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1 Introduction

The study of scalar fields in AdS spacetime can be traced back at least to the work [1, 2],
where the massive Klein-Gordon equation has been solved in an AdS4 background. More
recently, this subject has been of particular interest mainly due to the AdS/CFT duality [3–
5], which asserts that a consistent theory of quantum gravity in D-dimensions has an
equivalent formulation in terms of a non-gravitational theory in (D − 1)-dimensions.

One well understood limit of the duality is when, in the AdS bulk, it is sufficient to
consider the low energy limit of the superstring theory, namely, supergravity (for a review,
see ref. [6]). The supergravity models usually contain tachyonic scalar fields and, in some
cases, there exist consistent truncations such that the matter content consists only of scalar
fields. The solutions of these models are particularly interesting due to non-trivial boundary
conditions satisfied by the scalar field(s) [7] that are relevant for the dual theory [8]. For
example, the scalar fields can break the conformal symmetry on the boundary [9], and exact
hairy black hole (BH) solutions with this property were presented in [10]. Also, the lowest
energy solitonic solutions can be considered the true ground state of the theory [7, 11],
while the study of the thermodynamic properties of AdS BHs offers the possibility to better
understand the non-perturbative aspects of certain dual field theories.

Of interest in this context is the N = 8 D = 4 gauged supergravity model that can be
obtained as a compactification of D = 11 supergravity on S7 [12]. As discussed in [13] (see
also [14] and [15]), this model possesses a consistent truncation with three real scalar fields
of equal mass, coupled to four U(1) fields, which can be set to zero. The scalar fields can
also vanish, a case which results in Einstein gravity with a negative cosmological constant
Λ = −3/L2 (with L the AdS radius). The main solution of interest is the AdS4 spacetime
in global coordinates

ds2 = −N(r)dt2 + dr2

N(r) + r2(dθ2 + sin2 θdϕ2), where N(r) = 1 + r2

L2 , (1.1)

with r, t the radial and time coordinate, respectively, while θ, ϕ are the usual coordinates
on S2. Otherwise, as discussed in appendix A, we can (consistently) take only one scalar
field to be nonzero (n = 1), or two of them (n = 2) (in which case, they are equal); finally,
all scalars can be taken nonzero and equal, n = 3, the resulting Einstein-(single, real) scalar
field model being presented in section 2. For any nonzero n, the scalar field possesses a
tachyonic mass µ2 = −2/L2.

In this work, we are interested in static and localized solutions of the considered
Einstein-scalar field model, which are also regular and have a finite mass. They may possess
an event horizon of spherical topology (and then correspond to BHs with scalar hair) or
just correspond to solitonic deformations of the globally AdS spacetime (1.1). In both cases,
the generic expression of the (static) scalar field as r →∞ (which is found by considering
the linearized Klein-Gordon equation in a fixed AdS background) is the sum of two modes

φ = α(θ, ϕ)
r

+ β(θ, ϕ)
r2 + . . . , (1.2)

α and β being two real functions. For a well defined theory, one has to specify a boundary
condition on α, β, the natural choice corresponding to either α = 0 or β = 0. However, as
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shown in [7, 16–18], one may consider a larger class of mixed boundary conditions, with
nonzero α and β, for which the conserved global charges are still well defined and finite.
The boundary conditions in this case are defined by an essentially arbitrary function W

connecting α and β, with

β = dW (α)
dα

. (1.3)

Since their properties depend significantly on the choice of W , this type of models have
been called designer gravity theories [7].

The expressions of α and β are not determined a priori, various boundary conditions
being possible, that lead to different properties of the solutions. Also, α and β in the large-r
expansion (1.2) are not arbitrary, being determined by the imposed data at the origin (for
solitons), or at the horizon (for BHs). For example, a priori one expects the existence of
solutions with α = 0 or β = 0. However, to our best of knowledge, no systematic study
of this aspect has been presented in the literature. For n = 1, we mention the study in
refs. [18–20], where spherically symmetric solutions with β = fα2 are studied (with f a
negative constant).

The first goal of the present work is to consider a systematic study of the spherically
symmetric solitonic and BH solutions of the considered consistent truncation of the N = 8
D = 4 model. The aim is to clarify the dependence of the data at infinity on the data at
the origin/horizon,

α ≡ α(r0, φ(r0)), β ≡ β(r0, φ(r0)), M0 ≡M0(r0, φ(r0)), (1.4)

(with r0 = 0 or rh for solitons and BHs, while M0 is an extra-constant which enters the
far field expression of the metric), without imposing any relation between α and β.1 The
main results can be summarized as follows. Firstly, both perturbative and non-perturbative
solutions are considered. The perturbative results are found for solitons, the perturbation
parameter being φ(0), the value of the scalar field at the origin. The non-perturbative
solutions are found by solving numerically the field equations, in which case we aim for a
systematic scan of the parameter space for a large range of rh, φ(rh). Secondly, our results
provide strong evidence for the absence of (soliton or BH) solutions satisfying the ‘standard’
conditions α = 0 or β = 0. That is, the N = 8 D = 4 model possesses designer gravity
solutions only.

A natural question which arises in this context concerns the generality of these results.
In particular, is it possible to find solutions with α = 0 or β = 0 in (1.2) for a different
choice of the scalar field potential? To address this aspect, we study also solutions of a
model in which the scalar field still possesses the same mass as in the N = 8 case; however,
the selfinteraction is given by a quartic term. As a result, the asymptotic behaviour of the
scalar field is less constrained and one finds e.g. spherically symmetric solutions with α = 0
or β = 0 in the expansion (1.2).

Another goal of this work is motivated by the observation that, to our best knowledge,
all Einstein-(real) scalar field solutions reported in the literature correspond to spherically

1A similar analysis in five dimensions, but with a different goal, was presented in [21].
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symmetric configurations. However, the (static) solution of the linearized Klein-Gordon
equation in a fixed AdS background possesses a general solution, the scalar field being a
superposition of modes, φ =

∑
`m Y`m(θ, ϕ)R`(r) (with Y`m the real spherical harmonics

and R`(r) the radial amplitude). From this perspective, no value of (`,m) is privileged, with
the same asymptotic decay (1.2) for all modes (see, also, [22]). Also, since the spherically
symmetric Einstein-scalar field solitons can be viewed as a non-linear continuation of the
` = m = 0 mode, one expects similar results to exist for higher modes. In this work we
consider mainly the simplest case ` = 1,m = 0 and we provide evidence that the qualitative
picture found in the spherically symmetric case still holds. First, one finds again an exact,
perturbative solitonic solution, which is interpreted as a deformation of AdS spacetime with
a dipolar scalar field. Nonperturbative solutions with a 1/r2-decay at infinity of the scalar
field are shown to exist in a model with φ4-selfinteraction

This paper is organized as follows. In the next section we present the general framework,
while in section 3 we consider the probe limit of the problem, with a study of scalar clouds in
a fixed (Schwarzschild-)AdS background. The case of spherically symmetric configurations
is discussed in section 4, while the gravitating scalar dipoles are studied in section 5. We
conclude in section 6 with a discussion and some further remarks. The appendix A explains
how the considered sugra-action is obtained starting with the general results in ref. [13]. In
the appendix B, we provide some details on the perturbative axially symmetric solutions,
including the Einstein-scalar field soliton with a quadrupole scalar field.

2 The general framework

2.1 The action, equations of motion and scalar field potentials

We consider the Einstein-(real)scalar field model with a negative cosmological constant

I =
∫
M
d4x
√
−g
[ 1

4κ2

(
R+ 6

L2

)
− 1

2g
abφ, aφ, b − U(φ)

]
− 1

2κ2

∫
∂M

d3x
√
−hK, (2.1)

where κ2 ≡ 4πG (with G the Newton’s constant) and U(φ) is the scalar field potential. Also,
the last term in (2.1) is the Hawking-Gibbons surface term [23], where K is the trace of the
extrinsic curvature for the boundary ∂M and h is the induced metric of the boundary.

The corresponding Einstein-scalar field equations, as obtained from the variation of the
action (2.1) with respect to the metric and scalar field, respectively, read:

Rab −
1
2gabR−

3
L2 gab = 2κ2 Tab, ∇2φ = ∂U

∂φ
, (2.2)

where Tab is the stress-energy tensor of the scalar field,

Tab = φ,aφ,b − gab
(1

2g
cdφ,cφ,d + U(φ)

)
. (2.3)

In this work we shall consider two different expressions of the scalar field potential
U(φ). The first case is of main interest, occurring in a consistent trucation of the N = 8
D = 4 gauged supergravity model [12], with

sugra : U(φ) = − n

κ2L2 sinh2
(
κ√
n
φ

)
, with n = 1, 2, 3. (2.4)
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The appendix A presents some details on how the action (2.1) with the above potential can
be obtained starting with the general results in ref. [13].

The small-φ expansion of the scalar field potential (2.4) is

U(φ) ∼ −φ
2

L2 −
κ2φ4

3nL2 +O(φ6). (2.5)

Therefore, for any n, the scalar field possesses a tachyonic mass, with

µ2 = d2U

dφ2

∣∣∣∣
φ=0

= − 2
L2 , (2.6)

which implies the asymptotic behaviour (1.2).
The second case considered in this work corresponds to a massive scalar field with

quartic selfinteraction,

φ4-model : U(φ) = −φ
2

L2 + λφ4, (2.7)

where λ is an arbitrary constant. Note that for the particular value λ = −κ2/(3nL2), the
potential (2.7) can be considered as a truncation of the sugra-potential (2.4).

2.2 Mixed boundary conditions and holographic mass

In this section we present a general discussion of possible boundary conditions for a scalar
field with the tachyonic mass (2.6), the interpretation within AdS/CFT duality, and a
concrete method to obtain the holographic mass. We are going to follow closely the refs. [24]
and [25], where counterterms for the scalar fields were used to regularize the action and
to obtain the holographic mass. These results can be directly applied to various examples
considered in the next sections.

While in theories of gravity coupled to matter the theory is usually fully determined
by the action, in the presence of scalar fields with tachyonic mass the situation is quite
different. That is, both modes in the scalar field’s fall off (1.2) are normalizable and represent
physically acceptable fluctuations. Therefore, specifying boundary conditions for the scalar
field is equivalent to fixing the boundary data α, β or a specific relation between them. It is
common to denote the mixed boundary conditions on the scalar field by β ≡W ′(α), where
W (α) is an arbitrary differentiable function. This restriction on α and β can be obtained
from the vanishing symplectic flux flow through the boundary [26] and it is interpreted as
an integrability condition for the mass in the Hamiltonian formalism [7, 27].

The existence of various boundary conditions for the scalar fields fits very well in the
context of AdS/CFT duality where they are interpreted as multitrace deformations in the
dual field theory [8]. The interpretation is as follows: if α is identified with the source
for an operator in the dual field theory, O, the dual field theory action should contain a
term

∫
α(x)O(x)d3x and then β is identified with the vacuum expectation value (VEV)

of the operator, β = 〈O〉 (and the other way around with β the source and α the VEV).
However, for the current work, the mixed boundary condition, β = W ′(α), is the relevant
one with the following interpretation: these general boundary conditions are multitrace
deformations of the boundary CFT, of the form

∫
W [O(x)]d3x. A generic deformation can
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break the conformal symmetry in the boundary, but since it is still invariant under global
time translations, there exists a conserved total mass/energy. As we are going to explicitly
show below, the mixed boundary conditions that preserve the conformal symmetry can be
obtained from the vanishing trace of the dual stress tensor and correspond to triple trace
deformations.

After this brief review of mixed boundary conditions for the scalar field and their
interpretation within the AdS/CFT duality, let us obtain the holographic mass by using the
‘counterterm method’, that consists in adding suitable additional surface terms to regularize
the action (2.1). These counterterms are usually built up with curvature invariants on the
boundary ∂M (which is sent to infinity after the integration); as such, they do not alter
the bulk equations of motion. In four spacetime dimensions, the following counterterms are
sufficient to cancel divergences for (electro-)vacuum solutions with negative cosmological
constant [28–30]

I
(0)
ct = − 1

2κ2

∫
∂M

d3x
√
−h
[

2
L

+ L

2R
]
, (2.8)

where R is the Ricci scalar of the boundary metric h. Within this approach, the mass
computation goes as follows. First step consists in constructing a divergence-free boundary
stress tensor Tµν from the total action I=Ibulk+Isurf+I(0)

ct by defining

Tµν = 2√
−h

δI

δhµν
= 1

2κ2

(
Kµν −Khµν −

2
L
hµν + LEµν

)
, (2.9)

where Eµν is the Einstein tensor of the boundary metric, Kµν = −1/2(∇µnν +∇µnν) is
the extrinsic curvature, nµ being an outward pointing normal vector to the boundary. Here
one supposes that the boundary geometry is foliated by spacelike surfaces Σ with metric σij

hµνdx
µdxν = −N2

Σdt
2 + σij(dxi +N i

σdt)(dxj +N j
σdt). (2.10)

Then, if ξµ is a Killing vector generating an isometry of the boundary geometry, there
should be an associated conserved charge. In this approach, ρ = uaubTab is the proper
energy density while ua is a timelike unit vector normal to Σ. Thus the conserved charge
associated with time translation ∂/∂t is the mass of the spacetime

M =
∫

Σ
d2x
√
σNΣρ. (2.11)

The presence of the scalar field in the bulk action (2.1) brings the potential danger of
having divergent contributions coming from both, the gravitational and matter actions [31].
This is the case for a scalar field which behaves asymptotically as O(1/r) (i.e. α 6= 0
in (1.2)), and then the counterterms (2.8) will not yield a finite mass. However, it is still
possible to obtain a finite mass by allowing the boundary counterterms to depend not only
on the boundary metric hµν , but also on the scalar field. This means that the quasilocal
stress-energy tensor (2.9) also acquires a contribution coming from the matter field. The
counterterm that regularizes the action and has a valid variational principle compatible
with the boundary condition β ≡W ′(α) is [25]

Ictφ = −
∫
∂M

d3x
√
−h
[ 1

2Lφ
2 + 1

L

W (α)
α3 φ3

]
(2.12)
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that yields a supplementary contribution to the boundary stress tensor (2.9),

T(φ)
µν = − 1

L
hµν

(
φ2 + W (α)

α3 φ3
)
, (2.13)

which should be taken into account when obtaining a finite mass, eq. (2.11).
We also mention that the background metric upon which the dual field theory resides

is γµν = limr→∞
L2

r2 hµν (with r the radial coordinate). Then, the expectation value of the
dual CFT stress-tensor can be calculated using the relation [40]

√
−γγµλ < τλν >= lim

r→∞

√
−hhµλTλν , (2.14)

with the trace [25]

< τνν >= − 3
L4

(
W − αβ

3

)
. (2.15)

It follows that the only mixed boundary condition, which preserves the conformal symmetry
corresponds to a triple trace deformation in dual field theory, β ∼ α2. In this case, the
trace of the dual stress tensor vanishes.

In this approach, given some data at infinity (α, β), one can assign a well defined mass
M only after defining the function W (α), cf. eq. (1.3). In principle, this result can be
circumvented by using the counterterm in refs. [10, 32–34],

I
(φ)
ct = 1

3

∫
∂M

d3x
√
−h
(
φnν∂νφ−

1
2Lφ

2
)
, (2.16)

which does not require to specify a condition for α and β. However, this counterterm
is problematic because it is not intrinsic to the boundary and also, for mixed boundary
conditions, the variational principle is not satisfied. Moreover, it implies generically a
vanishing trace of the boundary stress tensor (although for β ∼ α2 the mass expression
coincides with that found using (2.13)).

2.3 Remarks on numerics

While it was possible to find some partial analytical results, the non-perturbative solutions
are constructed numerically, by integrating the system of Einstein-scalar field equations (2.2)
subject to suitable boundary conditions. Both solitons and BHs will be considered. However,
note that in order to simplify the problem, in the BH case we restrict the study to
the region outside the event horizon. For spherically symmetric solutions, we use a
standard Runge-Kutta ordinary differential equation solver. All numerical calculations in
the axially symmetric case have been performed by using a professional package, which uses
a Newton-Raphson finite difference method with an arbitrary grid and arbitrary consistency
order [35, 36].

The numerics are done working with a scaled scalar field and a scaled radial coordinate,

φ→ φ/κ, r → r/L, (2.17)
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that results in the following Lagrangian of the considered models (note that for the φ4 case,
we supplement (2.17) with λ→ λκ2/L2)

L = R+ 6− 1
2g

abφ, aφ, b − U(φ) (2.18)

with

sugra : U(φ) = −n sinh2
(
φ√
n

)
, φ4-model : U(φ) = −φ2 + λφ4. (2.19)

However, for the sake of clarity, all equations displayed in what follows are given in terms
of dimensionful variables.

3 Probe limit: static scalar clouds in AdS

Before considering the full problem, it is interesting to consider first the probe limit, and
to study solutions of the Klein-Gordon equation in a fixed geometry, while neglecting
the backreaction of the scalar field. The background can be the AdS spacetime or the
Schwarzschild-AdS (SAdS) BH, which possesses a line element of the form (1.1), with2

N(r) =
(

1− rh
r

)(
1 + r2

L2 + rrh
L2 + r2

h

L2

)
, (3.1)

where rh is the event horizon radius and M the BH mass.
This approximation greatly simplifies the problem but retains some of the interesting

physics. Both linear (i.e. with a mass term only in the potential U(φ)) and non-linear
clouds will be considered. In both cases, the mass-energy density of a configuration, as
measured by a static observer with 4-velocity Ua ∼ δat , is ρ = −T tt . Then one can define a
total mass of a cloud,

M (cloud) = −
∫
d3xT tt = −

∫ ∞
r0

dr

∫ π

0
dθ

∫ 2π

0
dϕr2 sin θ T tt . (3.2)

One can see that, in order for M (cloud) to be finite, T tt should decay faster than 1/r3 as
r →∞. Then, for the scalar field asymptotics (1.2), the term proportional with 1/r should
be absent, i.e. α(θ, ϕ) = 0 in the large r-limit.

3.1 The linear case

Let us start with the case of a massive scalar field with no selfinteraction (i.e. with
U = 1

2µ
2φ2) in a fixed AdS background (1.1), and consider solutions of the (linear) KG

equation
∇2φ = µ2φ. (3.3)

The scalar field can be decomposed in a sum of modes

φ =
∑
`m

φ`m(r, θ, ϕ), with φ`m = Y`m(θ, ϕ)R`(r), (3.4)

2The expression (3.1) results from the usual SAdS expression, N = 1 − 2M/r + r2/L2 with M =
rh(1 + r2

h/L
2)/2.
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where Y`m(θ, ϕ) are the real spherical harmonics (with ` = 0, 1, . . . and −` ≤ m ≤ `), while
the radial amplitude R`(r) is a solution of the equation

1
r2 (r2NR`)′ =

(
µ2 + `(`+ 1)

r2

)
R`, (3.5)

where a prime denotes the derivative w.r.t. the radial coordinate r.
For the case of interest in this work with µ2 = −2/L2, the general solution of the above

equation reads (with 2F1 the hypergeometric function)

R`(r) = c1

(
r

L

)`
2F1

(
1 + `

2 ,
2 + `

2 ; 3
2 + `;− r

2

L2

)

+ c2

(
L

r

)`+1
2F1

(
1− `

2 ,− `2; 1
2 − `;−

r2

L2

)
(3.6)

being the sum of two modes (with c1, c2 arbitrary constants). However, the second term in
the above relation diverges as r → 0 and thus we set c2 = 0 (also, in what follows, we take
c1 = 1). The explicit form of the solution for the first three values of ` reads

R0(r) = L

r
arctan

(
r

L

)
, R1(r) = 3L

r
− 3L2

r2 arctan
(
r

L

)
,

R2(r) = 6L2

πr2

(
−1 +

(
1 + r2

3L2

)
arctan

(
r

L

))
(3.7)

the expressions for higher ` becoming increasingly complicated.
As r → 0, the (regular) solution has the following form

R`(r) =
(
r

L

)`
− (`+ 1)(`+ 2)

2(2`+ 3)

(
r

L

)`+2
+ . . . . (3.8)

As spatial infinity is approached, all multipoles decay according to (1.2), such that the
approximate form of a (`,m)-mode reads

φ`m(r, θ, ϕ) = α(θ, ϕ)
r

+ β(θ, ϕ)
r2 + . . . ,

where
α(θ, ϕ) =

√
πΓ(`+ 3

2)L
(Γ( `2 + 1))2 Y`m(θ, ϕ), β(θ, ϕ) =

√
πΓ(`+ 3

2)L2

(Γ( `+1
2 ))2 Y`m(θ, ϕ).

This behaviour strongly contrasts with that found for a Minkowski spacetime background,
where the scalar mode which is regular at r = 0 diverges as r →∞. This feature can be
traced back to the “box”-like behaviour of the AdS spacetime, and is present also for a
Maxwell field [37–39].

The above solution contains already several features that will also be found in the
(self-gravitating) sugra-case. First, one notices that all multipoles share the same far field
decay. Second, the radial amplitude R`(r) = is always nodeless. Moreover, both parameters
α and β are non-zero. As such, the linear cloud mass, as computed according to (3.2)
diverges, although the energy density ρ is finite everywhere.
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Figure 1. The parameters α and β which enter the far field expansion of the scalar field are shown
as a function of the event horizon radius for several values of the harmonic index `. The results are
found for linear scalar clouds in a Schwarzschild-AdS background.

One may ask if the situation is different when considering a SAdS BH background.
Although no exact solutions of the radial equation appear to exist, the eq. (3.5) can be
solved numerically. The approximate expansion of the radial amplitude as r → rh reads

R`(r) = R`(rh)
(

1 + `(`+ 1)L2 − 2r2
h

rh(L2 + 3r2
h)

(r − rh)
)

+ . . . , (3.9)

while the asymptotic expansion of a mode is given by (1.2), with

α = p1Y`m(θ, ϕ), β = p2Y`m(θ, ϕ), (3.10)

where the constants p1, p2 depend on the value of rh.
As seen in figure 1, the presence of a horizon does not change the picture found for

solitons. In particular, there are no scalar clouds3 with α = 0 or β = 0.

3.2 Non-linear clouds in the φ4 model

One may inquire how general are the above results and what are the new results induced
by the scalar field selfinteraction. In particular, are there scalar clouds with α = 0 (which
then would possess a finite (cloud) mass)?

While the picture found for the sugra-potential (2.4) appears to be qualitatively similar
to that found for linear clouds (and we could not find solutions with α = 0), the situation
is different for a model with a quartic selfinteraction. An indication in this direction4 as
provided by the existence of the following exact solution5 describing a spherically symmetric

3The apparent divergence for ` > 0 of α, β as rh → 0 is an artifact of solving the (linear) equation (3.5)
with the boundary condition R`(rh) = 1, while R`(0) = 0 in the solitonic limit.

4An exact solution with α = 0 and a finite mass M (cloud) = 8π2L/(27λ2) is found in a model with a
cubic-selfinteraction

U(φ) = −φ
2

L2 + λφ3, and φ(r) = − 4
3λ

1
1 + r2

L1

.

5Note that the solution with real φ exists for λ < 0 only.
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4
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Figure 2. The parameters α and β which enter the far field expansion (1.2) are shown as a function
of the scalar field at the horizon for solutions of a φ4-model in a fixed background. Note the existence
of configurations with α = 0 or β = 0 (marked with dots).

soliton in the φ4-model:

φ(r) = 1
2
√
−λ

1√
1 + r2

L2

,

with φ(r)→ 1
2
√
−λ

L

r
− L3

4
√
−λr3 + . . . as r →∞ i.e. β = 0. (3.11)

We have studied generalizations of this exact solution, by solving numerically the scalar
field equation for a (S)AdS background and varying φ(rh) (the value of the scalar field at
the horizon or the origin, rh = 0, for the soliton), the values of the parameters α and β
being extracted from the numerical output. In the numerics, we set λ = −1 without any
loss of generality, via a suitable scaling of the scalar field.

Some numerical results are shown in figure 2 where one can observe that the parameters
α and β can be zero, for a (presumably infinite) set of discrete values of φ(rh). For example, in
the solitonic case (rh = 0), the exact solution (3.11) corresponds to φ(0) = 1/2, while the first
configuration with α = 0 is found for φ(0) = 2 (which strongly suggests the existence of an
exact solution also in that case). Moreover, for φ(0) > 2 the solutions possess at least a node.

In figure 3 (left panel) we present a number of relevant quantities as a function of the
horizon radius for the subset of (finite mass) non-linear cloud solutions with α = 0. As one
can see, no restrictions seem to exist on the BH size, while for large enough BHs, both M
and β increase linearly with rh.

Since one has to solve numerically a (nonlinear) partial differential equation (PDE),
the case of higher multipoles is technically more complicated. Restricting to axisymmetric
configurations, this is a particular case of the problem discussed in section 3, being solved
by using a similar numerical approach. Moreover, we have mainly studied the case of finite
mass of the dipole clouds.6 i.e. with α = 0 in the scalar far field expansion, the 1/r2 decay
being imposed by introducing a new function ψ = rφ, and requiring ψ → 0 as r →∞. Other
boundary conditions satisfied by the scalar field are ∂θφ = 0 at θ = 0, π and φ = 0 at r = 0,

6However, we have confirmed the existence of similar solutions also for α = 0 quadrupoles.
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Figure 3. Several quantities of interest are shown as a function of the event horizon radius for
` = 0, 1 solutions of the φ4-model in a fixed Schwarzschild-AdS background. The scalar field here
decays asymptotically as 1/r2.

φ(r,θ)

 0

 0.5

 1

r/(L+r)

 0

 0.5

 1

 1.5

θ

 0

 1

 2

-0.5

 0

 0.5

 1

 1.5

 2

 2.5
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β
(θ

)

θ

φ
4
-model
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-T
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-40

-20

 0

 0  1  2

θ=0,π

θ=π/4,3π/4

θ=π/2

Figure 4. Left panel: the scalar field profile is shown for the (fundamental) dipole solution with
1/r2 decay in the φ4-model and a fixed AdS background. Only half of the space is shown here,
with φ(r, θ) = −φ(r, π − θ). Right panel: the function β which enters the large-r asymptotics (1.2)
of φ is shown for the same solution. The inset shows the energy density ρ = −T tt for several
angular directions.

while the field is (still) odd-parity, φ(θ) = −φ(π − θ). In figure 4 (left panel) we display the
profile of the AdS dipole solution, which possesses a finite cloud mass M (cloud) ' 8.208.

We note that the extrema of the field are located on the z-axis (with z = r cos θ) and
are symmetric w.r.t. the equatorial plane.

We shall also mention that the `-labeling of the solutions in terms of multipoles is
ambiguous in a non-linear setup, since the ‘pure-cloud’ feature of the linear solutions is
lost due to selfinteraction. As such, ` stands rather for the number of angular nodes of the
scalar profiles (with ` = 0 for spherical solutions, ` = 1 for dipoles (one node at θ = π/2),
etc). For example, for a dipole solution, one can write the following expansion of the
scalar field

φ(r, θ) =
∑
k≥0

fk(r)P2k+1(cos θ), (3.12)
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with Pn(x) the Legendre polynomials. Although the k = 0 term dominates, the con-
tribution of the higher order terms is also nontrivial, as can be seen already in the
profile of the function β(θ) (in the right panel of figure 4). While for a linear cloud
β ∼ cos(θ), this is not the case when there exists a nonzero contribution of higher order
P2k+1-terms.

As expected, similar solutions are found (numerically) in the presence of a BH horizon,
i.e. for a SAdS background. The numerics is done in terms of a new radial coordinate
r̄ =

√
r2 − r2

h in the line-element (1.1), (3.1), such that the horizon is located at r̄ =
0, where we impose ∂r̄ψ = 0 (with φ = rψ). The boundary conditions on the z-axis
and at infinity are similar to those imposed for rh = 0. In figure 3, we have shown
the mass of the non-linear cloud solutions and the value of β(0) as a function of the horizon
radius. One can see that the picture is very different as compared to that found in the
spherically symmetric case. As for ` = 0, a branch of solutions (label (1) in figure 3)
smoothly emerges when adding a horizon at the center of a soliton. Along this branch the
mass increases, while the maximal value of β decreases. However, for ` = 1, one finds the
existence of a maximal value of rh, with a back bending and the occurrence of a secondary
branch of solutions (label (2)), which extends backwards in rh. As rh → 0 along this
secondary branch, β → 0, while M (cloud) of the dipolar cloud solutions diverges.7

4 Spherically symmetric Einstein-scalar field solutions

4.1 The Ansatz, equations and asymptotics

The spherically symmetric solutions are constructed by using the following Ansatz for the
metric and scalar field

ds2 = −N(r)e−2δ(r)dt2 + dr2

N(r) + r2(dθ2 + sin2 θdϕ2), and φ ≡ φ(r) , (4.1)

where it is convenient to take

N(r) = 1 + r2

L2 −
2m(r)
r

, (4.2)

with m(r) a mass function. From (2.2) we find the following equations for the metric
functions and the scalar field:

m′=κ2r2
(1

2Nφ
′2+U(φ)

)
, δ′=−κ2rφ′2, φ′′+

(2
r

+N ′

N
−δ′

)
φ′− 1

N

dU(φ)
dφ

= 0. (4.3)

There is also a 2nd order constraint equation

1
2N
′′ −Nδ′′ + N ′

r
− δ′

(
N

r
+ 3

2N
′ −Nδ′

)
− 3
L2 + κ2(Nφ′2 + 2U(φ)) = 0, (4.4)

which, however, is a differential consequence of the equations for m, δ in (4.3).
7This behaviour can be understood by noticing that, for the (scaled) units (2.17) we employ in numerics,

rh → 0 can also be approached as L→∞ (and thus a vanishing cosmological constant), while the background
metric becomes the Schwarzschild BH. However, no smooth solution exists in this case [41].
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The Ricci scalar R and the Kretschmann scalar K = RµνρσRµνρσ are given by

R = 2Nδ′′ −N ′′ + 3δ′N ′ − 2N(rδ′ − 1)2

r2 − 4N ′

r
+ 2
r2 ,

K = 4(N − 1)2

r4 + 2N ′2

r2 + 2(N ′ − 2Nδ′)2

r2 +
(

2N(δ′2 − δ′′) +N ′′ − 3δ′N ′
)2
. (4.5)

For all solutions reported in this work, both R and K are regular everywhere on the
considered domain of integration.8

The system of equations (4.3) will be solved first perturbatively and then numerically.
In both cases, it is useful to find the approximate form of the solutions at the boundaries of
the domain of integration.

4.1.1 The small-r expansion

Starting with the solitonic case, the small-r solution can be written in the form

m(r) =
∑
k≥3

m(k)r
k, δ(r) = δ(0) +

∑
k≥1

δ(k)r
k, φ(r) = φ(0) +

∑
k≥1

φ(k)r
k, (4.6)

the series coefficients m(k), δ(k), φ(k), being determined by the values of the functions φ and
δ at r = 0. No general pattern for these coefficients appears to exist, the first terms being

m(3) = 1
3κ

2U0, m(4) = 0, m(5) = 2κ2U ′2−0
45 , m(6) = 0, m(7) = 5κ2U ′20

252L2

(
−1+L2

(2
3κ

2U0+ 6
25U

′′
0

))
,

δ(1) = δ(2) = δ(3) = 0, δ(4) =− 1
36κ

2U ′20 , δ(5) = 0, δ(6) = 1
27L2κ

2U ′20

(
1−L2

(2
3κ

2U0+ 1
10U

′′
0

))
,

φ(1) = 0, φ(2) = 1
6U
′
0, φ(3) = 0, φ(4) = U ′0

12L2

(
−1+ 2

3κ
2L2U0+ 1

10L
2U ′′0

)
,φ(5) = 0,

with U0 = U(φ(0)), U ′0 = U ′(φ(0)), U ′′0 = U ′′(φ(0)).

4.1.2 The near-horizon solution

Apart from solitons, we are also interested in BH solutions. They possess a non-extremal
horizon9 located at r = rh > 0, where N(rh) = 0. Close to the horizon, we assume the
existence of a power series expansion of the solution in r − rh, with

m(r) =
∑
k≥0

m̄(k)(r−rh)k, δ(r) = δ(rh)+
∑
k≥1

δ̄(k)(r−rh)k, φ(r) = φ(rh)+
∑
k≥1

φ̄(k)(r−rh)k,

(4.7)

8Thus, for BHs, this holds on and outside the event horizon.
9We did not find any indication for the existence of extremal BH solutions. In fact, their absence is also

suggested by the absence of an attractor solution with an AdS2 × S2 geometry, which would describe the
near horizon of the extremal BHs.

– 13 –



J
H
E
P
0
3
(
2
0
2
3
)
1
7
4

the coefficients being determined by the horizon values of the functions φ and δ. One
finds e.g.

m̄(0) = rh(r2
h+L2)
2L2 , m̄(1) =κ2r2

hUh, δ̄(1) =− κ2r3
hU

′2
h(

1+ 3r2
h

L2 −2κ2r2
hUh

)2 , φ̄(1) = rhU
′
h

1+ 3r2
h

L2 −2κ2r2
hUh

,

m̄(2) =κ2rh

(
Uh+ 3r2

h

4
U ′2

h

1+ 3r2
h

L2 −2κ2r2
hUh

)
,

δ̄(2) =−
((

1+ 3r2
h

L2

)(
1− 3r2

h

L2 −r
2
hU
′′
h

)
+2κ2r4

h

(( 6
L2−U

′′
h−6

)
Uh−2κ2Uh

))
2κ2r2

hU
′2
h

4
(
1+ 3r2

h
L2 −2κ2r2

hUh

)4 ,

φ̄(2) =−
((

1+ 3r2
h

L2

)( 6
L2−U

′′
h

)
U ′h−2κ2U ′h

((
2
(

1+ 6r2
h

L2

)
−r2

hU
′′
h

)
Uh+r2

hU
′2
h −4κ2r2

hU
2
h

))
× r2

h

4
(

1+ 3r2
h

L2 −2κ2r2
hUh

)3 , (4.8)

where we denote Uh = U(φ(rh)), U ′h = U ′(φ(rh)), U ′′h = U ′′(φ(rh)). Also, since the
model (2.18) is invariant when taking φ→ −φ, it is enough to consider the case φ(rh) > 0,
only (or φ(0) > 0 for solitons).

4.1.3 The large-r approximate solution

Finally, the large-r approximate expression of the solutions holds for both solitons and BHs.
For a generic scalar potential with

U |φ=0 = 0, ∂U

∂φ

∣∣
φ=0 = 0, ∂2U

∂φ2
∣∣
φ=0 = − 2

L2 ,
∂3U

∂φ3
∣∣
φ=0 = 0, (4.9)

an approximate form of the solutions10 can be written as series in 1/r, with

m(r) = M0 −
α2κ2

2L2 r +
∑
k≥1

m̃(k)
rk

, δ(r) =
∑
k≥1

δ̃(k)
rk

, φ(r) = α

r
+ β

r2 +
∑
k≥3

φ̃(k)
rk

, (4.10)

with the coefficients depending on the free parameters {M0, α, β}. One finds, e.g.,

m̃(1) = −κ
2

2

(
α2 + 2β2

L2 + α4
(

2κ2

L2 + 1
4U

(4)
))

,

m̃(2) = −ακ
2

6

(
α

(
−M0 + 2αβ

(
8κ2

L2 + U (4)
))

+ 1
15α

3U (5) + 4β
)
, (4.11)

δ̃(1) = 0, δ̃(2) = 1
2α

2κ2, δ̃(3) = 4
3αβκ

2, δ̃(4) = κ2

8

(
8β2 + α2L2

(
6κ2

L2 + U (4)
))

,

φ̃(3) = α2L2

12

(
6κ2

L2 + U (4)
)
, φ̃(4) = L2

12

(
α

(
4M + αβ

(
8κ2

L2 + U (4)
))

+ 1
12α

3U (5) − 4β
)
,

where U (n) denotes ∂nU
∂φn |φ=0.

10Let us remark that the equations of the model are invariant when taking δ → δ + const., a symmetry
which is lost when imposing δ(∞) = 0.
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Also, the leading order expression of the metric functions grr and gtt reads

grr = 1
N(r) =

(
L

r

)2
−
(

1 + α2κ2

L2

)(
L

r

)4
+ 2M0

L

(
L

r

)5
+O(1/r6),

−gtt = N(r)e−2δ(r) = 1 + r2

L2 −
2M0 + 8αβκ2

3L2

r
+O(1/r2),

such that the spacetime is still asymptotically (locally) AdS.

4.1.4 Quantities of interest

The Hawking temperature and horizon area of the BH solutions are fixed by the horizon
data, with

TH = 1
4πN

′(rh)e−δ(rh), AH = 4πr2
h. (4.12)

The mass computation is a straightforward application of the general formalism in
section 2.2. For a given design functionW (as given by (1.3)), the non-vanishing components
of the resulting boundary stress-tensor are (here we choose ∂M to be a three surface of
fixed r, while nν = √grrδrν = δrν/

√
N):

Tθ
θ = Tϕ

ϕ =
(
M0L

2κ2 −
1
L

(W−αβ)
) 1
r3 +O

( 1
r4

)
, Tt

t =
(
−M0L

κ2 −
1
L

(W+αβ)−
) 1
r3 +O

( 1
r4

)
.

Then the mass of these solutions, as computed from section 2.2 is

M = 4π
(
M0
κ2 + αβ +W

L2

)
, (4.13)

with W the function (1.3) imposing a condition between α and β.

4.2 Solutions in the N = 8 D = 4 model

4.2.1 Perturbative solitons

In the solitonic case, a simple enough exact solution can be found perturbatively in terms
of the scalar amplitude φ(0) = ε. The Ansatz for a perturbative approach is:

m(r) =
∑
k≥2

εkmk(r), δ(r) =
∑
k≥2

εkδk(r), φ(r) =
∑
k≥1

εkφk(r). (4.14)

The solution for the lowest order in ε is valid for any scalar selfinteraction, since only
the mass term is relevant here. One finds

φ1(r) = L

r
X (r), φ2(r) = 0, m2(r) = κ2L

2 X (r)
(

1− L

r
X (r)

)
, m3(r) = 0, (4.15)

δ2(r) = −κ
2

2

(
1

N0(r) + X (r)
(

2L
r

+
(

1− L2

r2

)
X (r)

)
− π2

4

)
, δ3(r) = 0,

where we define the auxiliary functions

N0(r) = 1 + r2

L2 , X (r) = arctan
(
r

L

)
. (4.16)
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Although the equations can be solved to the next order in ε, the solution with a generic
parameter n in the potential (2.4) is exceedingly complicated. Thus in what follows, we
shall restrict our study to the special case n = 1, where the solution still possesses a simple
enough form, with

φ3(r) =− κ2

2N0(r)

(
1− L

3rX (r)
(

3+N0(r)−L2

r2 N
2
0 (r)X 2(r)

))
, φ4(r) = 0,

m4(r) = κ4L

24N0(r)

(
− 9r
L

+
(

19r2

L2 +25
)
X (r)− 2r

L

(
13+ 2r2

L2 + 11L2

r2

)
X 2(r)

+6
(
L2

r2 −
r2

L2

)
X 3(r)+ 4L

r
N2

0 (r)X 4(r)
)
,

δ4(r) = κ4

192

[
8

N0(r)2

(
14+ 5r2

L2 −
10r
L

(
1− r2

L2 + 16L2

5r2

)
X (r)

)
+
(

5r2

L2 + 16L2

5r2 −3
)
N0(r)X (r)2

− 8r
L

(
1−L4

r4

)
N0(r)X (r)3−2

(
1+ 2L2

r2 + 3L4

r4

)
N0(r)2X (r)4+π2(π2−10)

]
. (4.17)

While φ4(r) = 0, the function φ5(r) is more complicated, with the presence of the poly-
logarithm function Lin(x),

φ5(r) = κ4
5∑

k=0
fk(r)X (r)k, (4.18)

where

f0(r) = − 1
4N0(r)

(
1 + 2iπ4N0(r)

15
L

r

(
1− 90

π4Li4

(
−r + iL

r − iL

)))
,

f1(r) = 7
40N0(r)2

L

r

(
1 + 2r4

7L4 + 19r2

7L2 −
40
7 N0(r)2

(
5Li3

(
−r + iL

r − iL

)
+ ζ(3)

))
,

f2(r) =
(

1 + r2

L2 + 2r4

3L4

)
45L
r
− 480iN0(r)2Li2

(
−r + iL

r − iL

)
,

f3(r) = L

24r

(
1− 24iπ − 8L2

r2 + 48 log
(
L+ ir

2r

))
,

f4(r) = L

24r

(
−8i+ 5L

r
− L3

r3

)
, f5(r) = N0(r)

120
L3

r3

(
1 + 9L2

r2

)
,

where ζ(x) is the Riemann zeta function.11

The above expressions allow for a discussion of some basic properties of the solitonic
solution. For example, the small-r expansion of the scalar field reads

φ(r) = ε−
(
ε+ 2κ2

3 ε3 + 2κ4

15 ε
5
)
r2

3L2 +O(r4), thus φ(0) = ε. (4.19)

11Note that φ5(r) is a real function, despite the presence of i in its expression.
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In the context of this work, the coefficients α, β,M0 which enter the far field asymptotics
are of special interest, with

α = πL

2 ε+ πL

36 κ
2
(

1− 1
16(12 + π2)

)
ε3 + πL

3840κ
4a5ε

5 + . . . ,

β = −L2ε+ π2L2κ2

8

(
1− 16

3π2

)
ε3 + L2κ4

480 b5ε
5 + . . . , (4.20)

M0 = 3πL
4 ε2κ2

(
1 + 1

72ε
2κ2(54− 11π2)

)
+ . . . ,

(where we denote a5 = 96 + π4 + π2(20 − 960 log 2) + 5280ζ(3), b5 = −144 + 5π2(3 +
π2 − 48 log 2) + 840ζ(3))). One notices that α is positive and β negative to order O(ε)5,
which suggests the absence of solutions with α ≤ 0 and β ≥ 0 to all orders, a conjecture
which is confirmed by the nonperturbative results in the next subsection. Also, one should
remark that (α, β,M0) are not independent, being parameterized by φ(0). The choice of
the function W (cf. eq. (1.3)) fixes this parameter; for example, β = −α2 for ε = φ(0) ' 0.4,
while β = −α3 for ε = φ(0) ' 0.519).

The expression of the metric potential at the origin (which provides a measure on how
strong are the gravity effects) is also of interest, with

− gtt(0) = 1− 1
4κ

2(π2 − 8)ε2 + 1
48κ

4(96− 19π2 + π4)ε4 + . . . . (4.21)

Finally, we mention that given a design function W (which would fix the parameter
φ(0)), the mass M of the solitons results directly from the eqs. (4.13), (4.20).

4.2.2 Nonperturbative results

The nonperturbative solutions are found by integrating numerically the equations (4.3).
In our approach, suitable initial conditions resulting from (4.6), (4.7), are imposed at
r = r0 + 10−6 (with r0 = (0, rh) for solitons and BHs respectively), for global tolerance
10−15, the equations being integrated towards r →∞.

In principle, the full set of solutions can be scanned in this way by varying the boundary
data at r = r0 (which is provided by φ(r0)) and extracting from the numerical output the
parameters (α, β,M0) in the far field, together with δ(r0).

The profile of a typical soliton solution is shown in figure 5 for n = 1 (left panel) and
n = 3 (right panel). Both configurations have the value of the scalar field at the origin,
φ(0) = 0.65; however, some features of the solutions depend on the value of n (one finds
e.g. α = 0.9294, β = −0.5226 for n = 1 and α = 1.1263, β = −1.0134 for n = 3). A similar
picture is found for BHs, as shown in figure 6 for n = 1, 3 solutions with φ(rh) = 1.4 and
rh = 2.3 (in which case e.g. α = 5.234, β = −2.919 for n = 1 and α = 11.3536, β = −74.9321
for n = 3). Also, for n = 1 we have included the profile of the perturbative solution with
ε = 0.65; as one can see, this provides a good approximation of the non-perturbative result.
Moreover, the displayed profiles are typical and so far we could not find any indication for the
existence of solutions with the function φ(r) changing sign (i.e. with the existence of nodes).
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Figure 5. Typical profiles of n = 1, 3 soliton solutions with the same value of the scalar field at the
origin φ(0) = 0.65 are shown as a function of the radial coordinate. The corresponding perturbative
solution is also shown for the n = 1 case (dotted curves).
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Figure 6. Typical profiles of n = 1, 3 black hole solutions with the same value of the scalar field at
the horizon φ(rh) = 1.4 are shown as a function of the radial coordinate.

In figure 7 we show how the parameters α, β, M0 and gtt(0) vary with φ(0) for soliton
solutions with12 n = 1, 2, 3. In particular, we remark that α is always strictly positive (and
increasing with φ(0)) while β < 0. For n = 1, we have included also the corresponding
perturbative results. As one can see, they stop to be reliable when φ(0) becomes around one.

Turning now to BH solutions, we have considered a systematic scan of n = 1, 2, 3
configurations by varying both rh and φ(rh) in steps of 10−3. The emerging picture is
displayed in figures 8, 9 and can be summarized as follows. First, no configurations with
α ≤ 0 or β ≥ 0 exist, at least for the considered range of (rh, φ(rh)) (note, however, the
existence of local extrema of these quantities). Second, for any horizon size, both the
parameter M0 and the Hawking temperature increase with φ(rh). Also, we mention that
the function e−2δ(rh) decreases monotonically with φ(rh) which makes the study of solutions
with large values of the scalar field at the horizon difficult.

12We have considered as well solutions with n = 4, 5 and have found that they follow the n = 2, 3 pattern.
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Figure 7. Several quantities of interest are shown as a function of the scalar field at the origin
for n = 1 and n = 2, 3 solitonic solutions. The perturbative results are also shown for n = 1
(dotted curves).

Finally, let us remark that the results in figure 8 imply only rather weak restrictions
on the function W which connects α and β in designer gravity theories, since all positive
(negative) values of α (β) are realized.13 In figure 10 we show the mass of n = 1 BHs as
a function of (rh, φ(rh)) for several different functions W (which corresponds to consider
specific slices in the general plots above). As one can see, the minimal value of M is achieved
in the solitonic limit, with the existence of two solitons for the same value of the scalar field
at the horizon. A similar picture has been found for n = 2, 3 solutions.

4.3 Solutions in the φ4-model

Some of the features above are shared by the gravitating solutions in the φ4-model. For
example, a continuum of solutions is found again when varying the values of rh and φ(rh)
(or φ(0)), without any indication for the existence of an upper bound for these parameters.
As with the sugra case, the generic φ4-solutions have nonzero parameters α, β. In figure 10
(right panel) we show the mass of λ = −3 BH solutions with three different choices of the
condition β(α). One can notice a (qualitatively) similar picture to that found for solutions
with the n = 1 potential (2.4).

13For example, the choice β = fαk imposes only f < 0.
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There are also a number of new specific properties, the most interesting one being that
a scalar potential with quartic selfinteraction allows for solutions with α = 0 or β = 0 in
the asymptotic expansion (1.2).

In what follows we shall restrict our study to configurations with α = 0, in which
case the mass function m(r) approaches a constant value at infinity. The profile of two
typical solutions are shown in figure 11 (note that m′(r) < 0 for some range of r, such that
solutions violate the weak energy conditions). In figure 12 (left panel) we show how several
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quantities of interest vary as a function of λ for φ4-solitons. No solutions with α = 0 were
found for λ > 0, while our results suggest14 the existence of a maximal value of λ, with
|λ| ≥ 1.5. As |λ|min is approached, the function e−2δ(0) takes very small values close to zero,
and the Ricci scalar appears to diverge.

As seen in the left panel of figure 13, a similar picture is found in the presence of a
BH horizon, without the existence of an upper bound on the horizon size (we mention that
the same picture was found for other values of rh). In figure 13 (right panel) we show the
result for solutions with a fixed value of λ = −3 and a varying horizon size. One can see
that the familiar SAdS thermodynamics is recovered for α = 0 BHs with scalar hair, with
the existence of two branches of solutions which join for a minimal value of the Hawking
temperature.

5 Beyond spherical symmetry: gravitating scalar dipoles

On general grounds, one expects that each (linear) AdS scalar cloud with given numbers
(`,m) would possess nonlinear continuations in the full Einstein-scalar field model (and
thus, the spherically symmetric (` = 0 mode) case discussed above is not special). In what
follows we present results for the simplest case of (axially symmetric) scalar dipoles (note,
however the perturbative construction of the quadrupole solution in the appendix B). Such
configurations are first constructed within a perturbative approach, by considering the
backreacting version of the ` = 1 (linear) mode in section 3.1. Non-perturbative solutions
of the Einstein-scalar field equations with a 1/r2 far field decay of the scalar field are
constructed in the φ4-model.

14Note that this is smaller than the value λ = −1/(3n) found for the truncation of the sugra-potential (2.4);
the absence of configurations with α = 0 or β = 0 in the sugra-case can presumably be attributed to the
fact that the quartic term in the potential (2.4) never becomes dominant.
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5.1 Perturbative results

In constructing perturbatively axially symmetric solutions it is convenient to consider a
generalization of the pure AdS line element (1.1) with three unknown functions Fi,

ds2 = −F1(r, θ)N0(r)dt2 + F2(r, θ) dr2

N0(r) + F3(r, θ)r2
(
dθ2 + sin2 θdϕ2

)
, (5.1)

with
N0(r) = 1 + r2

L2 . (5.2)

The scalar field only depends on r, θ, with the following perturbative ansatz up to order
O(ε3):

φ(r, θ) = εφ(1)(r, θ) + ε3φ(3)(r, θ) + . . . , (5.3)

where φ(1)(r, θ) is a linear scalar on AdS studied in section 3.1 and ε is an infinitesimally
small parameter. The backreaction of the scalar field on the geometry is taken into account
by defining (with i = 1, 2, 3)

Fi(r, θ) = 1 + ε2Fi2(r, θ) + . . . . (5.4)

Then the coupled Einstein-scalar field equations are solved order by order in ε, the constants
which enter the solution being fixed by imposing regularity at r = 0 and AdS asymptotics.

To illustrate this procedure, let us consider the backreaction on the geometry of a scalar
dipole cloud (similar results for the ` = 2,m = 0 case are given in the appendix B.3). Thus
the lowest order data is

φ(1)(r, θ) = R1(r) cos θ with R1(r) = L

r

(
1− L

r
arctan

(
r

L

))
. (5.5)

Then, the perturbed metric solution is constructed by considering an angular expansion of
Fi in terms of Legendre functions, with coefficients given by radial functions. To lowest
order one takes the consistent ansatz

Fi2(r, θ) = κ2(ai(r) + P2(cos θ)bi(r)).

In solving the Einstein equations, one uses a residual gauge freedom to set the radial
function a3 = 0, the expressions of the other functions being (we recall X = arctan(r/L))

a1(r) = π2

6 −
2

3N0(r) −
4r

LN0(r)

(
1 + 3L2

4r2

)
X (r)− 2

3(X (r))2,

a2(r) = − L
2

3r2

(
1 + 1

N0(r)

)
+ 4L3

3r3 X (r)
((

1 + 3r2

4L2

)
1

N0(r) −
L

2rX (r)
)
,

b1(r) = 2L2

9L2

( 1
N0(r) − 7 + 3X (r)

(
X (r) + 2L

r

))
, (5.6)

b2(r) = 2
9N0(r) + 4L3

3r3 X (r)
(

1− L

2r (1 +N0(r))X (r)
)
,

b3(r) = −10
9 + L2

r2 + 2L
3r

(
1− L2

r2

)
X (r) + 1

3

(
1− L4

r4

)
(X (r))2.
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Moving now to the next order in ε, we shall restrict again to the case n = 1 in the
potential (2.4). The correction induced by the metric corrections to the scalar field are
found by taking a (consistent) ansatz for φ(3) with two unknown functions,

φ(3)(r, θ) = φ31(r)P1(cos θ) + φ33(r)P3(cos θ). (5.7)

The explicit form of the functions φ31(r) and φ33(r) is given in the appendix B.2. In deriving
it, we impose them to be regular at r = 0 and to decay as 1/r2 in r → ∞. As such, the
expansion parameter ε can be identified with the function α (evaluated at θ = 0) that enters
the far field expansion (1.2) of the scalar field, and thus

α(θ) = εL cos θ. (5.8)

The corresponding expression of β is

β(θ) =
(
L2π

2 ε+ β̄1ε
3
)

cos θ + β̄3ε
3L3(cos θ), (5.9)

where we denote

β̄1 = 8L2π

25

(
1+π2

32(−4+log(256))− 9
8ζ(3)+ 6403κ2

2016

(
−1+ π2

6403(801−1272log(2))+ 5724
6403ζ(3)

))
,

β̄3 = L2π

7000

(
61+72ζ(3)− 29π2

12

(
1+ 192

29 log(2)
)

+κ2
(
−94

3 +π2

8 (−47+384log(2)−216ζ(3))
))

.

The presence of the term proportional with P3(cos θ) in the far field expansion of β above
indicates that, to order 1/r2, the asymptotic behaviour of the scalar field deviates from
that of a dipole.

Different from the spherical case, we were not able to solve the equations to higher
order in ε. However, likely the above solution already captures same basic features of the
general configurations. One finds, e.g.,

− gtt(0) = 1− 1
6(10− π2)κ2ε2, (5.10)

while the leading order terms in the large-r expressions of the metric potentials are

grr = L2

r2 −
(

1 + 1
24

(
π2 + 20

3 + (3π2 − 4) cos 2θ
)
κ2ε2

)
L4

r4 + . . . ,

gϕϕ = sin2 θgθθ =
(

1 + κ2ε2

24

(40
3 − π

2
)

(1− 3 cos2 θ))
)
r2 + 1

6L
2(1 + 3 cos 2θ)κ2ε2 + . . . ,

gtt = − r
2

L2 −
(

1 + 1
72(3π2 − 28)(1 + 3 cos 2θ)κ2ε2

)
+ κ2ε2πL

18r + . . . . (5.11)

Also, the non-vanishing components of the boundary stress tensor, as computed by
using the prescription in section 2.2 are

Tθ
θ = Tϕ

ϕ = −πL
2(2 + 3 cos 2θ)

24
ε2

r3 + . . . , Tt
t = −πL

2

12
ε2

r3 + . . . . (5.12)
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Then, to order ε2, the (cubic) term (which is multiplied with the function W ) in the scalar
counterterm (2.13) does not show up, and one finds the following simple expression for the
mass of the gravitating dipole solution

M = Lπ2

3 ε2, (5.13)

(where we choose ∂M to be a surface at constant r, while nν = δνr
√
F2/N0).

5.2 Non-perturbative solitons in the φ4-model

5.2.1 The framework

The (axially symmetric) non-perturbative solutions are constructed by employing the
Einstein-De Turck approach [42, 43]. Therefore, instead of the Einstein equations, we solve
the so called Einstein-DeTurck (EDT) equations

Rab −∇(aξb) = − 3
L2 gab + 2κ2

(
Tab −

1
2Tgab

)
, with ξa = gbc(Γabc − Γ̄abc), (5.14)

Γabc being the Levi-Civita connection associated to the spacetime metric g that one wants to
determine. Also, a reference metric ḡ is introduced, with Γ̄abc the corresponding Levi-Civita
connection. Solutions to (5.14) solve the Einstein equations iff ξa ≡ 0 everywhere onM.
To achieve this, we shall impose boundary conditions which are compatible with ξa = 0 on
the boundary of the domain of integration.

Within this approach, the (static, axially symmetric) metric Ansatz is more complicated
than the perturbative one, eq. (5.1), with five metric functions

ds2 = −f0(r, θ)N(r)dt2 + f1(r, θ) dr
2

N(r) + S1(r, θ)(rdθ + S2(r, θ)dr)2 + f2(r, θ)r2 sin2 θdϕ2.

(5.15)
For solitons with a 1/r2 decay of the scalar field (the only considered case), the obvious
reference metric is AdS spacetime, while the numerics is done with a scalar field Ansatz

φ = ψ(r, θ)
r

, (5.16)

such that a vanishing ψ as r →∞ corresponds to α = 0 in (1.2).
Then the EDT equations (5.14) together with the scalar field equation result in a set

of six elliptic partial differential equations, which are solved numerically as a boundary
value problem. Following the standard approach [44], the boundary conditions are found
by constructing an approximate form of the solutions on the boundary of the domain of
integration compatible with the requirement ξa = 0. They read

∂rf1
∣∣
r=0 = ∂rf2

∣∣
r=0 = ∂rf0

∣∣
r=0 = ∂rS1

∣∣
r=0 = ∂rS2

∣∣
r=0 = 0, ψ|r=0 = 0,

∂θf1
∣∣
θ=0,π = ∂θf2

∣∣
θ=0,π = ∂θf0

∣∣
θ=0,π = ∂θS1

∣∣
θ=0,π = S2

∣∣
θ=0,π = 0, ∂θψ

∣∣
θ=0,π ,

f1
∣∣
r=∞ = f2

∣∣
r=∞ = f0

∣∣
r=∞ = 1, S1

∣∣
r=∞ == S2

∣∣
r=∞ = 0, ψ

∣∣
r=∞ = 0.
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Moreover, we shall assume again that the solutions are symmetric w.r.t. a reflection in the
equatorial plane, which implies that the functions f1, f2, f0, S1 satisfy Neumann boundary
conditions at θ = π/2 while S2 and ψ vanish there. It is also of interest to display the far
field behaviour of the solution

φ= β(θ)
r2 +O(1/r4), f0 = 1+ f03(θ)

r3 +O(1/r4), f1 = 1+ 24πGβ(θ)2

r4 +O(1/r5),

f2 = 1+ f23(θ)
r3 +O(1/r4), S1 = 1− f03(θ)+f23(θ)

r3 +O(1/r4), S2 =O(1/r5), (5.17)

the functions β(θ) and f03(θ), f23(θ), s13(θ) being determined from the numerics.
One finds in this way the following large-r expressions of the non-vanishing compo-

nents of the boundary stress tensor (note the absence of a contribution from the scalar
counterterm (2.13)):

T θθ = − 3
4κ2L

(f03(θ) + f23(θ))
r3 + . . . , Tϕϕ = 3

4κ2L

f23(θ)
r3 + . . . , T tt = 3

4κ2L

f03(θ)
r3 + . . . ,

(5.18)
which is traceless, as expected. Then a straightforward computation leads to the following
expression for the mass:

M = 3π
2κ2L2

∫ π

0
dθ sin θf03(θ).

5.2.2 Numerical results

In this approach, the only input parameter is λ, the constant of the quartic selfinteraction.
Instead of r, the numerics is done by using a compactified radial coordinate x = r/(1 + r),
the equations being discretized on a (x, θ) grid with around 250 × 50 points. Then the
resulting system is solved iteratively until convergence is achieved. The typical numerical
error for the solutions reported in this work is estimated to be of the order of 10−4 (also,
the order of the difference formulae was 6).

The profile of the typical scalar field, the function β(θ) and the energy density ρ = −T tt
are (qualitatively) similar to those displayed in figure 4 for solutions in the probe limit. As
expected, the φ4-(AdS probe) solution with α = 0 found in section 3.2 possesses gravitating
generalizations. The resulting picture shares the basic features found for spherically
symmetric solitons, see figure 12. The solutions with a 1/r2 decay exist up to a minimal
value of |λ| (while again no such solutions are found for λ > 0). As the minimal value of |λ|
is approached, both the mass and β(0) increase, while the numerics become increasingly
challenging, with large numerical errors.

Also, the solutions appear to exist for arbitrary large values of |λ|. To understand this
limit, one notes that these Einstein-scalar field solutions can also be constructed by using
an alternative scaling, with λ→ λc2, φ→ φ/c, and κ2 → κ2c2, with c an arbitrary nonzero
constant. This can be used to set λ = −1, and work instead with the following form of
the EDT equations Rab −∇(aξb) = 3gab/L2 + 2κ̄2(Tab − 1

2Tgab) , with κ̄
2 = κ2/|λ|. As such,

κ̄2 → 0 corresponds to solutions in the probe limit (being approached for large values of |λ|).
We mention that the preliminary results indicate the existence of BH generalizations of

these solutions, with the presence, as in the probe limit in section 3.2, of two branches of
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solutions which merge for a maximal value for the horizon area. However, their study is
more involved, being beyond the purposes of this work.

Returning to the solitonic case, such solutions should exist as well for a pure 1/r
asymptotic decay of the scalar field, or, more generally, with nonzero α and β in eq. (1.2).
However, so far we did not manage to adapt our numerical scheme to these cases. The
obstacle is that the EDT approach requires the choice of a suitable background metric ḡ,
which is not obvious for a 1/r decay of the scalar field. For example, when choosing AdS
for ḡ, we could not find a consistent far field expression of the solutions which is compatible
with the requirement ξa = 0. This obstacle has also prevented us to find non-perturbative
solutions in the N = 8 model.

We also mention that no results were found when modifying the code used in the
φ4-model for a scalar potential given by (2.4), while keeping the same set of boundary
conditions, which strongly suggests the absence of solutions with α = 0 in that case.

6 Discussion

The Einstein-scalar field system with mass µ2 = −2/L2 in AdS4 spacetime provides
an interesting toy model to investigate the issues of asymptotics and possible boundary
conditions, together with the existence of scalar multipolar solutions. Moreover, for a
suitable scalar potential, this model is a consistent truncation of N = 8 D = 4 gauged
supergravity [13], this being the main case studied in this work. Apart from this case, we
have considered also a model with a quartic selfinteraction of the scalar field.

The main results can be summarized as follow. First, both the perturbative and the
numerical results for the N = 8 model strongly suggest that no (soliton or BH) solutions can
be found subject to the ‘standard’ boundary conditions α = 0 or β = 0 (with α and β the
parameters which enter the asymptotic scalar field expansion (1.2)). As such, all solutions
of (the considered truncation) of the N = 8 model belong to designer gravity theories [7].
Then the existence of the relation between α and β of the form (1.3) is essential, from a
physical point of view, for obtaining an integrable mass for the solutions. The fact that
the scalar selfinteraction potential in the N = 8 gauged supergravity supports only mixed
boundary conditions implies that the bulk solution is consistent with RG flows generated in
the dual field theory by multi-trace deformations. In particular, the (marginal) triple-trace
deformation is consistent with mixed boundary conditions that preserve the conformal
symmetry, in which case β ∼ α2.

However, this result depends on the precise form of the scalar field selfinteraction. As
shown in this work, a different picture is found for a scalar field with quartic selfinteraction,
with the existence as well of spherically symmetric solitons and BHs with a 1/r or 1/r2

asymptotic decay of the scalar field.
In a different direction, our results suggest that the spherically symmetric Einstein-

scalar field solitons are only the first member of a discrete family of solutions, which can be
viewed as non-linear continuations of the linear scalar clouds in a fixed AdS background.
Moreover, similar configurations should exist when adding a BH horizon at the center
of these solitons. The main case studied in our work was that of (axially symmetric)
dipoles, where we have found both perturbative and non-perturbative results. However,
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we emphasize that the multipole structure in AdS is quite different than in flat spacetimes
because all the multipoles come at the same order in AdS.

As avenue for future research, we mention first the possible existence of configurations
without isometries, which would be the backreacting version of the m 6= 0 scalar multipoles.
Moreover, already in the dipole case, similar solutions were shown to exist in a model
with U(1) fields. Also, it would be interesting to consider a similar study for other AdS
parametrizations (here we mention the existence in the n = 3 sugra-model of an exact
solution describing a BH with scalar hair,15 whose event horizon is a surface of negative
constant curvature [46]). Finally, we conjecture the existence of (qualitatively) similar
results for any value of the scalar field mass above the Breitenlohner-Freedman bound [45].
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A The N = 8 D = 4 gauged supergravity action: the Einstein-scalar
field(s) truncation

Among other results, ref. [13] shows the existence of a consistent truncation of the bosonic
sector of the gauged N = 8 supergravity, which, apart from the Einstein term, contains
three scalar fields φ(12), φ(13), φ(14) and four U(1) gauge fields F (C)

µν (C = 1, . . . , 4). Its
(bulk) action reads (eq. (2.11) in ref. [13]):

I = 1
4κ2

∫
d4x
√
−g
[
R− 1

e

(
(∂µφ(12))2 + (∂µφ(13))2 + (∂µφ(14))2

)
− U(φ) (A.1)

− 2
(
e−λ1(F (1)

µν )2 + e−λ2(F (2)
µν )2 + e−λ3(F (3)

µν )2 + e−λ4(F (4)
µν )2

)]
,

with the scalar potential

U = −4g2
(
coshφ(12) + coshφ(13) + coshφ(14)

)
. (A.2)

15See also [47] for exact solutions in an extended supergravity model.
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(with 4πG = κ2 and 2g2 = 1/L2 for the notation in this work) while λi are linear combination
of the scalar fields, as given by

λ1 = −φ(12) − φ(13) − φ(14), λ2 = −φ(12) + φ(13) + φ(14),

λ3 = φ(12) − φ(13) + φ(14), λ4 = φ(12) + φ(13) − φ(14).

Let us remark that one can take consistently F (C)
µν = 0 and thus we are left with a

model with three gravitating scalar fields

φ(12) ≡ 2κφ(1), φ(13) ≡ 2κφ(2), φ(14) ≡ 2κφ(3). (A.3)

The case of only one nonzero scalar field φ(a) results in the action (2.1) with n = 1 in the
potential (2.4). Let us assume now that two scalar fields (for example a = 1, 2) are equal,
while the third one vanishes. Then the redefinition

φ(1) = φ(2) = φ√
2
, (A.4)

leads to the n = 2 case in (2.1), (2.4). Finally, when all scalars are equal, the sugra-model
in section 2 with n = 3 is recovered via the redefinition

φ(1) = φ(2) = φ(3) = φ√
3
. (A.5)

Also, it was pointed out in [46] that, for a scalar field potential (2.4) with n = 3,
the model (2.1) can be obtained via the field redefinition from the action of a scalar field
conformally coupled to Einstein gravity with a negative cosmological constant.

To clarify if this result holds for the general n-case, we consider the following transfor-
mation in (2.1)

ĝµν = (1− κ2

n
ψ2)−1gµν , ψ =

√
n

κ2 tanh

√κ2

n
φ

. (A.6)

Then the original action (2.1) becomes

S=
∫ √
−ĝ
( 1

4κ2

(
R̂+ 6

L2

)
+ 3κ2ψ2−n2

2n(n−κ2ψ2)∇̂
aψ∇̂aψ−

R̂

4nψ
2+ (n−3)n

n2L2 ψ2+ (3−2n)κ2

2n2L2 ψ4
)
.

(A.7)
It is obvious that the case n = 3 is special, with a simple form of the above expression

S =
∫ √
−ĝ
( 1

4κ2

(
R̂+ 6

L2

)
− 1

2 ĝ
µν∇aψ∇aψ −

1
12R̂ψ

2 − κ2

6L2ψ
4
)
. (A.8)

Also, this is the only case where the matter part in (A.7) (which includes also the R̂ψ2

term) is conformally invariant.
It is worth to mention that (A.1) corresponds to a particular truncation of the gauged

N = 8 supergravity, with a specific choice for the 28 vectors and the 70 real scalar degrees of
freedom [13], leading to a model without direct interaction terms between the scalar fields and

– 29 –



J
H
E
P
0
3
(
2
0
2
3
)
1
7
4

the gauge potentials. However, other consistent truncations are possible, resulting in more
complicated theories. In the context of this work, it is of interest to mention the truncation
in ref. [48] (see also ref. [49]) that keeps the SU(3) invariant sector of the maximal SO(8)
gauged supergravity, and also the truncation in ref. [50], which maintains U(1)4 ⊂ SO(8)
(see also refs. [48, 51, 52]). Solutions of a general Einstein-Maxwell-scalar field model which
encompasses the two aforementioned truncations have been discussed in ref. [53]. In addition
to the kinetic terms for the U(1) gauge field F = dA and the scalar field φ (which has a
nontrivial potential and the same far field decay as in eq. (1.2)), the matter action there
also contains a direct coupling term between φ and A, akin to the Abelian-Higgs theory.16

This leads to a very rich set of configurations, with an intricate pattern of branching and
some unexpected results. For example, we mention the existence of solutions which are not
perturbatively connected to the (globally) AdS vacuum and possess a planar ((Poincaré))
AdS limit. Hairy, charged BHs providing holographic superconductors do also exist in this
model. However, the (charged) solutions in ref. [53] are spherically symmetric. As a direct
continuation of one of the directions in our work, it would be interesting to consider their
generalizations for a set of boundary conditions at infinity corresponding to scalar multipoles.

B Details on the perturbative axially symmetric solutions

B.1 The general equations

For the metric Ansatz (5.1), and φ ≡ φ(r, θ), the Einstein-scalar field equations (2.2) reduce
to the following equations:

− 3
L2−

2κ2 sinh2(φ)
L2 +N+rN ′−κ2r2Nφ′2

r2F2
+ F3(cot(θ)Ḟ1+F̈1)+F1(cot(θ)Ḟ3+F̈3)

2r2F1F 2
3

+ r2NF 2
1 F

′2
3 −F2F3Ḟ1

2

4r2F 2
1 F2F 2

3

+ rF1N
′F ′

3+N(2F3F
′
1+(2F1+rF ′

1)F ′
3)

2rF1F2F3
= 0,

2NF2Ḟ1+rN ′(F1Ḟ2−F2Ḟ1)
4r3NF1F2F3

+ Ḟ2−4κ2rF2φ̇φ
′

2r3F2F3
+ (F2Ḟ1+F1Ḟ2)(F3F

′
1+F1F

′
3)

4r2F 2
1 F2F 2

3
+−F

2
3 Ḟ1

′+F1(Ḟ3F
′
3−F3Ḟ3

′)
2r2F1F 3

3
= 0,

− 3
L2−

2κ2 sinh2(φ)
L2 + Ḟ1(2cot(θ)F2+Ḟ2)+F1(−4κ2F2φ̇

2+2cot(θ)Ḟ2)
4r2F1F2F3

+ (F2Ḟ1+F1Ḟ2)Ḟ3

4r2F1F2F 2
3

+ 2N ′+rN ′′

2rF2

+ 3rN ′F ′
1+2N(2κ2rF1φ

′2+F ′
1)

4rF1F2
+N(F 2

1 F3F
′
2F

′
3+F2(F 2

3 F
′2
1 +F 2

1 F
′2
3 ))

4F 2
1 F

2
2 F

2
3

− (rF1N
′+N(2F1+rF ′

1))F ′
2

4rF1F 2
2

+ (2rF1N
′+N(4F1+rF ′

1))F ′
3

4rF1F2F3
+N(F3F

′′
1 +F1F

′′
3 )

2F1F2F3
= 0,

− 3
L2−

2κ2 sinh2(φ)
L2 + 2N ′+rN ′′+2κ2rNφ′2

2rF2
+ Ḟ1(F3Ḟ1+F1Ḟ3)

4r2F 2
1 F

2
3

+ Ḟ1Ḟ2+2F2F̈1+2F1F̈2

4r2F1F2F3
− Ḟ2(F3Ḟ2+F2Ḟ3)

4r2F2F 2
3

+ κ2φ̇2

r2F3
−NF ′

1(F2F
′
1+F1F

′
2)

4F 2
1 F

2
2

+ (2N+rN ′)(−F3F
′
2+2F2F

′
3)

4rF 2
2 F3

−NF ′
3(F3F

′
2+F2F

′
3)

4F 2
2 F

2
3

+N(F ′
1F

′
3+2F3F

′′
1 +2F1F

′′
3 )

4F1F2F3
= 0,

− 3
L2−

2κ2 sinh2(φ)
L2 + 2NF3+2rF3N

′+2F2(κ2φ̇2−1)+cot(θ)Ḟ2

2r2F2F3
− r2NF2F

′2
3 +F3(Ḟ2

2+2r2NF ′
2F

′
3)

4r2F 2
2 F

2
3

+ F3(cot(θ)Ḟ3+F̈3)−Ḟ3

2r62F 3
3

+ F̈2+r(rN ′F ′
3+2N(3F ′

3+rF ′′
3 ))

2r2F2F3
+N(κ2rF2φ

′2−F ′
2)

rF 2
2

= 0, (B.1)

16It is interesting to remark that A = 0 is a consistent truncation of the general model in ref. [53], which,
after taking φ → φ/

√
2, results in a model of the form (2.18). For the U(1)4-case in ref. [53], the scalar

potential is the n = 4 sugra-one in eq. (2.19).
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where a prime denotes the derivative with respect to r and a dot denotes the derivative
with respect to θ.

B.2 The dipole solution: the O(ε)2 term for the scalar field

The expression of the functions φ21(r), φ23(r) which enter the n.l.o. expression (5.7) of the
scalar field reads (with N0 = 1 + r2/L2, X = arctan(r/L)):

φ31 = 1
31500r6LN0

×
(
−κ2r2(r(5700L4+424iL3π4rN0+5(3520+γ1)L2r2+5c1r

4)

−5L(3420L4+(2536+γ1)L2r2+(γ1−1934)r4X
)
+6L2N0

(
−120iγ2Lr

4Li4(x)
+7π2r4(4iLπ2−45r(ln(4)−1))+60γ2r

4Li3(x)(r+3LX )+5((−570κ2L4r+28(−9+22κ2)L2r3

+6(−42+151κ2+2iγ2π)r5+24γ2r
4(rY+iLLi2(x)−r ln(2)))X 2+2(95κ2L5+6(7−6κ2)L3r2

+L(κ2(81−106iπ)+42i(i+π))r4+4iγ2r
5+4γ2Lr

4(−Y+ln(2)))X 3+9γ2r
5ζ(2)

+4r4X (8iγ2rLi2(x)+7L(8+π2(−3+ln(63)))−3γ2Lζ(3)))
))
,

φ33 = L

126000r6×
(8400κ2L2r3

N0
−240X 2(315κ2L4r+L2r3(34+3κ2(71−60iπ)+60iπ)

+(34+κ2(−67−48iπ)+16iπ)r5+8γ3r
3(15L2+4r2)(Y−ln(2))

)
+80X 3(κ2(315L5−507L3r2)

−8γ3γ6r
2Y+2r2(60iγ3L

2r+γ3(γ7+16ir)r2+L3(137+30γ3(iπ+ln(4))))
)

+15r2X
(
−15L3(−88+208κ2+Γ2)+L(376+1392κ2−9Γ2)r2+32γ3(4iΓ1Li2(x)+4γ6Li3(x)

−3γ6ζ(2))
)
+3r2(6iγ3γ6π

4+25L2(1184κ2+3(−88+Γ2))r+20Γ2r
3+80γ3(4Γ1Li3(x)

−8iγ6Li4(x)+3Γ1ζ(3))
))
,

where we define

γ1 = 9π2(151− 212 ln(2)), γ2 = 21− 53κ2, γ3 = 3κ2 − 1, γ4 = (17 + 16 ln(2))π2,

γ5 = (67 + 96 ln(2))π2, γ6 = 3(5L2 + 3r2)L, γ7 = 3L(6iπ − 31 + ln(4096)),
Γ1 = 15L2r + 4r3 + γ6X , Γ2 = 2γ4 − γ5κ

2, Y = ln(L+ ir)− ln(r),

where Lin(x) is the poly-logarithm function and ζ(x) is the Riemann zeta function.17

B.3 The perturbative quadrupolar solution

In principle, the computation presented in section 5.1 can be repeated starting with any
(axisymmetric) scalar `-mode. Here we present some results for the ` = 2, i.e. a scalar
quadrupole.

The general equations (5.1)–(5.4) are still valid; however, for ` = 2 the expression of
the perturbed metric functions is more complicated, with

Fi2(r, θ) = κ2(ai(r) + P2(cos θ)bi(r) + P4(cos θ)ci(r)).

17Both φ31 and φ33, are real functions, although i appears in their expressions.
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Then a straightforward but cumbersome computation leads to the following expressions of
the functions ai, bi, ci:

a1(r) = 4
5π2

(
−13π2+ 12L2

r2

(
1+ 10r2

3L2N0(r)

)
+ 40L3

r3 X (r)
(
−1+ 13r2

5L2 + 2
5N0(r) + 3L

10r

(
1+ 13r4

3L4

)
X (r)

))
,

a2(r) =− 432L4

5π2r4N0(r)

(
1−LX (r)

r

(
1+ r2

3L2

))(
1+ 7r2

9L2−
LN0(r)X (r)

r

(
1+ r2

9L2

))
,

a3(r) = 0,

b1(r) = 64L2

21π2r2N0(r)

(
−1+34N0(r)− 42L

r
N0(r)X (r)+9X 2(r)

(
L2

r2 −
r2

L2

))
,

b2(r) =− 1728L4

7π2r4N0(r)

(
1+ 38r2

27L2 + 34r4

81L4−
2L
r
N0(r)X (r)

(
1+ 16r2

27L2−
LX (r)

2r

(
1+ 7r2

9L2

)))
,

b3(r) =−176L2

7π2r2

(
1− 68r2

33L2 + 10LX (r)
11r

(
1+ 11r2

5L2

)
+
(

1− 21L2

11r2

)
N0(r)X 2(r)

)
,

c1(r) =− 768L4

5π2r4N0(r)

(
1+ 125r2

84L2 + 17r4

35L4−
LN0(r)X (r)

2r

(
1+N0(r)+ 2rX (r)

7L

(
1+ 5

4N0(r)
)))

,

c2(r) = 384L4

7π2r4N0(r)

(
1+ 71r2

30L2 + 34r4

25L4−
4L
5rN0(r)X (r)

(
−1+ r2

4L2 + 9LX (r)
4r

(
1+ 7r2

6L2 + 7r4

18L4

)))
,

c3(r) = 96L4

π2r4

(
1+ r2

35L2−
136r4

1575L4 + 2LX (r)
5r

(
−1+ 2r2

21L2 + r4

7L4 + r3N0(r)X (r)
14L3

(
1− 21L4

r4

)))
,

which are found subject to the assumption of regularity at r = 0 and AdS asymptotics.
To find the ε3-corrections to the scalar field, we consider an expansion similar to (5.4),

with
φ(3)(r, θ) = φ32(r)P2(cos θ) + φ34(r)P4(cos θ) + φ35(r)P6(cos θ). (B.2)

Although an exact solution for φ32(r), φ34(r), φ36(r) can be found, its expression is too
complicated to include here. As with the dipole case, we impose these functions to be
regular at r = 0 and to decay as 1/r2 in r →∞. Then the expansion parameter ε can be
identified with the function α (evaluated at θ = 0) in eq. (1.2),

α = εL2(cos θ), (B.3)

while the expression for β is

β =
(
−8L2

π
ε+ β̄32ε

3
)
P2(cos θ) + (β̄34P4(cos θ) + β̄36P6(cos θ))ε3, (B.4)

where we denote

β̄32 = 256L2

245π3

(
132−π2(19−48ln(2))−216ζ(3)− κ2

11

(340742
15 −π2

(11973
4 −5008ln(2)

)
+22536ζ(3)

))
,

β̄34 =−3477504L2

148225π2

(
− 864ζ(3)

283 + 1676482κ2

99333

(
−1+3π2

( 349357
6705928−

90528ln2
838241

)
+ 1222128ζ(3)

838241

)
+1+π2

(192ln2
283 −

1579
6792

))
,

β̄36 =− 192L2

1926925π3

(
−5π2(6389+18432ln2

)
+1296

(
303+320ζ(3)

)
+κ2(π2(382237+153600ln2)

−
(59050384

15 +691200ζ(2)
))
. (B.5)

– 32 –



J
H
E
P
0
3
(
2
0
2
3
)
1
7
4

To lowest order, the mass of the gravitating quadrupole, as computed within the same
approach as the other solutions in this work, is

M = 64Lε2

5 . (B.6)
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