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1 Introduction

Magnetic monopole and axion are two of the most interesting and mysterious candidates
of physics beyond the Standard Model (SM). Magnetic charges were initially motivated by
the consideration of electric-magnetic symmetry in classical electromagnetism and Dirac
suggested the existence of magnetic monopole in quantum theory in 1931 [1]. The Dirac
monopole was also generalized to those arising from QCD [2], the grand unification the-
ory [3, 4] and the electroweak theory [5]. Axions were introduced to solve the strong CP
problem after the spontaneously breaking of Peccei-Quinn (PQ) symmetry [6–13] and have
received a wide interest in both theoretical and experimental aspects. Both the QCD ax-
ion [14–17] (see ref. [18] for a recent review) and axion-like particles (ALPs) [19, 20] can
play as dark matter (DM) through the misalignment mechanism [21, 22].

In 1979, Witten pointed out that a non-zero vacuum angle θ in the CP violating term
θFµνF̃µν introduces an electric charge proportional to θ for magnetic monopoles [23]. In
axion theories, this Witten effect implies the electromagnetic interactions between axions
and magnetic monopoles due to the axion-photon coupling gaγγa ~E · ~B. This connection was
first derived by Fischler et al. under the semi-classical quantization of electromagnetism [24]
and was proposed to solve various cosmological problems in recent years [25–29]. However,
to properly quantize the axion-dyon dynamics in quantum field theory, one needs to utilize
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the quantum electromagnetodynamics (QEMD) built by Schwinger and Zwanziger [30–32].
QEMD introduces two four-potentials (Aµ and Bµ) and two U(1) gauge groups (U(1)E
and U(1)M) to describe photons as well as electric and magnetic charges. Recently, based
on quantization in QEMD, ref. [33] constructed a generic axion-photon Lagrangian in
the framework of low-energy axion effective field theory (EFT). It turns out that the
interactions between axions and magnetic monopoles do exist in the absence of the Witten
effect. More anomalous axion-photon interactions and couplings (gaAA, gaBB and gaAB)
respecting shift symmetry arise in contrary to the ordinary axion EFT gaγγaF

µνF̃µν in
the SM framework. As a consequence of the above generic axion-photon Lagrangian, the
classical equations of motion further modify the conventional axion Maxwell equations [34].

This framework predicts new phenomena induced by the new electromagnetic couplings
of axions. Nowadays, various non-cavity haloscope experiments are proposed to search for
the ALPs with small masses ma . 1 µeV and larger Compton wavelengths λa than the
physical scale of the detectors, such as ABRACADABRA [35, 36], ADMX SLIC [37], DM
Radio [38], BASE [39] and others. They search for the axion-induced oscillating magnetic
field in the presence of a static magnetic field in a solenoid magnet [40] or an external
electric field [41–43], using an electronic LC circuit [44, 45]. There also exist studies of the
searches for axion-induced electric field [46, 47]. Nevertheless, to examine the detection of
such low-mass ALPs, one needs to first solve the relevant axion Maxwell equations. In this
work, inspired by the generic axion-photon couplings, we explore the solutions to QEMD-
induced Maxwell equations and discuss the possibly new haloscope search strategies for
the new axion couplings.

This paper is organized as follows. In section 2, we introduce the anomalous axion-
photon interactions in QEMD and the modified Maxwell equations. In section 3, we solve
the Maxwell equations and give the axion induced electric and magnetic fields for exper-
imental searches. The numerical results of dominant axion induced fields are shown in
section 4. Possible axion search experiments are also discussed. Our conclusions are drawn
in section 5.

2 The modified Maxwell equations from axion-photon interactions in
QEMD

2.1 The anomalous axion-photon interactions in QEMD

Ref. [33] builds the generic low-energy axion-photon EFT in the framework of QEMD. We
briefly introduce the anomalous axion-photon interactions in QEMD below.

In the local QEMD, the photon is described by two four-potentials Aµ and Bµ with
opposite parities. The U(1) gauge group of QEMD correspondingly becomes U(1)E×U(1)M
which inherently introduces both electric and magnetic charges. The Lagrangian for the
anomalous interactions between axion a and photon in QEMD is [33]

L ⊃ −1
4gaAA a tr[(∂ ∧A)(∂ ∧ Ã)]− 1

4gaBB a tr[(∂ ∧B)(∂ ∧ B̃)]

−1
2gaAB a tr[(∂ ∧A)(∂ ∧ B̃)] , (2.1)
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where (∂ ∧ X)µν ≡ ∂µXν − ∂νXµ for four-potential Xµ = Aµ or Bµ, and (∂ ∧ X̃)µν ≡
εµνρσ(∂ ∧ X)ρσ/2 with ε0123 = −1 as the Hodge dual tensor. The first two dimension-
five operators are CP-conserving axion interactions. Their couplings gaAA and gaBB are
governed by the U(1)PQU(1)2

E and U(1)PQU(1)2
M anomalies, respectively. As Aµ and Bµ

have opposite parities, the third operator is CP-violating one and its coupling gaAB is
determined by the U(1)PQU(1)EU(1)M anomaly. It is analogous to the interaction between
electromagnetic field and a scalar φ with positive parity φFµνFµν [48]. The electromagnetic
field strength tensors Fµν and F̃µν are then introduced in the way that

n · F = n · (∂ ∧A) , n · F̃ = n · (∂ ∧B) , (2.2)

where nµ = (0, ~n) is an arbitrary fixed spatial vector.
Taking care of the above anomalies, one can calculate the coupling coefficients as

gaAA = Ee2

4π2vPQ
, gaBB = Mg2

0
4π2vPQ

, gaAB = Deg0
4π2vPQ

, (2.3)

where e is the unit of electric charge, g0 is the minimal magnetic charge with g0 = 2π/e
in the Dirac-Schwinger-Zwanziger (DSZ) quantization condition, and vPQ is the U(1)PQ
symmetry breaking scale. E(M) is the electric (magnetic) anomaly coefficient and D

is the mixed electric-magnetic CP-violating anomaly coefficient. They are computed by
integrating out heavy PQ-charged fermions with electric and magnetic charges. As the DSZ
quantization condition indicates g0 � e, we have the scaling of the axion-photon couplings
as gaBB � |gaAB| � gaAA. We summarize the details of QEMD and the calculation of the
anomaly coefficients in appendix.

2.2 The modified Maxwell equations

Given the above axion-photon interactions as well as the free Lagrangian, one can derive
the classical equations of motion. The conventional axion-electrodynamics is then modified.
The axion modified Maxwell equations are newly obtained as [33]

~∇× ~Ba −
∂ ~Ea
∂t

= gaAA

(
~E0 × ~∇a− ∂a

∂t
~B0

)
+ gaAB

(
~B0 × ~∇a+ ∂a

∂t
~E0

)
, (2.4)

~∇× ~Ea + ∂ ~Ba
∂t

= −gaBB
(
~B0 × ~∇a+ ∂a

∂t
~E0

)
− gaAB

(
~E0 × ~∇a− ∂a

∂t
~B0

)
, (2.5)

~∇ · ~Ba = −gaBB ~E0 · ~∇a+ gaAB ~B0 · ~∇a , (2.6)
~∇ · ~Ea = gaAA ~B0 · ~∇a− gaAB ~E0 · ~∇a , (2.7)

and the new Klein-Gordon equation is

(�+m2
a)a = (gaAA + gaBB) ~E0 · ~B0 + gaAB( ~E2

0 − ~B2
0) , (2.8)

where ~E0 and ~B0 are static electric and magnetic fields in a detector, and ~Ea and ~Ba are
axion-induced electric and magnetic fields. Note that one has expanded the electromagnetic
field up to the first order of axion-photon couplings and omitted the parts of ordinary

– 3 –



J
H
E
P
0
3
(
2
0
2
3
)
0
8
8

Maxwell equations in the above equations. When taking gaBB = gaAB = 0 and replacing
gaAA by the conventional coupling gaγγ , the above equations restore to the conventional
axion modified Maxwell equations [34].

Based on eq. (2.3), assuming the coefficients E ' M ' |D|, we find gaAA/gaBB '
(e/g0)2 ' 10−4 and |gaAB|/gaBB ' e/g0 ' 10−2. Also, the axion dark matter has a typical
local velocity vDM = |~va| ∼ 10−3c in the Milky Way and then one has |~∇a| ∼ 10−3∂a/∂t.
As a result, keeping only the first three dominant terms simplifies the above Maxwell
equations. The simplified Maxwell equations become

~∇× ~Ba −
∂ ~Ea
∂t

= 0 , (2.9)

~∇× ~Ea + ∂ ~Ba
∂t

= −gaBB
(
~B0 × ~∇a+ ∂a

∂t
~E0

)
+ gaAB

∂a

∂t
~B0 , (2.10)

~∇ · ~Ba = 0 , (2.11)
~∇ · ~Ea = 0 . (2.12)

These are the wave equations that we will solve in next section.

3 Solutions to axion electromagnetodynamics

3.1 Case I: ~B0 6= 0 and ~E0 = 0

The ordinary haloscope experiments adopt an external magnetic field ~B0 6= 0 but vanishing
electric field ~E0 = 0. In contrary to the conventional axion modified Maxwell equations,
eq. (2.10) induces an effective magnetic current: ~jmeff = gaBB ~B0 × ~∇a − gaAB ∂a

∂t
~B0. After

applying the curl differential operator to the eqs. (2.9) and (2.10), in the case with ~B0 6= 0
and ~E0 = 0, one can obtain

∇2 ~Ba −
∂2 ~Ba
∂t2

= gaBB ~B0 × ~∇∂a
∂t
− gaAB

∂2a

∂t2
~B0 , (3.1)

∇2 ~Ea −
∂2 ~Ea
∂t2

= gaBB(~∇a · ~∇) ~B0 − gaAB
∂a

∂t
~∇× ~B0 . (3.2)

To solve eqs. (3.1) and (3.2), we take a simple geometry of a long solenoid with a radius
R and a static magnetic field along the z direction in cylindrical coordinates (ρ, φ, z). The
magnetic field around the solenoid is parameterized as ~B0 = θ(R−ρ)B0ẑ with the Heaviside
theta function θ(x). Then, eq. (3.2) becomes

∇2 ~Ea −
∂2 ~Ea
∂t2

= −
(
gaBB

∂a

∂ρ
ẑ + gaAB

∂a

∂t
φ̂

)
B0δ(ρ−R) . (3.3)

The axion field is given by a(t, ~r) = a0 cos(ωat − ~ka · ~r) with ωa = ma and ~ka = ma~va.
We parameterize the direction of axion in spherical coordinates with the angles shown in
figure 1 and then we have ~va = va(sin θ cos(ξ − φ), sin θ sin(ξ − φ), cos θ).
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Figure 1. The coordinates of axion ~va and ~r.

Now we follow ref. [49]1 to solve eq. (3.3) in φ direction and propose the solution as
~Ea = UEφ(ρ)eiωatφ̂. After inserting this solution form into the φ̂ component of eq. (3.3),
we obtain the following Bessel equation[

∂2
ρ′ + 1

ρ′
∂ρ′ +

(
1− 1

ρ′2

)]
UEφ(ρ′) = −igaABa0B0δ(ρ′ − ωaR) , (3.4)

where ρ′ = ωaρ. With the boundary conditions at ρ′ = 0 and ρ′ = ωaR, the solutions to
the above equation are Bessel functions of order one

UEφ(ρ′) =
{
aEφJ1(ρ′), ρ′ < ωaR ,

bEφH
+
1 (ρ′), ρ′ > ωaR ,

(3.5)

where J1(ρ′) is the spherical Bessel function of the first kind and H+
1 (ρ′) is the spherical

Hankel function of the first kind describing outgoing wave. Utilizing the continuity of
electric field UEφ(ρ′) and the discontinuity of ∂UEφ/∂ρ′ across the boundary, we obtain the
equations for the coefficients aE and bE

aEφJ1(ωaR)− bEφH+
1 (ωaR) = 0 , (3.6)[

bEφ
∂H+

1
∂ρ′

− aEφ
∂J1
∂ρ′

]
ρ′=ωaR

= −igaABa0B0 . (3.7)

After applying the Wronksian of Bessel functions, the coefficients are obtained as

aEφ = −π2 gaABa0B0ωaRH
+
1 (ωaR) , (3.8)

bEφ = −π2 gaABa0B0ωaRJ1(ωaR) . (3.9)

1Another calculation based on quantum field theory was given in ref. [50].
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Considering the limit of large Compton wavelengths λa � R and thus ρ′ = ωaR � 1, the
above Bessel functions can be simplified. The final solutions of ~Ea in φ direction become

~Ea,φ ≈

 i
[

1
2gaABa0B0ωaρ− 1

4gaABa0B0ω
3
aR

2ρ
(
γ′(ωaR)− 1

2

)]
eiωatφ̂, ρ<R ,

i
[

1
2gaABa0B0ωa

R2

ρ −
1
4gaABa0B0ω

3
aR

2ρ
(
γ′(ωaR)− 1

2

)]
eiωatφ̂, ρ>R ,

(3.10)

≈
{
i1

2gaABa0B0ωaρe
iωatφ̂, ρ<R ,

i1
2gaABa0B0ωa

R2

ρ e
iωatφ̂, ρ>R ,

(3.11)

where γ′(x) = ln(x/2) + γ − iπ/2 with the Euler-Mascheroni constant being γ ≈ 0.5772.
Then we take ~Ea = UEz(ρ)eiωatẑ and follow the same procedure to solve the electric

field in z direction. The corresponding Bessel equation of order zero is[
∂2
ρ′ + 1

ρ′
∂ρ′ + 1

]
UEz(ρ′) = igaBBa0B0va sin θ cos(2φ− ξ)δ(ρ′ − ωaR) . (3.12)

The solutions are given by

UEz(ρ′) =
{
aEzJ0(ρ′), ρ′ < ωaR ,

bEzH
+
0 (ρ′), ρ′ > ωaR .

(3.13)

Given the boundary conditions, the coefficients satisfy

aEzJ0(ωaR)− bEzH+
0 (ωaR) = 0 , (3.14)[

bEz
∂H+

0
∂ρ′

− aEz
∂J0
∂ρ′

]
ρ′=ωaR

= igaBBa0B0va sin θ cos(2φ− ξ) , (3.15)

and the solutions become

aEz = π

2 gaBBa0B0va sin θ cos(2φ− ξ)ωaRH+
0 (ωaR) , (3.16)

bEz = π

2 gaBBa0B0va sin θ cos(2φ− ξ)ωaRJ0(ωaR) . (3.17)

The final solutions of ~Ea in z direction are

~Ea,z ≈



igaBBa0B0vaωaR
[
γ′(ωaR)

(
1− ω2

aρ
2

4

)
+1

4(1− γ′(ωaR))(ωaR)2
]

sin θ cos(2φ− ξ)eiωatẑ, ρ < R ,

igaBBa0B0vaωaR
[
γ′(ωaρ)

(
1− ω2

aR
2

4

)
+1

4(1− γ′(ωaρ))(ωaρ)2
]

sin θ cos(2φ− ξ)eiωatẑ, ρ > R .

(3.18)

Next we solve the magnetic field ~Ba. As the first term on the right-handed side of
eq. (3.1) is perpendicular to ~B0, only the second term contributes to the wave equation in
z direction as

∇2 ~Ba −
∂2 ~Ba
∂t2

= −gaABB0
∂2a

∂t2
θ(R− ρ)ẑ . (3.19)

We propose the solution as ~Ba = UBz(ρ)eiωatẑ and the Bessel equation is then[
∂2
ρ′ + 1

ρ′
∂ρ′ + 1

]
UBz(ρ′) = gaABa0B0θ(ωaR− ρ′) . (3.20)
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The solutions are

UBz(ρ′) =
{
aBzJ0(ρ′) + gaABa0B0, ρ

′ < ωaR ,

bBzH
+
0 (ρ′), ρ′ > ωaR ,

(3.21)

with the coefficients as

aBz = − iπ2 gaABa0B0ωaRH
+
1 (ωaR) , (3.22)

bBz = − iπ2 gaABa0B0ωaRJ1(ωaR) . (3.23)

We find the ~Ba solutions in z direction are

~Ba,z ≈

 gaABa0B0
[

(ωaR)2

2

(
γ′(ωaR)− 1

2

)(
1− ω2

aρ
2

4

)
+ ω2

aρ
2

4

]
eiωatẑ, ρ < R ,

gaABa0B0
(ωaR)2

2

[
γ′(ωaρ) + 1

4(1− γ′(ωaρ))(ωaρ)2
]
eiωatẑ, ρ > R ,

(3.24)

≈

 gaABa0B0
[

(ωaR)2

2

(
γ′(ωaR)− 1

2

)
+ ω2

aρ
2

4

]
eiωatẑ, ρ < R ,

gaABa0B0
(ωaR)2

2 γ′(ωaρ)eiωatẑ, ρ > R .
(3.25)

For the ~Ba field in φ direction, we have the equation as

∇2 ~Ba −
∂2 ~Ba
∂t2

= gaBBB0vaω
2
aa sin θ cos(2φ− ξ)θ(R− ρ)φ̂ . (3.26)

Inserting the solution ~Ba = UBφ(ρ)eiωatφ̂, the Bessel equation of order one becomes[
∂2
ρ′ + 1

ρ′
∂ρ′ +

(
1− 1

ρ′2

)]
UBφ(ρ′) = gaBBa0B0va sin θ cos(2φ− ξ)θ(ωaR− ρ′) . (3.27)

It turns out to be a nonhomogeneous Bessel equation of order one when ρ < R. We use
the software Mathematica to find the solutions as

UBφ(ρ′) =
{
aBφJ1(ρ′) + kπ

12 ρ
′3Y1(ρ′)H(ρ′)− kπJ1(ρ′)M(ρ′), ρ′ < ωaR ,

bBφH
+
1 (ρ′), ρ′ > ωaR ,

(3.28)

where k = gaBBa0B0va sin θ cos(2φ − ξ), H(x) is the generalized hypergeometric function
and M(x) is the Meijer G function

H(x) = HypergeometricPFQ
[{3

2

}
,

{
2, 5

2

}
,−x

2

4

]
, (3.29)

M(x) = MeijerG
[
{{1}, {0}},

{{1
2 ,

3
2

}
, {0, 0}

}
,
x

2 ,
1
2

]
. (3.30)

Using the boundary conditions, the coefficients are given by

aBφ = − i

12kπ(ωaR)3H(ωaR) + kπM(ωaR) , (3.31)

bBφ = − i

12kπ(ωaR)3H(ωaR) . (3.32)
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Then, the ~Ba solutions in φ direction are

~Ba,φ ≈



k
[
− i

24πω
4
aR

3ρH(ωaR)
+π

2ωaρM(ωaR) + 1
12ω

4
aρ

4(ln(ωaρ) + γ − 1
2)H(ωaρ)

−1
6ω

2
aρ

2H(ωaρ)− π
2ωaρM(ωaρ)

]
eiωatφ̂, ρ < R ,

1
12k
[
ω4
aR

3ρ(γ′(ωaρ)− 1
2)H(ωaR)− 2ω2

a
R3

ρ H(ωR)
]
eiωatφ̂, ρ > R .

(3.33)

The equation of the ~Ba field in ρ direction is

∇2 ~Ba −
∂2 ~Ba
∂t2

= 2gaBBB0vaω
2
aa sin θ sin(2φ− ξ)θ(R− ρ)ρ̂ . (3.34)

One can see that it is analogous to the equation for ~Ba,φ. To obtain solutions of the magnetic
field, we only need to replace the value of k in eq. (3.33) by k= 2gaBBa0B0va sinθ sin(2φ−ξ).

The dominant axion electromagnetic fields here are ~Ea,φ and ~Ba,z without velocity va
suppression. They are equivalent to the solutions of conventional axion-modified Maxwell
equations in ref. [49] by replacing ~Ea,φ → ~Ba,φ, ~Ba,z → − ~Ea,z and gaAB → gaγγ in our
results.

3.2 Case II: ~B0 = 0 and ~E0 6= 0

In the case with ~B0 = 0 and ~E0 6= 0, the wave equations become

∇2 ~Ba −
∂2 ~Ba
∂t2

= gaBB
∂2a

∂t2
~E0 , (3.35)

∇2 ~Ea −
∂2 ~Ea
∂t2

= gaBB
∂a

∂t
~∇× ~E0 . (3.36)

They can be rewritten as

∇2 ~Ba −
∂2 ~Ba
∂t2

= gaBBE0
∂2a

∂t2
θ(R− ρ)ẑ , (3.37)

∇2 ~Ea −
∂2 ~Ea
∂t2

= gaBBE0
∂a

∂t
δ(ρ−R)φ̂ . (3.38)

Following the same procedures in the above subsection, we obtain the dominant ~Ea in φ
direction as

~Ea,φ =
{

π
2 gaBBa0E0ωaRH

+
1 (ωaR)J1(ωaρ)eiωatφ̂, ρ < R ,

π
2 gaBBa0E0ωaRJ1(ωaR)H+

1 (ωaρ)eiωatφ̂, ρ > R ,
(3.39)

≈
{
−i1

2gaBBa0E0ωaρe
iωatφ̂, ρ < R ,

−i1
2gaBBa0E0ωa

R2

ρ e
iωatφ̂, ρ > R .

(3.40)

The solution of dominant ~Ba in z direction is

~Ba,z =


[
iπ2 gaBBa0E0ωaRH

+
1 (ωaR)J0(ωaρ)− gaBBa0E0

]
eiωatẑ, ρ < R ,

iπ2 gaBBa0E0ωaRJ1(ωaR)H+
0 (ωaρ)eiωatẑ, ρ > R ,

(3.41)

≈

−gaBBa0E0
[

(ωaR)2

2

(
γ′(ωaR)− 1

2

)
+ ω2

aρ
2

4

]
eiωatẑ, ρ < R ,

−gaBBa0E0
(ωaR)2

2 γ′(ωaρ)eiωatẑ, ρ > R .
(3.42)
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4 Numerical results and new haloscope experiments

Based on the above analytical results, one finds that the dominant couplings gaAB and
gaBB can be probed in the presence of external magnetic field and electric field, respectively.
Moreover, the induced oscillating magnetic fields are suppressed compared with the electric
fields for the axions with large Compton wavelengths λa = 2π/ma � R. The electric field
~Ea in φ direction is always dominant. This is contrary to the situation in conventional
experiments searching for the oscillating magnetic fields induced by sub-µeV axions. In this
section, we show the numerical results to demonstrate the size of induced electromagnetic
fields and propose new strategies to measure the oscillating electric fields.

4.1 Numerical results of axion-induced electromagnetic fields

In the case I with ~B0 6= 0 and ~E0 = 0, as shown in section 3.1, the axion-induced electro-
magnetic fields proportion to gaBB are suppressed by the velocity of axion DM va ∼ 10−3.
It is clear that the components ~Ea,φ and ~Ba,z determined by coupling gaAB are dominant.
We numerically evaluate the results in section 3.1. The distributions of field strength ~Ea,φ
and ~Ba,z as a function of ratio ρ/R are displayed in figure 2 and figure 3, respectively.

In the limit of λa � R, we find that Ea,φ is about one order of magnitude larger than
Ba,z under the long wavelength approximation (R = 0.001λa). While in other cases with
much lower wavelengths (R = 0.1, 1 and 5λa), the electromagnetic fields begin to oscillate
due to the Bessel function in the field solutions and they have no significant difference.
Consequently, contrary to the usual method searching for axion-induced oscillating mag-
netic field Ba in z direction in the present axion haloscope experiments, it is a reasonable
way to measure the coupling gaAB by searching for the induced electric field Ea,φ via an
external magnetic field B0.

To measure the coupling gaBB, as discussed in section 3.2, we consider a uniform electric
field E0 along z-axis and spatially parameterized by ρ. In this case, the field solutions are
analogous to the results of Ea,φ and Ba,z in case I, only differing by the substitution of
gaABB0 → −gaBBE0 as shown in figures 2 and 3. Thus, in this case, searching for the
induced electric field is still a proper approach to probe the signal of axion field even in
the external electric field E0.

4.2 New search strategies of sub-µeV axion

The axion-induced electric field in φ direction Ea,φ is analogous to a vortex electric field
produced by the Faraday’s electromagnetic induction. We can place a wire loop inside the
solenoid to conduct the induction current. The wire loop is then connected in an LC circuit
to enhance the signal power. The schematic diagram of experimental setup is shown in
figure 4. The induction current in a loop of radius R becomes

Ia = 2πREa,φ(R)
Rs

, (4.1)

where a0 =
√

2ρDM/ma with ρDM = 0.4 GeV cm−3 being the local DM density, and the
resistance is Rs = Lωa/Qc with Qc as the quality factor of the LC circuit. The signal
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Figure 2. Numerical results of axion-induced oscillating electric field ~Ea,φ at t = 0, in units of
gaABa0B0 for case I or −gaBBa0E0 for case II. We consider four kinds of relations between the
detector scale R and axion Compton wavelength λa: R = 0.001λa (top left), 0.1λa (top right), λa
(bottom left) and 5λa (bottom right), where λa = 2π/ma.

power in case I is then given by

Psignal = 〈I2
aRs〉 =

Qcπ
4g2
aABρDMB

2
0R

4
∣∣∣H+

1 (ωaR)J1(ωaR)
∣∣∣2

Lωa
. (4.2)

The signal power in case II can be obtained by making a replacement gaABB0 → gaBBE0.
To measure the signal current, one can adopt either a SQUID magnetometer to pick up
the generated magnetic field [40], or direct amplifiers to amplify the signal [47]. For the
main noise in the signal-to-noise ratio (SNR), we follow the latter method to estimate the
thermal noise as

Pnoise = κBTN

√
∆f
∆t , (4.3)

where κB is the Boltzmann constant, TN is the noise temperature, ∆f = f/Qc is the
detector bandwidth and ∆t is the observation time. To estimate the sensitivity of gaAB or
gaBB, we require the SNR to satisfy

SNR = Psignal
Pnoise

> 3 . (4.4)

The expected sensitivity bounds of gaAB and gaBB are shown in figure 5. We assume
Qc = 104 [40], one week of observation time, and two setup benchmarks for each case with
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Figure 3. Numerical results of axion-induced oscillating magnetic field ~Ba,z at t = 0, in units of
gaABa0B0 for case I or −gaBBa0E0 for case II, as labeled in figure 2.

B0 = 14 T or E0 = 103 kV/m. An adjustable capacitance with a minimal value of 50 pF
is set to give a cutoff frequency.

5 Conclusion

The Witten effect implies the electromagnetic interactions between axions and magnetic
monopoles. Based on the quantum electromagnetodynamics, a generic low-energy axion-
photon effective field theory was built by introducing two four-potentials (Aµ and Bµ) to
describe a photon. More anomalous axion-photon interactions and couplings (gaAA, gaBB
and gaAB) arise in contrary to the ordinary axion coupling gaγγaFµνF̃µν . As a consequence,
the conventional axion Maxwell equations are further modified.

In this work we properly solve the new axion-modified Maxwell equations and obtain
the axion-induced electromagnetic fields given a static electric or magnetic field. The
induced oscillating magnetic fields are always suppressed compared with the electric fields
for the axions with large Compton wavelengths. The dominant couplings gaAB and gaBB
can be probed in the presence of external magnetic field and electric field, respectively.

Finally, we propose new strategies to measure the axion-induced electric fields for
sub-µeV axion in haloscope experiments and estimate the sensitivity of gaAB and gaBB.
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Figure 4. The schematic diagram of experimental setup for case I. For case II, the external solenoid
is replaced by horizontally placed parallel plates.

R=1cm, L=1μH, TN=1K
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Figure 5. The expected sensitivity bounds of gaAB (red lines) and gaBB (black lines). Two
setup benchmarks of detector are assumed: R = 1 cm, L = 1 µH, TN = 1 K (dashed) and
R = 1 m, L = 10 µH, TN = 0.1 K (dash-dotted). The theoretical predictions of gaAB and
gaBB (solid) are also presented [33]. Some existing exclusion limits on gaγγ are shown for reference,
including ABRACADABRA (Run 2) [36], CAST (2017) [51], ADMX (2021) [52], ADMX SLIC [37],
BASE [39], and Fermi-LAT [53].
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A The calculation of the anomaly coefficients

Ref. [32] stated that Zwanziger’s QEMD theory introduced a gauge-fixing term to the
Lagrangian

LG = 1
2n2 {[∂(n ·A)]2 + [∂(n ·B)]2} , (A.1)

and thus new equations of motion

∂2n ·A+ ∂2n ·B = 0 (A.2)

are satisfied. Then the canonical quantization procedure was performed by identifying the
canonical conjugate variables. As a result, the equal-time canonical commutation relations
between the two four-potentials were obtained [32]

[Aµ(t, ~x), Bν(t, ~y)] = iεµνκ0n
κ(n · ∂)−1(~x− ~y) , (A.3)

[Aµ(t, ~x), Aν(t, ~y)] = [Bµ(t, ~x), Bν(t, ~y)] = −i(g µ
0 nν + g ν

0 n
µ)(n · ∂)−1(~x− ~y) . (A.4)

These are the two potentials’ non-trivial relations in the QEMD and the right degrees of
freedom of photon can be preserved.

Regarding the seeming violation of the Lorentz invariance, Brandt, Neri and Zwanziger
formally showed that the observables of the QEMD are Lorentz invariant using the path-
integral approach [54, 55]. They claimed that, after all the quantum corrections are prop-
erly accounted for, the dependence on the spatial vector nµ in the action S factorizes into
an integer linking number Ln multiplied by the combination of charges in the quantiza-
tion condition qigj − qjgi. This n dependent part is then given by 2πN with N being an
integer. Since S contributes to the generating functional in the form of exponent eiS , this
Lorentz-violating part does not play any role in physical processes.

Ref. [33] performed the calculation of the anomaly coefficients by following Fujikawa’s
path integral method [56]. We summarize their procedure here. A high energy QEMD
Lagrangian is supposed as

L ⊃ iψ̄γµDµψ + y(Φψ̄LψR + h.c.) , (A.5)

where the covariant derivative is Dµ = ∂µ−eqψAµ−g0gψBµ with qψ (gψ) being the electric
(magnetic) charge of the fermion ψ, Φ is the PQ complex scalar singlet, and y is the Yukawa
coupling constant. After the PQ symmetry breaking and a chiral transformation of the
fermion in the path integral measure, one has an anomalous term

LF = − a

vPQ
lim

Λ→∞,x→y
tr{γ5exp(��D2/Λ2)δ4(x−y)} (A.6)

= − a

vPQ
lim

Λ→∞,x→y

∫
d4k

(2π)4 tr{γ5exp[D2/Λ2−iγµγν(eqψ∂µAν+g0gψ∂
µBν)/Λ2]eik·(x−y)},
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where a cutoff Λ is introduced. The gauge invariant heat kernel regularization is applied to
the path integral. It turns out that the commutators of the two potentials do not contribute
to the derivative square��D2 at the same space-time point, i.e.,��D2 = D2− iγµγν(eqψ∂µAν +
g0gψ∂

µBν). Then, one can Taylor expand the exponent, and implement the trace, the
integral as well as the limit Λ→∞. The anomalous term becomes

LF = ad(Cψ)
8π2vPQ

εµνρσ(eqψ∂µAν + g0gψ∂
µBν)(eqψ∂ρAσ + g0gψ∂

ρBσ) . (A.7)

Eventually, the anomaly coefficients in eq. (2.3) can be obtained as

E =
∑
ψ

q2
ψd(Cψ) , M =

∑
ψ

g2
ψd(Cψ) , D =

∑
ψ

qψgψd(Cψ) , (A.8)

where d(Cψ) is the dimension of the color representation of ψ.
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