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1 Introduction

One of the primary foci of the nuclear physics community in the last three decades has
been to discern the origin of the proton’s spin in terms of its quark and gluon, collectively
partonic, constituents. Efforts to resolve the dynamical origin of the proton’s spin date to
the earliest measurements of the spin-dependent structure functions describing polarized
inclusive deep-inelastic scattering (DIS) cross sections [1], which, remarkably, found that
the total quark spin contributes only marginally to the total spin of the nucleon.

The bulk of the information concerning the quark helicity parton distribution functions
(PDFs) is deduced from polarized DIS data, where, for a parity-conserving interaction the
hadronic tensor is described in terms of the polarized structure functions g1

(
x,Q2) and

g2
(
x,Q2) [2–5]. Within the parton model [6–8], the g1

(
x,Q2) structure function is readily

interpreted as a linear combination of the quark and anti-quark helicity PDFs, appearing
often in the literature as gq/q̄ (x) or ∆q/q̄ (x). These PDFs quantify the helicity asymmetry
of quarks and anti-quarks, respectively, within a hadronic state of definite helicity.

The first determination of the polarized PDFs of the nucleon from a global analysis of
longitudinally polarized DIS, SIDIS, and early RHIC data, deemed DSSV08, was presented

– 1 –



J
H
E
P
0
3
(
2
0
2
3
)
0
8
6

in refs. [9, 10]. A similar set of polarized data was considered by the NNPDF collaboration
in ref. [11], and extended shortly thereafter in ref. [12] to include contemporary polar-
ized hadron collider data for inclusive jet and W -production from the STAR [13–16] and
PHENIX [17, 18] experiments at RHIC. Although the inclusion of the STAR and PHENIX
data in NNPDF’s updated helicity PDF set, called NNPDFpol1.1, did not extend the kine-
matic coverage of the helicity PDFs exposed by the polarized DIS data, the data did further
constrain helicity PDF combinations accessible from polarized DIS alone and provided in-
sight on novel helicity PDF combinations, such as ∆ū. In particular, the first Mellin
moments of the polarized quark and anti-quark distributions were found to confirm that
the nucleon receives only a small component of its spin from the intrinsic spin of its quark
constituents, although the precision of the polarized moments were limited by extrapola-
tion into the unmeasured small-x regime. Contemporaneously, the DSSV08 polarized PDF
analysis was extended in ref. [19] to include hadroproduction data of neutral pions and jets
from proton-proton collisions at RHIC, where the STAR [16] & PHENIX [20] and COM-
PASS [21, 22] data were considered. The updated polarized PDF set from the DSSV08
authors, deemed DSSV14, revealed, for the first time, evidence for a nonvanishing gluon
polarization in the proton for moderate momentum fractions [19].

Additional constraints on the quark helicity PDFs are provided by polarized semi-
inclusive DIS (SIDIS), but require simultaneous knowledge of the relevant fragmentation
functions that characterize the emergence of an observed hadron(s) from the struck parton.
While NNPDFpol1.1 did not include light-quark SIDIS data, whose structure functions fac-
torize into a convolution of the helicity PDFs and non-perturbative fragmentation functions,
the Jefferson Lab Angular Momentum (JAM) collaboration performed the first simultane-
ous global analysis of polarized DIS and SIDIS data at NLO [23]. The analysis, denoted
JAM17 by the authors, leveraged e+e− single-inclusive annihilation (SIA) data to provide an
independent constraint on the fragmentation functions present in the factorized SIDIS cross
sections included from COMPASS [21, 24] and HERMES [25]. The inclusion of the SIDIS
data, for example, was found to lead to ∆s+ ≡ ∆s+∆s to become positive for x ∼ 0.1. Re-
cently the JAM17 analysis was extended to include the latest polarized W -production data
from STAR at RHIC, while many of the assumed flavor symmetries and PDF positivity
constraints were relaxed [26]. The resulting PDF set, deemed JAM22, supports a nonzero
polarized sea asymmetry of the proton as well as a nonzero contribution to its spin from
light anti-quarks. Evidently the quark helicity PDFs are less constrained than their unpo-
larized counterparts, thus warranting continued studies from first-principles lattice QCD.

As DIS, semi-inclusive, and exclusive processes, provide information about the non-
perturbative structure of hadrons encoded in PDFs, one might hope that PDFs could also
be calculated from first-principles lattice QCD. The Euclidean metric signature of lattice
QCD, however, precludes any direct calculation of PDFs. Some of the earliest attempts
to bypass this challenge sought to isolate the hadronic tensor [27, 28] and forward Comp-
ton amplitude [29] directly from suitable Euclidean correlation functions. Within the last
decade, renewed interest within the lattice community is generally attributed to the real-
ization that the correlations of space-like separated partons within a boosted hadron, when
Fourier transformed to momentum space, share the same infrared physics as the conven-
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tional light-cone PDFs [30]. The resulting quasi-distributions are amenable to calculation
using lattice QCD, while their distinct ultraviolet structures relative to the light-cone PDFs
can be computed perturbatively. This forms the basis of Large Momentum Effective The-
ory (LaMET) [31], a momentum-space factorization, akin to the QCD factorization of
hadronic scattering cross sections, that connects the quasi- and light-cone distributions.
Determinations of helicity quark PDFs from quasi-distributions computed in lattice QCD
include the flavor non-singlet [32–35] and singlet [36, 37] cases, as well as careful accounting
for numerous sources of systematic error in such extractions [38].

Despite the challenges inherent to the extraction of the x-dependent PDFs from lattice
QCD, there has been considerable progress in the resolution of the flavor-separated quark
and gluon contributions to the nucleon spin. The former are the first Mellin moments of
the flavor-singlet quark helicity PDFs and are accessible from matrix elements of certain lo-
cal operators. Advancements in computing infrastructure and algorithm design, including
stochastic [39] and truncated solver methods [40, 41], have enabled several recent physical
pion mass, high-statistics calculations of the disconnected contributions needed to decom-
pose the proton spin into contributions from its constituents. The first such calculation
on a physical pion mass ensemble from the ETM Collaboration found the intrinsic quark
spin to the proton to be 1

2∆Σu+d+s ' 0.201 [42]. This result was subsequently verified
by the χQCD collaboration [43], leveraging three 2 + 1 domain-wall fermion ensembles
of varying pion masses and lattice spacings. Both results were found to be consistent
with a phenomenological analysis of data from the COMPASS experiment, which found
0.13 . 1

2∆Σ . 0.18 [44]. A study of 1
2∆Σu+d+s by the PNDME collaboration across nu-

merous 2 + 1 + 1 HISQ ensembles, with lattice spacing and pion mass as low as 0.06 fm
and mπ ∼ 135MeV, respectively, later found 1

2∆Σu+d+s ∼ 0.143. This result, entirely
within the COMPASS bound, was observed to depend delicately on the chiral-continuum
extrapolation of each disconnected contribution. The reader is directed to ref. [45] for a
thorough account of recent progress.

As the lattice community nears a decade of intense investigation of the light-cone
structure of hadrons, considerable advancements in numerical reconstruction methods and
theoretical formalisms, and the approaching Exascale frontier, promise to extend the impact
of first-principles lattice QCD into regions largely unknown or poorly constrained from
experiment. With this paradigm as the backdrop, it is imperative that all sources of
systematic error in such a lattice QCD calculation are suitably accounted for. The reader
is directed to refs. [46–48] for recent contemporary reviews on the state of the art in hadronic
structure calculations from lattice QCD.

The introduction of quasi-distributions and LaMET has led to many dedicated calcu-
lations of PDFs [27–34, 38, 48–156], distributions amplitudes (DAs) [157–163], generalized
parton distributions (GPDs) [164–168], and transverse momentum dependent distributions
(TMDs) [169–182]. An alternative framework [55], based on a short-distance factorization
of the same lattice-calculated matrix elements utilized to construct quasi-distributions,
offers complementary information on hadronic structure from lattice QCD. Within this
short-distance factorization framework, the computed matrix elements induce a Lorentz
decomposition into invariant amplitudes, or pseudo-distributions. The space-like matrix
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elements computed in lattice QCD are related to their associated light-cone analogs via
a factorization theorem derived using the operator product expansion in a short-distance
regime. In this manner the pseudo-distributions can be matched to their light-cone coun-
terparts and the PDF obtained. The efficacy of the pseudo-distribution formalism and
the distillation spatial smearing algorithm when applied in tandem to such structure stud-
ies was demonstrated in refs. [153, 154], wherein the flavor non-singlet unpolarized and
transversity quark PDFs were isolated. The goal of this manuscript is to extend this union
to include the isovector helicity quark PDFs, for both the CP-even and CP-odd varieties,
thereby completing a first determination of the nucleon’s leading-twist isovector quark
PDFs using distillation and pseudo-distributions.

The remainder of this manuscript is organized as follows. Section 2 begins with a reca-
pitulation of the defining matrix element of the helicity quark PDF, which will expose the
leading-twist invariant amplitudes one may hope to calculate using lattice QCD. Presen-
tation of the coordinate space factorization, on which we will depend, will round out this
section. The extracted bare nucleon matrix elements sensitive to the helicity distributions,
the methodology employed therein, as well as our adopted gauge ensemble are presented
in section 3. The strategy we exercise to isolate the helicity distributions from our com-
puted Ioffe-time pseudo-distributions is then developed in section 4. Particular emphasis
is given to the reduction of systematic bias in our extractions by considering a model av-
erage of an array of model ansätze. Discussion of our model-averaged results, as well as
any phenomenological insight that may be garnered is reserved for section 5. Concluding
remarks are shared in section 6, together with envisioned prospects for the distillation and
pseudo-distribution amalgam.

2 Theoretical construction and the helicity Ioffe-time distribution

2.1 Matrix element defining helicity PDF

The fundamental object needed to define the leading-twist quark helicity distribution of
the nucleon is the following quark correlation

Mµ5 (p, z) = 〈N (p, λ)|ψ (z) γµγ5W (f) (z, 0)ψ (0) |N (p, λ)〉 , (2.1)

where the quark fields are separated by a distance z, λ denotes the nucleon helicity, and
a Wilson line, in the fundamental representation, W (f), is included to maintain gauge
invariance for a generic choice of gauge. Lorentz invariance demands eq. (2.1) have the
following decomposition into invariant amplitudes [58]:

Mµ5 (p, z) = −2mNS
µM

(
ν, z2

)
− 2imNp

µ (z · S)N
(
ν, z2

)
+ 2m3

Nz
µ (z · S)R

(
ν, z2

)
,

(2.2)
where we will refer to the invariant ν ≡ −p · z as the Ioffe-time [183], which is related to
the original variable of that name in DIS [184] up to an inverse power of the hadron mass.
The nucleon mass is mN , and the polarization vector of the nucleon

Sµ ≡ 1
2mN

u (p, λ) γµγ5u (p, λ) (2.3)

is normalized to render the amplitudes in eq. (2.2) dimensionless.
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To define the helicity distribution, one should take a light-like separation, say zµ =
(0, z−,0⊥). Note that Mµ5(p, z) is singular on the light cone z2 = 0, so one needs to apply
some regularization procedure, which we denote below by Regµ2 , with µ2 being the regu-
larization parameter. Writing the nucleon four-momentum in the light-front coordinates
pµ =

(
p+, p−,p⊥

)
, we have

M+5 (p, z−)Regµ2
= −2mNS

+
[
M
(
p+z−, 0

)
+ ip+z−N

(
p+z−, 0

)]
Regµ2

= −2mNS
+ [M (ν, 0)− iνN (ν, 0)]Regµ2

≡ −2mNS
+I
(
ν, µ2

)
, (2.4)

where I
(
ν, µ2) is the Ioffe-time distribution (ITD) whose ν-Fourier transform defines the

nucleon quark helicity PDF:

gq/N
(
x, µ2

)
=
∫ ∞
−∞

dν
2πe

−ixνI
(
ν, µ2

)
. (2.5)

According to eq. (2.4), the x-dependence of the helicity distribution is dictated by the
Ioffe-time dependence of a linear combination of the amplitudes M and N , for which we
make the abbreviation Y

(
ν, z2) ≡ M (

ν, z2)− iνN (ν, z2). The (light-cone) ITD I
(
ν, µ2)

used in eq. (2.4) may be written as I
(
ν, µ2) = Y (ν, 0)Regµ2

.
Lorentz invariance implies the ν-dependence of Y

(
ν, z2) can be computed in any frame.

This is especially beneficial in first-principles lattice QCD wherein the light-like separations
needed to directly realize the matrix element in eq. (2.4) are expressly precluded by the
Euclidean metric. For non-zero quark masses, the axial current is not conserved, and
the axial charge gA

(
µ2) determining the overall normalization of the helicity PDF is not

known a priori. Furthermore, it depends on the choice of renormalization scheme and on
the chosen input scale µ2. We defer a calculation of gA

(
µ2) to a future work when a high

fidelity calculation of the renormalized axial charge is available on our chosen ensemble. In
the present work, following the strategy used in our recent paper [154], we will calculate
the shapes of the nucleon quark helicity PDFs:

gq−/N
(
x, µ2

)
/gA

(
µ2
)

= gA
(
µ2
)−1 [

gq/N
(
x, µ2

)
− gq̄/N

(
x, µ2

)]
(2.6)

gq+/N
(
x, µ2

)
/gA

(
µ2
)

= gA
(
µ2
)−1 [

gq/N
(
x, µ2

)
+ gq̄/N

(
x, µ2

)]
. (2.7)

A suitable frame amenable to lattice QCD is pµ = (0⊥, pz, E (pz)) and zµ = (0⊥, z3, 0),
with each expressed in the Euclidean Cartesian notation. We elect to compute the µ = 3
component of Mµ5 (p, z), for which the bare operator does not mix with other operators
under renormalization [71]. With this kinematic setup our bare space-like matrix elements
decompose in Minkowski space into a linear combination of Ioffe-time pseudo-distributions
(pseudo-ITDs) according to:

M35 (p, z3) = −2mNS
3 [pz ẑ]

{
M
(
ν, z2

3

)
− ipzz3N

(
ν, z2

3

)}
− 2m3

Nz
2
3S

3 [pz ẑ]R
(
ν, z2

3

)
,

(2.8)
where the functional dependence of the nucleon polarization vector on the external mo-
mentum has been indicated. One can notice that the amplitudesM and N appear here as
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M
(
ν, z2

3
)
− ipzz3N

(
ν, z2

3
)

=M
(
ν, z2

3
)
− iνN

(
ν, z2

3
)
, i.e., in the same combination Y

(
ν, z2

3
)

as in the light-cone projection (2.4). Thus, we can write

M35 (p, z3) = −2mNS
3 [pz ẑ]

{
Y
(
ν, z2

3

)
+m2

Nz
2
3R

(
ν, z2

3

)}
, (2.9)

and observe that the M35 matrix element is proportional to the combination

Ỹ
(
ν, z2

3

)
= Y

(
ν, z2

3

)
+m2

Nz
2
3R

(
ν, z2

3

)
, (2.10)

which, in addition to Y
(
ν, z2

3
)
, contains a contaminating term m2

Nz
2
3R

(
ν, z2

3
)
.1 One may

try to separate the Y and R terms by considering the µ = 4 component of Mµ5 (p, z),
which receives no contribution from the R term if z = z3. However, in this case

M45 (p, z3) = −2mN

{
S4M

(
ν, z2

3

)
− iS3E(pz)z3N

(
ν, z2

3

)}
. (2.11)

One can see that the amplitudesM and N appear here in a combination quite distinct from
the defining combination of Y

(
ν, z2

3
)
. Furthermore, such a calculation of M45 (p, z3) would

require an a priori determination of the finite mixing that exists between the γ4γ5 operator
and other Dirac matrices due to the lattice regularization [71] — an added complication
we seek to avoid.

For purely space-like separations,Mµ5 (p, z) acquires additional ultraviolet (UV) diver-
gences [185–188] that must be regularized and removed before taking the continuum limit.
As these additional divergences are known to renormalize multiplicatively [76, 78, 188, 189],
we elect to remove them by forming an appropriate renormalization group (RG) invariant
ratio. Such a prescription not only ensures a finite continuum limit, but also avoids the
introduction of additional sources of systematic error stemming from gauge-fixed calcula-
tions, such as the RI/MOM scheme used in refs. [71, 72].

The standard procedure [55] within the pseudo-PDF approach is to divide the original
matrix element M(p, z) by its pz = 0 counterpart M(pz = 0, z). Since the UV renormal-
ization factor Z(z/a) is the same for M(p, z) and M(pz = 0, z), the ratio M(p, z)/M(pz =
0, z) does not contain link-related UV divergences and is an RG invariant, referred to
as the reduced Ioffe-time pseudo-distribution [55, 74], or reduced pseudo-ITD. To enforce
the normalization of unity at z3 = 0, a double ratio is employed — the RG invariant
M(p, z3)/M(pz = 0, z3) is divided by its z3 = 0 magnitude. In analogy with the ratio
utilized for the unpolarized [153] and transversity [154] quark PDFs of the nucleon, we
may consider

Y
(
ν, z2

3

)
=
(

Ỹ
(
ν, z2

3
)

Ỹ
(
0, z2

3
)
|pz=0

)/(
Ỹ (ν, 0) |z3=0

Ỹ (0, 0) |pz=0,z3=0

)
. (2.12)

By construction, Y
(
ν, z2

3
)
does not contain link-related UV divergences and is RG invari-

ant. However, as we discussed, Ỹ
(
ν, z2) differs from Y

(
ν, z2) (which is our goal) by a

contamination term m2
Nz

2
3R

(
ν, z2

3
)
, which was observed to be quite small in ref. [58]. We

will attempt to parameterize, and subsequently remove, this additional z2 contamination,
which we note is no worse than the corrections to our factorization relationship, through a
parametric description of the reduced pseudo-ITD detailed in section 4.

1The nucleon mass mN appears here as consequence of the definition (2.2); one can replace it by any
scale Λ, and appropriately re-scale the magnitude of R.
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2.2 Matching kernel

The next step is to relate space-like matrix elements, such as M35(p, z3), obtained from
lattice QCD to ITDs I(ν, µ2) corresponding to PDFs taken in the MS scheme at a scale µ2.
To this end, we need to derive appropriate matching kernels. At NLO, such a derivation is
based on a calculation in dimensional regularization of the one-loop correction to the rele-
vant bilocal operator. The latter, ignoring the link W (f) (0, z) for brevity, is ψ̄(0)γ5γ

µψ(z)
in the present quark helicity case. The result of our calculations in the MS scheme is given
by

〈〈ψ̄(0)γ5γ
µψ(z)〉〉→−αsCF4π

(
1
εUV

+ln
(
−e

2γE+3

4π z2µ2
))
〈〈ψ̄(0)γ5γ

µψ(z)〉〉

+αsCF
2π

(
1
εIR
−ln

(
−e

2γE+1

4π z2µ2
))∫ 1

0
du
[

1+u2

1−u

]
+
〈〈ψ̄(0)γ5γ

µψ(uz)〉〉

−αsCF2π

∫ 1

0
du
[
4ln(1−u)

1−u −2(1−u)
]

+
〈〈ψ̄(0)γ5γ

µψ(uz)〉〉

+αsCF
2π

(2zµ

z2

)∫ 1

0
du(1−u)〈〈ψ̄(0)γ5/zψ(uz)〉〉, (2.13)

where 〈〈. . .〉〉 indicates that the relations are valid only when the operators are inserted into
a forward matrix element. The first line of eq. (2.13) contains the ultraviolet divergences,
which are removed by taking the ratio M(p, z)/M(pz = 0, z). The second line contains the
evolution logarithm ln(−z2µ2) accompanied by the flavor non-singlet DGLAP kernel[

1 + u2

1− u

]
+
≡ B(u) . (2.14)

The plus-prescription is defined in the standard manner,∫ 1

0
du G (u)+ f (ux) ≡

∫ 1

0
du G (u) [f (ux)− f (x)] . (2.15)

The third and fourth lines of eq. (2.13) contain the “constant”, or scale-independent, por-
tion of the one-loop correction. Note that the term in the fourth line contains a zµ prefactor.
Hence, it contributes exclusively to the R amplitude. If z were purely in the third compo-
nent, the term zµ/z2 would vanish for µ = 4, and be non-zero for µ = 3. This observation
explains the well-known difference (see, e.g., ref. [87]) between the matching conditions for
(pseudo)vector bilocal operators with temporal or spatial indices. In particular, if z = z3
and µ = 3, we have zµ/z/z2 = γ3, and one can simply add the contribution of the fourth
line of eq. (2.13) to that of the third line, resulting in the change −2(1−u)⇒ −4(1−u) in
the third line. The fourth line of eq. (2.13) likewise indicates that the invariant amplitude
R
(
ν, z2), which is a source of contamination for space-like separated parton fields, contains

a leading-twist contribution to the space-like matrix element that arises at one-loop. Re-
stating the conclusions of section 2.1, the effect of this contribution is known to be small,
and we attempt to control the higher twist effects which it does still contribute through
our data fitting prescription.
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As a result, we obtain the matching relation

Y
(
ν, z2

3

)
= 1
gA(µ2)

∫ 1

0
du C

(
u, z2

3µ
2, αs

(
µ2
))
I
(
uν, µ2

)
+O

(
z2

3Λ2
QCD

)
, (2.16)

in which Y
(
ν, z2

3
)
is written in terms of the MS twist-2 helicity ITD

I
(
ν, µ2

)
=
∫ 1

−1
dx eiνxgq/N

(
x, µ2

)
, (2.17)

with O
(
z2

3Λ2
QCD

)
denoting higher-twist terms. The ingredients producing the one-loop

matching kernel have been discussed above. In explicit form, the kernel is given by

C
(
u, z2

3µ
2, αs

(
µ2
))

= δ (1− u)− αsCF
2π

{
ln
(
e2γE+1

4 z2
3µ

2
)
B(u) + L(u)

}
, (2.18)

where L(u), the “constant” part of the one-loop matching kernel, comes from the third and
fourth lines of eq. (2.13),

L(u) =
[
4ln (1− u)

1− u − 4 (1− u)
]

+
. (2.19)

The convolution (2.16) may be written in terms of the Mellin moments an(µ2) of the
normalized MS helicity PDF

Y
(
ν, z2

3

)
=
∑
n

cn
(
z2

3µ
2
)
an+1

(
µ2
) (iν)n

n! +O
(
z2

3

)
, (2.20)

with cn
(
z2

3µ
2) being the NLO Wilson coefficients of the local OPE:

cn
(
z2

3µ
2
)
≡
∫ 1

0
du C

(
u, z2

3µ
2, αs

(
µ2
))
un = 1− αsCF

2π

[
γn ln

(
e2γE+1

4 z2
3µ

2
)

+ ln

]
.

(2.21)
The anomalous dimensions γn are the moments of the DGLAP kernel,

γn =
∫ 1

0
du B(u)un = −1

2 + 1
(n+ 1)(n+ 2) − 2

n+1∑
k=2

1
k
, (2.22)

while ln is given by

ln =
∫ 1

0
du L(u)un = 2

( n∑
k=1

1
k

)2

+
n∑
k=1

1
k2 + 1− 2

(n+ 1) (n+ 2)

 . (2.23)

With this form, it can be seen that the renormalized moments of the PDF, even those
which suffer from power divergent mixing on the lattice, can be determined directly from
this matrix element [51].
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ID a (fm) mπ (MeV) β mπL L3 ×NT

a094m358 0.094(1) 358(3) 6.3 5.4 323 × 64

Table 1. Characteristics of the ensemble used in this work.

3 Numerical implementation

We use a single isotropic ensemble of 2 ⊕ 1 Wilson clover fermions generated by the
JLab/W&M/LANL/MIT collaboration [190] in this calculation, with the strange quark
fixed to its physical value and the sea quarks described by the same Wilson clover action.
This ensemble, denoted herein as a094m358, is characterized by a 0.094 fm lattice spacing
and mπ = 358MeV pion mass within a 323 × 64 lattice volume. We exploit the same 349
configuration subset of the a094m358 ensemble utilized in our earlier unpolarized [153] and
transversity [154] quark PDF calculations. Table 1 summarizes aspects of the a094m358
ensemble relevant to this work, while the interested reader is referred to refs. [191, 192] for
further details.

To isolate the bare matrix elements, eq. (2.1), of the space-like quark bilinear
ψ (z) ΓW (f)

ẑ (z, 0)ψ (0), we require two-point and connected three-point correlation func-
tions. With the kinematic setup presented in section 2, the spectral representations of
these correlation functions read

C2pt (pz ẑ, T ) = 〈N (−pz ẑ, T )N (pz ẑ, 0)〉 =
∑
n

|Zn (pz)|2

2En (pz)
e−En(pz)T (3.1)

C
[γ3γ5]
3pt (pz ẑ, T ; z3, τ) = 〈N (−pz ẑ, T )ψ (z3, τ) γ3γ5W

(f)
ẑ (z3, 0)ψ (0, τ)N (pz ẑ, 0)〉 (3.2)

=
∑
n′,n

Zn′ (pz)Z†n (pz)
4En′ (pz)En (pz)

〈n′| O̊[γ3γ5] (z3, τ) |n〉 e−En′ (pz)(T−τ)e−En(pz)T ,

with the source and sink interpolating fields N separated by a Euclidean time T ,
momentum-dependent interpolator-state overlaps given by Zn (pz), and the unrenormal-
ized quark bilinear, abbreviated by O̊[γ3γ5] (z3), is introduced between the source and
sink interpolators for Euclidean times 0 ≤ τ < T . We consider interpolator separa-
tions of T ∈ {4, 6, 8, 10, 12, 14}a ' {0.38, 0.56, 0.75, 0.94, 1.13, 1.32} fm to aid in suppressing
excited-state contamination. To map the Ioffe-time dependence of the pseudo-ITD, we uti-
lize Wilson line lengths of 0 ≤ z/a ≤ 8 and project our interpolators onto definite momenta
~p = ±pz ẑ with pz = nz

2π
aL ∈ {0, 0.42, 0.83, 1.25, 1.67, 2.08, 2.50}GeV for nz ∈ Z.

The distillation [193] spatial smearing kernel is employed to increase the interpolator
overlaps onto the confinement scale physics we are interested in. A realization [194] of
the momentum smearing algorithm [195] is implemented to increase our operator-state
overlaps for allowed momenta |nz| ≥ 4. This amounts in practice to application of a
spatially varying phase {

ei
~ζ·~x

∣∣∣∣ ~ζ = ±2 · 2π
L
ẑ

}
(3.3)

onto each eigenvector of the discretized gauge covariant Laplacian that comprise the
distillation space. This prescription was found to be sufficient to shift the momentum
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space overlaps within the distillation space to the larger values of momenta we consider.
Details concerning our implementation of distillation within the pseudo-distribution
formalism can be found in ref. [153]. Of that discussion, some salient features, especially
concerning the infinite tower of finite-volume energy eigenstates {n′, n} in (3.1) and (3.2),
are worth highlighting here.

The lattice discretization regularizes QCD, but it also breaks the continuum rotational
symmetry. As a consequence baryons at rest, typically described by spin, are instead
classified according to the finite number of irreducible representations (irreps) of the double-
cover octahedral group ODh . In other words, the mass eigenstates of a baryon in the
continuum, formerly classified by its JP quantum numbers, is instead characterized by its
pattern of subduction across the irreps Λ of ODh . The mixing of mass eigenstates induced
by the reduced rotational symmetry is compounded further when considering non-zero
momenta, for which ODh is broken further into its little groups, or subgroups, dependent on
the star of ~p — denoted ∗ (~p) [196]. To address the complication of isolating the ground-
state J+ = 1

2
+ nucleon at rest and in motion in our lattice calculation, we construct nucleon

interpolators such that they possess definite transformation properties with respect to ODh
and its little groups.

Following refs. [197, 198], our interpolators realized using distillation are first con-
structed at rest in the continuum such that they possess definite flavor and JP quantum
numbers. As consequence, such interpolators will only overlap onto continuum energy
eigenstates of the same JP at rest:

〈~p = ~0; J ′, P ′,M ′|
[
OJ,P,M

(
~p = ~0

)]†
|0〉 = Z [J ]δJ,J ′δP,P ′δM,M ′ , (3.4)

where Z [J ] is the numeric overlap factor associated with the continuum interpolator
OJ,P,M (~p = ~0). Projecting our interpolators to non-zero momenta then represents a break-
ing of parity, and energy eigenstates are instead classified according to their value of helicity
λ. Tailoring the algorithm developed in ref. [199] to the case of baryons, continuum helicity
operators are obtained by enacting a basis change on the continuum interpolators boosted
to non-zero momenta along a chosen quantization direction, say ẑ:[

OJP ,λ (~p)
]†

=
∑
m

D(J)
mλ (R)

[
OJP ,m (|~p| ẑ)

]†
, (3.5)

where D(J)
mλ (R) is a Wigner-D matrix, dependent on the active rotation R, that rotates the

vector |~p| ẑ to ~p, thus obtaining a continuum helicity (creation) operator OJP ,λ (~p) from
boosted canonically quantized continuum interpolators. In other words, constructing our
interpolators to have definite helicity in the continuum forces all operator-state overlaps to
be in terms of ~p and λ. The manifest breaking of continuum rotational symmetry by the
cubic lattice, and further reduction for ~p 6= ~0, ensures continuum helicity eigenstates of each
value of helicity will subduce into at least one irrep of the double-cover octahedral group
ODh or its associated little groups. That is, our interpolators constructed with distillation
will overlap with finite-volume energy eigenstates {n′, n} characterized by numerous values
of helicity.
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Although the distillation paradigm facilitates an especially cheap realization of vari-
ational improvement (e.g. refs. [200, 201]) within a given symmetry channel, recently ap-
plied, for instance, to expose the unpolarized [202] and helicity gluon [203] PDFs of the
nucleon, we select a single, spatially-local interpolating field, denoted N2Ss

1
2

+, to couple
to the ground-state nucleon. This choice is motivated by computational expediency and a
desire to maximize consistency with our earlier unpolarized and transversity quark PDF
calculations [153, 154].

3.1 Matrix element isolation

At asymptotically large temporal separations between operators, namely 0 � τ � T , the
ratio between the three-point, eq. (3.2), and two-point, eq. (3.1), correlation functions will
plateau to the desired bare matrix element. Of course such asymptotically large Euclidean
times cannot be reached with any useful statistical precision, due to the exponential decay
of the signal-to-noise ratio, and one must instead contend with excited-state contamination
at short Euclidean times, where data are more precise. Although a multi-state fit to the
three-point correlators with explicit dependence on both the insertion time slice and source-
sink separation can be used to isolate the bare matrix element, excited-state contamination
will afflict the matrix element determination on the order of O

(
e−∆ET/2

)
, where ∆E is

the energy gap between the ground state and the lowest lying effective excited state. In
an effort to further suppress the contamination from excited states, we elect to extract the
bare matrix elements via the summation method [204, 205] whereby the ratio of the three-
point and two-point correlation functions is summed over the time slice τ of the inserted
bare Wilson line operator O̊[γ3γ5] (z3):

R (pz ẑ, z3;T ) ≡
T−1∑
τ/a=1

C3pt (pz ẑ, T ; z3, τ)
C2pt (pz ẑ, T ) . (3.6)

Contact terms are expressly excluded from the R (pz ẑ, z3;T ) signal by performing the
operator summation for τ/a ∈ [1, T − 1]. As the resulting geometric series depends linearly
on the desired bare matrix element M (pz ẑ, z3), an appropriate fit function to extract the
bare matrix element is

Rfit (pz ẑ, z3;T ) = A+M (pz ẑ, z3)T +O
(
e−∆ET

)
, (3.7)

where, for brevity, we define M (p, z) ≡ M35 (p, z). An important consequence of using
the summation method is an exponential suppression of excited-state contamination to the
extracted bare matrix element signal relative to multi-state methods for the same source-
sink separation T and level of statistics — corrections from excited-state contamination
scale as O

(
e−∆ET

)
= BTe−∆ET when the summation method is employed.

A representative subset of summed ratio data R (pz ẑ, z3;T ) and applied linear fits (3.7)
for source-sink separations T/a ∈ {4 − 14, 6 − 14, 8 − 14} are presented in figure 1 and
figure 2. For the real component of the rest-frame matrix elements presented in figure 1,
the high quality data for R (pz ẑ, z3;T ) for all Wilson line lengths we consider is seen to
lead to a stable determination of the bare matrix elements as the minimum fitted value
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Figure 1. Real component of the summed ratio R (~p, ~z;T ) for ~p = ~0 together with the linear fit
eq. 3.7 applied for varying temporal series. The length of the Wilson line is increased from left to
right, and given in integer multiples of the lattice spacing. Each panel corresponds to R (~p, ~z;T )
determined from a particular subduced correlation function, which are discussed in section 3.3.

of T/a is varied. As the nucleon momentum is increased, the expected degradation of the
correlation function signals is encountered. Together with the exponential decay of the
bare matrix element signal as z3 is increased, one observes poorer quality R (pz ẑ, z3;T )
data and deviations from linearity for large values of T . For example, in figure 2 we
illustrate both the real and imaginary components of R (pz ẑ, z3;T ) data and applied linear
fits for nucleon momenta apz = 3 × 2π

L and z3 ∈ {3a, 8a}, as well as for apz = 6 × 2π
L and

z3 = 5a. In each case, the summed ratio data R (pz ẑ, z3;T ) are seen to be clearly linear
for T/a ≤ 8, with deviations for larger values. As a result, linear fits Rfit (pz ẑ, z3;T ) begin
to exhibit spread in the fitted bare matrix elements as the minimum fitted value of T/a is
increased. This spread is, in part, understood by considering the derived effective energies
in figure 3 of the ground-state nucleon. The reader is reminded the largest momenta
without the use of a phased distillation space are |apz| = 3× 2π

L , shown in red in figure 3.
For T/a & 10 appreciable variations are observed in the effective energies which, in forming
R (pz ẑ, z3;T ), produces the expected spread in the fitted matrix element. Even with the
use of phasing (purple, brown, and black in figure 3), any statistically meaningful data are
lost for T/a & 10. In the hopes of obtaining a good balance between excited-state control
and statistical precision, for the remainder of this manuscript we will thus consider the
matrix elements obtained from the T/a ∈ [6, 14] fits.

3.2 Inclusion of a matrix element fitting systematic

The choice to consider the reduced pseudo-ITD Y
(
ν, z2) obtained from summed ratio

R (pz ẑ, z3;T ) fits with T/a ∈ [6, 14] is a selection that potentially introduces a systematic
error into the resulting reduced pseudo-ITD. This systematic arises from uncertainty in
the fitted matrix element as distinct time series are considered. For example, in figure 2
statistically significant differences are observed between the T/a ∈ [4, 14] and T/a ∈ [6, 14]
summed ratio fits for many momenta and Wilson line length combinations, a symptom of
the combined effect of high-precision points weighting the T/a ∈ [4, 14] fits and excited-
state pollution. We will not consider further the T/a ∈ [8, 14] summed ratio fits given the
low number of usable points in each fit, especially for the highest momenta we consider.

We attempt to estimate this systematic uncertainty and include it in our ensuing
analysis by simultaneously considering both T/a ∈ [4, 14] and T/a ∈ [6, 14] summed ratio
fits. Rather than simultaneously fit both summed ratio datasets, we include the squared
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Figure 2. Real (upper row) and imaginary (lower row) components of the summed ratio R (~p, ~z;T )
for select lattice momenta ~p together with the linear fit eq. 3.7 applied for varying temporal series.
The length of the Wilson line is increased from left to right for each momentum, and given in integer
multiples of the lattice spacing. Each panel corresponds to R (~p, ~z;T ) determined from a particular
subduced correlation function, which are discussed in section 3.3.
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z ≥ 0 (right), together
with applied two-state fits. Time series included in each fit are indicated by darkened fit bands,
and data are shown for signal-to-noise ratios greater than 2.25.
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difference of Y
(
ν, z2) independently obtained from both T/a ∈ [4, 14] and T/a ∈ [6, 14]

summed ratio fits along the diagonal of the T/a ∈ [6, 14] data covariance:

Cov
[
Y
(
ν, z2

)
i
,Y
(
ν, z2

)
j

]
= Cov

[
Y
(
ν, z2

)
i
,Y
(
ν, z2

)
j

] ∣∣∣∣
Tfit

min=6a

+ δij

[
Y
(
ν, z2

) ∣∣∣
Tfit

min=4a
−Y

(
ν, z2

) ∣∣∣
Tfit

min=6a

]2
, (3.8)

where Cov
[
Y
(
ν, z2)

i ,Y
(
ν, z2)

j

]
|Tfit

min=6a is the unaltered reduced pseudo-ITD data covari-
ance with bare matrix elements obtained by fitting over the time series T/a ∈ [6, 14], and
i, j denoting specific {pz, z3} tuples. This simple procedure is performed at the level of
each jackknife fit, thereby retaining correlation within the data and covariance between
matrix element fits of distinct momenta and Wilson line lengths. An analogous strategy
was conceived in ref. [206] when resolving the continuum and leading-twist limits of par-
ton pseudo-distributions. Herein the reduced pseudo-ITD Y

(
ν, z2) will be understood to

reflect this systematic error estimate.

3.3 On the extraction of the helicity pseudo-ITD

The bare matrix element Mµ5 (p, z), once isolated, receives contributions from three in-
variant amplitudes (see section 2). One of these invariant amplitudes, R

(
ν, z2), is absent

on the light-cone, but enters as a contamination to the space-like matrix elements we com-
pute. With our choice of kinematics, namely hadron momentum pµ = (0⊥, pz, E (pz))
with Wilson line length zµ = (0⊥, z3, 0) and gamma matrix Lorentz index µ = 3, R

(
ν, z2)

is unavoidable (cf. eq. (2.2)). Our choice to construct interpolators that transform irre-
ducibly under the double-cover octahedral group ODh and its discrete little groups leads to
several determinations of Mµ5 (p, z) for a given choice of {pz, z3} and µ = 3. The result-
ing system can be solved via a singular value decomposition (SVD) for the pseudo-ITD
Ỹ
(
ν, z2). Indeed an SVD in this context may seem excessive, however its use establishes a

general framework to analyze future off-forward matrix elements relevant for the isolation
of GPDs, as well as the hypothetical scenario wherein R

(
ν, z2) could be disentangled from

the leading pseudo-ITD Y
(
ν, z2) were finite mixing not an issue. To provide a cogent

foundation for this procedure, we step aside to consider in closer detail the group theoretic
construction of our interpolators.

The irrep-based correlation functions we compute of some external current J expose
what are deemed subduced matrix elements following construction of appropriate ratios
of three-point and two-point functions. To then access the canonical matrix element in
eq. (2.1) we must establish their connection with the subduced matrix elements. The
relationship between the subduced matrix elements and invariant amplitudes is given by

〈~p,Λ,µf |J ΛΓ,µΓ |~p,Λ,µi〉=
∑
l

∑
λf ,λΓ,λi

SΛ,J
µf ,λf

[
SΛΓ,JΓ
µΓ,λΓ

]∗[
SΛ,J
µi,λi

]∗
Kl(λf [J,~p];λi [J,~p])Al

(
ν,z2

)
,

(3.9)
where a subduced matrix element 〈~p,Λ, µf | J ΛΓ,µΓ |~p,Λ, µi〉 depends on a linear combina-
tion of invariant amplitudes Al, each of which is weighted by a helicity-dependent kinematic
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prefactor Kl (λf [J, ~p] ;λi [J, ~p]) whose irreducibility under the relevant cubic (sub)group is
encoded via subduction coefficients2 SΛ,J

µ,λ . The kinematic prefactors are nothing but the
Lorentz covariant structures associated with each invariant amplitude evaluated in a helic-
ity basis, and, as we detail below, each can be straightforwardly isolated. In this notation,
we follow the convention of ref. [199] by treating source interpolators and current insertions
as creation operators, whereby the corresponding subduction coefficients are conjugated.

Rather than map the subduced matrix elements back into a canonical form like eq. 2.1,
thereby abandoning the group symmetries we rely on, we instead re-express the canonical
matrix elements appearing in the spectral decomposition of our three-point functions (3.2)
in terms of the subduced matrix elements. From the discussion concerning operator-state
overlaps at the outset of section 3, it follows the two complete sets of states, introduced
between the nucleon interpolators and insertion in C [γ3γ5]

3pt (pz ẑ, T ; z3, τ) to expose its spec-
tral content, are projected by our interpolator-state overlaps onto the infinite tower of
continuum helicity eigenstates that subduce into the irrep Λ of the little group defined
by ∗ (~p = pz ẑ). Despite the presence of excited-states and, in general, negative parity and
J > 1

2 states that contribute to the irrep-based correlation functions in motion, in the limit
of large Euclidean time C [γ3γ5]

3pt (pz ẑ, T ; z3, τ) will be proportional to the subduced matrix
element associated with the continuum JP = 1

2
+ ground-state nucleon. Evidently the prin-

cipal step needed to match the canonical matrix elements onto the subduced matrix ele-
ments is to evaluate the inner product of spinors representing the initial/final 1

2
+ subduced

states with each Lorentz structure associated with the invariant amplitudes Al in eq. (3.9).
We now detail an algorithm for obtaining spinors representing the subduced initial/final

states. The algorithm begins by considering a standard four-component Dirac spinor at
rest and with spin quantized along the ẑ-axis:

u (0,m) =
√
E(~p = ~0) +MN

(
χ (m) 0

)T
, (3.10)

where χ (m) are the standard non-relativistic two-component spinors with ẑ component
m, and MN the nucleon ground-state mass. To build the relativistic Dirac spinor in a
helicity basis, we first perform a Lorentz boost Lz (|~p|) on u (0,m), such that it carries all
the momentum of our desired state along its axis of quantization, followed by an active
rotation D [R] of the relativistic spinor to the direction ~p:

u (~p, λ) = D [R]u (|~p| ẑ,m) = D [R]Lz (|~p|)u (0,m) , (3.11)

with λ the resulting values of helicity. Since the two component spinors χ (m) transform
under rotations as [207]

U [R (α, β, γ)]χ (m) =
∑
m′

D1/2
m′m (α, β, γ)χ

(
m′
)
, (3.12)

2Subduction coefficients SΛ,J
µ,λ encode how the different values of helicity λ of each object comprising our

correlation functions subduce into distinct rows µ ∈ {1, dim (Λ)} of, in general, several irreps Λ.
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where D1/2
m′m is a Wigner-D matrix and U [R] a unitary operator encoding the active rotation

R, denoted by the Euler angles {α, β, γ} in the zyz-convention, it follows

u (~p, λ) = D [R]u (|~p| ẑ,m) =

U [R (α, β, γ)] 0
0 U [R (α, β, γ)]

u (|~p| ẑ,m) . (3.13)

An explicit realization of U [R] for spin-1/2 states:

U [R (α, β, γ)] = exp
(
−iα2 σz

)
exp

(
−iβ2σy

)
exp

(
−iγ2σz

)
, (3.14)

then completes the construction of the relativistic helicity spinor. To then impose the
appropriate group symmetry, the same subduction coefficients employed in our irrep-based
correlation functions are applied to the relativistic helicity spinor:

u (~p,Λ, µ) =
∑
λ

SΛJ
µλ u (~p, λ) =

∑
λ

SΛJ
µλD [R]u (|~p| ẑ,m) , (3.15)

thereby producing a subduced spinor u (~p,Λ, µ) that transforms irreducibly within the irrep
Λ of the appropriate little group with row µ ∈ {1, dim (Λ)}. Since in this calculation we
consider nucleon momenta ~p = pz ẑ collinear to the space-like Wilson line, the relevant
irreps we must consider are G1g and E1. The former is the ODh irrep non-relativistic spin-
1/2 objects subduce into, while the latter is relevant for the subduction of λ = 1/2 objects
residing within the order-16 dicyclic (Dic4) cubic subgroup, or little group — this little
group is defined by the set of rotations that leave momenta of the form ~p = (0, 0, n) |n∈Z\{0},
and its permutations, invariant. Indeed the patterns of subduction for objects with non-zero
helicity is quite nuanced. For example, λ = 7/2 objects within Dic4 are also represented
by the E1 irrep, while for momenta of the form ~p = (0, n, n) the irrep E1 will also contain
information concerning λ = 5/2 states [208].

The λ 6= 1/2 states present within an irrep enter as additional contamination to the
correlation functions we compute. Under the supposition of ground-state dominance, we
need only consider the pattern of subduction for a J = 1/2 object at rest and a λ = 1/2
object in motion. The subduction of interpolators at rest with continuum spin J = 0, 1 and
J = 1/2, 3/2 are faithfully represented by the A1, T1 and G1, H irreps, respectively — the
subduction coefficients for baryons at rest with continuum spin 3/2 ≤ J ≤ 9/2 are given
in ref. [197]. The subduction coefficients for baryons in-flight can be obtained following
the prescription established in ref. [199]. Discussion concerning the inserted current’s sub-
duction coefficients SΛΓ,JΓ

µΓ,λΓ
is omitted, as the inserted A3 = ψγ3γ5ψ current in the forward

limit is faithfully represented by the three-dimensional T1 irrep of the cubic group. Were
we to consider an insertion with J > 3/2 in the forward limit or an off-forward case more
generally, the subduction of the inserted current would need to be carefully considered.

The final step in connecting our irrep-based correlation functions with the canonical
matrix element in eq. (2.1) is to evaluate the contraction of the final/initial state subduced
spinors with each Lorentz structure. As G1g and E1 are both two-dimensional irreps, a
total of four distinct subduced spinor contractions are realized for each combination of
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{pz, z3}. This produces what we deem a kinematic matrix, where each column corresponds
to the four possible subduced spinor contractions associated with a given Lorentz structure,
while each row will encode all contractions corresponding to a specific choice for the initial
and final state subduced spinor rows. The kinematic matrix, when right-multiplied by the
vector of invariant amplitudes (cf. eq. 2.9), can then be directly equated with the fitted
subduced matrix elements. The result is the system of equations:
〈pz ẑ,Λ,µf=1|O̊[γ3γ5](z3)|pz ẑ,Λ,µi=1〉
〈pz ẑ,Λ,µf=1|O̊[γ3γ5](z3)|pz ẑ,Λ,µi=2〉
〈pz ẑ,Λ,µf=2|O̊[γ3γ5](z3)|pz ẑ,Λ,µi=1〉
〈pz ẑ,Λ,µf=2|O̊[γ3γ5](z3)|pz ẑ,Λ,µi=2〉

=−2mN


S3[pz ẑ]11 m

2
Nz

2
3S3[pz ẑ]11

S3[pz ẑ]12 m
2
Nz

2
3S3[pz ẑ]12

S3[pz ẑ]21 m
2
Nz

2
3S3[pz ẑ]21

S3[pz ẑ]22 m
2
Nz

2
3S3[pz ẑ]22


Y(ν,z2)
R
(
ν,z2)

,
(3.16)

where the entries on the left-hand side are the fitted subduced matrix elements obtained
from the Rfit (pz ẑ, z3;T ) fits (3.7), µf (µi) the row of the final (initial) state subduced
spinor, and with the functional dependence of the nucleon polarization vector S3 on its
momentum explicitly denoted. The subscripts of the polarization vector specify which row
of the final/initial state subduced spinors are employed in the contraction. However, as
noted, R

(
ν, z2) cannot be separated from Y

(
ν, z2) with our kinematic setup, so this system

of equations instead reads:
〈pz ẑ,Λ, µf = 1| O̊[γ3γ5] (z3) |pz ẑ,Λ, µi = 1〉
〈pz ẑ,Λ, µf = 1| O̊[γ3γ5] (z3) |pz ẑ,Λ, µi = 2〉
〈pz ẑ,Λ, µf = 2| O̊[γ3γ5] (z3) |pz ẑ,Λ, µi = 1〉
〈pz ẑ,Λ, µf = 2| O̊[γ3γ5] (z3) |pz ẑ,Λ, µi = 2〉

 = −2mN


S3 [pz ẑ]11 0
S3 [pz ẑ]12 0
S3 [pz ẑ]21 0
S3 [pz ẑ]22 0


Ỹ (ν, z2)
R
(
ν, z2)

 ,
(3.17)

where the contamination arising from R
(
ν, z2) for space-like intervals has been subsumed

into the pseudo-ITD Ỹ
(
ν, z2), and the exclusive contribution of R

(
ν, z2) to this system

has been removed by setting the elements of the rightmost column of the kinematic ma-
trix to null. For each pair {pz, z3}, this system of equations is constructed and solved
for the unknown amplitude Ỹ

(
ν, z2) using an SVD. Note the use of an SVD will isolate

Ỹ
(
ν, z2) such that it is consistent with the subduced matrix elements at the left-hand

side of eq. 3.17. Since the non-trivial subduced matrix elements encode the continuum
helicity matrix elements that define the helicity PDFs, the trivial use of SVD in this case,
being nothing more than a sum of the non-trivial equations of this system, accomplishes
the desired difference of continuum helicity matrix elements that theoretically define the
PDF. Following the prescription established in section 2, we then populate the reduced
pseudo-ITD Y

(
ν, z2) shown in figure 4.

4 On the extraction of the helicity PDF

With the helicity reduced pseudo-ITD Y
(
ν, z2) in hand, one is presented with an in-

verse problem that precludes an unambiguous determination of the helicity PDFs from

– 17 –



J
H
E
P
0
3
(
2
0
2
3
)
0
8
6

0 2 4 6 8
ν

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

R
e
Y
( ν
,z

2
)

z = 0

z = 1

z = 2

z = 3

z = 4

z = 5

z = 6

z = 7

z = 8

0 2 4 6 8
ν

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

I
m

Y
( ν
,z

2
)

z = 0

z = 1

z = 2

z = 3

z = 4

z = 5

z = 6

z = 7

z = 8

Figure 4. The real (left) and imaginary (right) components of the reduced pseudo-ITD Y
(
ν, z2)

obtained from the SVD applied to the summed ratio Rfit (pz ẑ, z3;T ) fits for T/a ∈ [6, 14] (darkened
inner errors), with a matrix element fitting systematic estimated using the T/a ∈ [4, 14] fits (light-
ened outer errors).

the one-loop matching relationship (2.16), which originates from the limited range of ν.
Indeed matching the reduced pseudo-ITD to a common scale in MS alleviates some of
these numerical challenges, as the resulting MS helicity Ioffe-time distribution I

(
ν, µ2), in

principle, involves no residual z2-dependence and directly determines the x-dependence of
the underlying PDFs via an inverse Fourier transform. Such an evolution/matching step,
however, does not quell the ill-posed inverse problem and is furthermore a potential source
of additional systematic errors stemming from the interpolation or smooth description of
the pseudo-distribution data needed for the evolution/matching procedure. Regardless of
whether the matching step is applied explicitly to the reduced pseudo-ITD, it is common for
a functional form to be assumed for the PDF and for its convolution with the matching ker-
nel to be fit to the data [104, 111, 112, 116, 121, 202]. This paradigm is not unlike what one
encounters in global analyses of experimental data, where a physically-motivated functional
form is often assumed for the PDF [209–212] and fit to discrete cross-section measurements
over a limited range of xB. Several non-parametric reconstruction techniques have also been
explored in the lattice QCD literature including the Backus-Gilbert method [213], Bayesian
reconstruction [105], and an admixture giving rise to a Bayes-Gauss-Fourier transform [135].

To avoid sullying a high-fidelity determination of the helicity PDFs, we elect to pa-
rameterize the CP -even and CP -odd quark helicity PDFs via model ansätze and fit their
convolution with the one-loop matching kernel relating the {ν, z2} dependencies of the
reduced pseudo-ITD with the {x, µ2} dependencies of the PDF:

Re Y
(
ν,z2

)
=gA

(
µ2
)−1∫ 1

0
dx K−

(
xν,z2µ2,αs

(
µ2
))
gq−/N

(
x,µ2

)
+O

(
z2Λ2

QCD

)
Im Y

(
ν,z2

)
=gA

(
µ2
)−1∫ 1

0
dx K+

(
xν,z2µ2,αs

(
µ2
))
gq+/N

(
x,µ2

)
+O

(
z2Λ2

QCD

)
. (4.1)

Here the quark helicity PDFs gq−/N
(
x, µ2) and gq+/N (x, µ2) are isolated from the Y

(
ν, z2)
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signal via cosine and sine transforms of the NLO kernel, defined in eq. (2.18), respectively:

K−
(
xν, z2µ2, αs

(
µ2
))

=
∫ 1

0
du C

(
u, z2µ2, αs

(
µ2
))

cos (uνx) (4.2)

K+
(
xν, z2µ2, αs

(
µ2
))

=
∫ 1

0
du C

(
u, z2µ2, αs

(
µ2
))

sin (uνx) . (4.3)

There is considerable flexibility in adopting a functional form to describe the unknown
helicity PDFs. Absent a continuum of data over the infinite range ν ∈ [0,∞), any functional
choice necessarily introduces model bias into the extraction procedure — we will return
to this point in section 5.1. Following the paradigm established in refs. [153, 154, 206],
we parameterize the unknown quark helicity PDFs using a basis of Jacobi polynomials3

{Ω(α,β)
n (x)}, the set of which form a complete orthogonal set on the interval x ∈ [0, 1]. The

orthogonality of the Jacobi polynomials∫ 1

0
dx xα (1− x)β Ω(α,β)

n (x) Ω(α,β)
m (x) = 1

2n+ α+ β + 1
Γ (α+ n+ 1) Γ (β + n+ 1)

n!Γ (α+ β + n+ 1) δn,m

(4.4)
is assured provided4 α, β > −1. The helicity PDFs gq−/N

(
x, µ2) and gq+/N (x, µ2) at some

scale can therefore be unambiguously expressed as

gqτ/N (x) = xα (1− x)β
∞∑
n=0

C(α,β)
τ,n Ω(α,β)

n (x) (4.5)

for arbitrarily chosen α, β > −1, and τ ∈ {−,+} indicating either the CP -even or CP -
odd quark helicity PDF. The relationship between the fitted parameters of the PDF and
the reduced pseudo-ITD is obtained by considering the expansion of the matching kernels
K−

(
xν, z2µ2, αs

(
µ2)) and K+

(
xν, z2µ2, αs

(
µ2)) in terms of Jacobi polynomials.

In the interest of self-containment, the contribution of an order-n Jacobi polynomial
Ω(α,β)
n (x) to Y

(
ν, z2) is given by

σ(α,β)
n

(
ν, z2µ2

)
=
∫ 1

0
dx K−

(
xν, z2µ2

)
xα (1− x)β Ω(α,β)

n (x) (4.6)

η(α,β)
n

(
ν, z2µ2

)
=
∫ 1

0
dx K+

(
xν, z2µ2

)
xα (1− x)β Ω(α,β)

n (x) . (4.7)

Expanding K−,+ in even/odd powers of Ioffe-time, we define:

σ(α,β)
n

(
ν,z2µ2

)
=

n∑
j=0

∞∑
k=0

(−1)k

(2k)! c2k
(
z2µ2

)
ω

(α,β)
n,j B (α+2k+j+1,β+1)ν2k (4.8)

η(α,β)
n

(
ν,z2µ2

)
=

n∑
j=0

∞∑
k=0

(−1)k

(2k+1)!c2k+1
(
z2µ2

)
ω

(α,β)
n,j B (α+2k+j+2,β+1)ν2k+1, (4.9)

3The Jacobi polynomials exploited in this work are referred to as such, however the set of conventional
Jacobi polynomials, obtained from our Jacobi polynomials via a change of variables, are orthogonal on the
interval [−1, 1].

4This limitation also ensures a properly normalized helicity PDF: gu−dA

(
µ2) =

∫ 1
0 dx gq−/N

(
x, µ2),

where gu−dA

(
µ2) is the isovector axial charge of the nucleon.
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with B (w, z) a Beta function, cn
(
z2µ2) the Wilson coefficients defined in eq. 2.21 and

ω
(α,β)
n,j ∈ R defined as

ω
(α,β)
n,j = Γ (α+ n+ 1)

n!Γ (α+ β + n+ 1)

(
n

j

)
(−1)j Γ (α+ β + n+ j + 1)

Γ (α+ j + 1) . (4.10)

The leading-twist component of Y
(
ν, z2) can then be written as the series

Re Ylt

(
ν, z2

)
=
∞∑
n=0

σ(α,β)
n

(
ν, z2µ2

)
C
lt (α,β)
−,n (4.11)

Im Ylt

(
ν, z2

)
=
∞∑
n=0

η(α,β)
n

(
ν, z2µ2

)
C
lt (α,β)
+,n , (4.12)

where C lt (α,β)
τ,n are the Jacobi polynomial expansion coefficients. In the spanning case,

where all Jacobi polynomials are considered, any α, β > −1 sets a suitable basis and
the same σ(α,β)

n and η(α,β)
n can be used to describe known discretization and higher-twist

contaminations in x-space; the latter includes the additional z2 contamination arising from
R
(
ν, z2) for space-like intervals. Their contributions in Ioffe-time are given analogously by

Re Yaz (ν) =
∞∑
n=1

σ
(α,β)
0,n (ν)Caz (α,β)

−,n Im Yaz (ν) =
∞∑
n=0

η
(α,β)
0,n (ν)Caz (α,β)

+,n (4.13)

Re Yht (ν) =
∞∑
n=1

σ
(α,β)
0,n (ν)Cht (α,β)

−,n Im Yht (ν) =
∞∑
n=0

η
(α,β)
0,n (ν)Cht (α,β)

+,n , (4.14)

where σ
(α,β)
0,n and η

(α,β)
0,n are the tree-level components of eq. (4.8) and eq. (4.9), and

C
az (α,β)
τ,n and C

ht (α,β)
τ,n are nuisance parameters associated with O (a/ |z3|) discretization

and O
(
z2kΛ2k

QCD

)
higher-twist effects. Since Re Y is identically unity for zero Ioffe-time

and σ
(α,β)
0,0 (ν = 0) 6= 0 (see refs. [206] and [153]), description of nuisance effects in Re Y

by Jacobi polynomials must begin at order n = 1. Indeed the parameterization of the sys-
tematic corrections in this manner neglects additional sources of systematic error, notably
those of O

(
ln(z2)

)
which could arise if σ(α,β)

n
(
ν, z2) and η

(α,β)
n

(
ν, z2) were considered in

eq. (4.13) and eq. (4.14). We neglect such effects herein, as each nuisance term we consider
is preceded by an ideally small prefactor (e.g. a/ |z3|, etc.) and the additional sources of
systematic error arising at NLO would receive an additional suppression of O (αs).

In practice, the infinite series of Jacobi polynomials for the leading-twist and nuisance
effects must be truncated, precluding a model-independent determination of the PDF at
the expense of potential bias. This truncation is in fact necessary to avoid over-fitting the
reduced pseudo-ITD given the finite range of Ioffe-time ν ∈ [0, 9.42] within which Y

(
ν, z2)

is populated. It is known [206] each Jacobi polynomial, via σ(α,β)
n and η(α,β)

n , contributes
appreciably to the pseudo-distribution in a small window of Ioffe-time, and this window
shifts to larger values of Ioffe-time as the polynomial order is increased. In this sense, only
low order (n . 5) Jacobi polynomials are needed to capture the information content of
our data, as higher order (n & 5) Jacobi polynomials peak outside the Ioffe-time region
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for which we have data. The complete functional form we use to describe the reduced
pseudo-ITD and hence extract the leading-twist helicity PDFs is:

Re Yfit
(
ν, z2

3

)
=

Nlt∑
n=0

σ(α,β)
n

(
ν, z2

3µ
2
)
C
lt (α,β)
−,n + a

|z3|

Naz∑
n=1

σ
(α,β)
0,n (ν)Caz (α,β)

−,n (4.15)

+ z2
3Λ2

QCD

Nt4∑
n=1

σ
(α,β)
0,n (ν)Ct4 (α,β)

−,n + z4
3Λ4

QCD

Nt6∑
n=1

σ
(α,β)
0,n (ν)Ct6 (α,β)

−,n

Im Yfit
(
ν, z2

3

)
=

Nlt∑
n=0

η(α,β)
n

(
ν, z2

3µ
2
)
C
lt (α,β)
+,n + a

|z3|

Naz∑
k=0

η
(α,β)
0,n (ν)Caz (α,β)

+,n (4.16)

+ z2
3Λ2

QCD

Nt4∑
n=0

η
(α,β)
0,n (ν)Ct4 (α,β)

+,n + z4
3Λ4

QCD

Nt6∑
n=0

η
(α,β)
0,n (ν)Ct6 (α,β)

+,n ,

where the role of higher-twist effects up to and including O
(
z4

3Λ4
QCD

)
are considered, and

Nlt, Naz, Nt4, Nt6 denote the truncation orders for the leading-twist and nuisance terms.
We take the input scale to be µ = 2GeV, with the three flavor MS strong coupling
αs (µ = 2 GeV) = 0.303 and ΛQCD = 286MeV adopted from LHAPDF6 [214].

We would like to determine the most likely set of parameters {θ} given our data
Y
(
ν, z2) and any prior knowledge I. This is codified by Bayes’ Theorem:

P [θ | Y, I] = P [Y | θ]P [θ | I]
P [Y | I] , (4.17)

which states the posterior distribution P [θ | Y, I], or probability distribution of a set of
parameters {θ} to be correct given the data Y and prior information I, depends on the
product distribution of P [Y | θ], the probability distribution of the data Y given the pa-
rameters {θ}, and P [θ | I], the probability distribution of {θ} given the prior information,
normalized by the marginal likelihood P [Y | I]. Although the marginal likelihood, which
denotes the probability that the data are correct given the prior information I, normalizes
the posterior distribution, its impact will be neglected herein as it does not depend on
the model parameters {θ}. The most likely set of parameters is found by maximizing the
posterior distribution, or, equivalently, minimizing its negative logarithm:

L2 ≡ −2 log (P [θ | Y, I]) . (4.18)

The central limit theorem demands the probability distribution P [Y | θ] be given by

P [Y | θ] ∝ Exp
{
−χ

2

2

}
= Exp

−1
2
∑
i,j

(Yi −Yi [θ]) C−1
ij (Yj −Yj [θ])

 , (4.19)

where i, j denote a fitted matrix element with momentum pz and Wilson line length z3,
Yk [θ] a prediction of the data given {θ}, and C the data covariance estimated via a
jackknife re-sampling of the data.

We turn now to the prior distributions for each model parameter. Recall our choice
in this manuscript to parameterize the PDFs via a basis of Jacobi polynomials on the
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interval x ∈ [0, 1] requires α, β > −1. This prior information on the non-linear parameters
p ∈ {α, β} can be suitably encoded via shifted log-normal distributions:

P [p | I] = 1
(p− p0)σp

√
2π

Exp
{
− [log (p− p0)− µp]2

2σ2
p

}
, (4.20)

where α0, β0 = −1 enforce the requirement for the Jacobi polynomials to form a complete
orthogonal set, and the mean and variance of log (p− p0) are set respectively by µp and σp.
Each of µp and σp can be tuned so as to produce a desired mean and variance of the under-
lying variate p.5 To guarantee a convergent PDF we make the requirement β > 0, or equiv-
alently β0 = 0. Physical intuition can help set reasonable prior distributions for each of the
linear expansion coefficients C∗,(α,β)

τ,n parameterizing the leading-twist and nuisance contri-
butions to the reduced pseudo-ITD signal (eq. 4.15 and eq. 4.16). The only sensible restric-
tion for each C∗,(α,β)

τ,n is to require the associated x-dependent distributions to be sub-leading
relative to the leading-twist helicity PDF; otherwise, each expansion coefficient may assume
an arbitrary value. To reflect this knowledge and allow the reduced pseudo-ITD to best dic-
tate the size of each expansion coefficient, we impose normally distributed priors of the form:

P
[
C∗,(α,β)
τ,n | I

]
= 1√

2πσci
Exp

{
−(ci − µi)2

2σ2
ci

}
, (4.21)

where the prior and width of each coefficient C∗,(α,β)
τ,n are denoted by µi and σi. Given

the lack of any a priori knowledge on the size of each C
∗,(α,β)
τ,n , we fix µi = 0 for each

C
∗,(α,β)
τ,n — larger prior widths are given to the expansion coefficients parameterizing the

leading-twist component so as to embody the sub-leading effect of the nuisance terms.
All fits to the reduced pseudo-ITD Y

(
ν, z2) are performed with the aid of the Vari-

able Projection (VarPro) algorithm [215]. In this manner, the potentially large space of
fit parameters (e.g. α, β and any expansion coefficients C∗,(α,β)

τ,n ) is reduced to a non-linear
optimization within the two-dimensional space defined by the parameters α and β, which
appear non-linearly in our PDF parameterizations of eq. (4.15) and eq. (4.16). Each ex-
pansion coefficient C∗,(α,β)

τ,n appears linearly and is solved for explicitly in terms of the
non-linear basis functions {σ(α,β)

n , σ
(α,β)
0,n , η

(α,β)
n , η

(α,β)
0,n }.

5 Results

We begin this section by reporting fit results to the reduced pseudo-ITD Y
(
ν, z2) that

includes our matrix element fitting systematic (3.8), where Y
(
ν, z2) has been cut ac-

cording to platt ∈ [1, 6] and z/a ∈ [2, 8]. In figure 5 the functional form eq. 4.15 is
fit to Re Y

(
ν, z2), subject to the aforementioned cuts, where the basis of Jacobi poly-

nomials describing the leading-twist and nuisance terms have been truncated at orders
(Nlt, Naz, Nt4, Nt6) = (3, 2, 2, 1). It is clear all data for a given z/a ∈ [2, 8] are well de-
scribed by the chosen functional form, though for platt = 3 (middle point of each panel in

5To produce a random variate X with mean µX and variance σ2
X , the log-normal parameters should be

tuned to µp = ln
(

(µX−X0)2√
(µX−X0)2+σ2

X

)
and σ2

p = ln
(

1 + σ2
X

(µX−X0)2

)
.
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Parameter µα σα µβ σβ σ
C
lt (α,β)
n

σ
C
∗ (α,β)
n

Default 0.0 0.4 3.0 1.0 0.5 0.1
Wide 0.0 0.8 3.0 2.0 1.0 0.2
Thin 0.0 0.2 3.0 0.5 0.25 0.05

Table 2. Parameters of each Bayesian prior distribution used in the maximum likelihood fits to
the reduced pseudo-ITD Y

(
ν, z2) data. Default corresponds to fits with prior widths based on

reasonable physical intuition, while Wide (Thin) represent an increase (decrease) of each prior
width by a factor of two. The latter two cases are discussed in appendix A and offer a window
into the sensitivity of our conclusions on the imposed prior distributions. The prior width of each
expansion coefficient parameterizing the leading-twist component of Y

(
ν, z2) is denoted by σlt (α,β)

Cn
,

while σ∗ (α,β)
Cn

denotes the prior widths of the expansion coefficients parameterizing the O (a/ |z|),
O
(
z2Λ2

QCD
)
, O

(
z4Λ4

QCD
)
nuisance terms.

figure 5) a slight tension of at most 1-σ is observed for modest values of z/a. Most notable
is the presence of the highly precise platt = 1 and 2 data for each z/a ∈ [2, 8]. Both are
reflections of reasonably precise and extended plateaus in the two-point effective energies
(cf. figure 3) at T/a = 6. At fixed cost, the signal-to-noise ratio of lattice correlators decays
exponentially with the hadronic energy making these points critical for an efficient high
precision analysis. These two data points for each z/a are precise enough to heavily con-
strain the fits for all jackknife bins, thereby explaining why the resultant fit exhibits rather
small statistical fluctuations. Nonetheless, despite removing the entirety of the z/a = 1
data, it is encouraging to observe the functional dependence on ν is reproduced reasonably
well for the z/a = 1 data. The resulting parameters corresponding to the fit in figure 5 as
well as the L2 and χ2 per degree of freedom are gathered in table 3. In examining the fit
parameter correlations in figure 6, the leading-twist expansion coefficients C lt−,n appear to
strongly correlate with themselves, α and β. Modest correlation is also observed between
α, C lt−,0, and the systematic error terms. The correlation of the systematic error terms
with C lt−,0 is not surprising, as C lt−,0, though treated as a fitted parameter, fixes the valence
quark sum rule and hence is sensitive to overall changes in the leading-twist PDF that
arise from variations in the complete functional description of the reduced pseudo-ITD.
Otherwise, the systematic errors terms do not exhibit strong correlation with β or the
remaining leading twist terms. This feature suggests that the systematic error terms are
gathering distinct pieces of information that the leading twist terms are unable to capture,
and are not generating a large bias. There appears to be a strong anti-correlation between
the Caz−,n parameters. This feature may imply a cancellation occurring between the two
terms leading to the cumulative small effect seen in figure 7.

Using the fitted values of α, β and each expansion coefficient C∗ (α,β)
−,n , we utilize eq. 4.5

to map the leading-twist valence quark helicity PDF gq−/N (x) and the parameterized x-
space systematic contaminations in the right panel of figure 6. The parameterized gq−/N (x)
exhibits broad statistical consistency with the three global analysis results we consider:
NNPDFpol1.1 [12], JAM17 [23], and JAM22 [26], while for x→ 1 the soft approach of the PDF
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Figure 5. Fit to the real component of the reduced pseudo-ITD Y
(
ν, z2) obtained from summed

ratio fits over the time series T/a ∈ [6, 14] (dark error bars), and where the T/a ∈ [4, 14] summed
ratio fits provide a systematic error estimate (lightened error bars). The leading-twist, discretiza-
tion, twist-4, and twist-6 corrections have been expanded in Jacobi polynomials up to orders
(Nlt, Naz, Nt4, Nt6) = (3, 2, 2, 1). The data has been cut on platt ∈ [1, 6] and z/a ∈ [2, 8], with
data excluded from the fit presented in gray.

α β Clt
0 Clt

1 Clt
2 Caz

0 Caz
1 Caz

2 Ct4
0 Ct4

1 Ct4
2 Ct6

0 Ct6
1

q− −0.500(11) 1.892(70) 0.918(24) −0.547(51) −0.902(78) − 0.037(20) −0.015(5) − −0.055(22) −0.030(11) − 0.027(14)
q+ −0.547(11) 1.501(63) 0.747(32) −0.305(47) −0.762(96) 0.188(5) −0.094(6) − 0.014(13) 0.024(11) − 0.019(9) −

Table 3. Fit parameters associated with the representative fits to Re Y
(
ν, z2) and Im Y

(
ν, z2)

shown in figure 5 and figure 8, respectively. The figures of merit for the fit to Re Y
(
ν, z2) are

L2/d.o.f. = 0.265(131) and χ2/d.o.f = 0.280(126), while L2/d.o.f. = 0.756(241) and χ2/d.o.f =
0.659(233) for Im Y

(
ν, z2).

appears to favor the NNPDFpol1.1 and JAM22 results. This result, however, represents only
one possible solution for gq−/N (x) within the space of viable solutions, and thus exhibits
an uncertainty that belies the true uncertainty of the PDF. We address this quantitatively
in section 5.1 in the context of a model averaging prescription.

Indeed the x-space systematic contaminations illustrated in the right panel of figure 6
appear quite small. However, it is more instructive to view the parameterized discretization
and higher-twist effects as a function of the two Lorentz invariants of the setup — ν and
z2. In the upper left and upper right panels of figure 7, respectively, we visualize the
discretization and higher-twist nuisance effects isolated via the fit presented in figure 5.
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Figure 6. (Left) Parameter correlations obtained from Covij/
√

CoviiCovjj of the fit presented in
figure 5. (Right) Derived leading-twist valence helicity quark PDF (purple) and x-space contami-
nations compared with the recent global analyses NNPDFpol1.1 [12], JAM17 [23], and JAM22 [26].
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Figure 7. (Upper left) Discretization and (Upper right) net higher-twist nuisance terms
determined from the fit in figure 5 shown for z/a ∈ [1, 8]. The lower two panels compare each
nuisance effect (discretization at the left and higher-twist at the right) on an absolute scale with
the parameterized leading-twist reduced pseudo-ITD Re Y

(
ν, z2). Values of z/a excluded from

the fit are presented in gray.
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The discretization effect, denoted Re Yaz
(
ν, z2), is seen to be, maximally, on the order

of 1 − 2% for the shortest values of z/a included in the fit — namely, z/a = 2, 3, with
the strongest effect for ν ∼ 5 − 6. But given that the z/a = 2, 3 data extend up to
Ioffe-times of ν ∼ 2 − 3.5 for the momenta at our disposal, the fit would suggest a short-
distance discretization effect at the sub-percent level (cf. lower left panel of figure 7). We
do note that despite the apparent smallness of this effect, it is an important one to control
and remove, as the effect, if left unaccounted for, would impart a statistically significant
shift in the precise low-p data. The net higher-twist effect on the other hand, denoted
Re Yt4,t6 (ν, z2), shown in the upper right panel of figure 7 is observed to be small but
non-zero across all Ioffe-times for all 2 ≤ z/a < 8; it is only for ν & 4 that a non-trivial
higher-twist effect is detected by the fit for z/a & 2. By design the ratio in eq. (2.12)
will cancel the leading higher twist contributions in the small ν limit, so it is reassuring
to find the parameterized power corrections in z2 to be numerically small over a broad
range of Ioffe-time. However, unlike the discretization effect, the parameterized leading-
twist and power correction signals become comparable in precisely the interval for which the
O
(
z2nΛ2n

QCD

)
nuisance effects are largest. As illustrated in the lower right panel of figure 7,

for ν & 8 the leading-twist and O
(
z2nΛ2n

QCD

)
effects are indeed of similar magnitude. Since

the maximal reach in Ioffe-time of this calculation is for νmax ' 9.42, we can be assured
the Re Y

(
ν, z2) signal is dominated by the leading-twist contribution we aim to isolate,

with the power corrections a relatively small effect that we parameterize and remove. That
said, just as different experimental processes are subject to different power corrections
when analyzed in a factorization framework, it is of crucial importance to quantify where
the power corrections of the reduced pseudo-ITD become appreciable. Despite the naïve
ab-initio expectations from the size of the scale z2, empirically our data is consistent with
the NLO evolution formula with small and effectively zero power corrections.

In the statistical errors of this single fit, a feature common to many previous PDF
analyses can be seen. The statistical errors shrink around x ∼ 0.1. The low x region
is where the inverse problem is unreliable according to mock data studies [105]. The
individual jackknife samples will have an upward (downward) fluctuation for x above this
point and a corresponding downward (upward) fluctuation after this point creating the
apparent statistical precision around x ∼ 0.1. This feature, is created by correlations
between the parameters to satisfy the very precise constraints of the data at low Ioffe
time. In other words, the precise low ν data puts a strong constraint on the value of the
lowest moment of the PDF. For this model of the PDF to enforce that constraint while
fixing the well-controlled large x region, the PDF must have corresponding upward and
downward fluctuations above and below x ∼ 0.1. The location of this pinched point will
be model dependent. In the subsequent model averaging procedure of section 5.1, these
model dependent features will be seen to average away. This demonstrates the importance
of studying many solutions to the inverse problem simultaneously.

In figure 8 a representative fit to Im Y
(
ν, z2) is illustrated, where the data have

again been cut on platt ∈ [1, 6] and z/a ∈ [2, 8], and the basis of Jacobi polyno-
mials describing the leading-twist and nuisance terms have been truncated at orders
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Figure 8. Fit to the imaginary component of the reduced pseudo-ITD Y
(
ν, z2) obtained from

summed ratio fits over the time series T/a ∈ [6, 14] (dark error bars), and where the T/a ∈ [4, 14]
summed ratio fits provide a systematic error estimate (lightened error bars). The leading-twist,
discretization, twist-4, and twist-6 corrections have been expanded in Jacobi polynomials up to
orders (Nlt, Naz, Nt4, Nt6) = (3, 2, 2, 1). The data has been cut on platt ∈ [1, 6] and z/a ∈ [2, 8],
with data excluded from the fit presented in gray.

(Nlt, Naz, Nt4, Nt6) = (3, 2, 2, 1). As in the fit to Re Y
(
ν, z2), the most precise platt = 1

data for each z/a ∈ [2, 8] acts as the principal constraint for the candidate model, thereby
limiting its statistical fluctuations estimated via jackknife. For this model, there is a ten-
sion with the platt = 3, 5 data points for most z/a, where the former is the highest momenta
we consider without the use of phasing. Given that this is only a single model within a
large space of models that regularize the inverse problem we face, it is not unreasonable to
expect this tension to soften following a model averaging prescription. The parameters of
this fit to Im Y

(
ν, z2) are given in table 3. Turning to the fit parameter covariance of this

fit, shown in figure 9, similarly to the real component, there is a strong correlation amongst
the leading twist parameters and a weaker correlation between the leading-twist and the
systematic correction parameters — albeit the correlations between the leading-twist and
systematic correction terms are smaller for Im Y

(
ν, z2) than for Re Y

(
ν, z2).

The right panel of figure 9 shows the modeled leading-twist gq+/N (x) PDF and its
systematic contaminating counterparts in x-space. Encouraging alignment is seen with the
NNPDFpol1.1 [12] and JAM22 [26] global analyses for x & 0.5, with deviations apparent for
smaller values of x, where model biases from the limited range of ν are known to be largest.
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Figure 9. (Left) Parameter correlations obtained from Covij/
√

CoviiCovjj of the fit presented in
figure 8. (Right) Derived leading-twist CP -odd helicity quark PDF (purple) and x-space contami-
nations compared with the recent global analyses NNPDFpol1.1 [12], JAM17 [23], and JAM22 [26].

As for the gq−/N (x) determination above, this particular model does not incorporate the
systematic fluctuations induced by the space of viable models capable of describing the
Im Y

(
ν, z2) data and variable prior widths for each fit parameter. The latter is explored

in appendix A, wherein the PDFs are found to be stable as greater flexibility of the prior
distributions is allowed.

The suggestion by the fit in figure 8 of the presence of O (a/ |z|) effects in Im Y
(
ν, z2) is

underscored in the upper left of figure 10, where an appreciable effect is observed for all ν ∈
[0, 9.42] for which we have data. The effect is especially pronounced and statistically well-
determined for ν ∼ 4, where, seen in the lower left of figure 10, it enters as a ∼ 10% contam-
ination to the leading-twist signal. Moreover, that this discretization effect, Im Yaz

(
ν, z2),

is considerably better resolved than in the real component case is reason alone to understand
why the imaginary component appears to be subject to greater systematic contamination.
Regardless, our parameterization has proven essential to removing this well-determined,
short-distance effect that, if neglected, would have necessarily skewed the gq+/N (x) determi-
nation. The parameterized higher-twist effects Im Yt4,t6 (ν, z2), shown in the upper right of
figure 10, are again numerically small and generally consistent with zero for z/a . 3, but do
pollute Im Y

(
ν, z2) with an opposite sign compared to the parameterized Re Yt4,t6 (ν, z2)

effect above. Relative to the leading-twist component, seen in the lower right of fig-
ure 10, the parameterized Im Yt4,t6 (ν, z2) effect has the potential to spoil the extraction
of gq+/N (x) within the larger regions of Ioffe-time we isolate (e.g. ν ∈ [4, 9.42]). However it
is within the small-ν region that the precision of the Im Y

(
ν, z2) data works to our benefit

— the precise small-platt, large-z data help to quantify and remove these z2 effects.

5.1 Model selection and averaging

The fit to any one model of the PDF likely carries a systematic uncertainty that is unde-
termined. Despite the description of the reduced pseudo-ITD via orthogonal Jacobi poly-
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Figure 10. (Upper left) Discretization and (Upper right) net higher-twist nuisance terms deter-
mined from the fit in figure 8 shown for z/a ∈ [1, 8]. The lower two panels compare each nuisance
effect (discretization at the left and higher-twist at the right) on an absolute scale with the param-
eterized leading-twist reduced pseudo-ITD Im Y

(
ν, z2). Values of z/a excluded from the fit are

presented in gray.

nomials, the restriction to a truncated set, for both the leading-twist and nuisance terms,
exposes a combinatorially large number of distinct functions capable of modeling the data.
Selection of any particular model then manifestly carries bias that may skew any quantita-
tive conclusions when considered in isolation. The need for a prescription to average several
models together, and in so doing reduce the bias of any individual model, is apparent; this
need is reinforced by recognizing that a particular cut on the reduced pseudo-ITD data
also introduces bias, as distinct cuts may emphasize contrasting subsets of models.

Among the many prescriptions that can be utilized to create an average model de-
scription, one we explore is the Akaike Information Criterion (AIC) [216]. For any given
model function Fi, the AIC prescription assigns a factor ai = 2L2

i + 2pi, where L2
i is the

negative logarithm of the posterior distribution of the model Fi with pi ∈ Z+ parameters.
The factor ai, or AIC (Fi), is then used to assign a weight, or probability, to Fi among the
space of all models. In scenarios for which the number of data points ni fit by a model
Fi becomes small or pi approaches ni, the AIC prescription is known to be biased in its
estimate. To account for these scenarios, the corrected AIC [217], or AICc for short, is
implemented where ai 7→ Ai = ai + 2pi(pi+1)

ni−pi−1 . Using the AICc prescription, which we im-
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Figure 11. Results of the AICc prescription applied to Re Y
(
ν, z2) cut on platt ∈ [1, 6] and

z/a ∈ [2, 8], where our matrix element fitting systematic (3.8) is considered. (Left) The AICc
averaged leading-twist valence helicity quark PDF (purple) and model-averaged x-space distribu-
tions corresponding to an O (a/ |z|) discretization (orange) and O

(
z2nΛ2n

QCD
)
higher-twist (brown)

effects. Comparisons continue to be made with select global analyses. (Right) Histogram of AICc
weights associated with all models considered in the data cut.

plement in this work, a model-averaged FAIC is obtained through a weighted sum of each
model in consideration:

FAIC =
∑
i

wiFi, with wi =
e−Ai/2(∑N
i=1 e

−Ai/2
). (5.1)

To account for the variation in model choices as well as the variance of a chosen model,
the variance of the AICc average is expressed as the weighted sum of the variance of a
particular model, var (Fi), plus its squared difference from the AICc model average FAIC:

var (FAIC) =
∑
i

wi

[
var (Fi) +

(
Fi − FAIC

)2
]
. (5.2)

Since the AICc weights wi depend on the exponential of the AICc value Ai, it follows models
with the smallest L2 values, that do not over-fit the data, are favored. Although we will
consider applying the AICc prescription only to PDFs modeled with Jacobi polynomials,
a more robust implementation would consider additional functional forms on the interval
x ∈ [0, 1], including those common from global analyses [209–212] or even neural network
parameterizations [218, 219]. This possibility is reserved for a future work.

Within the platt = [1, 6] and z/a ∈ [2, 8] data cuts, to construct an AICc model
average estimate for both gq−/N (x) and gq+/N (x) we consider the following variations
in the orders of truncation for the Jacobi polynomials: Nlt ∈ [1, 5], Naz ∈ [0, 2], Nt4 ∈
[0, 2], and Nt6 ∈ [0, 1]. The resulting AICc model averaged leading-twist gq−/N (x) and
gq+/N (x) PDFs are shown in the left-hand panels of figure 11 and figure 12, respectively,
while the right-hand panels depict the histogram of weights determined from the AICc
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Figure 12. Results of the AICc prescription applied to Im Y
(
ν, z2) cut on platt ∈ [1, 6] and

z/a ∈ [2, 8], where our matrix element fitting systematic (3.8) is considered. (Left) The AICc
averaged leading-twist CP -odd helicity quark PDF (purple) and model-averaged x-space distribu-
tions corresponding to an O (a/ |z|) discretization (orange) and O

(
z2nΛ2n

QCD
)
higher-twist (brown)

effects. Comparisons continue to be made with select global analyses. (Right) Histogram of AICc
weights associated with all models considered in the data cut.

procedure. We observe that only a handful of models contribute appreciably to the AICc
averages, while most have negligible impact. In fact, for both gAIC

q−/N
(x) and gAIC

q+/N
(x) the

(Nlt, Naz, Nt4, Nt6) = (3, 2, 2, 1) model was found to dominate the AICc average — hence
why this model was presented in figure 5 and figure 8. When comparing the AICc model
average gAIC

q−/N
(x) in figure 11 with the selected gq−/N (x) fit in figure 6, it is apparent much

of the x & 0.5 information originates from the (Nlt, Naz, Nt4, Nt6) = (3, 2, 2, 1) model,
while the considered models tend to differ in their descriptions of the small-x regime; the
latter being evident in the increased uncertainty of gAIC

q−/N
(x) for that region of x. The

resulting gAIC
q−/N

(x) is found to be in good agreement with the global analysis results we
consider, notably the NNPDFpol1.1 [12] and JAM22 [26] datasets at small-x and large-x,
respectively. In an effort to explore the stability of the nuisance effects we attempt to
parameterize, the AICc prescription was also applied to the O (a/ |z|) and O

(
z2nΛ2n

QCD

)
effects. Seen in figure 11, it is clear Re Y

(
ν, z2) is subject to very weak discretization and

higher-twist nuisance effects that are generally stable with respect to model variations —
albeit the higher-twist effects exhibit a greater variance around zero. As noted earlier in
the present section, the increased variability of the leading-twist signal as a result of the
AICc prescription causes the pinched errors of the (Nlt, Naz, Nt4, Nt6) = (3, 2, 2, 1) model
PDF around x ∼ 0.1 (cf. figure 6) to vanish. This highlights the importance of considering
as large a space of models as feasible when attempting to extract a PDF, for any one
model choice may lead to erroneous conclusions concerning the size and manner of the
leading-twist and systematic contamination signals.

Turning attention to the gAIC
q+/N

(x) result in figure 12, many structural similarities are
observed when compared with the (Nlt, Naz, Nt4, Nt6) = (3, 2, 2, 1) model considered in
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Figure 13. Derived gq/N
(
x, µ2) /gA (µ2) (left) and gq/N

(
x, µ2) /gA (µ2) (right) PDFs obtained

from the AICc prescription at an input scale µ2 = 4 GeV2 compared with gq/N
(
x, µ2) and

gq/N
(
x, µ2) at the same scale isolated in the global analyses NNPDFpol1.1 [12], JAM17 [23], and

JAM22 [26].

isolation (cf. right panel of figure 9). Just as for the gAIC
q−/N

(x) PDF, the AICc proce-
dure effectively removes the pinched errors of gq+/N (x) seen for x ∼ 0.2 in figure 9, and
indicates greater variability between any particular model of gq+/N (x) for x . 0.5; the
latter being a reflection of tension between our models and the platt = 3, 5 data. Fur-
thermore, the model-averaged gAIC

q+/N
(x) is inline with the global analyses we consider for

x & 0.4, especially JAM22 [26]. Although any one model of gq+/N (x) suggests the presence
of O

(
z2nΛ2n

QCD

)
nuisance effects, the AICc prescription indicates these effects are largely

model-dependent. This model-dependence is seen by the consistency with zero of the AICc
higher-twist nuisance effects, while the non-negligible presence in any one model manifests
as broad variance around zero in the AICc average. Given the size of the discretization
effects parameterized by the fit to Im Y

(
ν, z2) shown in the left panels of figure 10 and

that model’s dominant weight in the AICc procedure, it is not surprising to find strong
support for a short-distance discretization effect after the AICc average. Indeed a more
careful study of why the imaginary component of the reduced pseudo-ITD is subject to
greater systematic contamination is warranted.

With the AICc model averaged estimates of gq−/N
(
x, µ2) /gA (µ2) and

gq+/N (x) /gA
(
µ2) in hand, we determine the non-singlet quark and anti-quark he-

licity PDFs via gq/N
(
x, µ2) /gA (µ2) =

[
gq−/N (x) + gq+/N

(
x, µ2)] /2gA (µ2) and

gq̄/N
(
x, µ2) /gA (µ2) =

[
gq+/N

(
x, µ2)− gq−/N (x, µ2)] /2gA (µ2), respectively. These

distributions are illustrated with the corresponding NNPDFpol1.1, JAM17, and JAM22 deter-
minations in figure 13. The non-singlet quark helicity PDF is seen to be structurally quite
similar to the results from global analyses, albeit with less divergent behavior as x → 0,
which is driven by the same behavior in the gAIC

q+/N

(
x, µ2) result. The non-singlet anti-quark

helicity PDF on the other hand, is broadly quite small, favoring two changes in sign for
0.6 . x ≤ 1, while being somewhat negative for 0.1 . x . 0.45. Qualitatively it is straight-
forward to discern that the first Mellin moment of gAIC

q̄/N

(
x, µ2) /gA (µ2) will be small, indi-

cating a marginal contribution of the intrinsic light-quark sea to the overall nucleon spin.
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6 Conclusions

The quark helicity PDF, together with the unpolarized and transversity quark PDFs, is es-
sential for a complete characterization at leading-twist of the collinear structure of a hadron
involved in an inclusive reaction. Whereas the isovector quark helicity PDFs of the nucleon
have been calculated in lattice QCD, we have presented the first such calculation that lever-
ages the pseudo-distribution formalism to perturbatively match renormalization group in-
variant ratios onto the MS helicity PDF. In this work, we have presented our computation of
gq−/N

(
x, µ2) /gA (µ2) and gq+/N (x, µ2) /gA (µ2) at an input scale µ2 = 4 GeV2, and found

encouraging agreement with an array of global analyses. Moreover, our quoted uncertainty
provides for the tantalizing prospect of reducing the uncertainty of the quark helicity PDFs
obtained from global analyses when analyzed in a framework akin to refs. [140, 155, 220].
A dedicated, future calculation of the scale-dependent axial charge gA

(
µ2) will render the

correct overall normalization of our isolated isovector quark helicity PDFs.
We have highlighted the presence of an invariant amplitude that contributes to the

space-like matrix elements we have computed, but whose dynamics on the light-cone is
absent. This additional amplitude thus enters as an additional source of polynomial z2

corrections that has the potential to sully a reliable determination of the PDF, especially
as larger Wilson line lengths are employed to map the Ioffe-time dependence of the lead-
ing pseudo-ITD. Through application of the distillation spatial smearing kernel and our
construction of nucleon interpolators that transform irreducibly under the double-cover
octahedral group ODh and its little groups, we proposed a prescription, based on a singu-
lar value decomposition (SVD), for disentangling the invariant amplitudes that contribute
to matrix elements of the non-local quark bilinear operator we are interested in. Due
to an unavoidable finite mixing that exists for the axial vector components that are not
collinear to the Wilson line direction, we were unable to establish, in the case of quark
helicity, a minimally constrained or over-constrained system of equations to separate the
leading pseudo-ITD from the contaminating amplitude (referred to as R

(
ν, z2) in eq. 2.2).

Regardless, by abandoning the use of correlator projectors and leaning into the group the-
oretic infrastructure codified by our interpolator construction paradigm via construction
of subduced nucleon helicity spinors, we populated a kinematic matrix whose elements are
contractions of each subduced spinor with the Lorentz structures associated with the lead-
ing and contaminating amplitudes. Since sufficient constraints could not be established
(i.e. finite mixing) to separate the leading pseudo-ITD from the contaminating ampli-
tude, we explicitly set to null the kinematic matrix elements that were associated with
the contaminating amplitude. By construction, the effect of the contamination was then
incorporated into a single amplitude deemed Ỹ

(
ν, z2). Given a kinematic matrix and fitted

subduced matrix elements, a trivial application of an SVD solved for Ỹ
(
ν, z2). Our choice

to parameterize the derived reduced pseudo-ITD Y
(
ν, z2) in a basis of Jacobi polynomials

then afforded the opportunity to account for the additional z2 contamination arising from
R
(
ν, z2) embedded in Ỹ

(
ν, z2), since this effect is no worse than the corrections to our

factorization relationship. Though the prescription we established herein could not rigor-
ously separate R

(
ν, z2) from the leading pseudo-ITD, the utility of this approach bears
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considerable weight for future PDF calculations within the flavor singlet and gluonic sec-
tors, as well as in the off-forward regime relevant for the extraction of generalized parton
distributions, when several invariant amplitudes are present.

In line with contemporary HadStruc calculations of quark and gluon PDFs, we have
leveraged a basis of Jacobi polynomials that span the interval x ∈ [0, 1] to model the
functional dependence of the helicity PDFs and any systematic contamination, such as
higher-twist and discretization errors. As the expansion of the PDFs and x-dependent
contaminations in Jacobi polynomials was truncated at a finite order, the potential exists
for model bias to afflict any particular extraction treated in isolation. To minimize this
bias and allow the information content of the data to drive model selection, we performed
a large number of parametric fits of the reduced pseudo-ITD data where the order of
truncation for the Jacobi polynomials describing the leading-twist, discretization, and
higher-twist effects were varied simultaneously with cuts on the extremal momenta and
displacements utilized in this calculation. The results of these fits were combined using
the corrected Akaike Information Criterion, or AICc, yielding an appropriate estimate of
the statistical and systematic uncertainty in the extracted quark helicity PDFs. While
the AIC averaging procedure applied to so many models may have removed some of the
biases, future analyses could combine not just Jacobi polynomial parameterizations but
any other model for the PDF or its moments for an improved control of any residual model
biases on the final results. The AICc procedure, curiously, found a manifest suppression
of higher-twist effects in the computed reduced pseudo-ITD data, yet a strong indication
of a short-distance discretization effect. This observation alone warrants continued study
of the leading-twist PDFs on lattice ensembles characterized by finer lattice spacings.
Finally, the non-singlet quark and anti-quark helicity PDFs were obtained from the AICc
averaged gq−/N (x) and gq+/N (x) PDFs. The non-singlet quark helicity PDF gq/N (x)
was found to be generally consistent with extractions from global analyses, with a less
divergent approach to x → 0. The non-singlet anti-quark helicity PDF gq̄/N (x), on the
other hand, was observed to be consistent, or very nearly so, with recent global analysis
extractions for all values of the parton momentum fraction.
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A Stability of PDF results with variable prior widths

Identifying the most likely set of parameters of some model given data and prior infor-
mation, as discussed in section 4, is formalized by maximizing the posterior distribution.
The introduction of physically motivated prior information is a delicate procedure that has
the potential to unnecessarily constrain the space of viable solutions. In order to gauge
the stability of our reported quark helicity PDF results in section 5 and their sensitivity
to the selected Default priors, we consider again the L2 minimization procedure for the
(Nlt, Naz, Nt4, Nt6) = (3, 2, 2, 1) model of both Re Y

(
ν, z2) and Im Y

(
ν, z2), except with

distinct prior information.
Since the central values of each Default prior listed in table 2 enforce either the Jacobi

polynomial orthogonality or hierarchy between the leading-twist and systematic contami-
nations, and are otherwise unknown a priori, we elect to maintain each central value. To
explore the sensitivity of our results on the chosen priors, we consider, for brevity, two
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Figure 14. Variability of extracted (left) gq−/N (x) and (right) gq+/N (x) PDFs when the Bayesian
prior widths of the model (Nlt, Naz, Nt4, Nt6) = (3, 2, 2, 1) fit to Y

(
ν, z2), cut on platt ∈ [1, 6] and

z/a ∈ [2, 8], are doubled and halved. The matrix element fitting systematic is included for this
comparison.

cases in which the prior widths of each model parameter are varied. The first case doubles
the Default prior widths, while the second case halves the Default prior widths, to which
the cases are referred to as Wide and Thin, respectively. The adjusted widths are gathered
in table 2. To avoid obfuscation of the extracted PDF’s dependence on the priors, we
again cut on the Y

(
ν, z2) data which includes the matrix element fitting systematic (3.8)

according to platt ∈ [1, 6] and z/a ∈ [2, 8].
In figure 14 the dependence of the extracted gq−/N (x) and gq+/N (x) PDFs on the

re-scaled prior distributions is illustrated. In each case, the gq−/N (x) and gq+/N (x) PDFs
obtained using Wide and Thin priors are normalized by the central value of the corre-
sponding PDF obtained using the Default priors — denoted respectively as gref

q−/N
(x) and

gref
q+/N

(x). Evidently reducing the widths of each prior distribution by a factor of two yields
gq−/N (x) and gq+/N (x) PDFs (red in figure 14) that are in tension with the Default PDF
determinations across the x-space region 0 ≤ x . 0.6. The deviations in the central values
of the PDFs observed for x . 0.6 range between ∼ 5 − 10% and ∼ 5 − 30%, respectively,
for gq−/N (x) and gq+/N (x). These findings are unsurprising and highlight the importance
of flexible prior distributions, as the amount of variability any model can assume in an L2

optimization process is inextricably linked to the model’s prior distributions.
It is especially encouraging to find that the q−/N (x) and gq+/N (x) distributions are

stable as the widths of the prior distributions are doubled, shown as blue in figure 14.
Indeed the central values of the Wide prior determined PDFs differ slightly from the Default
determinations for x . 0.5 — the deviations being on the order of a few percent for
0.2 . x . 0.5, and only appreciating in size for x . 0.2 where we expect the results from
the inverse problem are least reliable anyway. However, unlike the PDFs determined with
Thin priors, the statistical uncertainties of the PDFs obtained with Wide priors are entirely
in line with the central values of the PDFs obtained with the Default priors. This indicates
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Figure 15. Variability of extracted (left) gq−/N (x) and (right) gq+/N (x) PDFs when the reduced
pseudo-ITD Y

(
ν, z2) is cut on platt ∈ [1, 6], z/a ∈ [1, 8] and platt ∈ [2, 6], z/a ∈ [2, 8]. The

model (Nlt, Naz, Nt4, Nt6) = (3, 2, 2, 1) is used for this comparison, and the matrix element fitting
systematic remains in consideration.

the Default prior widths we considered in our initial attempts to extract gq−/N (x) and
gq+/N (x) in section 5 were not too constraining so as to bias the PDF determinations.
This bolsters fidelity in our PDF determinations presented in section 5.

B Stability of PDF results with data cuts

In the spirit of exploring the sensitivity of our PDF results on the prior distributions, we use
this appendix to investigate any shifts in our PDF determinations as variable cuts on the
reduced pseudo-ITD Y

(
ν, z2) are considered. For brevity we consider two cases: no cuts

on the data, namely platt ∈ [1, 6] and z/a ∈ [1, 8], and platt ∈ [2, 6] and z/a ∈ [2, 8], which
excludes the most precise data from our analysis. Application of the AICc prescription
within each of these cuts found that the (Nlt, Naz, Nt4, Nt6) = (3, 2, 2, 1) model receives the
highest weight in determining each cut’s model-averaged PDF.

In figure 15 the dependence of the PDFs gq−/N (x) and gq+/N (x) on the chosen cuts is
illustrated. As in appendix A, any deviations from the PDFs reported in section 5, denoted
again as gref

q±/N
(x), are emphasized through normalization of each PDF by gref

q±/N
(x). It

is clear Y
(
ν, z2) that includes the matrix element fitting systematic allows for sufficient

flexibility such that the PDFs are essentially invariant under these cuts.
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