14TeV

and an integrated luminosity of L = 300 fb−1. We show contours corresponding to two
binned analyses, the first based on a coarse binning (Binning 1) in two kinematic features
mtt̄ and ytt̄, defined by

mtt̄ ∈ [1.45, 2.5,∞) TeV , ytt̄ ∈ ± [0, 1.5, 3.0] ,

and the second based on a finer binning (Binning 2), given by

mtt̄ ∈ [1.45, 1.5, 1.55, 1.6, 1.7, 1.8, 1.9, 2.0, 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9, 3.0,∞) TeV ,

ytt̄ ∈ ± [0, 0.3, 0.6, 0.9, 1.2, 3.0] .

Furthermore, we show results for the corresponding observable based on a single feature,
the invariant mass mtt̄, obtained by marginalizing the double differential binning over
the rapidity ytt̄. The contours derived from these two binned observables in figure 10 are
compared with the corresponding unbinned observables constructed either with the analytic
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likelihood calculation (“Unbinned exact”) or with its machine learning parametrization
(“Unbinned ML”).

For the two-feature observable in the quadratic case, upper right panel in figure 10, we
observe how the 95% CL contours shrink first when moving from a coarser binning to a finer
binning and then further when using the unbinned observable. Good agreement is found
between the inference carried out with the exact likelihood calculation and with its ML
interpolation, with the small remaining differences covered by the spread of the replicas as
discussed below. We observe that the constraints on the chromomagnetic operator ctG are
similar for the various observables considered, as expected, since it is mostly determined
from the absolute normalization of the tt̄ fiducial cross-section and hence adding kinematic
information on the shape of the distributions does not provide significant extra information.
The main improvement is seen in the constraints on the two-light-two-heavy operator c(8)

tu ,
which benefits from exploiting the kinematic information.

By comparing with the corresponding analysis based on the single-feature mtt̄ observ-
able (bottom right panel) one finds a moderate worsening of the obtained bounds. No
major differences are observed, however, indicating how in this case the addition of ytt̄ as
kinematic feature does not significantly modify the inference results. We have verified that
good agreement is found between the exact likelihood calculation and the binned approach
when a sufficiently fine binning is taken, as expected, because in the limit of infinitely
fine bins the binned approach will exactly reproduce the analytical calculation. This is
illustrated by Binning 3, given by

mtt̄ ∈ [1.45, 1.5, 1.55, 1.6, 1.7, 1.8, . . . , 4.8, 4.9, 5.0,∞) TeV.

We have also verified that in this relatively simple scenario (a 2→ 2 process) the addition
of a third independent kinematic feature such as ptT to the unbinned observable does not
affect the outcome. As we show next, for a more realistic particle-level configuration it is
instead clearly beneficial to increase the number of kinematic features considered in the
EFT parameter inference.

In the case of the linear EFT level results, displayed in left panels in figure 10, we note
that there is a strong correlation between the two coefficients for the case of the coarse
binning, indicating a quasi-flat direction. This is removed by using first a finer binning and
then the unbinned observable, which in this case provides only a moderate improvement
as compared to the finer binning. As in the case of the quadratic analysis, adding a second
feature, ytt̄, does not significantly modify the results relative to the analysis of a single
feature mtt̄.

5.3 Top-quark pair production: particle level results

We assess next the bounds on the EFT parameter space obtained from unbinned observ-
ables in the case of particle-level top quark pair production, specifically in the dilepton
final state described in section 4.3, pp→ tt̄→ b`+ν`b̄`

−ν̄`. As discussed there, this process
is most sensitive to the neft = 8 operators with the highest Fisher information in inclusive
tt̄ production, as listed in table 2. While for the quadratic EFT analysis it is possible to
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Figure 10. The 95% CL regions in the (ctG, c(8)
tu ) plane obtained for the parton-level top quark pair

production process described in section 4.2. We present results based on EFT calculations at the
linear level (left) and also including quadratic contributions (right panels). The black cross indicates
the SM result, which is the hypothesis assumed in the generation of the pseudo-data that enters the
inference procedure. We compare the results from two binned analyses (Binning 1 and 2) with those
of the corresponding unbinned observable, constructed either with the analytic likelihood calculation
or with its machine learning parametrization. We demonstrate how the analytical calculation is
reproduced for a sufficiently fine binning (Binning 3). We display the contours corresponding to two
different observables, the first built upon two kinematic features (mtt̄, ytt̄) (upper) and the second
based on the invariant mass mtt̄ as a single feature (lower panels).

derive the posterior distribution associated to the full set of neft = 8 operators, at the linear
level there are quasi-flat directions that destabilize the ML training of the likelihood ratio
and the subsequent parameter inference. For this reason, in the linear EFT analysis of this
process we consider a subset of neft = 5 operators that can be simultaneously constrained
from inclusive top-quark pair production [83], given by

ctG, c
(8)
qt , c

(8)
Qu, c

(1,8)
Qq , c

(8)
td . (5.1)

For this process we construct nk = 18 kinematic features built from the four-vectors of
the final-state leptons and b−quarks. Considering further kinematic variables such as the
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Figure 11. Pair-wise 95% CL contours for the Wilson coefficients entering top quark pair pro-
duction in the dilepton final state, see section 4.3 for more details. These contours are obtained
by marginalizing over the full posterior distribution provided by Nested Sampling. We consider
here neft = 5 Wilson coefficients that can be simultaneously constrained from inclusive top-quark
pair production at the linear level in the EFT expansion. We compare the results obtained from
both binned and unbinned ML observables constructed on the (p`¯̀T , η`) kinematic features. As in
figure 10, the black cross indicates the SM values used to generate the pseudo-data that enters the
inference. The comparison of the unbinned ML observable trained on (p`¯̀T , η`) with its counterpart
trained on the full set of nk = 18 kinematic features is displayed in figure 12.

missing ET would be redundant and not provide additional information. The distribution of
these kinematic features in the SM and when quadratic EFT corrections are accounted for
is displayed in figure 8, showing how different features provide complementary information
to constrain the EFT and thus making a fully-fledged multivariate analysis both interesting
and necessary in order to fully capture the EFT effects. For example, the pseudo-rapidity
distributions bend around η = 0 corresponding to the direction transverse to the beam
pipe, while the transverse momenta are sensitive to energy growing effects in the high-pT
tails of the distributions.
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Figure 11 displays the pair-wise 95% CL intervals for the neft = 5 Wilson coefficients in
eq. (5.1) relevant for the description of top quark pair production at the linear O(Λ−2) level.
The black cross indicates the SM scenario used to generate the pseudo-data that enters the
inference. The 95% CL contours shown are obtained from the full posterior distribution
provided by Nested Sampling, marginalizing over the remaining Wilson coefficients for each
of the operator pairs, with the ellipses drawn from the Ns posterior samples provided by
MultiNest. These are compared with the bounds provided by a binned observable based
on the dilepton transverse momentum p`

¯̀
T and the lepton pseudorapidity η` as kinematic

features, where the binning is defined as

p`
¯̀
T ∈ [0, 10, 20, 40, 60, 100, 150, 400,∞) GeV,
η` ∈ [0, 0.3, 0.6, 0.9, 1.2, 1.5, 1.8, 2.1, 2.5] .

As for the parton-level case, a cut in the invariant massmtt̄ is applied to ensure that eq. (4.3)
is satisfied and that statistical uncertainties dominate. Note that for all observables the
pseudo-dataset used for the EFT parameter inference is the same and was not used during
training.

From the comparisons in figure 11 one can observe how, for all observables and
all operator pairings, the 95% CL intervals include the SM values used to generate the
pseudo-data. The bounds obtained from the binned and unbinned observables are in
general similar and compatible, and no major improvement is obtained with the adoption
of the latter in this case. However, here we consider only nk = 2 kinematic features
and hence ignore the potentially useful information contained in other variables that
can be constructed from the final state kinematics. In order to assess their impact,
figure 12 displays the same pair-wise marginalized comparison, now between ML unbinned
observables with only p`¯̀T and η` as input features and with the full set of nk = 18 kinematic
variables displayed in figure 8. We now find a very significant change in the bounds on the
EFT parameter space, improving by up to an order of magnitude or better in all cases.
Again, the 95% CL contours include the SM hypothesis used to generate the pseudo-data.
Furthermore, the inclusion of the full set of kinematic features reduces the correlations
between operator pairs that arise when only p`

¯̀
T and η` are considered, indicating a

breaking of degeneracies in parameter space. This result indicates that a multivariate
analysis improves the information on the EFT parameter space that can be extracted
from this process as compared to that obtained from a subset of kinematic features.

We note that the results displayed in figures 11 and 12 are expected to differ should the
starting point be a global EFT analysis rather than a flat prior as is the case in the present
proof-of-concept analysis. For instance, the two-light-two-heavy operators entering tt̄ pro-
duction at the linear level are highly correlated, which means that adopting a multivariate
analysis leads to a sizable effect partly because it breaks degeneracies in the parameter
space. Hence, the actual impact of unbinned multivariate observables for EFT analyses
depends on which other datasets and processes are considered and can only be assessed
on a case-by-case basis. In this respect, beyond the implications for the specific processes
considered in this work, what our framework provides is a robust method to quantify the
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Figure 12. Same as figure 11 comparing the bounds on the EFT coefficients from the ML unbinned
observables trained on (p`¯̀T , η`) and on the full set of nk = 18 kinematic features listed in section 4.3,
see also figure 8.

information on the EFT parameters provided by different types of observables constructed
on exactly the same dataset: binned versus unbinned, different choices of binnings, and
different numbers and types of kinematic features.

As is well known, in top quark pair production quadratic EFT corrections are im-
portant for most operators, in particular due to energy-growing effects in the tails of dis-
tributions. These sizable effects are highlighted by the distortions with respect to the
SM distributions induced by quadratic EFT effects, shown in figure 8, in the kinematic
features used to train the ML classifier for this process. In order to investigate how the
results based on linear EFT calculations vary once quadratic corrections are considered, in
figures 13 and 14 we present the analogous comparisons to figures 11 and 12 respectively
in the case of EFT calculations that also include the quadratic corrections. We display the
results for pair-wise contours obtained from the marginalization of the posterior distribu-
tion in the space of the full set of neft = 8 Wilson coefficients, given that once quadratic
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Figure 13. Same as figure 11 in the case of the EFT analysis carried out at the quadratic
O(Λ−4) level. We display the results for pair-wise contours obtained from the marginalization of
the posterior distribution in the space of neft = 8 Wilson coefficients. In comparison with the linear
EFT analysis, it becomes possible to constrain three more coefficients from the same process once
quadratic corrections are accounted for. We also include in this comparison the results obtained
from the unbinned ML analysis based on p`¯̀T as the single input feature.
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Figure 14. Same as figure 13 comparing the bounds obtained from the binned and unbinned
observables built upon two kinematic features, p`¯̀T and η`, with the corresponding results for the
unbinned ML observable trained on the full set of nk = 18 kinematic features.

corrections are accounted for it becomes possible to constrain the full set of relevant oper-
ators simultaneously. We also include in figure 13 the results obtained from the unbinned
ML analysis based on p`¯̀T as the single input feature, while figure 14 also displays the two-
feature binned contours as reference. We note that once quadratic effects are accounted for
the 95% CL contours will in general not be elliptic, and may even be composed of disjoint
regions in the case of degenerate maxima.

Comparing the constraints provided by the binned (p`¯̀T , η`) observable in figure 13 with
those in figures 11, one observes how the bounds on the EFT coefficients are improved
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when accounting for the quadratic EFT corrections. This improvement is consistent with
the large quadratic corrections to the kinematic distributions entering the likelihood ratio
of this process which lead to an enhanced sensitivity, and with previous studies [15, 77]
within global SMEFT analyses. From the results figure 13 we find that for all operator
pairs considered, the most stringent bounds are provided by the unbinned observable built
upon the (p`¯̀T , η`) pair of kinematic features. Furthermore, one can identify the factor
which brings in more information: either using the full event-by-event kinematics for a
given set of features, or increasing the number of kinematic features being considered. For
some operator combinations, the dominant effect turns out to be that of adding a second
kinematic feature, for instance in the case of (c(8)

tu , c
(8)
td ) binned and unbinned observables

coincide when using the (p`¯̀T , η`) features while the unbinned p`
¯̀
T observable results in larger

uncertainties. For other cases, it is instead the information provided by the event-by-event
kinematics which dominates, for example in the (c(3,8)

Qq , c
(8)
Qu) plane the constraints from

binned (p`¯̀T , η`) are clearly looser than those from their unbinned counterparts.

The comparison between the constraints on the EFT parameter space provided by
the unbinned observable based on two kinematic features, (p`¯̀T , η`), and those provided by
its counterpart based on the full set nk = 18 kinematic features is displayed in figure 14.
It confirms that at the quadratic level there is also a marked gain in constraining power
obtained from increasing the number of kinematic variables considered in the analysis. For
reference, the plot also displays the bounds obtained with the two-feature binned observable
in the same process. Interestingly, when considering the full set of kinematic features, one
obtains posterior contours which display a reduced operator correlation, highlighting how
the unbinned multivariate operator is especially effective at removing (quasi)-degeneracies
in the EFT coefficients. As for the linear case, the improvement in the bounds obtained
with the multivariate can reach up to an order of magnitude as compared to the two-feature
unbinned analysis.

One can compare the bounds obtained in the present study with those from the corre-
sponding SMEFiT global analysis of LHC data. For the same EFT settings, the 95% CL
marginalized bounds on the chromomagnetic operator ctg are [0.062, 0.24] in SMEFiT, to
be compared with a bound of ∆ctg ' 0.4 obtained from the binned and unbinned (p`¯̀T , η`)
observable and that of ∆ctg ' 0.1 from the multivariate unbinned observable trained using
all features. While there are too many differences in the input dataset and other settings to
make possible a consistent comparison, this initial estimate suggests that unbinned multi-
variate measurements based on Run III data could provide competitive constraints on the
EFT parameter space as compared to the available binned observables.

All in all, we find that for inclusive top quark pair production, deploying unbinned
multivariate observables makes it possible to tap into a source of information on the EFT
parameter space which is not fully exploited in binned observables, both at the level of linear
and quadratic EFT analyses, and that increasing the number of kinematic features consid-
ered in the likelihood parametrization enhances the constraining power of the measurement.
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5.4 Higgs associated production with vector bosons

We consider next the impact of unbinned multivariate observables in Higgs associated
production with Z bosons in the pp → Zh → bb̄`+`− channel. The pseudo-data for this
process has been generated with the settings and fiducial cuts described in section 4.4, and
the list of operators constrained is defined in table 4. As for the case of tt̄ production, we
compare the bounds provided by binned and by unbinned observables at the level of linear
and quadratic EFT calculations, and study the dependence of the results on the number
of kinematic features used to parametrize the likelihood ratio.

Figure 15 displays the pair-wise 95% CL contours obtained from two-parameter fits
of pp → hZ → bb̄`+`− pseudo-data at the linear level in the EFT expansion. In these
two-parameter fits, for each panel the contribution from the operators not being shown is
set to zero. The choice of displaying the outcome of two-parameter fits, rather than a full
marginalized analysis, is motivated by the fact that the linear EFT analysis is not stable
when all coefficients are simultaneously considered due to quasi-flat directions and strong
operator correlations. This restriction can be lifted once we account for quadratic effects.

We show the bounds obtained from a binned pZT distribution, with pZT being the dilepton
transverse momentum, where the choice of binning is given by

pZT ∈ [75, 150, 250, 400,∞) , (5.2)

consistent with the definitions entering the Simplified Template Cross Section (STXS) [84]
adopted by the LHC Higgs Working Group. These binned bounds are compared with those
from two ML unbinned observables, first when only the dilepton transverse momentum pZT
is used for the training and second when the full set of nk = 7 kinematic features is used
to parametrize the likelihood ratio. As in the case of top quark production, comparing
the constraints from the binned observable with those from the unbinned one trained on
the same feature quantifies the information loss incurred by the binning procedure, while
comparing one feature with multivariate unbinned observables determines the information
loss associated to the use of a restricted set of kinematic features

At this linear EFT level, the improvement in the constraints provided by unbinned
observables as compared to their binned pZT counterparts is moderate, yet appreciable, for
most operator pairs. The most stringent bounds are those associated with unbinned ob-
servables, and the constraints provided by the multivariate unbinned observable based on
7 kinematic features are similar to those associated to the single-feature version trained on
pZT . One observes strong correlations between all operators pairs being considered, indicat-
ing quasi-flat directions: these will be broken either by quadratic corrections or by adding
other processes sensitive to the same SMEFT operators, such as vector-boson scattering
and diboson data [16]. The analysis of figure 15 indicates that for the hZ → bb̄`+`− process
the chosen binning in pZT provides the bulk of the information on the EFT operators, with
minor additional improvements provided by the unbinned multivariate analysis.

Therefore, for this specific process the formalism developed in this work provides a
diagnosis tool that determines when and under which circumstances a binned analysis
provides information on the EFT parameter space close to the optimal one, represented
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Figure 15. Pair-wise 95% CL contours obtained from two-parameter fits in case of pp → hZ →
bb̄`+`− at the linear level in the EFT expansion for the neft = 7 Wilson coefficients relevant for the
description of this process. For each panel, the contribution from the operators not displayed is set
to zero. We compare the bounds obtained from a binned pZT distribution with those from two ML
unbinned observables, first when only pZT is used for the training and then when nk = 7 kinematic
features are used to parametrize the likelihood ratio.
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Figure 16. Same as figure 15 for the case in which the EFT calculations also include the quadratic
O(Λ−4) corrections.

here by the bounds associated to the unbinned multivariate observable. This finding illus-
trates the two-fold applicability of our formalism: whenever unbinned multivariate observ-
ables markedly improve over their binned counterparts, they can be included in the global
SMEFT fit, otherwise one obtains quantitative confirmation that the information provided
by the specific settings of the binned observables is sufficiently close to the optimal amount.

The results of the corresponding analyses of the impact of unbinned observables in the
hZ → bb̄`+`− process in the presence of quadratic EFT corrections are shown in figure 16
for the case of two-parameter fits, and in figure 17 for the case where all relevant operators
are considered simultaneously, producing marginalized constraints on each operator pair.
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As mentioned above, the latter is possible since quadratic corrections break up the EFT
parameter degeneracies that destabilize the inference procedure in the linear case.

Considering first the results of figure 16, one finds that on the one hand the improve-
ment associated to the use of unbinned observables is more marked as compared to the
linear EFT case. On the other hand, the addition of other kinematic features on top of pZT
does not modify the discrimination power of the unbinned observables, as also observed for
the linear analysis. For specific operator pairs, there is a clear reduction in the parameter
bounds based on the unbinned observables, for instance in the case of the (cϕW , cϕWB)
pair. We note that enhanced discrimination in the presence of quadratic EFT corrections
can be partially attributed to energy-growing effects in the pZT distribution which are more
pronounced as compared to the linear level.

Another benefit associated to unbinned observables in this specific process is that of
breaking degeneracies leading to a double maximum structure in the posterior distribution.
Indeed, the unbinned observables removes the second minimum present in the binned
analysis arising from a bimodal distribution in the (c(3)

ϕq , cbϕ)-plane and corresponding to
the scenario where the quadratic EFT contribution becomes of the same magnitude and
opposite sign as the linear term and hence canceling it. We also note that, as opposed
to the tt̄ production case, for the hZ process, even with unbinned observables, one ends
up with some operator pairs that exhibit relatively large correlations which would thus
only be broken by adding other processes to the fit. The results of figure 16 highlight
how in general the relevance of considering unbinned observables depends not only on the
processes and on the order in the EFT expansion, but also on the specific directions in the
EFT parameter space in which one is interested.

The results of figure 16 display good agreement between unbinned observables trained
only on pZT and on the full set of nk = 7 kinematic features, suggesting that a multivariate
analysis does not appear to be beneficial for this process. However, this interpretation
turns out to be an artifact of restricting the analysis to the case of two-parameter fits,
and a different picture emerges in the case of the marginalized analysis results displayed
in figure 17. The impact on the EFT parameter space of adopting unbinned observables is
more important now, leading in some cases to stringent bounds improved by up to a factor 5
as compared to the binned results, for instance for the cϕW operator. Furthermore, one can
also appreciate the improved constraints associated to the multivariate observable based on
the full set of kinematic features as compared to the single-feature unbinned observable. We
also note how the degenerate minimum associated to the bottom Yukawa operator present
in the binned analysis, now for all operator pairs, goes away when unbinned observables
are considered. The comparison of figures 16 and 17 emphasizes that bounds obtained in
two-parameter fits, neglecting the effects of other operators, will in general overestimate
the EFT constraints associated to a given dataset.

To summarize, as in the case of top quark pair production, for hZ production the use
of unbinned multivariate observables is advantageous in constraining the EFT parameter
space. Our analysis indicates that the choice of pZT binning adopted by the STXS analysis
is close to being optimal, especially in the linear case, at least for the assumed integrated
luminosity and for two-parameter fits. When considering a full marginalized analysis in the
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Figure 17. Same as figure 16 now where the 95% CL contours are obtained from the marginali-
sation over the full posterior probability distribution, rather than from two-parameter fits.

presence of quadratic EFT corrections, marked improvements associated first to the use of
unbinned observables and second to that of multiple kinematic features are obtained. The
use of unbinned observables also results in the removal of degenerate minima corresponding
to solutions where the quadratic EFT correction approximately cancels out the linear one.
The comparison between the output of the two-parameter and the marginalized fits empha-
sizes the crucial importance of carrying out global SMEFT interpretations, since setting
to zero a subset of operators that contribute to a given process is likely to overestimate its
impact in the EFT parameter space.
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5.5 Methodological uncertainties

The results for the unbinned observables derived so far are obtained from EFT param-
eter inference carried out with eq. (3.19), the parametrization of the likelihood ratio, as
described in section 5.1. As explained in section 3.3, within our approach, rather than
a single best model, we produce a distribution of models, denoted as replicas, each of
them trained on a different set of Monte Carlo events. Hence the end result of our pro-
cedure is eq. (3.23), the representation of the probability distribution of the likelihood
ratio {r̂(i)

σ (x, c)} composed of Nrep equiprobable replicas. The spread of this distribution
provides a measure of methodological and procedural uncertainties associated e.g. to finite
training datasets and inefficiencies of the optimization and stopping algorithms. Results
presented in sections 5.2–5.4 are based on using the median of the replica distribution
{r̂(i)
σ (x, c)} to determine the bounds in the EFT parameter space, and here we assess the

impact of methodological uncertainties by displaying results for parameter inference based
on the full distribution of replicas of the likelihood ratio parametrization.

Figures 18 and 19 display the bounds in the parameter space obtained for particle-level
top-quark pair and hZ associated production, respectively, from the unbinned multivariate
observables based on the complete set of kinematic features and in the case of theory
simulations that include quadratic EFT corrections. We compare results for parameter
inference based on the median of the replica distribution {r̂(i)

σ (x, c)}, which coincide with
those of figures 14 and 17, with results based on the full distribution of replicas.5 Namely,
in the latter case one starts from the Nrep individual replicas of the profile likelihood
ratio functions and performs Nested Sampling inference on each of them, to subsequently
combine the resulting samples and estimate the posterior distribution by means of the
KDE method. In this manner, the differences between the contours shown in figures 18
and 19 provide an estimate of how methodological uncertainties associated to the machine
learning training procedure impact the derived bounds in the EFT parameter space.

Inspection of figures 18 and 19 and comparison with the corresponding bounds dis-
played in figures 14 and 17 confirm that these procedural uncertainties, as estimated with
the replica method, do not modify the qualitative results obtained from the median of the
likelihood ratio. In particular, the observation that bounds obtained using multivariate
unbinned observables are much stronger than those based on unbinned models based on
one or two kinematic features, which is common to both the tt̄ and hZ processes, remains
valid once replica uncertainties are accounted for. Furthermore, we note that in principle
it is possible to reduce the spread of the replica distribution by training on higher-statistics
samples and adopting more stringent stopping criteria. In this respect, our approach pro-
vides a strategy to quantify under which conditions the computational overhead required
to achieve more accurate machine learning trainings is justified from the point of view
of the impact on the EFT coefficients. This said, these results also indicate that in re-
alistic scenarios based on finite training samples methodological uncertainties cannot be

5We note that for top quark pair production we display the 68% CL contours in both cases. The reason is
that for Nrep = 25 the evaluation of 95% CL contours over the replica distribution becomes overly sensitive
to outliers.
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Figure 18. Same as figure 14 for the 68% CL contours in the EFT parameters obtained with the un-
binned multivariate observable for particle-level top-quark pair production. We compare the bounds
obtained from the median of the replica distribution of the likelihood ratio parametrization, as done
in figure 14, with the corresponding bounds obtained taking into account the full replica distribution.

neglected, and should be accounted for in studies of the impact of ML-based observables
in EFT analyses.

6 Summary and outlook

The general problem of identifying novel types of measurements which, given a theoretical
framework, provide enhanced or even maximal sensitivity to the parameters of interest is
ubiquitous in modern particle physics. Constructing such optimized observables has a two-

– 51 –



J
H
E
P
0
3
(
2
0
2
3
)
0
3
3

−0.1 0.0 0.1

cϕd
−0.1 0.0 0.1

c
(1)
ϕq

−0.1 0.0

c
(3)
ϕq

−0.1 0.0

cbϕ
−0.5 0.0 0.5

cϕW
−2 0

cϕWB

−0.1

0.0

0.1

c ϕ
u

−0.1

0.0

0.1

c ϕ
d

−0.1

0.0

0.1

c(1
)

ϕ
q

−0.10

−0.05

0.00

0.05

c(3
)

ϕ
q

−0.10

−0.05

0.00

0.05

c b
ϕ

−0.5

0.0

0.5

c ϕ
W

Unbinned ML (7 features, median)

Unbinned ML (7 features, 95 % C.L. replicas)

SM

Marginalised 95 % C.L. intervals, O (Λ−4
)

at L = 300 fb−1

Figure 19. Same as figure 18 for Higgs associated production with a Z boson, now for the 95%
CL contours.

fold motivation: on the one hand, to achieve the most stringent constraints on the model pa-
rameters from a specific process, and on the other hand, to provide bounds on the maximum
amount of information that can be extracted from the same process. Optimized observables
can hence be used to design traditional observables in a way that approaches or saturates
the limiting sensitivity by highlighting the best choices of binning and kinematic features.

In this work, we have presented a new framework for the design of optimal observables
for EFT applications at the LHC, making use of machine learning techniques to parametrize
multivariate likelihoods for an arbitrary number of higher-dimensional operators. To illus-
trate the reach of our method, we have constructed multivariate unbinned observables for
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top-quark pair production and Higgs production in association with a Z boson. We have
demonstrated how these observables either lead to a significant improvement in the con-
straints on the EFT parameter space, or indicate the conditions upon which a traditional
binned analysis already saturates the EFT sensitivity.

The ML4EFT framework presented in this work and the accompanying simulated
event samples are made available as an open source code which can be interfaced with
existing global EFT fitting tools such as SMEFiT, FitMaker [17], HepFit [14], and
Sfitter [83]. Its scaling behavior with the number of parameters, together with its
parallelization capabilities, make it suitable for its integration within global EFT fits
which involve several tens of independent Wilson coefficients. While in its current
implementation the parametrized likelihood ratios are provided in terms of the output
of the trained network replicas, work in progress aims to tabulate this output in terms
of fast interpolation grids, as done customarily in the case of PDF analyses [85–88]. The
resulting interpolated unbinned likelihood ratios can then be combined with Gaussian or
Poissonian binned measurements within a global fit. While currently ML4EFT can only
be used in combination with simulated Monte Carlo pseudo-data, all of the ingredients
required for the analysis of actual LHC measurements are already in place.

The results presented in this work could be extended along several directions. First,
one could include experimental and theoretical correlated systematic uncertainties, as
required for the interpretation of measurements which are not dominated by statistics.
Second, other machine learning algorithms could be adopted, which may offer performance
advantages as compared to those used here: one possibility could be graph neural
networks [89, 90] which make possible varying the kinematic features used for the training
on an event-by-event basis. Third, ML4EFT could be applied to more realistic final
states with higher order corrections, such as by means of NNLO+PS simulations of tt̄
and hV [91–93], and accounting for detector effects to bridge the gap between the theory
predictions and the experimentally accessible quantities. It would also be interesting
to compare the performance of different approaches to construct ML-assisted optimized
observables for EFT applications in specific benchmark scenarios.

Beyond hadron colliders, the framework developed here could also be relevant to con-
struct optimal observables for EFT analyses in the case of high-energy lepton colliders, such
as electron-positron collisions at CLIC [94, 95] or at a multi-TeV muon collider [96–98].
As mentioned, statistically optimal observables were actually first designed for electron-
positron colliders, where the simpler final state facilitates the calculation of the exact event
likelihood for parameter inference [21–23]. These methods may not be suitable to the high
multiplicity environment of multi-TeV lepton colliders, in particular due to the complex
pattern of electroweak radiation. Therefore, the ML4EFT method could provide a suit-
able alternative to construct unbinned multivariate observables achieving maximal EFT
sensitivity at high-energy lepton colliders.

In addition to applications to the SMEFT, our framework could also be relevant to
other types of theory interpretations of collider data such as global PDF fits. In particular,
PDFs at large values of Bjorken-x are poorly constrained [99] due to the limited amount of
experimental data available. This lack of knowledge degrades the reach of searches for both
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resonant and non-resonant new physics in the high-energy tail of differential distributions,
as recently emphasized for the case of the forward-backward asymmetry in neutral-current
Drell-Yan production [100]. Given that measurements of these high-energy tails are often
dominated by statistical uncertainties, the ML4EFT method could be used to construct
unbinned multivariate observables tailored to constrain large-x PDFs at the LHC. Our
method could also be applied in the context of a joint extraction of PDFs and EFT coeffi-
cients [101–105], required to disentangle QCD effects from BSM ones in kinematic regions
where they potentially overlap, such as large Bjorken-x.
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A The ML4EFT framework

The ML4EFT framework presented in this work is an open source Python code designed to
facilitate the integration of unbinned multivariate observables into fits of Wilson coefficients
in the SMEFT. It is based on machine learning regression and classification techniques to
parameterize high-dimensional likelihood ratios as required to carry out parameter infer-
ence in the context of global SMEFT analyses. ML4EFT is made available via the Python
Package Index (pip) and can be installed directly by running

pip install ml4eft

or alternatively the code can be downloaded from its public GitHub repository,

https://github.com/LHCfitNikhef/ML4EFT.git

and then installed from source following the installation instructions. The framework is
documented in a dedicated website

https://lhcfitnikhef.github.io/ML4EFT,

where, in addition, one can find a self-standing tutorial (which can also be run in Google
Colab) where the user is guided step by step in how unbinned multivariate observables can
be constructed given a choice of EFT coefficients and of final-state kinematic features.
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In the same website we also provide links to the main results of this paper presented in
section 5, including the likelihood ratio parametrizations that have been obtained for the
two processes (tt̄ and hZ) considered here. We also include there animations demonstrating
the training of the neural networks, such as e.g.

https://lhcfitnikhef.github.io/ML4EFT/sphinx/build/html/results/ttbar_
analysis_parton2.html#overview

Additional unbinned multivariate observables to be constructed in the future using our
framework will be added to the same page. Furthermore, we also plan to tabulate the
neural network outputs using fast grid techniques so that these observables can be stand-
alone integrated in global fits without the need to link the actual ML4EFT code.

B The unbinned Asimov data set

The Asimov data set was first introduced in [70] as an efficient method of obtaining the
distribution of the profile likelihood ratio qc, eq. (2.8), under the alternative hypothesis
c′ 6= c without having to resort to computationally expensive MC simulations. Since then,
it has become part of the standard analysis toolkit at the LHC to determine e.g. expected
exclusion limits. The analysis of [70] considers the Asimov data set applied to binned
observables and here, by adopting a simple EFT-like toy model, we present its generalisa-
tion to a continuous Asimov data set. This makes possible determining expected exclusion
limits in a sampling free way by extending the results of [70] to unbinned observables.
While we do not make use of this unbinned Asimov data set in the results presented in
this work, this derivation can play an important role in the general discussion of unbinned
multivariate measurements for EFT studies.

Let us consider a kinematic variable x (e.g. the invariant mass) restricted to x ∈ X =
[1, 5] and distributed according to a probability distribution fσ(x, c). The EFT toy model
is chosen such that the effect of the EFT on the kinematic variable is an enhancement in
the tail of the distribution fσ(x, c) with respect to the SM, as is common in many EFT
scenarios. The distribution fσ(x, c) is defined as

fσ(x, c) ≡ 1
σ(X, c)

[
f (sm)
σ (x) + 0.1c · f (eft)

σ (x)
]
, (B.1)

with

f (sm)
σ (x) = 1

σ(sm)
(1 + x2)

√
x2 − 1

x4 (B.2)

and

f (eft)
σ (x) = 1

σ(eft)
(x2 − 1)3/2

x
, (B.3)

where f (sm)
σ (x) and f (eft)

σ (x) are both separately normalized by σ(sm) and σ(eft) respectively
such that the overall normalization constant σ(X, c) is given by

σ(X, c) = 1 + 0.1c. (B.4)
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ĉ

0.0

0.5

1.0

1.5

2.0

N (c ′, σ)

(b)

Figure 20. Left: the probability distribution fσ(x, c) from eq. (B.1) at c = 1 and c = 0, corre-
sponding to the EFT and SM respectively. Right: the MLE ĉ under the SM follows a Gaussian
distribution centered around c′ with standard deviation σ.

The number of expected events ν(c) is determined from σ(X, c) and the luminosity L, which
we set to L = 1000 unless otherwise specified. We work with dimensionless parameters
throughout this toy example.

In figure 20a we show the distribution fσ(x, c) at c = 0 and c = 1, corresponding to the
SM and the EFT hypotheses respectively. One can see a clear energy growing effect in the
tail of the EFT distribution. The histograms have been constructed using accept/reject
sampling and contain 1M samples from each hypothesis. These will serve as our parent
data sets from which we will take subsequent samples in the following. Now, taking the
EFT at c = 1 as our null hypothesis, the goal is to compute the expected significance at
which we can either accept or reject the null assuming data generated under the SM (the
alternative hypothesis). We adopt the PLR from eq. (2.8) as our test statistic,

qc = −2
[
ν(ĉ)− ν(c) +

Nev∑
i=1

log ν(c)fσ(x, c)
ν(ĉ)fσ(x, ĉ)

]
, (B.5)

whose distribution under the SM and the EFT we denote by pdf(qc|0) and pdf(qc|c) re-
spectively. One can imagine repeatedly drawing toy datasets from the SM parent data set,
computing qc, and evaluating its p-value under the null. The median p-value then serves
as a measure of expected sensitivity. Moreover, since the p-value is monotonic with qc, it
is equivalent to report the p-value associated with the median qc under the SM, denoted
Med[qc|0],

pc,med =
∫ ∞
qc,med

pdf(qc|c)dqc with qc,med ≡ Med[qc|0]. (B.6)

From the above discussion it becomes clear one not only needs pdf(qc|c), which follows a
χ2-distribution as discussed in section 2.1, but also pdf(qc|c′) with c′ 6= c. At this point we
employ Wald’s theorem [106], which states that for a data set of size N generated under
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fσ(x, c′), the PLR qc can be approximated by

qc = (c− ĉ)2

σ2 +O
(
1/
√
N
)
, (B.7)

where ĉ follows a normal distribution with mean c′ and a variance σ2, i.e. ĉ ∼ N (c′, σ).
Not only does the approximation provided by Wald’s theorem depend on a large sample
size N [106], but the approximation improves as c → ĉ ' c′. This can be understood by
Taylor expanding eq. (2.8) about ĉ. Defining ∆ ≡ (c− ĉ), we find

qc = −2 log L(c)
L(ĉ) = −2 log

[
1 + 1

2L(ĉ)
∂2L
∂c2

∣∣∣∣∣
c=ĉ

∆2 +O
(
∆3
)]

= − 1
L(ĉ)

∂2L
∂c2

∣∣∣∣∣
c=ĉ

∆2 +O
(
∆3
)

= ∆2

σ2 +O
(
∆3
)
,

where on the last line we have used that

1
σ2 = − ∂2 logL

∂c2

∣∣∣∣∣
c=ĉ

. (B.8)

Let us define qwald
c as the leading order approximation of eq. (B.7),

qwald
c ≡ (c− ĉ)2

σ2 . (B.9)

Recalling that ĉ ∼ N (c′, σ), we note that qwald
c corresponds to a squared Gaussian random

variable with unit variance and non-zero mean. This is known to follow a non-central χ2

distribution [70],

pdf(qwald
c |c′) = 1

2√qc
1√
2π

[
exp

(
−1

2
(√

qc +
√

Λ
)2
)

+ exp
(
−1

2
(√

qc −
√

Λ
)2
)]

, (B.10)

with the non-centrality parameter Λ given by

Λ = (c− c′)2

σ2 . (B.11)

Note how eq. (B.10) reduces to a central χ2 distribution under the null hypothesis, i.e.
when c′ = c, as dictated by Wilk’s theorem.

The problem of obtaining pdf(qc|c′) with c′ 6= c is now reduced to the question of
determining the non-centrality parameter Λ to be used in eq. (B.10). We can construct
this using MC toys: for example, in figure 20b we show the distribution of ĉ under the SM,
obtained using 10K toy data sets containing nev samples each, where nev is drawn from
Pois(ν(0)) each time a new experiment is run. The distribution in figure 20b gives σ = 0.19,
resulting in ΛMC = 27.12. However, although constructing pdf(ĉ|c′) using MC toys gives us
the info we need to extract Λ, it is computationally highly inefficient. This is especially so
in case one needs to perform scans along different c′, e.g. to find expected exclusion limits.

This is where the Asimov data set enters as an efficient tool to obtain Λ [70]. The
Asimov data set is defined such that one recovers the true value of c during maximum
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likelihood estimation, i.e. ĉ = c. In the case of a Poissonian likelihood Lpois defined as in
eq. (2.4), the MLE ĉ satisfies

d logLpois
dc

∣∣∣∣
c=ĉ

= d

dc

{
−2

nbins∑
i=1

[ni log νi(c)− νi(c)]
}∣∣∣∣∣

c=ĉ
= 0 . (B.12)

The Asimov data set is then constructed such that eq. (B.12) implies ĉ = c, which can only
be true if ni = νi(c). Therefore, we define the Asimov data set under the hypothesis c as

DAsimov ≡ {ni,A} = {νi(c)}. (B.13)

The non-centrality parameter Λ can then be found by evaluating qc on the Asimov data
set corresponding to the alternative hypothesis c′, i.e. ni,A = ν ′i,

ΛA,binned = qc({ni,A}) = −2
nbins∑
i=1

[
ν ′i log

(
νi
ν ′i

)
− νi + ν ′i

]
, (B.14)

where we have used the fact that ĉ = c′ and therefore ν̂i = ν ′i by construction. The
relationship between Λ and qc can be understood by comparing eqs. (B.9) and (B.11) and
noting that they coincide when ĉ = c′.

Now, one could wonder how eq. (B.14) generalizes to the case of unbinned data. An
intuitive starting point is to study the behavior of ΛA,binned as one increases the number
of bin insertions, and by doing so we find that after ∼ 10 bins, ΛA,binned converges to a
stable value. Encouraged by this convergence, we take the infinitely narrow bin limit of
eq. (B.14),

ΛA,binned = −2
nbins∑
i=1

[
ν ′i log

(
νi
ν ′i

)
− νi + ν ′i

]

→ −2
∫ ∞
−∞

[
ν(c′)fσ(x, c′) log

(
ν(c)fσ(x, c)
ν(c′)fσ(x, c′)

)
− ν(c)fσ(x, c) + ν(c′)fσ(x, c′)

]
dx

≡ ΛA,unbinned, (B.15)

where we have sent νi(c) → ν(c)fσ(x, c)dx. Evaluating the integral in eq. (B.15) gives
ΛA,unbinned = 22.11.

In figure 21 we select three benchmark points at which to visualize the distribution
pdf(qc|c′): the SM (c = 0) and the EFT at c = 0.5, c = 1. Firstly, the green histogram
shows the distribution of qc evaluated on data following the EFT hypothesis. The distri-
bution is obtained by repeatedly drawing samples of size nev ∼ Pois(ν(c)) from the parent
EFT dataset and calculating qc as given by the PLR in eq. (2.8). The solid green curve
indicates the distribution of a χ2 with 1 degree of freedom. We find excellent agreement
between the green curve and histogram, as expected from Wilk’s theorem.

A similar procedure is used to obtain the blue histogram, this time corresponding to
the SM hypothesis. We repeatedly draw samples of size nev ∼ Pois(ν(0)) from the parent
SM dataset and calculate qc as given by the PLR in eq. (2.8). The resulting distribu-
tion is denoted by pdf(qexact

c |c). In contrast, the orange histogram is produced using the
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Figure 21. The distributions of qc under the EFT and the SM hypotheses for c = 1.0 (a) and
c = 0.5 (b). The blue curve agrees well with the distribution pdf(qexact

c |c), indicating that the
distribution of qc is well described by the non-central χ2 evaluated with non-centrality parameter
ΛA,unbinned. We notice a disagreement between the distribution of qexact

c and qwald
c , meaning that

neglecting the higher order corrections in Wald’s theorem leads to sizable differences. On the right
(b) it can be seen that this difference gets smaller when c→ c′, i.e. ∆→ 0.

approximation given by Wald’s theorem in eq. (B.9). For each sample drawn, we evalu-
ate qwald

c rather than the full expression for qc, resulting in the distribution pdf(qwald
c |c).

We notice a non-negligible difference in the distributions of qc before and after employing
Wald’s theorem. As expected, this is due to the fact that the neglected O(∆3) term is
in fact quite sizable, being on the order of a few percent. In figure 21b we show that the
difference between pdf(qwald

c |c) and pdf(qexact
c |c) gets smaller when we move to a smaller

∆, corresponding to c = 0.5.
Finally, we turn to the solid blue and orange curves. In orange, we plot the distribution

of the non-central χ2 as given by eq. (B.10), setting the non-centrality parameter Λ to
ΛMC = 27.12. We find good agreement between the orange curve and the orange histogram,
as expected from the fact that both employ Wald’s theorem. The blue curve, on the
other hand, indicates the non-central χ2 distribution evaluated at ΛA,unbinned = 22.11
as calculated using eq. (B.15). In this case the agreement between the blue curve and
histogram is non-trivial: it indicates that the non-centrality parameter evaluated on the
unbinned Asimov dataset provides an excellent description of the distribution of the PLR
qc evaluated on unbinned data. This is the case both at c = 1 and c = 0.5, and provides
a validation of the expression for ΛA,unbinned determined in eq. (B.15). This agreement
suggests eq. (B.15) includes some higher order contributions that are otherwise omitted if
one adopts instead eq. (B.11). This was also conjectured in [70].

Finally, eq. (B.15) generalizes straightforwardly to the case of np model parameters c,
and to the case of a multi-dimensional vector x of kinematic variables

ΛA,unbinned =
∫ ∞
−∞

[
ν(c′)fσ(x, c′) log

(
ν(c)fσ(x, c)
ν(c′)fσ(x, c′)

)
− ν(c)fσ(x, c) + ν(c′)fσ(x, c′)

]
dx.

(B.16)
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