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1 Introduction

Despite ongoing experimental and theoretical efforts, the nature of DM remains elusive.
An attractive possibility is that DM is a thermal relic, and its abundance is determined
by freeze-out from the thermal plasma. Although most attention has been on weakly
interacting particles (WIMPs), their parameter space is increasingly constrained [1–3], and
other explanations have come to prominence. One such alternative is strongly interactive
massive particles (SIMPs) [4–6]. In the SIMP scenario, dark matter freeze-out occurs in a
dark sector via 3→ 2 interactions, which are typically stronger than in the WIMP scenario.
As a result, SIMPs have a lower mass (typically MeV-GeV scale), to which direct detection
experiments are less sensitive [7]. To avoid overheating the dark sector during freeze-out,
a portal coupling maintains thermal equilibrium with the visible Standard Model sector.

Cosmological observations question the collisionless dark matter (CDM) paradigm. For
example, observations of dark matter halo density profiles do not match the expected NFW-
profile [8, 9] of CDM [10–15]. This discrepancey is known as the cusp vs. core problem, see
e.g. [16] for a recent review. Although the inclusion of baryonic effects in the numerical
simulations may resolve the discrepancy [17–21], it is also possible that the resolution lies
in the dark matter properties. Indeed, dark matter with strong self-interactions naturally
alleviate the problem by transferring heat from the inner to the outer parts of the halo,
thus smoothening the density profile [22, 23]. The required interactions are scale dependent
— a factor 10 difference between galaxies and galaxy clusters — pointing to a velocity-
dependent self-interaction [23].

The archetypical SIMPs are the pseudo Nambu-Goldstone bosons — the dark pions
— of a condensed dark Yang-Mills theory, with the Wess-Zumino-Witten term providing
the five-point interactions [24–26]. The dark pions have naturally large self-interactions,
and may address the small scale problems of CDM as well [27], except that the interac-
tions are not velocity dependent. Moreover, satisfying both the relic density and the self-
interaction constraints (or more conservatively, the upper bound on the self-interactions
from the Bullet cluster observations), is only possible for non-perturbatively large pion
couplings, invalidating the chiral perturbation theory approach [4]. Both of these issues
can be overcome with extra vector bosons in the model [28], and in this paper we will
consider adding a massive dark photon. For finetuned dark photon mass, almost twice the
dark pion mass, the photon mediated self-interactions can be on resonance, thus giving
rise to a velocity-dependent effect [29]. Moreover, the WZW-interactions may likewise be
resonantly enhanced, increasing the freeze-out interactions [30, 31].
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In addition, the dark photon can maintain equilibrium with the SM through kinetic
mixing [32, 33] with the SM photon [5, 6]. In this case dark pion annihilations to SM
final states should be included in the relic density calculations as well. The annihilation
rate grows at late times, as the dark pions lose kinetic energy and the annihilation cross
section gets more and more resonantly enhanced. As a result, even after freeze-out of
the (resonantly enhanced) WZW interactions, the annihilations can still be important and
affect the final relic density. Late time annihilations in photons and electrons are bounded
by nucleosynthesis and cosmic microwave background observations.

In this paper we will study if one particle — the dark photon — can do it all, solve the
small scale structure problems of CDM, enhance the freeze-out interactions such that the
relic density is obtained for non-perturbative pion couplings, and maintain thermal equi-
librium with the SM — this is dubbed the resonant self-interacting dark matter (RSIDM)
scenario. We also include collider bounds on dark photon kinetic mixing, as well as cosmo-
logical constraints from nucleosynthesis and the cosmic microwave background. We find
that RSIDM can affect small scale structure formation while maintaining thermal equilib-
rium with the SM for the non-minimal setup with four dark quarks. The minimal setup
with three quarks is only marginally excluded by the thermalisation requirement. In both
setups more precise calculations may be needed to make definite statements. We will also
study how parameter space opens up if the requirement that dark matter affects small scale
structure formation is dropped.

This paper is structured as follows. Section 2 introduces the dark sector, with the dark
pions and dark photon. This is followed by a discussion of the dark matter self-interactions
and Bullet cluster bound in section 3; analytical estimates for the freeze-out temperature
and final relic density, including both WZW interactions and annihilations, in section 4;
and the constraints on the kinetic mixing parameter in section 5. In section 6 we then
discuss the parameter space for which the relic density can be obtained in a perturbative
set-up, the self-interactions can be resonantly enhanced to address the small scale structure
problems of CDM, and the dark photon can keep the dark and visible sector in thermal
equilibrium during freeze-out. In addition to the analytical estimates we will also provide
numerical results. We end with concluding remarks in section 7. For completeness, we
have also added the computation of the various (thermally averaged) cross sections in the
appendix. Our results for the WZW and pion self-interactions agree with the literature;
new is the photon mediated resonant contributions to the various cross section.

2 Lagrangian

Strongly interacting massive particles (SIMPs) freeze out via 3 → 2 dark matter interac-
tions [7, 34]. The large required number changing interactions can naturally be obtained in
a dark sector with a non-abelian symmetry, with dark pions playing the role of the DM [4].
In this paper we study the phenomenology of this set-up if we add a dark photon [5, 6].
The dark photon can provide a portal between the dark and SM sectors, and — for tuned
masses — can resonantly enhance the dark pion interactions.
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We thus consider a dark sector with an SU(Nc)×U(1) gauge symmetry, with Nf dark
quarks in the fundamental representation of the gauge group. The quark mass matrix
is assumed diagonal M = mq1, allowing for a Wess-Zumino-Witten (WZW) term in the
action for Nc ≥ 3 colors [24–26]. A dimension-four kinetic mixing operator connects the
dark U(1) group with the SM hypercharge [32, 33], and provides a portal between the dark
and visible sectors.

At a scale Λ the non-abelian gauge group condenses, and the approximate flavor sym-
metry of the light left- and right-handed quarks is broken down to the diagonal subgroup.
The (N2

f − 1) dark pions are the pseudo-Goldstone bosons of the this symmetry breaking.
They can be naturally lighter than the scale Λ, which sets the mass of the baryons in the
theory. Depending on their couplings to other sectors, including the SM, the dark pions
can be stable on cosmological timescales and thus are a good dark matter candidate.

At energies below the condensation scale the effective action is

S=
∫

d4x

[
f2
π

4 Tr(DµU)†DµU+ ζf3
π

2 Tr(MU+h.c.)− 1
4V

2
µν−

1
2mV V

2
µ −εVµJ

µ
SM

]
+ΓWZW

(2.1)
with ζ = O(1). The first two terms are the leading order operators of the chiral effective
Lagrangian describing the dark pion dynamics. Here U = e2iπ/fπ , π = πaT a with T a

generators of SU(Nf ), and fπ ∼
√
NcΛ/(4π) the pion decay constant. The covariant

derivative is DµU = ∂µU + igd[Q,U ]Vµ, with Vµ the dark photon field and gd the dark
U(1) gauge coupling. We choose the charge matrix [6, 35]

Q = Diag(1,−1, 1,−1, . . .), (2.2)

with Nf entries. With this charge assignment Tr(Q2T a) = 0 and the mixed anomaly
vanishes, avoiding decay of the neutral dark pion into to two (dark) photons [36, 37].

The next two terms are the dark photon kinetic term, where we defined the gauge
field strength Vµν = ∂µVν − ∂νVµ, and the Stückelberg mass term for the dark photon. To
avoid pion decay the dark photon mass should exceed twice the pion mass; in the limit that
the photon mass is close to that threshold, the photon-pion interactions can be resonantly
enhanced. We parameterize1

mV = mπ(2 + δm) > 2mπ. (2.3)

The last term in eq. (2.1) between the square brackes couples the dark photon to the SM
vector current JµSM =

∑
qf f̄γ

µf , and qf the electric charge of the SM fermion f . This term
arises as a consequence of kinetic mixing between the dark U(1) group and SM hypercharge;
after redefining the fields to make the kinetic terms canonical, and diagonalizing the mass
matrix, the result is the coupling in eq. (2.1) [38]. Here we used that ε � 1 and have
dropped the O(ε2) terms, and we have neglected the coupling to the Z-boson, valid if the
dark photon mass is small compared to the electroweak scale.

1Here mπ is the mass of the charged — with unit charge — dark pions, which interact with the dark
photon. The mass of the charged dark pions receive loop corrections, and is slightly larger than the mass
of the neutral pions.

– 3 –



J
H
E
P
0
3
(
2
0
2
3
)
2
1
6

Finally, the last term is the WZW action, which is present if the 5th homotopy group of
the coset space π5(G/H) is non-trivial; this is the case for Nf ≥ 3 mass degenerate flavors.

Expanding the action in pion fields, the Lagrangian is the sum of the Lagrangian
for chiral perturbation theory (χPT), the dark photon Lagrangian, and the terms from
the WZW action: L = LχPT + LV + LWZW. The relevant dark pion and dark photon
interactions are:

LχPT = Tr(∂π)2 −m2
πTr(π2) + 1

3f2
π

Tr
(
(2π∂π)(π∂π)− 2(ππ)(∂π∂π) +m2

ππ
4
)

+ 2igdV µTr ((∂µπ)[Q,π]) ,

LV = −1
4V

2
µν −

1
2mV V

2
µ − εVµ

∑
f

qf f̄γ
µf

LWZW = 2Nc

15π2f5
π

εµνρσTr [π∂µπ∂νπ∂ρπ∂σπ]− i Ncgd
3π2f3

π

εµνρσVµTr (Q∂µπ∂ρπ∂σπ) ,

+ Ncg
2
d

4π2fπ
εµνρσ(∂µVν)VρTr

(
Q2∂σπ

)
. (2.4)

The first two terms in the chiral lagrangian are the kinetic and mass term for the pion
fields, with mass m2

π = 2ζfπmq. Chiral perturbation theory is perturbative for

ξ ≡ mπ

fπ
. 4π. (2.5)

The 3rd term gives the 4pnt pion interactions, and the last term the pion-dark photon
coupling (V 2π interaction). The first two terms in the dark photon Lagrangian are the
kinetic and mass term for the dark photon field, and the last term the coupling of the dark
photon to the SM fermions from kinetic mixing. Finally, the WZW lagrangian contains
the 5pnt pion interaction, and additional dark photon-pion couplings with an odd number
of pions (V 3π and 2V π interactions). We have only included the most relevant, lowest
dimensional operators.

Higher dimensional operators scale with the inverse cutoff scale 1/fπ, which is sup-
pressed compared to the pion mass scale for small ξ. For odd Nf these terms can make the
neutral pion unstable [39], which can be avoided by introducing a small mass splitting be-
tween the quarks [40]. We will instead assume that for odd Nf the Wilson coefficients of the
higher order contributions are sufficiently small for the dark pion to be stable on cosmologi-
cal timescales, and present results for the minimal setup with Nf = 3 as well as for Nf = 4.

3 Self-interactions

The dark pion can scatter via a 4-point contact interaction appearing in the χPT La-
grangian, and via the exchange of a dark photon. The cross sections for these contri-
butions are calculated in the non-relativistic limit in appendix B. The photon exchange
contribution is subdominant, unless enhanced by an s-channel resonance which can appear
for fine-tuned dark photon masses eq. (2.3). The cross section is can then be approximated
by a sum of the velocity independent contact interaction and velocity dependent resonance
contribution σSI ≈ σ4pnt

SI + σres
SI .
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For SIMP dark matter the self-interactions are naturally large, and the Bullet cluster
observations [41–43] put a strong constraint on the cross section. In the resonant self-
interacting dark matter (RSIDM) scenario [29, 44], with a judicial choice of parameters,
the self-interactions can affect structure formation on small scales in a velocity dependent
way, and thus may address the putative problems of collisionless dark matter [22, 45–47].

3.1 Bullet cluster bound

The s-wave part of the dark pion self-interaction cross section is eq. (B.12)

σ4pnt
SI
mπ

= 3κSIξ
4

64πm3
π

= 2.2× 105 cm2

g

(MeV
mπ

)3 3ξ4κSI
64π ≤ aint

cm2

g , (3.1)

with κSI = (N4
f −

2
3N

2
f + 2)/(N2

f (N2
f − 1)) = 1 + O(N−2

f ) and MeV−3 ≈ 2.2 × 105 cm2/g.
The cross section is not very sensitive to the number of quark flavors Nf . The Bullet
cluster observation puts an absolute upper bound on the self-interaction cross section,
given by aint ≈ 1. In the RSIDM scenario, where the resonant interactions from dark
photon exchange become important at small scales, the data is fit by a smaller s-wave
contribution and aint ≈ 0.11 (and the r.h.s. of eq. (3.1) becomes an equality) [29]. The
bound on the cross section can be translated in a condition on the dark pion mass

mπ ≥ 14.9 MeV
(
ξ4κSI
aint

)1/3

. (3.2)

3.2 Resonant self-interactions

The velocity dependent contribution to the self-interactions from nearly on-shell dark pho-
ton exchange can be written in Breit-Wigner form eq. (B.15)

σres
SI = 4πS

mπE(v)
Γd(v)2/4

(E(v)− E(vR))2 + Γ(v)2/4 , (3.3)

with S = 3Sf/N2
π the ratio of multiplicities of the resonance dark photon (3 polarizations)

and DM particles (Nπ = N2
f − 1) times a symmetry factor Sf = 2 that takes into account

that there are two identical particles in the final state of both the self-interaction process
and in dark photon decay. E(v) = mπv

2/4 is the kinetic energy in terms of the relative
velocity v, and E(vR) = mπδm the resonant kinetic energy. Further, Γd(v) is the running
decay rate of the dark photon into dark sector pions, and Γ = Γd + Γv the total running
decay rate, which includes the decay into the visible SM sector fermions and pions via
kinetic mixing. The velocity dependence of the decay widths can be parameterized as
Γi = mV γiv

ni with i = d, v; explicitly (see appendix C)

Γd(v) = mV

(
C4αd
24Sf

)
v3, Γv(v) = mV

(
αε2

3πSf

)
v0, (3.4)

with αd = g2
d/(4π) and α = e2/(4π) the dark sector and SM fine-structure constants.
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The resonance is peaked for v = vR, with vR = 3.6× 10−4c from small scale structure
data [29]. This determines δm

δm =
(
vR
2

)2
= 3.2× 10−8. (3.5)

The height of the peak is fit by mπ = 4000 MeVS1/3(Bdγd)1/3, with Bd = Γd/Γ the
branching ratio for decay into the dark sector. This determines the dark photon gauge
coupling:

αd = 1.3× 10−4
(

mπ

100 MeV

)3 N2
π

BdC4
(3.6)

The resonant enhancement of the cross section is large, and small αd is required to avoid
too large self-interactions.

For RSIDM both the mass and the dark gauge coupling are given in terms of ξ,
which together with the kinetic mixing parameter ε are the only free parameters left. The
combined constraints eq. (3.2) with aint = 0.11 and eqs. (3.5) and (3.6) give

mπ = 31.0 MeV
(
ξ4κSI

)1/3
, αd = 3.7× 10−6ξ4N

2
πκSI
C4Bd

, δm = 3.2× 10−8. (3.7)

4 Relic density

The dark pions can freeze out via 3 → 2 number changing SIMP interactions and via
annihi- lation into SM fermions. In the SIMP scenario thermal equilibrium with the SM
sector should be maintained through freeze-out, to avoid entropy production and heating
up of the dark sector. We will assume this is the case in this section, and return to the
question whether the dark photon can be responsible for this in the next section.

The SIMP interactions get a contribution form the 5-point coupling in the WZW
Lagrangian, and from diagrams with dark photon exchange allowed by the (3π)V coupling
in the WZW Lagrangian; with our choice of dark charges eq. (2.2) the π(2V ) coupling
vanishes.

The thermally averaged cross section is calculated in appendix E, and is given in
eqs. (E.10) and (E.27). Introducing the ‘time’ variable

x = mπ

T
, (4.1)

it can be written in the form

〈σv2〉3→2 ≈ 〈σv2〉5pnt
3→2 + 〈σv2〉res

3→2 = α3→2
x2m5

π

(1 + αresx
5/2e−δmx). (4.2)

The first term comes from the 5pnt pointlike interaction. The 2nd term is from dark
photon exchange, which is dominated by an s-channel resonance if the dark photon is
nearly on shell δm� 1, and we have we used the narrow width approximation to evaluate
the thermally averaged cross section. We have calculated the latter term only for Nf = 3
and Nf = 4 flavors. The effective couplings are

α3→2 = 5
√

5
1536π5

N2
c κ3→2ξ

10

Nf
, αres|Nf=3,4 = 512π5/2

15C4

αd
ξ4 (4.3)
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with κ3→2 = N2
f (N2

f − 4)/N2
π = 1 + O(1/Nf ). The resonant contribution dominates at

freeze-out x = xf for αd/ξ4 & 3.8×10−6xf20 with xf20 = xf/20. For RSIDM eq. (3.7) this is
the case for ξ . O(1). Dark pions can annihilate into SM electrons (and depending on their
mass, into heavier charged SM particles) via the kinetic mixing portal. Annihilation is also
dominated by the s-channel resonance and the thermally averaged cross section is eq. (D.9)

〈σv〉ann = αann
x3/2e−δmx

m2
π

, αann = 32π
√
πε2αBd
N2
π

(4.4)

with as before Bd = Γd/Γ the branching ratio for decay into dark sector states. We note
that both the resonant part of the WZW interactions and the resonant annihilations are
independent of the mass splitting δm, except for the exponential factor, which determines
below which temperature x & 1/δm these interactions are ‘turned off’.

The Boltzmann equation for the dark pions reads

ṅ+ 3Hn = −〈σv〉ann(n2 − n2
eq)− 〈σv2〉3→2(n3 − n2neq), (4.5)

which in terms of the number density fraction Y = n/s becomes

dY
dx = −λ3→2

x7 (1 + αresx
5/2e−δmx)(Y 3 − YeqY

2)− λanne−δmx

√
x

(Y 2 − Y 2
eq). (4.6)

Here
λ3→2 = s(mπ)2α3→2

m5
πH(mπ) , λann = s(mπ)αann

m2
πH(mπ) (4.7)

with s(mπ) = (2π2g∗sm
3
π)/45 and H(mπ) = (π√g∗m2

π)/(3
√

10mpl) the entropy density
and Hubble constant at T = mπ.

The relic dark matter density matches observations [48] for

Ωπ,0 = Nπmπs0Y∞
ρc

⇒ mπY∞ = 0.4× 10−6 MeV (4.8)

with Y∞ = n/s the asymptotic number density fraction, and s0 the entropy density today.

4.1 SIMP freeze-out

Consider first the case that freeze out of the dark pion is determined by the WZW inter-
actions, either by the 5pnt contact interaction or the dark photon mediated contribution.
This means annihilation are subdominant at freeze out 〈σv〉ann . 〈σv2〉3→2 neq at x = xf .
We will estimate the bound this condition gives on ε in the next section. Note, however,
that the annihilation cross section grows at late times, and even if negligible at freeze out,
annihilation may still affect the final relic density significantly.

To describe freeze out we thus set the annihilation contribution to zero in the Boltz-
mann eq. (4.6). At late times the equilibrium distributions can be dropped, which allows
to solve for the asymptotic distribution

lim
x→∞

dY
dx = −λ3→2

x7 (1 + αresx
5/2)Y 3 ⇒ Yf '

√
3x3

f√
λ3→2

1√
1 + 12

7 αresx
5/2
f

(4.9)
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where we introduced the notation Yf for the asymptotic number density after freeze-out of
the SIMP reactions. The freeze-out temperature can be estimated from n2

π〈σv2〉3→2 ' H

which gives

x3e2x∣∣
x=xf

' N2
πα3→2mπ

(2π)3H(mπ)(1 + αresx
5/2) ≡ C3→2(1 + αresx

5/2) (4.10)

where we used that the non-relativistic number density is n = Nπm
3
π(2πx)−3/2e−x. In

the limit that the 5pnt interaction respectively the resonant contribution dominates the
cross section we can estimate the freeze-out temperature using that xne2x = c gives x ≈
ln
√
c− n

2 ln(ln
√
c).

The SIMP interactions are negligible after freeze out, but annihilations may still have
an effect. To estimate this we solve the Boltzmann equation with the boundary condition
Y (xf ) = Yf :

dY
dx = −λanne−δmx

√
x

Y 2, ⇒ Y∞ ≈ Yf
√
δm√

δm+
√
πYfλann

(4.11)

where we assumed that (δmxf ) � 1. The annihilation rate increases at late time, and
is most efficient just before the exponential cutoff at x = 1/δm kicks in; this is how the
δm-dependence appears in the estimate for the relic density. It follows that annihilations
are negligible if

√
πYfλann√
δm

< 1 ⇒ ε < 7.6× 10−9Nπ

√
Bdδm

(
mπ

MeV

)
. (4.12)

that is, only for very small kinetic mixing.

4.2 Annihilation scenario

In the opposite limit that 3 → 2 interactions are always subdominant, 〈σv〉ann ≥
〈σv2〉3→2 neq at freeze-out, the relic density is set by annihilation reactions only. We can
still use eq. (4.11) for the relic density, but now Yf (xf ) is the number density as annihila-
tions freeze out. The freeze-out temperature can be estimated from nπ〈σv〉ann ' H which
gives

x−2ex ' Nπαannmπ

(2π)3/2H(mπ)
≡ Cann ⇒ xf ' lnCann + 2 ln(lnCann). (4.13)

We estimate the freeze out density

Yf ≈
n

s

∣∣∣∣
xf

=
x

7/2
f

λann
(4.14)

where we used eq. (4.13). If xf in eq. (4.14) is smaller than that for SIMP reactions
eq. (4.10), it follows freeze-out is dominated by annihilations. An earlier freeze out means
a larger density Yf . Hence we can write the asymptotic number density as

Y∞ ≈ Yf
√
δm√

δm+
√
πYfλann

, Yf = max
(
Yf
∣∣
ann, Yf

∣∣
3→2

)
(4.15)

with the freeze out density for 3 → 2 reactions and annihilation given in eqs. (4.9)
and (4.10), and eqs. (4.13) and (4.14) respectively.
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5 Kinetic mixing

Kinetic mixing between the dark and SM photons provides a portal between the dark
and visible sector. In the SIMP scenario, in which the relic density is determined by the
freeze-out of 3 → 2 dark pion number changing interactions, both sectors need to be in
thermal equilibrium during freeze-out to avoid heating up the dark sector. The SIMP
scenario further requires that dark pion annihilation into SM particles is subdominant
during freeze-out — although, as we have seen in the previous subsection, annihilation still
may affect the relic density at late times. In this subsection we determine the constraints
on the mixing parameter ε that these two requirements give. The relevant cross sections
are computed in appendix D. We also quickly review the relevant cosmological and collider
bounds on the kinetic mixing parameter.

5.1 Thermal equilibrium between the dark and visible sector

The dark and visible sector can be kept in thermal equilibrium via pion scattering with
SM electrons and positrons. The non-relativistic cross section for this process is eq. (D.16)

σscat = Ascatε
2 p

2

m4
π

, Ascat = 2πC4αDα

Nπ
(5.1)

This can be straightforwardly generalized to include muon and SM pion scattering as well,2

see below eq. (D.16), in case freeze-out occurs at temperatures exceeding the muon and
pion mass. Here p ≈ Ee is the incoming electron momentum, and C4 = 4 (8) for Nf = 3 (4)
the same color factor as appearing in the dark photon decay rate eq. (3.4). The scattering
rate can be estimated as Γscat ≈ 〈neE2

e 〉(σv)scat/E
2
e [5], and demanding that it exceeds the

Hubble rate Γscat > H at the time of freeze out gives the bound

ε >

√
H(Tf )m4

π

〈neE2
e 〉Ascat

= 4.6× 10−8x
3/2
f20

√
mπ

100 MeV
4
ge

Nπ

C4αd
, (5.2)

where we used 〈neE2
e 〉|x=xf = ge45ζ(5)m5

π

4π2x5
f

, H(T ) = H(mπ)/x2
f , and as before xf20 = xf/20.

Further, ge = 4 are the degrees of freedom of the electron/positron pair. To get the
numerical value we used α = 1/137 and gs = 17.25. For RSIDM the bounds eq. (3.7)
eliminate the dark pion mass and gauge coupling dependence.

If the dark photon is to maintain thermal equilibrium with the SM, annihilations
cannot be neglected for the relic density calculation if (comparing eq. (4.12) and eq. (5.2))

mπ &
3.7× 10−2 MeV

αdδm

10
C4Nπ

x3
f20

(3.7)= 3600 MeV
(8xf20
Nπ

)3/4
. (5.3)

The last equality applies to RSIDM, for which annihilations thus always play a role, de-
pleting the dark matter abundance at late times.

2Scattering off muons was included in the numerical results, but its effect for thermalisation was found
to be negligible.
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5.2 Annihilations subdominant during freeze-out

Annihilations are subdominant at freeze-out if 〈σv〉ann < 〈σv2〉3→2 nπ at x = xf eq. (4.10),
which translates to

√
α3→2(1 + αresx

5/2
f )H(mπ)/mπ > αannx

7/2
f . This gives an upper

bound on the kinetic mixing parameter

ε < 4× 10−8
(

mπ

100 MeV

)1/4 ξ5/2

x
7/4
f20

Nπ

√
Nc

N
1/4
f

(
1 + 3× 105αdx

5/2
f20
ξ4

)1/4
, (5.4)

where we set κ3→2, Bd to unity.

5.3 CMB bound and other bounds on kinetic mixing

BBN and CMB observations place bounds on the energy injected in the photon fluid
from late time dark pion annihilations to SM final states. These constraints can be
stringent as the resonant contribution to the thermally averaged cross section grows as
〈σv〉 ∝ x3/2e−δmx. At late times x > δm−1, when the (average) dark matter velocity
falls below the resonance velocity, resonant annihilations into SM final states are expo-
nentially suppressed. Due to the momentum dependent coupling of the dark pions to the
dark photon the remaining non-resonant contribution is p-wave suppressed, and evades all
CMB bounds. For self-interacting resonant DM the mass splitting δm ∼ 3× 10−8 is small
eq. (3.5), and the exponential suppression of the cross section only kicks in shortly before or
after the CMB is formed, depending on the mass of the dark pions. The thermally averaged
cross section thus peaks at this time. CMB observations are more stringent for s-wave an-
nihilations (as opposed to more stringent BBN bounds for p-wave annihilations) [49]. Since
our thermally averaged cross sections scales inversely proportional to the velocity, CMB
bounds are stronger than bounds from BBN, and we thus only consider the former.

The CMB bound is given by pann < 3.3× 10−31 cm3s−1MeV−1, where pann ≡ f(z) 〈σv〉mπ

and f(z) = 0.01 − 1 is a function that quantifies the efficiency of energy injection in the
CMB [48]. Recasting this to a bound on the mixing parameter ε, the constraint is given
by (setting f(z) = 1)

ε . 9.4× 10−14
(

mπ

10 MeV

)3/4
exp

(
1.1 mπ

10 MeV

)
, (5.5)

which vanishes above dark pion masses of 150MeV. This bound was derived for s-wave
scattering. In our model, the annihilation cross section increases for later times until the
exponential cut-off kicks in, so the bound is expected to be stronger at late times. At
the same time, the energy injection into the CMB is maximized at z ∼ 600, where f(z) ≈
1 [50, 51]. Although applying the CMB bound naively for our case at the different choices of
z affects the exact constraint on the mixing parameter somewhat, this has no consequences
on parameter space of the SIMP scenarios discussed in the next section, as this is dominated
by the constraintes from thermalisation and beam dump experiments. For simplicity, then,
we imposed the CMB bound at z ∼ 600, and that is what is shown in our figures in section 6.

For larger δm only the BBN bound applies. Following [49], energy injection during
BBN is most efficient in the range 1/T ∼ 102 − 103 MeV−1. Requiring the annihilations
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Figure 1. Relic density constraint on ξ for different values of the dark pion mass for the WZW-term
only (red), and including the resonance via the dark photon (blue). The dashed lines correspond
to the estimate of eq. (4.9) (setting αd = 0 for the WZW estimate). The gray shaded areas are
excluded by ξ > 4π, where the χPT description breaks down, and the Bullet cluster bound on the
DM self-interaction σ/m ≤ 1 cm2/g. All lines are for Nf = Nc = 3.

to be suppressed at this time (δmx & 1), the BBN bound can evaded for mass splittings
δm & 10−3.

Finally, there are bounds from dark photon searches at beam dump or fixed target
experiments at electron or proton colliders. In these experiments large number of dark
photons can be produced from Bremsstrahlung or secondary meson decays. The experi-
ments typically search for highly displaced vertices in the detector [52, 53]. For our region
of interest, 10−4 . ε . 10−8 and 10 MeV . mγ′ . 1 GeV we consider bounds from Nu-
Cal [54, 55], CHARM [56], and E137 [57]. Given the p-wave nature of our scattering cross
section, scattering at late times is heavily suppressed. Bounds on millicharged particles
from direct detection experiments like XENON are therefore too weak to constrain the
kinetic mixing parameters and are therefore not considered.

6 SIMP scenarios

In the ‘standard’ SIMP scenario the dark pion relic density results from the freeze out of
the 5pnt 3→ 2 WZW processes. We reproduce this set-up by turning off the dark photon
interactions αd = 0. The Bullet cluster observation puts an upper bound on the pion
self-interactions, and consequently on the pion mass eq. (3.2). The correct relic density is
obtained for ξ ∼ 4π for Nf = Nc = 3, uncomfortably close to the perturbativity bound
ξ . 4π [4]. Increasing the number of colors improves the situation slightly, but a large
number of colors is needed to be within the perturbative regime.
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The problem with only the 3→ 2 interactions, and no resonance enhancement, is that
dark matter is over produced. The dark pions contribute a fraction to the DM density
eq. (4.8)

R ≡ Ωπ

ΩDM
≈

9× 102x3
f20

ξ3Nc

√
Nf

aint
. (6.1)

The freeze-out temperature only depends logarithmicly on the model parameters, and
ranges from xf20 = 0.68 − 1.1 for ξ = 1 − 10. The relic density is reproduced for R = 1,
which requires large ξ & 4π.

This is illustrated in figure 1, which shows the numerical solution to the Boltzmann
equation without (red) and with (blue) adding the 3 → 2 resonance, where αd is chosen
from eq. (3.7). The dashed lines correspond to the estimate of eq. (4.9) with αres = 0
(αres 6= 0) for the red (blue) curve. The shaded areas are excluded by the perturbativity
cutoff on ξ and the Bullet cluster bound on the self-interaction.

Without the dark photon resonance, the required value of ξ is at or above the pertur-
bativity cutoff. Including the resonance, but not considering annihilations, the situation
improves significantly as the increased 3→ 2 interactions reduce the dark matter density.
The observed relic density is obtained for a larger dark pion mass for a fixed ξ. For such
a large pion mass, however, the kinetic mixing parameter is too small to maintain kinetic
equilibrium with the SM eq. (5.3) and either an additional portal interaction is required
or annihilations should be considered.

In the following subsections we discuss two SIMP scenarios that give the correct relic
density, satisfy self-interaction constraints, and the kinetic mixing portal interaction main-
tains thermal equilibrium with the SM during freeze-out. First, we focus on the possibility
that the dark pions are RSIDM. The 3 → 2 freeze-out interactions can be resonantly en-
hanced for large enough αd/ξ

4 & 10−6. Given the small mass difference δm in eq. (3.5),
annihilations become important at late times, and reduce the relic density further. Sec-
ond, we consider the more classical SIMP scenario, and drop the requirement that the self-
interactions can affect small scale structure formation. The self-interactions should still
satisfy the upper bound from the bullet cluster. Both 3→ 2 interactions and annihilations
may be resonantly enhanced, by tuning the dark photon mass, but now have more freedom
in the resonant condition δm and the dark gauge coupling αd to satisfy all constraints.

6.1 Self-interacting resonant SIMP DM

Consider first the RSIDM scenario that the relic density is produced via the SIMP mech-
anism, i.e. via the freeze out of 3 → 2 reactions, and that resonant DM self-interactions
can address the small scale structure problems. The requirements on the self-interactions
eq. (3.7) fixes the parameters mπ, αd, δm in terms of ξ, which in turn is determined from
the correct relic density eqs. (4.8) to (4.10) .

For large enough kinetic mixing the relic density will be reduced by (late-time) an-
nihilations, which reduces the required ξ value. Assuming annihilations are subdominant
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during freeze-out and Bd ≈ 1, then Y∞ is given by eq. (4.11) and R now becomes

R =
2.7× 103x3

f20
ξ3

1
Rres + 3.0× 1018x3

f20ε
2/ξ17/3 , (6.2)

where Rres ≡
√

1 + 30x5/2
f20 accounts for the resonant enhancement of the WZW interac-

tions, and the ε-dependent term for late-time annihilations. Annihilations significantly
reduce R for ε > 7.6× 10−12ξ17/6x

−3/2
f20 for sufficiently small ξ . O(1), but rapidly shut off

for larger ξ. Solving for the observed relic density R = 1 gives

ε =
√

9.3× 10−16x3
f20ξ

8/3 − 3.4× 10−19Rresξ17/3 x
−3/2
f20 . (6.3)

Figure 2 shows the value of ε as a function of the dark pion mass mπ for which R = 1
from numerically solving the Boltzmann equations for Nf = 3 (orange) and Nf = 4 (red),
as well as the analytical estimate eq. (6.3) above (dashed curve). In addition, the bounds
from the CMB, colliders, and from the requirement of thermal equilibrium between the
dark and visible sector during SIMP freeze out eq. (5.2) are shown.

The observed relic density can be obtained with perturbative couplings, e.g. ξ = 1 for
kinetic mixing ε = 3× 10−8. Note, however, that there is a maximum value

ε ≤ 2.9× 10−7 (6.4)

to get the observed relic density, at a dark pion mass mπ ∼ 600−650MeV. For larger dark
pion masses, the 3→ 2 interactions alone underproduce DM given the imposed relations on
the self-interaction eq. (3.7), so additional annihilations are not of any help; this explains
the sharp cutoff of the red curve at large pion masses. For such small kinetic mixing
annihilations are subdominant during SIMP freeze-out eq. (5.4). For all dark pion masses
of interest the dark photon decays predominantly into dark sector pions Bd ≈ 1 eq. (C.8),
validating our assumptions for the freeze out calculation.

The thermalisation requirement rules out most of the parameter space. Because the
annihilations are highly efficient, and only a small portion of the DM should be depleted,
the annihilation cross section should be suppressed by small values of ε. For Nf = 4 and
pion masses larger than mπ & 200MeV the kinetic mixing is large enough to maintain
kinetic equilibrium. For Nf = 3, on the other hand, the constraints are slightly stronger
as the dark charge is smaller eq. (3.7) — indicated by the orange shaded areas in figure 2
— and the heat transfer to the SM is barely fast enough to maintain thermal equilibrium.

All constraints can be satisfied and the RSIDM scenario can be viable for Nf = 4
and dark pion masses in the range mπ ' 250 − 600MeV, while for Nf = 3 this is only
marginally possible around mπ ∼ 500MeV. In our analysis we have analytically estimated
the bound on the required kinetic mixing with the SM. To make more precise statements
requires inclusion of the bath effects, which also allows for (partial) heating of the dark
bath, in our numerical calculations. This is left for future research.
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Figure 2. Constraints on the kinetic mixing parameter and dark pion mass in the resonant SIDM
scenario. The coloured (numerically) and dashed (estimate eq. (6.3)) lines show the values of ε for
which the correct DM relic density is produced, and for which the dark pions have the required
self-interaction. The blue shaded area excludes those values of ε for which the dark photon cannot
maintain kinetic equilibrium with the SM. The purple shaded area depicts the CMB constraint on
DM annihilations. The grey shaded area is excluded from beam dump searches from E137, nuCAL
and CHARM. The exclusion bounds are slightly stronger for Nf = 3 (indicated by the orange
shaded areas) as the dark charge is smaller for Nf = 3 (eq. (3.7)).

6.2 SIMP DM

We now consider the SIMP scenario, in which the relic density is determined by 3 → 2
interactions and possibly additional annihilations, but self-interactions are too weak to af-
fect small scale structure formation. As we have seen eq. (6.1), with just the 5pnt WZW
interactions and given the Bullet cluster bound, too much DM is produced for perturbative
couplings ξ. The DM density can be reduced by a resonant enhancement of the WZW inter-
actions and by annihilations. No longer constrained by the small scale structure data, the
value of δm can now be larger. This immediately avoids CMB and BBN constraints as the
thermally averaged annihilation cross section ∝ e−δmx eq. (4.4) is exponentially suppressed
in these eras. Moreover, for larger δm dark photons will predominantly decay to dark pions,
thus evading dark photon searches at beam dump experiments. For concreteness we will
fix the mass splitting to δm = 10−3 throughout this subsection. This choice avoids the cos-
mological constraints, while it can still give rise to interesting phenomenology at late times.

In the parameter space region where the dark photon maintains thermal equilibrium
with the SM sector during freeze-out of the WZW-interactions, the kinetic mixing param-
eter is always large enough that late time — after freeze-out — annihilations cannot be
neglected. For general mπ, ξ, δm and αd the required mixing parameter that reproduces
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the correct relic density is

ε = 1.5× 10−12Nπ

√√√√√δm
Yf

(
mπ

MeV

)(
3.8× 107

(
mπ

MeV

)
Yf − 15

)
, (6.5)

with Yf from eq. (4.9). Parameter space opens up significantly compared to the RSIDM
scenario, as all other parameters are free except for the Bullet cluster bound on the dark
matter self-interactions.

Figure 3 shows the numerical results for the kinetic mixing parameter as a function of
the dark pion mass that reproduces the observed relic density for Nf = 3 (left) and Nf = 4
(right). The red, orange and purple curves correspond to different values of ξ = 2, 5, 10.
In all plots the mass splitting is set to δm = 10−3. The numerical results are in excellent
agreement with the analytical estimate eq. (6.5). Along the curves three different regions
can be identified; i) a part where the self-interactions are larger than allowed by the Bullet
cluster constraint, which is excluded (dotted); ii) a part where the 3 → 2 interactions
dominate freeze-out, and annihilations are only important at later times (solid); and iii)
annihilations are the dominant freeze-out process (dashed).

The blue region in the plots is excluded by the thermalisation requirement eq. (5.2). For
larger αd a smaller kinetic mixing parameter is required to maintain thermal equilibrium
with the SM. The results are very similar for Nf = 3 and Nf = 4, although the kinetic
mixing (bullet cluster) constraints are slightly weaker (stronger) for Nf = 4.

The top plots shows the result for αd = 0.01. For such small gauge couplings, the
resonance enhancement of the WZW interaction is negligible. DM is over produced unless
annihilations are important. In fact, we see that for the parameter space allowed by the
Bullet cluster constraints, the annihilations are actually so large that they always dominate
freeze out. Hence, in this scenario the dark pions are WIMP rather than SIMP dark matter.

In the middle plots the gauge coupling is increased αd = 0.1, but still resonance effects
on the WZW interactions are small except for large ξ. Indeed, for ξ ∼ 10 the dark pion
can be SIMP DM. Although late time annihilations reduce the relic density somewhat —
this is what generates the slope of the solid curve as a function of mixing parameter ε —
the effect is not strong enough to allow for much smaller ξ than in the ‘standard’ scenario.

Finally, the bottom plots are for sizeable couplings αd, and the WZW interactions
are significantly enhanced for smaller ξ = 1 − 5 as well, allowing SIMP dark matter in a
perturbative set-up. The slope of the solid part of the curves shows the impact of late time
annihilations as a function of kinetic mixing. The curves asymptote to a constant value for
small mixing and annihilations are negligible at all times, thus providing a lower bound on
the dark pion mass for a given ξ.

7 Conclusion

We have studied a dark sector containing dark pions and a dark photon. The dark pions
are stable and can be SIMP dark matter, that is produced by freeze-out of 3 → 2 WZW-
interactions. The dark photon mixes kinetically with the SM sector, and can maintain
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Figure 3. The values of ε for which the correct relic density is reproduced as a function of the
pion mass, for different values of ξ (coloured lines) and αd for Nf = 3 (left) and Nf = 4 (right).
The blue shaded area is excluded by the thermalisation requirement eq. (5.2). Dotted lines violate
the Bullet cluster constraint on the self-interaction. The solid lines represent the part of parameter
space where the 3 → 2 interactions are the dominant freeze-out interaction. The dashed lines are
when 2→ 2 annihilations via the dark photon are important at freeze-out.
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thermal equilibrium during freeze out. For a fine-tuned dark photon mass mV ≈ 2mπ

the WZW are resonantly enhanced, which opens up the possibility that the observed relic
density is produced in the perturbative regime ξ = mπ/fπ . 4π of the effective chiral
Lagrangian. In addition, the pion self-interactions are resonantly enhanced and become
velocity dependent, which opens up the possibility that it can address the small scale
structure problems of collisionless dark matter — this scenario is dubbed resonant self-
interaction dark matter RSIDM.

We found that the RSIDM scenario is possible for dark pion masses in the range
mπ ∼ 250 − 600MeV for Nf = 4 dark quark flavours. For Nf = 3 flavours the RSIDM
scenario is (marginally) excluded for all dark pions masses considered, because of the highly
efficient dark pion annihilations. In this case the value of the mixing parameter required to
reproduce the relic density is too small to maintain kinetic equilibrium with the SM. For
both setups more precise calculations are required to assess the viability of the model in
this region. In particular, one could allow for (partial) heating of the dark bath to study
the effect on the dark bath. This is left for future research.

If we give up the demand that the self-interactions have an effect on small scale struc-
ture formation, and consequently are only constraint by an upper bound from observations
of the Bullet cluster, then parameter space opens up and smaller ξ-values become possible
for sufficiently dark gauge couplings αd ∼ 1.
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A Cross sections

We list here the definitions of the (thermally averaged) cross sections. This appendix also
serves to set the notation.

A.1 Scattering/annihilation cross section

The cross section for scattering with two particles in both the initial and final state, labeled
by α and β respectively, is

σα→β = 1
4FSβ

 ∏
β=1,2

∫
pβ

 (2π)4δ4(Pα − Pβ)|M̄α→β |2
CM=

∫
dΩ 1

(8π)2sSβ

pout
pin
|M̄α→β |2

(A.1)
with

∫
p =

∫
d3p/(2Ep(2π)3). We use Pµ for 4-momenta, and pi for 3-momenta. The second

expression is valid in the center of mass frame (CM), with pin = |pα| (pout = |pβ |) the
absolute value of the three-momentum of either incoming (outgoing) particle. Sβ = N ! for
N identical particles in the final state, to avoid overcounting in the phase space integral.
|M̄|2 is the amplitude averaged over initial and summed over final state particles. The
flux factor can be written as F = E1E2|v1 − v2| =

√
(p1.p2)2 −m2

1m
2
2

CM= pin
√
s with

s = (E1 + E2)2 the center of mass energy squared.
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A.2 Thermally averaged cross section

The thermally averaged cross sections can be defined in terms of the scattering rates ap-
pearing in the Boltzmann equation for the DM particle [34]

ṅ+ 3Hn = −
∑
α,β

∆αβ(γ̃α→β− γ̃β→α) = −〈σv〉ann(n2−n2
eq)−〈σv2〉3→2(n3−n2neq), (A.2)

with n = nDM the number density of dark matter. We have included both DM annihilation
and 3→ 2 interactions. ∆αβ = (Ndm

α −Ndm
β ) is the difference between the number of DM

particles in the initial (Ndm
α ) and final state (Ndm

β ). The collision terms are

γ̂α→β(fα) = 1
SαSβ

(∏
α

∫
α
Nαfα

)∏
β

∫
β

 (2π)4δ4(Pα − Pβ)|M̄α→β |2 (A.3)

with fα, Nα the distribution functions and degrees of freedom of the initial states, and
Sα (Sβ) = N ! for N identical particles in the initial (final) state. Assuming kinematic
equilibrium for the DM and chemical equilibrium for all other particles gives the relations

γ̂α→β(fi) =
(
n

neq

)Ndm
α

γα→β(f eq
i ), γα→β = γβ→α (A.4)

with γα→β ≡ γ̂α→β(f eq
α ) and f eq

α = e−Eα/T the Maxwell-Boltzmann distribution. We can
then express the thermally averaged cross sections appearing in the Boltzmann equation
eq. (A.2) in terms of the collision rates as follows

〈σv〉ann = 2γann
n2

eq
, 〈σv2〉3→2 = γ3→2

n3
eq
. (A.5)

For annihilations the momentum integrations in γann can be partially done, and the
final expression is given in terms of one remaining integral over the center of mass en-
ergy [58, 59]. The thermally averaged cross section is

〈σv〉ann = 1
2Tm2

1m
2
2K2(m1

T )K2(m2
T )

∫ ∞
(m1+m2)2

dsK1

(√
s

T

)
(pinE1E2vmølσ) (A.6)

with the Møller velocity related to the flux factor as F = (E1E2)vmøl, and the factor
∆ann/Sα = 1 is set to unity. The equilibrium number density is defined as

neq
α = Nα

(2π)3

∫
d3pαf

eq
α = Nαm

2
αT

2π2 K2(mα

T
) mα�T= Nα

(
mαT

2π

)3/2
e−mα/T , (A.7)

with the last expression valid in the non-relativistic limit. For m1 = m2 ≡ m we can
rewrite this in dimensionless variables

〈σv〉ann = 4x∆
SαK2(x)2

∫ ∞
1

ds̃
√
s̃(s̃− 1)K1(2

√
s̃x)σ(s̃), (A.8)

with s̃ = s/(4m2) and x = m/T .
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A.3 S-channel resonance and narrow width approximation

If the DM interactions are mediated by a massive meditor particle — in our case, the dark
photon — there will be an s-channel resonance for momenta that the mediator is nearly
on shell s ≈ m2

V . To incorporate this effect, we include the decay rate in the dark photon
propagator

Dµν(P 2) = −igµν
P 2 −m2

V + iε
→ −igµν

P 2 − (mV − i1
2Γ)2 ≈

−igµν
P 2 −m2

V + imV Γ
(A.9)

where we used that Γ2 � m2
V . Γ = Γd + Γv is the total decay width of the dark photon,

which is the sum of the decay rate into pions and decay rate into SM fermions, i.e. into
the dark and visible sector. In the resonance limit the most enhanced terms in the cross
section will be ∝ Dµν(s)2, which can be evaluated in the narrow width approximation

1
(s−mV )2 +m2

V Γ2 ≈
π

mV Γδ(s−m
2
V ) +O(Γ2/m2

V ). (A.10)

B Pion self-interactions

In this appendix we calculate the pion self-interaction cross section σSI = σ(ππ → ππ),
which has contributions from 4pnt self-interactions and from dark photon exchange.

B.1 Amplitude

Dark photon mediated self-interaction. The 4pnt pion interaction follows from
eq. (2.4)

L⊃ 1
3f2
π

(
2πa∂πbπc∂πd−2πaπb∂πc∂πd+m2

ππ
aπbπcπd

)(
Tr[T aT bT cT d]+perm.

)
. (B.1)

There are 4! possible orderings of the pions a, b, c.d. Consider first the amplitude for the
{acbd}-term plus the cyclic permutations:

M4pnt
{acbd}=−4Tr[T aT cT bT d]

3f2
π

(
(Pc ·Pd+Pa ·Pb)+ 1

2(Pb ·Pd+Pc ·Pb+Pa ·Pc+Pd ·Pa)−m2
π

)
=− 2

f2
π

Tr[T aT cT bT d]
(
s−2m2

π

)
, (B.2)

where we took Pa, Pb as incoming momenta, and Pc, Pd as outgoing (∂πa → −iPa, ∂πc →
iPc), and on the 2nd line we used the Mandelstam variables

s = (Pa + Pb)2, t = (Pa − Pc)2, u = (Pa − Pd)2. (B.3)

The results are similar for the other possible permutations, and the total amplitude is [27]

M4pnt
abcd =M(πaπb → πcπd) = − 2

f2
π

(
Tr[T aT bT cT d] + (b↔ d)

) (
t− 2m2

π

)
− 2
f2
π

(
Tr[T aT cT bT d] + (c↔ d)

) (
s− 2m2

π

)
− 2
f2
π

(
Tr[T aT cT dT b] + (b↔ c)

) (
u− 2m2

π

)
(B.4)
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Dark photon mediated self-interaction. The pion-dark photon interactions that fol-
low from the covariant derivatives in the chiral Lagangian eq. (2.4) can be written in the
form

L ⊃= −2igdVµ
(
πa(∂πb)− (∂πa)πb

)
Tr
(
[T a, T b]Q]

)
. (B.5)

The (V 2π)-vertex interaction and dark photon propagator (in Lorentz gauge) are then

Aµab = 2igd(Pa − Pb)µTr([T a, T b]Q), Dµν(P 2) = −igµν
P 2 −m2

V + iε
(B.6)

with both momenta Pa, Pb incoming. The amplitude for ππ → ππ scattering via dark
photon exchange is

MV
abcd = iAµabDµν(s)Aνcd − iAµacDµν(t)Aνbd − iA

µ
adDµν(u)Aνbc

= 4g2
d

[
(t− u)

s−m2
V + iε

Cabcd + (s− u)
t−m2

V + iε
Cacbd + (s− t)

u−m2
V + iε

Cadbc

]
(B.7)

with color factor
Cabcd ≡ Tr([T a, T b]Q)Tr([T c, T d]Q). (B.8)

Resonant scattering arises for P 2 ≈ m2
V , and we include the decay width in the propagator

eq. (A.9) to describe this.

B.2 Cross section

The matrix element squared summed over final and averaged over initial states is |M̄|2SI =
1
N2
π

∑
abcd |Mabcd|2 withNπ = (N2

f−1) the number of pions. The amplitude is the sum of the
4pnt interaction eq. (B.4) and the photon exchange contribution eq. (B.7). The latter is sub-
dominant, except for momenta near the s-channel resonance s ≈ m2

V ; we can then neglect
interference terms and the non-resonant contributions, and approximate the amplitude

|M̄SI|2 ≈
1
N2
π

∑
abcd

(
|M4pnt

abcd |
2 + |Mres

abcd|2
)

(B.9)

with Mres = MV |s≈m2
V

the s-channel resonance contribution from the photon exchange
diagram.

4pnt self-interaction. Starting with the 4-pnt contribution, the amplitude squared can
be calculated using the Feyncalc Mathematica program [60–62]

|M̄4pnt
SI |

2 = 6κSI
m4
π

f4
π

− κSI,2
(st+ tu+ us)

f4
π

, (B.10)

with

κSI =
(3N4

f − 2N2
f + 6)

3N2
f (N2

f − 1)
= 1 +O(N−1

f ), κSI,2 =
N2
f

(N2
f − 1)

= 1 +O(N−1
f ). (B.11)

The cross section eq. (A.1) for pion scattering is

σ4pnt
SI = m4

π

πSff4
πs

(6κSI
16 + κSI,2

(
m2
πp

2 + 5
6p

4
))
≈ 3κSIξ

4

64πm2
π

(B.12)
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with Sf = 2 for two identical particles in the final state, and p = |p| the incoming momen-
tum of either pion in the CM frame. The last expression is valid in the non-relativistic limit
p2 � m2

π in which the velocity-independent s-wave contribution dominates, and s ≈ 4m2
π.

The result agrees with [28], but differs a factor of 8 with [4] (after rescaling f them
π =

2fπ). For Nf = 2 it reproduces the results of [27] (except for the sign in front of the 5
6p

4

term) but not for other Nf .

Dark photon mediated self-interaction. The diagram for photon exchange is neglig-
ble except near the s-channel resonance, where the amplitude can be approximated by the
s-channel diagrams, and

|M̄res
SI |2 = 256C2

4g
4
d

N2
π

p4 cos2 θ

(s−m2
V )2 +m2

V Γ2 ⇒ σres
SI = 16C2

4g
4
d

3πsSfN2
π

p4

(s−m2
V )2 +m2

V Γ(p)2

(B.13)
with Sf = 2 amd Γ(p) the running photon decay width, computed in appendix C. The
color factor eq. (B.8) summed over flavors is C2

4 =
∑
|Cabcd|2 = 42 (82) for Nf = 3 (4). The

cross section can be rewritten in the more familiar Breit-Wigner form. To do so, expand
the momentum as p = 1

2mπv = 1
4mV v+O(δm) with v the relative velocity. The resonance

velocity follows from eq. (C.4), which gives vR ≈ 2
√
δm for dark photon masses eq. (2.3).

We further define the velocity dependent and resonant kinetic energies [29]

E(v) = p2

mπ
= 1

4mπv
2, E(vR) = mV − 2mπ = mπδm. (B.14)

We can then rewrite the resonant cross section in Breit-Wigner form

σres
SI = 4πS

mπE(v)
Γd(v)2/4

(E(v)− E(vR))2 + Γ(v)2/4 , S = 3Sf
N2
π

(B.15)

where we used the non-relativistic approximation s = m2
V +O(v2). The numerator is writ-

ten in terms of the decay width into dark pions Γd using the explicit expression eq. (C.3).
Ref. [29] list a numerical factor S = NV /N

2
π for the ratio of mulitplicities of the reso-

nance dark photon and DM particles; we find here an additional Sf = 2 symmetry factor.

B.3 Thermally averaged cross section

The thermally averaged self-interaction cross section is [29]

〈σv〉SI = σ4pnt
SI 〈v〉+ 〈σres

SI v〉 = σ4pnt〈v〉+
∫ vmax

0
f(v, v0)(σres

SI v)dv, (B.16)

with the velocity distribution f(v, v0) = (4v2)/(
√
πv3

0)e−v2/v2
0 taken as a Maxwell-

Boltzmann distribution truncated at the halo escape velocity vmax, and v0 a constant
implicitly defined via 〈v〉 ' 2v0/

√
π. Here we used that the self-interaction cross section is

the sum of the (dominantly) s-wave 4pnt interaction and s-channel resonance contribution
eqs. (B.12) and (B.15). The resonance contribution can be calculated in the narrow width
approximation eq. (B.14):

〈σv〉res
SI = 64π3/2S Γd(vR)Bd(vR)

m3
π

e−v2
R/v

2
0

v3
0

. (B.17)
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with Bd = Γd/Γ the branching ratio for decay into dark sector pions. The decay rate into
dark pions (p-wave) eq. (C.3) and SM fermions (s-wave) eq. (C.7) can be parameterized as
Γi(v) = mV γiv

ni with i = d, v for decay into dark and visible sectors, and mV ≈ 2mπ. This
factors out the explicit velocity dependence of the (ΓdBd)-factor in the thermally averaged
cross section.

C Dark photon decay rate

The dark photon can decay into dark pions, and in SM fermions and pions via kinetic
mixing with the SM photon.

C.1 Dark photon decay rate into dark pions ΓV→ππ

The dark photon decay rate in dark sector particles is Γd = Γ(V → ππ). The decay into
dark pions is mediated by the vertex interaction eq. (B.6), with amplitude

Mµ
ab = −2gd(Pa − Pb)µCab, Cab = Tr([T a, T b]Q) (C.1)

with Pa, Pb the 4-momenta of the outgoing pions. The amplitude squared (summed over
final states, and averaged over intial photon polarizations states) in the CM frame is

|M̄|2d = −1
3gµν

∑
ab

Mµ
abM

ν∗
ab = 16C4

3 g2
dp

2
out (C.2)

with pout = |pa| = |pb| the final state 3-momentum, and color factor C2
2 =

∑
ab |Cab|2 = C4.

The decay rate becomes

Γd(pout) = pout
Sf8πm2

V

|M̄|2d = 8C4αdp
3
out

3Sfm2
V

(C.3)

with αd = g2
d/(4π) and Sf = 2 for two identical particles in the final state.

The resonance momentum (taking the intial state photon at rest) is

p2
R = 1

4m
2
V

(
1− 4m2

π

m2
V

)
= m2

πδm+O(δm2) (C.4)

where we used the parameterization eq. (2.3) in the last step, and assumed the dark photon
mass is close to resonance δm2 � m2

π. Evaluating the decay rate at resonance pout = pR
gives

Γd(pR) = 2C4αd
3Sf

mπδm
3/2. (C.5)

C.2 Dark photon decay rate in SM particles

The dark photon can decay into SM electrons via kinetic mixing and Γs = Γ(V → f̄f) with
f the electron; for large enough DM mass the decay into muons and charged SM pions
also becomes kinematically accessible. The decay rate into SM pions will be of the form
eq. (C.3) with αd → ε2α and instead of C4 → CQCD

4 = 1/2 the appropiate color factor for
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QCD. It is velocity suppressed compared to decay into fermions, which is s-wave, and we
neglect it in the following.

The amplitude for dark photon decay into a SM fermion is

Mµ
v = (ieε)ū(P2)γµv(P1) (C.6)

with P1, P2 the 4-momenta of the outgoing fermions, ε the kinetic mixing paramer appearing
in the Lagrangian eq. (2.4), and e the electric charge of the electron. The amplitude squared
(summed over final states, and averaged over photon polarizations) in the CM frame and
decay rate are

|M̄|2v = 1
3(eε)24m2

V ⇒ Γv = αε2

Sf3πmV (C.7)

with α = e2/(4π), symmetry factor Sf = 2 for two identical particles in the final state, and
s = m2

V .
Decay into the darks sector pions dominates and Γd � Γv or

ε .

√
παdC4
α

δm3/4 = 8.5× 10−6
(
C4
4

)√
αd
α

(
δm

3× 10−8

)3/4
, (C.8)

where we set v → vR.

D Dark pion annilation and scattering

Dark pions can annihilate into and scatter off SM fermions. These processes are important
for the final relic density and for keeping the dark sector in thermal equilibrium with the
SM sector.

D.1 Dark pion annihiliation into SM fermions

Consider the annihiliation of dark pions into Standard Model electrons πa(P1)πb(P2) →
f̄(K1)f(K2). For large enough dark pion mass, also the decay channel into muons (mπ >

105MeV) and SM charged pions (mπ > 139.6MeV) opens up.
The amplitude for annihilation in a SM Dirac fermion pair f̄f is mediated by the

vertex eq. (B.6) and the coupling to the SM fermion current via kinetic mixing.

iMππ→f̄f = −i2gD(P1 − P2)µTr([T a, T b]Q) −i
s−m2

V + iε
(ieε)

∑
f

ū(K1)qfγµv(K2) (D.1)

Averaging over intitial states and summing over the spins of the final state fermions gives

|M|2
ππ→f̄f = (2gDeε)2C4

N2
π(s−m2

V )2

∑
spin

(
ū(K1)(/P 1 − /P 2)v(K2)v̄(K2)(/P 1 − /P 2)u(K1)

)
= (2gDeε)2C4
N2
π(s−m2

V )2 32p2
[
k2(1− cos2 θ) +m2

f

]
(D.2)

– 23 –



J
H
E
P
0
3
(
2
0
2
3
)
2
1
6

with color factor C4 = C2
2 ≡

∑
ab |Tr([T a, T b]Q|2. Here we denoted the CM 3-momentum

of the incoming pions with p and that of the outgoing fermions with k, and θ the scattering
angle. The cross section eq. (A.1) becomes

σππ→f̄f = 4Aann

√
s− 4m2

π

√
s− 4m2

f (s+ 2m2
f )

s(s−m2
V )2

mf→0
= Aann

m2
π

√
s̃− 1

√
s̃

(s̃−m2
V /(4m2

π))2 (D.3)

with Aann = 4πC4ε
2αDα/(3N2

π). In the last line we neglected the SM fermion mass, and
rewrote the cross section in terms of the dimensionless variable s̃ = s/(4m2

π).
The amplitude for annihilation in a pair of SM pions π±SM with is

iMπaπb→πcSMπ
d
SM

= i2gD(P1−P2)µTr([T c,T c]Q) 1
s−m2

V +iε
(eε)(K1−K2)µTr([T a,T b]QQCD)

(D.4)
Averaging over intitial states and summing over the spins of the final state pions — c, d

running over the generators corresponding to π±SM — gives

|M|2ππ→2πSM = (2gDeε)2C4C
QCD
4

N2
π(s−m2

V )2 16k2p2 cos2 θ (D.5)

with color factor CQCD
4 = 1/2. The cross section can then be expressed as

σππ→2πSM = CQCD
4
4

(
1−

4mπ2
SM

s3/2

)3/2

σππ→eē (D.6)

where we neglected the electron mass.
Substituting eq. (D.3) in the thermally averaged cross section eq. (A.8) for annihilation

into SM electrons is

〈σv〉ππ→ēe = ∆ann4xAann
Sαm2

πK2(x)2

∫ ∞
1

ds̃ s̃(s̃− 1)3/2K1(2x
√
s̃)

(s̃−m2
V /(4m2

π))2 (D.7)

with ∆ann/Sα = 1. We are interested in the thermally averaged cross section during freeze-
out, in the limit x = mπ/T � 1. This will be dominated by the resonance contribution
which we can calculate in the narrow width approximation eq. (A.10). Including the
decay width in the propagator eq. (A.9) and defining Γ̃ = Γ/(2mπ), m̃V = mV /(2mπ) the
thermally averaged cross section eq. (D.7) becomes

〈σv〉res
ππ→ēe ≈

4xAann
m2
πK2(x)2

∫ ∞
1

ds̃s̃(s̃− 1)3/2K1(2x
√
s̃) π

m̃V Γ̃
δ(s̃− m̃2

V )

x�1≈ 8
√
πx3/2Aann
mπΓ δm3/2e−δmx (D.8)

where in the last step we used that K2(x) = K1(x) =
√
π/(2x)e−x + . . . for x � 1, and

expanded (m̃2
V − 1) ≈ δm.

Now expand the dark photon mass in small δm defined in eq. (2.3), and use the explicit
expression for the decay width eq. (C.5) to get

〈σv〉res
ππ→ēe = 32π3/2ε2αx3/2Bd

N2
πm

2
π

e−δmx +O(δm) (D.9)
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with Bd = Γd/Γ the branching ratio for decay into the dark sector. We can then write the
full thermally averaged annihilation cross section as

〈σv〉ann = gann
32π3/2ε2αx3/2Bd

N2
πm

2
π

e−δmx +O(δm) (D.10)

with gann incorporating the degrees of freedom the dark pion can annihilate in. Below the
muon threshold this is only electrons and gann = 1. Including muons and SM pions

gann = 1 + Θ(mπ −mµ)
√

1−
m2
µ

m2
π

(
1 +

m2
µ

2m2
π

)
+ Θ(mπ −mπSM)C

QCD
4
4

(
1−

m2
πSM

m2
π

)3/2

(D.11)
with Θ the Heaviside step function.

D.2 Pion-electron scattering

Consider scattering of dark pions with SM particles, which for light DM is dominated by
electron scattering via the reaction πa(P1)f(K1)→ πa(P2)f(Kf ).

iMπf→πf = −i2gd(P1 + P2)µTr([T a, T b]Q) −i
t−m2

V + iε
(ieε)ū(K2)γµu(K1) (D.12)

Averaging over intitial and summing over final states gives

|M|2πf→πf = 1
2Nπ

(2gDeε)2C4
(t−m2

V )2

∑
spin

(
ū(K2)(/P 1 + /P 2)u(K1)ū(K2)(/P 1 + /P 2)u(K2)

)
(D.13)

The spinor sum now becomes∑
(. . .) = 4

[
2(P1 + P2).K1(P1 + P2).K2 − (P1 + P2)2(K1.K2 −m2

f )
]

≈ 16m2
πp

2(1 + cos θ) +O(p2) (D.14)

with p the CM 3-momenta of the incoming particles and k of the outgoing particles, and
θ the scattering angle between the ingoing and outgoing pion. In the last step we set the
fermion mass to zero and took the non-relativistic limit. The non-relativistic cross section
becomes [5]

σπf→πf = 8C4αDαε
2m2

πp
2

Nπsm4
V

∫
dΩ (1 + cos θ) = ε2Ascat

p2

m4
π

(D.15)

with Ascat = 2πC4αDα/Nπ and mV ≈ 2mπ.
The total scattering cross section is written as

σscat = gscatε
2Ascat

p2

m4
π

, (D.16)

with gscat = 1+Θ(mπ−mµ)+Θ(mπ−mπSM)CQCD
4 , where for simplicity we have neglected

the muon and SM pion masses.
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E Cross section for 3→ 2 dark pion interactions

The 3→ 2 dark pion amplitude has a contribution from the 5pnt pion interaction and from
dark photon exchange. The necessary vertices with an odd number of pions arise from the
WZW Lagrangian eq. (2.4).

E.1 Pion 5pnt interaction from the WZW-term

The 5pnt pion interaction from the WZW term can be written as [4]

LWZW ⊃
A5
f5
π

εµνρσTr [π∂µπ∂νπ∂ρπ∂σπ] , A5 = 2Nc

15π2 (E.1)

with Nc the number of colors of the dark QCD-like gauge group. There are 5! differ-
ent contributions to the amplitude Mabc→de. We can group them by their momentum
dependence

iMabc→de = iA5
f5
π

εµνρσ
(
P aµP

b
νP

c
ρP

d
σfe + P bµP

c
νP

d
ρP

e
σfa + P cµP

d
ν P

e
ρP

a
σ fb

+ P dµP
e
νP

a
ρ P

b
σfc + P eµP

a
ν P

b
ρP

c
σfd

)
(E.2)

with fa coefficients that each are the sum of 4! terms, and all momenta are taken as
incoming. The color-coefficient fe is defined as

fe = Teabcd − Teabdc − Teacbd + Teacdb + Teadbc − Teadcb (E.3)

with

Teabcd ≡ Tr
[
T eT aT bT cT d

]
+ cycl. of {a, b, c, d} (E.4)

= Tr
[
T eT aT bT cT d

]
− Tr

[
T eT bT cT dT a

]
+ Tr

[
T eT cT dT aT b

]
− Tr

[
T eT dT aT bT c

]
That is, fe is the sum of all traces of five generators with Te fixed in the first position, and
all possible permutations of the other generators (of the {a, b, c, d} indices); the sign of each
term is determined by the number of permutations away from the {a, b, c, d, e}-sequence.
Likewise, all other fi coefficients can be defined.

The matrix element squared averaged over initial and summed over final states is (the
calculation is done with the Mathematica package FeynCalc)

|M̄3→2|2 = 1
N3
π

∑
abcde

|Mabc→de|2 =
A2

5Nf (N2
f − 4)(N2

f − 1)
N3
π

F (Pi)
f10
π

≡ Ā2F (Pi)
f10
π

(E.5)

with Nπ = N2
f − 1 the number of pions and Nf the number of flavors. F is a complicated

momentum-dependent function, which we will evaluate for non-relativistic incoming mo-
menta. We parameterize the momenta in the CM frame (we set P d → −P d and P e → −P e
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to make them outgoing momenta with positive energy as the zeroth component of the 4-
vector):

P a = (E1, p1, 0, 0),
P b = (E2, p2 cos θ, p2 sin θ cosϕ, p2 sin θ sinϕ),
P c = (E3,−p1 − p2 cos θ,−p2 sin θ cosϕ,−p2 sin θ sinϕ),
P d = (1/2(E1 + E2 + E3), p4 cos θ̄, p4 sin θ̄ cos ϕ̄, p4 sin θ̄ sin ϕ̄),
P e = (1/2(E1 + E2 + E3),−p4 cos θ̄,−p4 sin θ̄ cos ϕ̄,−p4 sin θ̄ sin ϕ̄), (E.6)

The momentum p1 is aligned with the z-axis. Ω2 and Ω4 are then the solid angle of p2 and
p4 respectively. p3 and p5 are fixed in center of mass frame, and E4, E5 are fixed by energy
conservation. The energies are Ei =

√
p2
i +m2

π for i = 1, 2, E2
3 = (p2

1+2p1p2 cos θ+p2
2)+m2

π,

and
√
p2

4 +m2
π = 1/2(E1 + E2 + E3). We can thus express Ei, p4 in terms of p1, p2.

To get the leading order term in the limit of non-relativistic momentum for the incom-
ing particles set pi = εpi for i = 1, 2 and expand in small ε. The first non-zero term arises
at 4th order: F = ε4F4(p1, p2, θ, ϕ, θ̄, ϕ̄) +O(ε6) with

F4 = 3375m4
πp

2
1p

2
2

16 sin2(θ) sin2(θ̄) sin2(φ− φ̄) (E.7)

The transition amplitude eqs. (A.3) and (A.4) then becomes

γ3→2 = Ā2

SαSβ(2π)11f10
π

∫ (d3p3d3p4∏
i(2Ei)

)
p2

1dp1p
2
2dp2N

3
πf

eq
1 f eq

2 f eq
3 δ(Eα − Eβ)

∫
dΩdΩ̄F4

= 125
√

5Ā2mπ

1024π5SαSβf10
π

∫ d3p3
(2π)3Nπf

eq
3

∫
dp1p

4
1Nπf

eq
1

∫
dp2p

4
2Nπf

eq
2 (E.8)

with Sα = 3! and Sβ = 2! to account for identical particles in initial and final states.
The integral

∫
dΩdΩ̄F4 = 750π2m4

πp
2
1p

2
2. To get the final expression, we further used that

in the non-relativistic limit Ei ≈ mπ for i = 1, 2, 3 and Ei ≈ 3
2mπ for i = 4, 5, which

yields
∏
i(2Ei) ≈ 2332m5

π. Moreover
∫

d3p4δ(Eα − Eβ) = 3
2
√

5
∫

d3p4δ(p4 −
√

5/2mπ) =
3π
√

5/2m2
π. The integrations over the phase space densities give in the non-rel limit

Nπ

∫ d3p3
(2π)3 f

eq
3 = neq

π , Nπ

∫
dp1p

4
1f

eq
1 = 6π2mπTn

eq
π (E.9)

The thermally averaged cross section eq. (A.5) is then

〈σv2〉5pnt
3→2 = α3→2

x2m5
π

, α3→2 = N2
c κ3→2
Nf

5
√

5ξ10

1536π5 , κ3→2 =
N2
f (N2

f − 4)
(N2

f − 1)2 = 1 +O(1/Nf )

(E.10)
with x = mπ/T and ξ = mπ/fπ. This result matches the result in ref. [4] (taking into
account the different definitions f them

π = 2fπ).
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E.2 Dark photon interactions from WZW term

In the presence of a dark photon, there are additional diagrams with photon exchange
contributing to the 3→ 2 cross section. The WZW term also contains photon interactions
with an odd number of pions eq. (2.4). The A(3π) and (2A)π interactions are

LWZW ⊃
Ncgd
3π2f3

π

εµνρσAµP
a
ν P

b
ρP

c
σTQabc −

Ncg
2
d

4π2fπ
εµνρσP (Aν)

µ P aσAνAρπ
aTQa (E.11)

with TQabc = Tr
(
QT aT bT c

)
and TQa = Tr

(
Q2T a

)
. Including the 5pnt pion interaction

discussed in the previous subsection and the A(2π)-interaciton from the chiral Lagrangian,
the relevant photon-pion couplings vertices are

Aabcde ≡ i
A5
f5
π

Āabcde = i
A5
f5
π

εµνρσ
(
P aµP

b
νP

c
ρP

d
σfe + P bµP

c
νP

d
ρP

e
σfa + P cµP

d
ν P

e
ρP

a
σ fb

+ P dµP
e
νP

a
ρ P

b
σfc + P eµP

a
ν P

b
ρP

c
σfd

)
Aµabc ≡ i

A3
f3
π

Āµabc = i
A3
f3
π

εµνρσP aν P
b
ρP

c
σ (TQabc + TQbca + TQcab − TQacb − TQcba − TQbac)

Aνρa ≡ −i
A1
fπ
Āνρa = −iA1

fπ
εµνρσ(P (Aν)

µ − P (Aρ)
µ )P aσTQa

Aµab ≡ iA2Āµab = iA2π(Pa − Pb)µTr([T a, T b]Q) (E.12)

with
A5 = 2Nc

15π2 , A3 = Ncgd
3π2 , A1 = Ncg

2
d

8π2 , A2 = 2gd (E.13)

and all momenta are taken as incoming. For the Aabc vertex we used that there are
3! different terms, corresponding to abc + cycl.. We have symmetrized the Aa vertex
in the two photon legs. Q2 = 1 For our choice of charge matrix eq. (2.2), and thus
TQa = Tr(Q2T a) = Tr(T a) = 0, and the (2A)π interaction vanishes Aµρa = 0.

The propagator is

Dµν(P ) = −igµν
P 2 −m2

V + imV Γ
= −igµν∆(P ) = −igµν

(4m2
π)∆̃(P )

(E.14)

where in the last step we introduced the dimensionless propagator ∆̃ = ∆/(4m2
π).

E.2.1 Amplitude

The photon interactions give rise to 6 additional diagrams contributing to the 3 → 2
interactions [28]. For our charge matrix eq. (2.2) the Aµρa = 0 vertex vanishes, and only
the first three diagrams contribute. We will calculate the amplitude for Nc = Nf = 3. The
full amplitude is

iM = Aabcde +a1
−iAµabcAdeµ

∆(de)
+a2Pabc

(
−iAµabAcdeµ

∆(ab)

)
+a3Pabc;de

(
−iAµceAabdµ

∆(ce)

)
(E.15)

with ∆(ij) = ∆(Pi + Pj) the propagator of momenta Pi and Pj . Pabc means all cyclic per-
mutations of (abc) — hence there are three diagrams contributing to a2 –, and Pabc;de cyclic
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permutations of (abc) times cyclic permutations of (de) — hence there are six diagrams
contributing to a3. The ai are included as note keeping devices and can be set to unity at
any time during the calculation. The amplitude in terms of the Ā-vertices becomes

M= A5
f5
π

[
Āabcde+ f2

πA2A3
(4m2

π)A5

(
a1
ĀµabcĀdeν

∆̃(de)
+a2Pabc

(
ĀµabĀcdeν

∆̃(ab)

)
+a3Pabc;de

(
ĀµceĀabdν

∆̃(ce)

))]
(E.16)

Diagram a2 has an s-channel resonance for mV ≈ 2mπ, as the propagators ∆̃ij with
i, j = a, b, c go nearly on shell. Diagram a1 can become resonant for mV ≥ 3mπ, and the
propagator ∆̃de can be put on shell. This case was analysed in [63]. We will here not
consider it any further, and instead focus on lighter dark photon masses.

Using the same momentum parameterization as before eq. (E.6), the amplitude squared
can be written as

|M̄|2 = 3375Ā2m4
π

16f10
π

p2
1p

2
2 sin2(θ) sin2(θ̄) sin2(φ− φ̄)(1 +X) = |M̄|25pnt(1 +X) (E.17)

with as before Ā2 = A2
5N
−2
π Nf (N2

f − 4)
Nf=3

= 15
64A

2
5, and X parameterizing the photon-

exhange corrections.

E.3 Resonance contribution from mV ≈ 2mπ

In the limit that mV ≈ 2mπ the propagators ∆̃(ij) with i, j = a, b, c are resonantly en-
hanced. The resonance contribution is dominated by the ∆̃−2

(ij) terms in the amplitude
squared proportional to a2

2. Dropping all subdominant terms the correction eq. (E.17)
becomes

Xres =
(
παd
ξ2

)2
a2

2

128
45

∑
I

1
∆̃2

(I)
− 4

27
∑
I 6=J

1
∆̃(I)∆̃(J)

 (E.18)

with I, J = ab, bc, ca. Defining

F(h) ≡
∫

dp1 p
4
1Nπf

eq
1

∫
dp2 p

4
2Nπf

eq
2

∫
d cos θ sin2(θ)h(p1, p2, cos θ) (E.19)

The transition amplitude can be written as

γres
3→2
γ5pnt

3→2
= F(Xres)
F(1) , F(1) = 6πN2

πe−2xm10
π

x5 (E.20)

Consider first the ∆̃−2
(I) terms, which can be evaluated in the narrow width approxima-

tion eq. (A.10)

1
∆̃2

(I)
= (4m2

π)2

(sI −m2
γ)2 + m2

V Γ2 ≈
π(4m2

π)2

mV Γ δ(sI −m2
V ) (E.21)

with I = ab, bc, ca and sab = (Pa + Pb)2 etc. The x = cos θ integral in F(∆̃−2
(I)) becomes of

the form ∫
dx (1− x2)δ(sI −m2

V ) =
∑ (1− x2

0)
|s′I(x0)| , (E.22)
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where the sum is over the roots x0 of sI−m2
V = 0. It will be useful to redefine the momenta

(ab) : p± = 1√
2

(p1 ± p2); (bc) : p± = 1√
2

(p1 ± 2p2); (ac) : p± = 1√
2

(2p1 ± p2).

(E.23)
for I = ab, bc, ac respectively. Then for all I we get

|x0| =
p2

+ + p2
− − 4m2

πδm

p2
+ − p2

−
, |s′I(x0)| = p2

+ − p2
−, |p+| ≥ mπ

√
2δm ≥ |p−| (E.24)

up to O(δm2) corrections. The constraint on the momentum range arises from requiring
| cos θ| ≤ 1; only small p−-momenta can hit the resonance. A further suppression comes
from the (1− x2

0) ∝ δm in eq. (E.22), in the limit that |p−| � p+. Putting it all together

F(∆̃−2
I ) = π(4m2

π)2

mV Γ

∫
dp1 p

4
1Nπf

eq
1

∫
dp2 p

4
2Nπf

eq
2

(1− x2
0)

|s′I(x0)|
p+�|p−|≈ ρI

8πm6
πδm

mV Γ

∫ ∞
dp+p

4
+

∫ mπ
√

2δm

−mπ
√

2δm
dp−N2

πf
eq
1 f eq

2

= ρ̃I
48π
√
πN2

πm
12
π (δm)3/2e−2x

mV Γx5/2 = ρ̃I
36SfBdπ

√
πN2

πm
10
π e−2x

C4αdx5/2 (E.25)

On the 2nd line ρI = 1 for I = ab and ρI = 2−5 for I = bc, ac; the suppression of the latter
terms come from the factors of 2 in the definition of p± in eq. (E.23) (including a factor 1/2
from the Jacobian). On the last line ρ̃i = 1 for I = ab, and ρ̃i = ρ1(128/25)

√
2/5 ≈ 0.1 for

I = bc, ac, with the additional factor for I = bc, ac arising from the different p±-dependence
of f eq

i . The final expression uses the explicit decay width eq. (C.5) into pions, Bd = Γd/Γ
the branching ratio, and mV ≈ 2mπ. A careful inclusion of the integration boundary
replaces (to first order in δm)

e−2x → e−2x
√
s̃ = e−2x−δmx, (E.26)

which suppresses the interactions when the center of mass energy drops below the temper-
ature. This is the same exponential factor as found in the thermally averaged annihilation
cross section eq. (D.9).

The I = bc, ac contributions are subdominant. Expecting the mixed terms in
eq. (E.18), which already come with a small coefficient, likewise to be subdominant, we
can approximate the resonant interaction by the ∆̃−2

(ab)-term. Then

〈σv2〉res
3→2

〈σv2〉5pnt
3→2

= γres
3→2
γ5pnt

3→2
≈
(
παd
ξ2

)2 128
45
F(∆̃−2

(ab))
F(1) = 256Sfπ2√π

15C4

αdx
5/2

ξ4 (E.27)

where we have set a2 = 1.
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