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The theory of topological modular forms (TMF) predicts that elliptic genera of physi-
cal theories satisfy a certain divisibility property, determined by the theory’s gravitational
anomaly. In this note we verify this prediction in Duncan’s supermoonshine module, as well
as in tensor products and orbifolds thereof. Along the way we develop machinery for com-
puting the elliptic genera of general alternating orbifolds and discuss the relation of this
construction to the elusive “periodicity class” of TMF.
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1. Introduction and summary
Moonshine [1] is one of the most beautiful subjects at the interface of mathematics, physics,
and folklore. What originated from a curious observation about modular forms and the mon-
ster group has transcended into the fields of conformal field theory [2], string theory [3], and
quantum gravity [4]. Subsequent developments have led to the discovery of supermoonshine
[5,6], Mathieu moonshine [7–12], and umbral moonshine [13–18].

In a similar spirit, topological modular forms [19] have begun to make a surprise appearance
in physics thanks to a conjecture by Stolz and Teichner [20,21] based on earlier work by Segal
[22,23]. The conjecture roughly states the following:

(1) Every 2D supersymmetric quantum field theory (SQFT) withN = (0, 1) supersymmetry
can be associated with a “topological modular form”, or more precisely a class in TMF.

(2) Every class in TMF can be realized by at least one N = (0, 1) SQFT.
(3) TMF is a complete supersymmetric deformation invariant; i.e., any two SQFTs can be

continuously connected if and only if they are associated with the same topological mod-
ular forms.
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Although the map between SQFTs and TMF is not yet fully understood (though see Refs.
[24,25] for key progress), in some cases the image of the map is a familiar object: the elliptic
genus, i.e., the torus partition function with Ramond boundary conditions along both space
and time. The non-surjectivity of the map from SQFTs to the space of modular forms implies
a remarkable divisibility property of certain coefficients in the elliptic genus, as will be reviewed
below for the cases of interest to us.1

By now, intricate connections between topological modular forms and moonshine have been
uncovered [28–31], and this note continues this pursuit. The protagonist of our story is Dun-
can’s supermoonshine module Vf� [5], a holomorphic N = 1 supersymmetric conformal field
theory (SCFT) with central charge c = 12 that enjoys Conway symmetry.2,3 Its (twisted and
twined) elliptic genera are all constants due to supersymmetry, while its partition functions
with other boundary conditions exhibit many of the same extraordinary properties as their
monster cousins, including the celebrated genus-zero property [5,6,32,33]. A brief review of
the construction and properties of Vf� is given in Sect. 3.1.

For a general c = 12n holomorphic N = 1 SCFT whose elliptic genus is a constant and equal
to the Witten index I, the aforementioned divisibility property states that4

24
gcd(24, n)

∣∣∣∣ I or equivalently 24 | n I. (1)

The supermoonshine module has precisely I = −24, saturating divisibility for n = 1. Since this
divisibility is at present still conjectural, it is a valuable exercise to check its validity in a variety
of theories of physical interest. Such checks were performed in Ref. [31] in the context of the
monster module V� as well as its tensor products and various orbifolds. Conversely, assuming
the validity of the conjecture, one can rule out the existence of a number of tentative vertex
operator algebras (VOAs) proposed in the literature, including many of the extremal CFTs
proposed in Ref. [4].

In the current work, we perform a similar exercise for the supermoonshine module Vf�. In par-
ticular, we check the validity of the divisibility criterion for tensor products of Vf�, together with
orbifolds by Sn and An permutation symmetries. We also allow for orbifolds by non-anomalous
cyclic subgroups of the diagonal Co0 symmetry. While primarily serving as a check of the Stolz–
Teichner conjecture, this exercise has an important secondary motivation: namely, to develop

1Physicist readers are referred to Refs. [26,27] for a friendly introduction to this divisibility.
2This theory actually has N = (1, 1) supersymmetry because the anti-holomorphic sector can be

equipped with trivial supersymmetry.
3In the mathematical literature, the notation Vf� only refers to the supersymmetric vertex operator

algebra (SVOA) of the Neveu–Schwarz sector, whereas the Ramond sector is denoted by V f �
tw . In this

note, we slightly abuse Vf� to mean the entire fermionic theory V f � ⊕ V f �
tw .

4Let the prime factorization of a triple of natural numbers D, n, a be

D =
∏

i

pδi
i , n =

∏
i

pνi
i , a =

∏
i

pαi
i , δi, νi, αi ∈ Z≥0.

Then
D

gcd(D, n)

∣∣∣∣ a ⇔ δi ≤ min(δi, νi ) + αi ∀i.

If δi ≤ ν i, then both conditions are obviously true; if δi ≥ ν i, then the two conditions become identical.
In Eq. (1), D = 24 and a = I:

D | n a ⇔ δi ≤ νi + αi ∀i.
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the tools necessary for realizing a special class in TMF containing the “periodicity elements”,
whose definition we now review.

1.1. Periodicity elements
TMF is a generalized cohomology ring graded by an integer ν, where the multiplication and ad-
dition operations correspond physically to taking the tensor product and direct sum of SQFTs
and ν characterizes the gravitational anomaly.5 For SCFTs, the quantity ν is related to the chi-
ral central charge by ν = 2(cR − cL), so that in particular a holomorphic SCFT with (cL, cR)
= (c, 0) has ν = −2c. Intuitively, the group TMFν captures how much data beyond the gravi-
tational anomaly ν are necessary to specify the deformation class of an SQFT. The notion of
deformation class here includes, but is not necessarily limited to, the identification of all the-
ories connected by renormalization group flows (induced by either relevant deformations or
vacuum expectation values) as well as theories connected by marginal deformations [24].

It is known that the cohomology ring has periodicity ν ∼ ν + 576. This is a rather remarkable
property: it means that the set of deformation classes of SQFTs with gravitational anomaly ν

is identical to that of SQFTs with gravitational anomaly ν + 576. Indeed, there exists a special
class in TMF−576 called the “periodicity class” such that every class of TMFν − 576 is obtained
from a unique class in TMFν by taking the product with the periodicity class. An SQFT with ν

= −576 realizes an element in the periodicity class if and only if its elliptic genus is a constant
with value ±1.6

Because a constant elliptic genus is a highly non-generic feature in systems without super-
symmetry, a natural starting point for realizing an element in the periodicity class is to consider
holomorphic N = 1 SCFTs with central charge c = 288. This leads us to the study of theories
constructed from Vf�. Indeed, according to Example 2.4.1 in Ref. [34], the ’t Hooft anomaly of
the Co1 symmetry of Vf� realizes the generator of SH3(Co1) = Z24.7

Hence, the diagonal Co1 symmetry of (Vf�)⊗n is non-anomalous when 24 | n. For n = 24, the
chiral central charge c = 12 × 24 = 288 gives precisely the amount of gravitational anomaly
needed for the periodicity class of TMF, and one may then hope (on the basis of aesthetics
alone) that one periodicity element is realized by the theory Vf�⊗24/Co1.

Unfortunately, with present technology, it is not possible to conclusively refute or confirm this
guess. Indeed, ignorance of the generalized McKay–Thompson data for Vf� prevents one from
computing the full Witten index of the Co1 orbifold. Nevertheless, there is evidence to suggest
that this first guess is incorrect. In particular, the Witten index of Vf�⊗24 is 2424, whereas Co1

“only” has 4157 776 806 543 360 000 elements, 15 orders of magnitude smaller. It thus seems ex-

5The gravitational anomaly ν is conventionally normalized such that a chiral fermion has ν = 1.
6One can also realize the periodicity class in TMF576, but this is less interesting since it can be realized by

an N = (0, 1) sigma model, as described briefly later. Furthermore, given a holomorphic N = 1 theory
realizing ν = −576 (which will be our focus below), we can get another ν = +576 theory by exchanging
left- and right-movers.

7We remind the reader that the supercohomology group SHd(G) comprises the first three layers of
the Atiyah–Hirzebruch spectral sequence for the spin bordism group �

Spin
d (BG) [35,36]. As a set, this

is equivalent to Hd (G, U(1)) ⊕ Hd−1(G,Z2) ⊕ Hd−2(G,Z2)—referred to as the bosonic, Gu–Wen, and
Majorana layers, respectively—on the E2 page, and is generally reduced by non-trivial differentials on
the higher pages. For d = 3 the group SH3(G) is identical to �

Spin
3 (G) [37], but for larger d it captures less

information.
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tremely unlikely—though not strictly speaking impossible—for the Co1 orbifold to have Witten
index ±1. One is led to consider alternative constructions.

One closely related construction is to allow for permutation orbifolds, e.g., Vf�⊗24/S24. Indeed,
permutation orbifolds are well known to give rise to massive reductions in the index or the
degeneracies in the light spectra [38,39], and thus seem well suited for the current task. Lo and
behold, allowing for permutation orbifolds does enable one to identify a periodicity element. To
see this, we note that the Witten index of Vf�⊗24 is 2424, whereas that of Vf�⊗24/S24 is −25 499 225
(the machinery for performing the latter computation will be introduced in the main text). A
nice fact is that these two numbers are coprime. Given any two coprime integers m and n,
Bezout’s identity ensures that there exist integers x and y such that mx + ny = 1. Solving for
the appropriate Bezout pair, we find that

24 697 376 × V f �⊗24 ⊕ 1291 795 102 224 619 090 515 486 568 295 959 × V f �⊗24
/S24 (2)

has Witten index 1, and hence is an element of the periodicity class.8 While this may be viewed
as a success, it certainly leaves something to be desired. In particular, the theory constructed
above has massively degenerate vacua, even at finite volume. It would be more satisfying to
identify a periodicity element with a unique vacuum, assuming that such a theory exists.

The original statement by Stolz and Teichner about the SQFT realizability of TMF did not
require the SQFT to be “indecomposable”, namely to have a unique vacuum on a spatial circle
of finite size with Neveu–Schwarz boundary conditions.9 However, there is reason to believe
that every class in TMF is realizable by an indecomposable SQFT.10 For example, every TMF
class with −24 ≤ ν ≤ 24 has been realized by such an SQFT [46]. Moreover, it is known [47]
that every tmf class can be realized by a connected string manifold, which serves as the target
space of an indecomposable N = (0, 1) sigma model SQFT [48–51]. Since TMF is obtained by
adjoining tmf with the periodicity class, the realizability via indecomposable theories would be
true in general if it is true for the periodicity class.

To obtain an indecomposable periodicity element, we may now try to combine the symmetric
orbifold with an orbifold by Co0 or Co1. Beginning with Vf�⊗n/Sn × Co0, we quickly see that
this cannot do the job. Indeed, though the theory (including all spin structures) has an action
by Co0 = 2.Co1, the Z2 acts trivially on the Neveu–Schwarz sector of Vf�⊗n/Sn. Thus the gauged
theory Vf�⊗n/Sn × Co0 will always have degenerate vacua in the Neveu–Schwarz sector, even
at finite volume. If we are going to get an indecomposable theory, it would seem that we only
want to gauge Co1.

8According to Ref. [30], this fact was first found by Gaiotto in unpublished work.
9A decomposable QFT is one that can be written as a direct sum where each summand is a superse-

lection sector, or more precisely a “universe” [40–44]. In terms of local operators, each direct summand
gives rise to a topological point operator (a projector onto the summand) generating a top-form sym-
metry. If the SQFT is quantized on a spatial circle of finite size, then each direct summand gives rise to
an exact vacuum. This notion of vacuum degeneracy is different from the usual one in Minkowski space
or, equivalently, on a spatial circle of infinite size. A study of the Minkowski vacuum degeneracy of the
supersymmetric three-sphere sigma model using TMF can be found in Refs. [24,45].

10It is also interesting to ask whether every TMF class can be realized by a conformal field theory. For
theories with a non-vanishing gravitational anomaly the infrared of an SQFT is expected to be an SCFT,
so this seems reasonable, though even some of the simplest classes have yet to be realized [46]. One may
further ask about realizability via indecomposable CFTs; if there were a TMF class that could not be
realized by an indecomposable CFT, then this would necessitate degenerate vacua (in Minkowski space).
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Table 1. The Witten indices of symmetric Sn and alternating An orbifolds of 24 copies of either the
Duncan supermoonshine module Vf� or its tensor product with the Kitaev chain, Ṽ f � := V f � ⊗ (−1)Arf .
The superscript tor denotes discrete torsion. We do not include the results forV f �⊗24

/Ator
24 or Ṽ f � ⊗24

/Ator
24

since these are equivalent to Ṽ f � ⊗24
/A24 and Vf�⊗24/A24 respectively, as discussed in the text.

Permutation orbifold Witten index

Vf�⊗24/S24 −25 499 225

Ṽ f � ⊗24
/S24 16 610 409 114 771 900

V f �⊗24
/Stor

24 −237 043 714 720 252

Ṽ f � ⊗24
/Stor

24 6204 518 574 922 375
Vf�⊗24/A24 381 058 359 637 574

Ṽ f � ⊗24
/A24 8306 065 365 519 768

However, it does not actually make sense to gauge Vf�⊗n/Sn by Co1 due to a certain
mixed anomaly. To phrase this, it is useful to split the anomaly of Vf� as SH3(Co1) =
H3(Co1, U(1)).H2(Co1, Z2) = Z12.Z2, where the second piece corresponds to a projective phase
for Co1 in the R sector. The fact that the Co1 symmetry is realized projectively in the R sector
can alternatively be phrased as saying that the R sector is in a linear representation of the (non-
split) central extension of Co1 by Z2, with the extension class specified by the anomaly. This is
none other than Co0 = 2.Co1. So the fact that the R sector transforms faithfully under Co0 is
a signature of the anomaly, and this signature turns out to be present in Vf�⊗n/Sn as well. On
the other hand, as we will see, the Co0 action can be unfaithful for Vf�⊗n/An and n even, where
An is the alternating group (which is a Z2 quotient of Sn).

We are thus finally led to consider Vf�⊗24/A24 × Co1 as a candidate for an indecomposable
periodicity element. As a first check, the Witten index of Vf�⊗24/A24 can be easily computed
using formulae given in the main text and is smaller than the order of Co1 by 2–3 orders of
magnitude (cf. Table 1), making it conceivable that the Witten index of Vf�⊗24/A24 × Co1 be
±1. Of course, there remain many variants on the theme—in particular, we could allow for
gaugings with discrete torsion in11

�2
Spin(BA24) ∼= �2

Spin(pt) ⊕ H2(A24, U(1)). (3)

The generator of the first group on the right-hand side is the invertible field theory (−1)Arf .12

The generator of the second is a certain 2-cycle discussed more below. In general, we will use
the notation Ṽ f � := V f � ⊗ (−1)Arf , and denote the gauging of A24 with the group cohomol-
ogy twist by T /Ator

n , where T is either Vf� or Ṽ f � . There are then seemingly three alternative
gaugings (Ṽ f �)⊗24/A24 × Co1, V f �⊗24

/Ator
24 × Co1, and (Ṽ f �)⊗24/Ator

24 × Co1. In fact, we will
see that the turning on discrete torsion in H2(A24, U(1)) is almost equivalent to taking the ten-
sor product of the seed theory with (−1)Arf , and hence there are really only two distinct cases
to consider.13 Until the relevant data about the generalized McKay–Thompson data for Vf�

11Here �Spin denotes the Pontryagin dual of spin bordism, �d
Spin(BG) = Hom(�Spin

d (BG), U(1)). We
could also allow for discrete torsion involving Co1, but will not do so here.

12The invertible field theory (−1)Arf arises in the IR limit of the Kitaev chain [52]. On the torus, it is
−1 for the Ramond–Ramond (non-bounding) spin structure and +1 otherwise.

13This is not the case for Sn, where discrete torsion has a more drastic effect.
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are obtained, the question of which, if either, gives an indecomposable periodicity element will
remain out of reach.14

Though we cannot compute the full Witten indices of the proposed periodicity elements,
in the current note we will develop an essential tool for their eventual computation: namely,
a closed formula for alternating orbifolds. We present this formula in two forms: one similar
to the seminal formula of Dijkgraaf, Moore, Verlinde, and Verlinde (DMVV) for symmetric
orbifolds [53], and another involving generalized Hecke operators [54–58]. We also consider
orbifolds by subgroups of Co1 that do not require the missing generalized McKay–Thompson
data. Having developed this technology, we use it to verify that the Witten indices in the orbifold
theories all satisfy the divisibility property demanded by the Stolz–Teichner conjecture.

1.2. Organization
The remaining sections are organized as follows. Section 2 presents the second-quantized for-
mula for alternating orbifolds, as well as an expression in terms of generalized Hecke operators.
Because the proofs are somewhat long and technical, they are relegated to Appendix B. Then in
Sect. 3 we use these results to examine divisibility in orbifolds of Vf�. In particular, we allow for
orbifolds by Sn, An, and cyclic subgroups of Co0 or Co1, as well as combinations when allowed.
In addition to the main text, we include two appendices. Appendix A contains an analysis of
anomalies for permutation symmetries, while Appendix B contains proofs of statements made
in Sect. 2.

Note: We thank Theo Johnson-Freyd for explaining the mathematics underlying many of the
physical interpretations given in Appendix A.

2. Alternating orbifolds
As mentioned in the introduction, permutation orbifolds provide a way to construct families of
conformal field theories (CFTs) with sparse light spectra. This has been of interest in previous
physics literature since the holographic duals in anti-de Sitter space can be weakly coupled
[38,39]. In contrast, for tensor product theories without any permutation orbifold, the spectrum
exhibits Hagedorn growth, since the entropy grows linearly with the central charge.

Symmetric permutation orbifolds have a long history of study, starting most famously with
the work of Dijkgraaf, Moore, Verlinde, and Verlinde in Ref. [53], to be reviewed below. In this
section, we present an analogous formula for alternating orbifolds, which in particular gives a
closed-form expression for the generating function

ZA[T ](σ, τ, z) := 2 + 2p Z[T ](τ, z) +
∞∑

n=2

pnZ[T ⊗n/An](τ, z), p = e2π iσ (4)

of alternating orbifolds for a theory T . In fact, we will give two closed-form expressions for this
quantity, the second involving generalized Hecke operators, similar to a formula of Bantay [59]
for symmetric orbifolds. Furthermore, in order to facilitate orbifolding by Co1 or a subgroup
thereof, we will present equivariant formulae that allow for twisting by arbitrary Co1 elements
along both space and time.

14Since Vf� is the Z2 orbifold of 24 free Majorana–Weyl fermions, where Co0 is the centralizer of Z2 in
O(24), the twisted and twined elliptic genera can be computed quite straightforwardly in the free fermion
description. However, a technical first step is to figure out the conjugacy classes of commuting pairs of
elements of Co0, i.e., the set of pairs (g, h) ∈ Co0 × Co0 modulo (g, h) ∼ (fgf−1, fhf−1) for all f ∈ Co0.
We thank Theo Johnson-Freyd and an anonymous PTEP referee for comments on this point.
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Table 2. Notation for the different torus partition functions appearing in this note, where the permutation
group � can be S, Stor, A, or Ator.

Z[T ]g Twined torus partition function of T
Z�[T ]g Generating function for twined torus partition functions of T ⊗n/�n.
Z�[T ; g] Generating function for torus partition functions of T ⊗n/�n × 〈g〉.

Before proceeding, Table 2 lists the different types of torus partition functions that appear, to
help the reader navigate our notation. Following the terminology coined in Ref. [60], “twining”
refers to turning on a flavor fugacity in the trace definition of the torus partition function, which
can also be described as “twisting in the time direction” or “inserting a topological defect along
the space direction”.

2.1. Review of symmetric orbifolds
In Ref. [53], Dijkgraaf, Moore, Verlinde, and Verlinde (DMVV) derived a formula computing
the elliptic genera of symmetric orbifolds T ⊗n/Sn of a theory T in terms of the elliptic genus of
T itself.15 More precisely, the DMVV formula gives a closed-form expression for the generating
function

ZS[T ](σ, τ, z) := 1 +
∞∑

n=1

pnZ[T ⊗n/Sn](τ, z) (5)

of symmetric orbifolds. The formula is as follows:

ZS[T ](σ, τ, z) =
∏
n>0

m∈Z,�

1
(1 − pnqmy�) c(nm,�), (6)

where c(m, �) are the coefficients appearing in the expansion of the elliptic genus of T ,

Z[T ](τ, z) =
∑

m∈Z,�

c(m, �)qmy� , (7)

and y = e2π iz are fugacities for a U(1) symmetry. By restricting to the order-pn terms on both
the left and right, this formula allows one to read off an expression for Z[T ⊗n/Sn] in terms of
the Fourier coefficients of Z[T ].

Though it will not be important for our purposes in this note, the DMVV formula can be
given a physical interpretation in terms of second-quantized strings [53]. Indeed, if we take T
to be a supersymmetric sigma model on a Kähler manifold M, then each term on the left-hand
side of Eq. (5) corresponds to the left-moving partition function of a single string that winds
once around the S1 in a space-time (M⊗n/Sn) × S1 × R. By contrast, the right-hand side realizes
the partition function of a second-quantized (left-moving) string in M × S1, where the different
sectors of momentum m, winding n, and FL = � have dimensions |c(nm, �)|. The proof of Eq.
(5) exploits the relation between the partition function of a single string with unit winding in
(M⊗n/Sn) × S1 and multiple strings with possibly higher windings in M × S1.

15We remind the reader that the elliptic genus considered by DMVV in the N = 2 context is defined by
the following trace over the Ramond sector of the theory:

Z[T ](τ, z) = Tr H[T ]R (−1)F qH yJL ,

where H = L0 − c
24 , q = e2π iτ , and y = e2π iz is a fugacity for the left-moving U(1)R symmetry. By contrast,

the N = (0, 1) elliptic genus appearing in the TMF context does not have the U(1) fugacity.
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For the purposes of this note, it will be useful to have a similar expression for the twisted and
twined partition functions of symmetric orbifolds. For twists in the time direction, these are
easily incorporated into the DMVV formula. Concretely, say that our starting theory T has
symmetry G. Upon taking the tensor product T ⊗n, we may consider the diagonal symmetry
Gdiag in Gn. Given a non-anomalous subgroup H < Gdiag and an element g ∈ H of order N, we
may define the twined elliptic genus16

Z[T ]g
d
(τ ) = ∑

m∈Z,�∈ZN
cg(m, �)qme

2π id�
N , (8)

where cg(m, �) counts the number of states in the single-copy theory T with (L0 − c
24 )-

eigenvalue m and g-eigenvalue e
2π i�

N . The generating function for the twined elliptic genera of
the symmetric products is then given by

ZS[T ]
gd

(σ, τ ) =
∏
n>0

m∈Z,�∈ZN

1

(1 − pnqme
2π i�

N )cg(nm,d�)
. (9)

On the other hand, incorporating twists in the spatial direction in this presentation is more
difficult. Tuite [56], generalizing Bantay [59], provided an alternative expression for ZS[T ] in
terms of generalized Hecke operators [54–58], which allows one to achieve such twists. The
starting point is the definition of the nth generalized Hecke operator Tn acting on a weight-
zero modular function, defined as (see Eq. (15) in Ref. [56])

TnZ[T ]gh(τ ) = 1
n

∑
ad=n

0≤b<d

Z[T ]g
ahb

hd

(
aτ + b

d

)
. (10)

Here Z[T ]gh indicates the Ramond–Ramond torus partition function of T with a twist g in the
temporal direction and another twist h in the spatial direction.17 Then the generating function
ZS[T ]gh(σ, τ ) is given by (see Eq. (35) in Ref. [56])

ZS[T ]gh(σ, τ ) = exp

{∑
n>0

pnTnZ[T ]gh(τ )

}
. (11)

For the case of no spatial twist h = e, it can be checked that this formula reduces to the tempo-
rally twisted DMVV formula in Eq. (9).

Finally, let us mention that in a follow-up to the original work by DMVV, Dijkgraaf intro-
duced a generalization of the DMVV formula for symmetric orbifolds with discrete torsion
[61]. Since [62]

H2(Sn, U(1)) =
{

0 if n < 4
Z2 if n ≥ 4

(12)

there is one non-trivial discrete torsion class for symmetric orbifolds with n ≥ 4, represented
by a 2-cocycle γ ∈ H2(Sn, U(1)). Denoting the quotient in the presence of discrete torsion as
T ⊗n/Stor

n and defining the generating function

ZStor
[T ](σ, τ, z) := 1 +

3∑
n=1

pnZ[T ⊗n/Sn] +
∞∑

n=4

pnZ[T ⊗n/Stor
n ], (13)

16While it was not necessary to include d explicitly since gd is itself an element of H, we choose to
do so here to make clear that Z[T ]g

d
(τ ) and cg(m, �) are related by a discrete Fourier transform, with d

conjugate to �. This is in practice how cgd
(m, �) can be determined.

17In terms of topological line operators implementing the symmetry, h and g correspond respectively
to lines stretching along the temporal and spatial directions.
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Dijkgraaf found that18

ZStor
[T ]g = 1

2

∏
n>0

m∈Z,�

(
1 + p2nqm+ 1

2 y�
)cg(n(2m+1),�)

(
1 − p2n−1qmy�

)cg((2n−1)m,�)
+ 1

2

∏
n>0

m∈Z,�

(
1 − p2nqm+ 1

2 y�
)cg(n(2m+1),�)

(
1 − p2n−1qmy�

)cg((2n−1)m,�)

+ 1
2

∏
n>0

m∈Z,�

(
1 + p2nqmy�

)cg(2nm,�)

(
1 − p2n−1qmy�

)cg((2n−1)m,�)
− 1

2

∏
n>0

m∈Z,�

(
1 − p2nqmy�

)cg(2nm,�)

(
1 − p2n−1qmy�

)cg((2n−1)m,�)
. (14)

Our first goal will be to give analogs of all of these results for alternating orbifolds.

2.2. Second-quantized formula
As discussed in the introduction, our main interest in the current work is in alternating orb-
ifolds. One situation that necessitates alternating orbifolds is when the full permutation group
Sn is anomalous, and cannot be gauged—see Appendix A for a discussion of the permutation
anomaly. In such cases, alternating orbifolds can sometimes still be consistent. Another cir-
cumstance that demands alternating orbifolds, and the one more relevant to this note, is when
there is a mixed anomaly between Sn and another symmetry being gauged.

We now begin by obtaining a formula analogous to the DMVV formula (5) for alternating
orbifolds T ⊗n/An, i.e., orbifolds of T ⊗n by the subgroup An⊂Sn of even permutations. We first
quote the final result:

Theorem 1. The generating function for the elliptic genera of alternating orbifolds of a theory T
is given by

ZA[T ](σ, τ, z) := 2 + 2p Z[T ] +
∞∑

n=2

pnZ[T ⊗n/An]

= 1
2

∏
n>0

m∈Z,�

1
(1 − pnqmy�) c(nm,�) + 1

2

∏
n>0

m∈Z,�

1
(1 + (−p)nqmy�) c(nm,�)

+ 1
2

∏
n>0

m∈Z,�

(
1 + p2n−1qmy�

)c((2n−1)m,�)

(
1 − p2nqm+ 1

2 y�

)c(n(2m+1),�)
+ 1

2

∏
n>0

m∈Z,�

(
1 + p2n−1qmy�

)c((2n−1)m,�)

(
1 + p2nqm+ 1

2 y�

)c(n(2m+1),�)
,

(15)

where the coefficients c(m, �) are obtained from

Z[T ](τ, z) =
∑

m∈Z,�

c(m, �)qmy�. (16)

The proof of this formula will be relegated to Appendix B1. Here we will just sketch the gen-
eral idea. Instead of computing the An orbifold from scratch, we can reuse the results from the
Sn orbifold, keeping only the contributions from even permutations. Concretely, the symmetric
orbifold takes the form

Z[T ⊗n/Sn] = 1
|Sn|

∑
g,h∈Sn
gh=hg

Z[T ⊗n]gh. (17)

18The corresponding formula in terms of (generalized) Hecke operators was derived by Bantay in Ref.
[59].
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Since the alternating group is already part of this sum, we can get the An orbifold by projecting
out the contributions from odd permutations,

Z[T ⊗n/An] = 1
|An|

∑
g,h∈An
gh=hg

Z[T ⊗n]gh

= 2
|Sn|

∑
g,h∈Sn
gh=hg

1
2

(1 + sgn g)
1
2

(1 + sgn h)Z[T ⊗n]gh

= 1
2

(
Z[T ⊗n/Sn] + Z[T ⊗n/Sn]sgn + Z[T ⊗n/Sn]sgn + Z[T ⊗n/Sn]sgn

sgn

)
, (18)

where sgn(g) is the signature of the permutation g. In the second line, we have inserted the
projector 1

2 (1 + sgn(·)) in the Sn gauging for both the temporal and spatial twists. In the last
line, we have repacked the sums in an obvious manner. The final form of Eq. (18) suggests that
this can be interpreted as some sort of Z2 gauging and, indeed, this is nothing but the gauging
of the Z2 subgroup of the quantum symmetry Rep(Sn) generated by the representation sgn( ·
). As usual, gauging (part of) a quantum symmetry undoes (part of) the original gauging [63].

We conclude that to compute the alternating orbifold, we may repeat the derivation of the
DMVV formula [53] keeping track of the signature of every permutation. That is, the generat-
ing function for the elliptic genera of alternating orbifolds is given by

ZA[T ](σ, τ, z) = 1
2

(Z00 + Z10 + Z01 + Z11) , (19)

where Zαβ are the generating functions of the SN-orbifold elliptic genera with different inser-
tions of sgn( · ) lines, i.e.,

Zαβ := 1 +
∞∑

n=1

pn 1
|Sn|

∑
g,h

(sgn h)α(sgn g)βZ[T ⊗n]gh. (20)

It now only remains to evaluate the quantities Zαβ , which is done in Appendix B1.

2.3. Discrete torsion
Next, we discuss alternating orbifolds with discrete torsion. To do so, let us begin with some
more general comments. In general, given a 2-cocycle γ , gauging with discrete torsion on the
torus corresponds to weighting each term in the sum (17) by a phase [64]

ε(g, h) = γ (g, h)
γ (h, g)

, gh = hg. (21)

There are different ways to interpret this modification. In a path integral formulation, one can
interpret this as stacking with a symmetry-protected topological (SPT) phase before performing
the gauging. In the Hamiltonian formulation, in which we are instructed to sum over twisted
sectors Hh, the effect of discrete torsion is that instead of keeping the states in Hh invariant
under the centralizer Ch, we now pick out the states that transform in a non-trivial 1D repre-
sentation of Ch [61]. This representation is given by ε( ·, h), which is a homomorphism thanks
to the cocycle condition for γ .

Given two groups G and A, a 2-cocycle γ ∈ H2(G, A) defines a central extension

1 → A → Ĝ → G → 1 (22)
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with multiplication law ĝ · ĥ = (
gh, agahγ (g, h)

)
. This means that one can compute ε(g, h) in

terms of the lifted elements ĝ, ĥ ∈ Ĝ as

ε(g, h) = [ĝ, ĥ]. (23)

Note that although there are in general multiple possible lifts g, h → ĝ, ĥ, the result is indepen-
dent of this choice since the difference in the lifts lies in the center of Ĝ, and thus cancels out
in the commutator.

For symmetric orbifolds, the relevant central extension is

1 → Z2 → Ŝn → Sn → 1 (24)

with Z2 inside U(1). One way to visualize this extension is by embedding it in the lift of O(n
− 1) to Pin−(n − 1) [61]. Taking Sn to be the group of permutations of n orthonormal basis
vectors of Rn, it is clear that Sn is a finite subgroup of O(n − 1), the symmetry group of the
(n − 1)D hypersurface connecting the tips of the vectors. Then, the analog of the short exact
sequence (24) is19

1 → Z2 → Pin−(n − 1) → O(n − 1) → 1, (25)

and the former can actually be completely embedded in the latter.
We now return to the case of alternating orbifolds of interest to us here. To see the possible

discrete torsions, we recall that Hr(G, Â) = Hom(Hr(G, A), U(1)) (where Â denotes the Pon-
tryagin dual of A), which equals Hr(G, A) when these groups are cyclic. We thus have [62]

H2(An, U(1)) = H2(An, Z) =

⎧⎪⎨⎪⎩
0, if n < 4
Z6, if n = 6, 7
Z2, otherwise.

(26)

For n ≥ 4 there always exists at least a Z2-worth of possible discrete torsions, coming directly
from the Sn case (12). This is the only discrete torsion that we will allow for here. It would be
interesting to explore the extra possibilities for the cases n = 6, 7. We set n ≥ 4 for the rest of
the discussion.

Since the alternating group An is the subgroup of even permutations in Sn, it corresponds to
orientation-preserving transformations when acting on the basis vectors of Rn, and therefore
naturally embeds in SO(n − 1). Then the central extension Ân relevant for the Z2 discrete torsion
in alternating orbifolds is realized by the uplift of SO(n − 1) to Spin(n − 1). The upshot is that

19There are in fact two different central extensions of Sn by Z2, one embedding in Pin−(n − 1) and
the other in Pin+(n − 1). They are, however, equivalent when considered as extensions by U(1), so we
commit to one of them without loss of generality.
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the discrete torsions for An and Sn relevant to us are given by the central extensions in the
following commutative diagram,

which can be completely embedded in

The above discussion implies that we can again compute the An orbifold with Z2 discrete
torsion by gauging the quantum symmetry sgn( · ) of T ⊗n/Stor

n , i.e., by projecting out the con-
tributions from odd permutations in Dijkgraaf’s calculation [61]. The final result is then as
follows:

Theorem 2. The generating function ZAtor
[T ](σ, τ, z) for alternating orbifolds with discrete tor-

sion is given by

ZAtor
[T ](σ, τ, z) := 2 + 2p Z[T ] +

3∑
n=2

pnZ[T ⊗n/An] +
∞∑

n=4

pnZ[T ⊗n/Ator
n ]

= 1
2

∏
n>0

m∈Z,�

(
1 + p2nqm+ 1

2 y�
)c(n(2m+1),�)

(
1 − p2n−1qmy�

)c((2n−1)m,�)
+ 1

2

∏
n>0

m∈Z,�

(
1 − p2nqm+ 1

2 y�
)c(n(2m+1),�)

(
1 − p2n−1qmy�

)c((2n−1)m,�)

+ 1
2

∏
n>0

m∈Z,�

(
1 + pnqmy�

)c(nm,�) + 1
2

∏
n>0

m∈Z,�

(
1 − (−p)nqmy�

)c(nm,�)
. (27)

The proof is relegated to Appendix B2. Note that this formula differs from Eq. (15) only by
the replacements c(m, �) → −c(m, �), p → −p. This implies that as far as the elliptic genera
are concerned, alternating orbifolds with discrete torsion are equivalent (up to a sign) to first
stacking T with (−1)Arf and then gauging An, i.e.,

Z[T ⊗n/Ator
n ] = (−1)nZ[T̃ ⊗n/An]. (28)

2.4. Hecke formula
The formulae (15) and (27) for alternating orbifolds allow for U(1) twining, i.e., inserting twists
in the temporal direction, via the dependence on the fugacity y. For ZN instead of U(1), we
may replace y by e

2π i
N and restrict the range of � to ZN . These formulae do not, however, allow

for twists in the spatial direction that may belong to a different cyclic group ZM . For this, we
would like formulae in terms of generalized Hecke operators, analogous to that given in Eq.
(11). Defining the generating function for twisted–twined alternating orbifolds,

ZA[T ]gh(σ, τ ) := 2 + 2p Z[T ]gh(τ ) +
∞∑

n=2

pnZ[T ⊗n/An]gh(τ ), (29)

we have the following result,
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Theorem 3. The generating function ZA[T ]gh(σ, τ ) can be written as

ZA[T ]gh(σ, τ ) = 1
2

∑
α,β∈{0,1}

exp

{∑
n>0

pnT(α,β )
n Z[T ]gh(τ )

}
, (30)

with the generalized Hecke operators with characteristics T(α,β )
n defined as

T(α,β )
n Z[T ]gh(τ ) := 1

n

∑
ad=n

0≤b<d

(−1)αa(d+1)(−1)β((a+1)d+b(d+1))Z[T ]g
ahb

hd

(
aτ + b

d

)
. (31)

If h = 1 and g is of order N, then Eq. (30) reduces to the second-quantized formula with
y = e

2π i
N . We relegate the proof of this formula to Appendix B3.

Likewise in the case with discrete torsion, the twisted generating function

ZAtor
[T ]gh(σ, τ ) := 2 + 2p Z[T ]gh(τ ) +

3∑
n=2

pnZ[T ⊗n/An]gh(τ ) +
∞∑

n=4

pnZ[T ⊗n/Ator
n ]gh (32)

is given by the following result:

Corollary 1. The generating function ZAtor
[T ]gh(σ, τ ) can be written as

ZAtor
[T ]gh(σ, τ ) = 1

2

∑
α,β∈{0,1}

exp

{∑
n>0

pn(−1)n+1T(α,β )
n Z[T ]gh(τ )

}
, (33)

where T(α,β )
n are the generalized Hecke operators given in Eq. (31).

This simple corollary follows from Theorem 3, recalling that the formulae in Theorems 1 and
2 are related by the simple replacement p → −p, Z[T ] → −Z[T ], as noted in Eq. (28).

3. Topological modularity of supermoonshine
In the previous section, we reviewed various formulae for symmetric orbifolds of generic theo-
ries T and introduced analogs for alternating orbifolds. In this section, we apply these formulae
to the specific case of the supermoonshine module Vf� and check that the divisibility property
is satisfied. We begin with a brief review of the basic features of Vf�.

3.1. Supermoonshine
The supermoonshine module Vf�, also known as the Conway SCFT, is a c = 12 holomor-
phic SCFT constructed by Duncan [5], which has Conway’s largest sporadic simple group Co1

as a faithful symmetry. This symmetry is anomalous, realizing the generator of SH3(Co1) =
H3(Co1, U(1)).H2(Co1, Z2) = Z12.Z2. The second term corresponds to a projective phase ap-
pearing in the R sector only, meaning that Co1 is realized projectively on V f �

tw , or equivalently
that V f �

tw is in a linear representation of the Schur cover Co0 = 2.Co1. This theory is one of
three self-dual supersymmetric vertex operator algebras (SVOAs) with central charge c = 12,
the others being V f E8 (the theory of 8 chiral bosons based on the E8 root lattice together with
their 8 fermionic partners) and F24 (the theory of 24 free chiral fermions).

The construction of Vf� is best understood in terms of fermionic extensions of the bosonic
vertex operator algebra VD12 , as discussed in Ref. [32]. Here we will briefly review this construc-
tion, putting emphasis on the points that will be needed later. First, VD12 is a VOA of central
charge c = 12 based on the lattice D12, which can be described in terms of representations of
the Kac–Moody algebra ŝo(24)1. The zero modes of this current algebra generate Spin(24),
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and VD12 has four irreducible modules transforming in different representations of this group:
the adjoint A (which is VD12 itself), the vector V, the spinor S, and the conjugate spinor C. The
last three modules contain only fermionic states, and thus can be used to extend the bosonic
VD12 and obtain an SVOA.

Before discussing the extensions, it is useful to recall the action of Spin(24) on these repre-
sentations, in particular the action of its center Z2 × Z2. Let us denote the generator of the
first Z2 by η and the generator of the second one by �, such that η is in the kernel of the map
Spin(24) → SO(24) but � �→ − Id, with −Id the non-trivial element in the center of SO(24).
The generator η acts by −1 on the spinor representations, while � acts as the chirality matrix,
i.e.,

ηA = A, ηV = V, ηS = −S, ηC = −C,

�A = A, �V = −V, �S = S, �C = −C. (34)

With these basic definitions, we are ready to describe the fermionic extensions of VD12 .
20 Ex-

tending A by the vector module V yields F24 [65], the theory generated by 24 free fermions
λi transforming in the vector representation of SO(24). The remaining representations S and
C then comprise the R sector, which is called the canonically twisted module F tw

24 . Here the
fermion number operator should be such that it flips the sign of all the states in V. There are
two such elements, namely � and η�. The two choices differ only in their action on the Ra-
mond sector, which is precisely the effect of coupling the theory to the Kitaev chain [52], or
in continuum language the invertible field theory (−1)Arf . So we identify the theories with the
different choices of (−1)F as F24 and F̃24 := F24 ⊗ (−1)Arf . To summarize, we have

F24
∼= A ⊕ V, F tw

24
∼= S ⊕ C, (−1)F = � or η�. (35)

Let us mention in passing that there are several different ways of picking an N = 1 structure
on this theory, or in other words different weight-3/2 states in V that one can choose as the
supercurrent. These supercurrents are linear combinations of cubic terms ∼λiλjλk, and they
generate 8 different affine Lie algebras of dimension 24. Remarkably, all these structures can
be obtained from suitable orbifolds of V f E8 , as shown in Ref. [65].

Next, if A is extended by one of the spinor representations, e.g., S, we get the Conway SCFT
Vf� [5]. In this case, there is only one inequivalent choice of a weight-3/2 state in S that can
serve as the supercurrent G(z) generating the N = 1 super-Virasoro algebra; all other choices
are related by Spin(24) transformations. Once we choose one such supercurrent, the subgroup
of Spin(24) that leaves G(z) invariant is (isomorphic to) Co0, the group of automorphisms of
the Leech lattice. As we have discussed before, the group Co0 acts unfaithfully on Vf�, and the
true symmetry is Co1. Indeed, the center of this embedding of Co0 in Spin(24) coincides with
{1, �}, which acts trivially on Vf�. On the other hand, the twisted sector (a.k.a. the R sector)
comprises the other two modules V, C, on which � acts by an overall −1 sign, indicative of the
anomaly in Co1. As before, there are two choices of the fermion number operator, (−1)F = η�

for Vf� and (−1)F = η for Ṽ f � := V f � ⊗ (−1)Arf . To summarize, we have

V f � ∼= A ⊕ S, V f �
tw

∼= V ⊕ C, (−1)F = η� or η. (36)

Finally, one can consider the fermionic extension of VD12 by the conjugate spinor module C.
A priori this is no different from Vf�, but if we keep the same choice of weight-3/2 state G(z) ∈

20By “extension” here we mean a choice of the content of the NS sector SVOA, with the adjoint A
necessarily included.
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S as before, then we get a new theory Vs� [6]. Since the would-be supercurrent G(z) now lives
in the twisted sector of the theory, it cannot be understood as a generator of super-Virasoro
symmetry, and hence this theory is not supersymmetric. There are again two choices of fermion
number operator due to the Arf invariant, and now Co0 acts non-faithfully both in the NS and
R sectors.21 To summarize, we have

V s� ∼= A ⊕ C, V s�
tw

∼= V ⊕ S, (−1)F = � or η. (37)

Note that both modules Vf� and Vs� can be obtained as Z2 orbifolds of F24, as discussed in,
e.g., Ref. [65]. Indeed, if we gauge the Z2 symmetry generated by (−1)F = � in F24, we first
project onto the �-invariant elements of the NS sector A⊕V and then add the �-invariant
elements of the R sector S⊕C. This yields A⊕S∼=Vf�. Similarly, if we first stack the Kitaev
chain on top of F24 and then perform the same gauging operation we keep only states invariant
under η�, resulting in A⊕C∼=Vs�.

3.2. McKay–Thompson data for supermoonshine
Having reviewed the definition of Vf�, we would now like to consider various orbifolds of it.
Before doing so, it will behoove us to review some properties of the Co0 symmetry of Vf�.

First, recall that the McKay–Thompson series of a holomorphic CFT T with global symmetry
G refers to the set of torus partition functions Z[T ]g twisted along time by elements g ∈ G. They
depend only on the conjugacy class [g] of the element g. For a fermionic CFT, there are different
McKay–Thompson series for different spin structures. In the context of TMF, we are mainly
interested in the periodic–periodic spin structure, i.e., the trace in the Ramond sector with a
(−1)F insertion, which for the theory Vf� is constant due to the N = (1, 1) supersymmetry. In
this case, the McKay–Thompson data are given simply by the Co0 group characters χ in the
24D representation; we adopt the convention that

Z[V f �]g = −χg, Z[Ṽ f � ]g = χg. (38)

These characters can be found in Table 3.22

Let us now discuss the Conway anomaly. The Conway group Co0 was discovered in Refs.
[67,68] and is known to have 167 conjugacy classes, 43 of which are anomalous (see Theorem 7.1
in Ref. [69]):

4A, 2D, 3D, 6D, 4G, 8A, 4H, 12A, 6O, 12B, 6P, 8B, 8C, 8I, 20A, 20B,

10J, 12F, 24A, 12P, 24B, 12S, 28A, 15C, 30C, 16A, 20E, 21C, 42C, 22B,

22C, 24C, 24F, 24G, 24H, 52A, 56A, 56B, 60A, 60B, 40A, 40B, 84A. (39)

As for Co1, the anomalous classes are given by the pullback SH3(Co1) → SH3(Co0), which in
this case is an isomorphism; among the 101 classes, 37 are anomalous in Vf�:

2B, 2C, 3D, 4D, 4E, 4F, 6B, 6G, 6H, 6I, 8A, 8B, 8F, 10B, 10C,

10F, 12C, 12F, 12J, 12L, 12M, 14A, 15C, 16A, 20B, 21C,

22A, 24A, 24C, 24D, 24E, 26A, 28B, 30B, 30C, 40A, 42A. (40)

21Note that (−1)F is now contained in the center of Co0 for one of the choices.
22Basic group-theoretic data such as character tables are freely available in GAP [66]. The character

tables for Co0 can be accessed by the command tbl:=CharacterTable(”2.Co1”), the class names
by ClassNames(tbl), and the power map by List([1..84],x->PowerMap(tbl,x)). For Co1,
one replaces ”2.Co1” by ”Co1”.
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Table 3. The 167 conjugacy classes of Co0, their projections to the 101 conjugacy classes of Co1, and the
Co0 group characters χ in the 24D irreducible representation. The anomalous classes in supermoonshine
Vf� are shaded.
Co0 1A 2A 2B 2C 4A 2D 3A 6A 3B 6B 3C 6C 3D 6D 4B 4C 4D
Co1 1A 1A 2A 2A 2B 2C 3A 3A 3B 3B 3C 3C 3D 3D 4A 4A 4B
χ 24 −24 8 −8 0 0 −12 12 6 −6 −3 3 0 0 8 −8 0

Co0 4E 4F 4G 8A 4H 5A 10A 5B 10B 5C 10C 6E 6F 12A 6G 6H 6I
Co1 4C 4C 4D 4E 4F 5A 5A 5B 5B 5C 5C 6A 6A 6B 6C 6C 6D
χ 4 −4 0 0 0 −6 6 4 −4 −1 1 −4 4 0 −4 4 5

Co0 6J 6K 6L 6M 6N 6O 12B 6P 7A 14A 7B 14B 8B 8C 8D 8E 8F
Co1 6D 6E 6E 6F 6F 6G 6H 6I 7A 7A 7B 7B 8A 8B 8C 8C 8D
χ −5 2 −2 −1 1 0 0 0 −4 4 3 −3 0 0 4 −4 0

Co0 8G 8H 8I 9A 18A 9B 18B 9C 18C 10D 10E 20A 20B 10F 10G 10H 10I
Co1 8E 8E 8F 9A 9A 9B 9B 9C 9C 10A 10A 10B 10C 10D 10D 10E 10E
χ 2 −2 0 −3 3 0 0 3 −3 −2 2 0 0 −2 2 3 −3

Co0 10J 11A 22A 12C 12D 12E 12F 12G 12H 12I 12J 24A 12K 12L 12M 12N 12O
Co1 10F 11A 11A 12A 12A 12B 12C 12D 12D 12E 12E 12F 12G 12H 12H 12I 12I
χ 0 2 −2 −4 4 0 0 −1 1 2 −2 0 0 1 −1 −2 2

Co0 12P 12Q 12R 24B 12S 13A 26A 28A 14C 14D 15A 30A 15B 30B 15C 30C 15D
Co1 12J 12K 12K 12L 12M 13A 13A 14A 14B 14B 15A 15A 15B 15B 15C 15C 15D
χ 0 3 −3 0 0 −2 2 0 1 −1 3 −3 −2 2 0 0 1

Co0 30D 15E 30E 16A 16B 16C 18D 18E 18F 18G 18H 18I 20C 20D 20E 20F 20G
Co1 15D 15E 15E 16A 16B 16B 18A 18A 18B 18B 18C 18C 20A 20A 20B 20C 20C
χ −1 2 −2 0 2 −2 −1 1 2 −2 −1 1 −2 2 0 −1 1

Co0 21A 42A 21B 42B 21C 42C 22B 22C 23A 46A 23B 46B 24C 24D 24E 24F 24G
Co1 21A 21A 21B 21B 21C 21C 22A 22A 23A 23A 23B 23B 24A 24B 24B 24C 24D
χ 2 −2 −1 1 0 0 0 0 1 −1 1 −1 0 −2 2 0 0

Co0 24H 24I 24J 52A 28B 28C 56A 56B 30F 30G 60A 60B 30H 30I 30J 30K 33A
Co1 24E 24F 24F 26A 28A 28A 28B 28B 30A 30A 30B 30C 30D 30D 30E 30E 33A
χ 0 −1 1 0 1 −1 0 0 1 −1 0 0 1 −1 0 0 −1

Co0 66A 35A 70A 36A 36B 39A 78A 39B 78B 40A 40B 84A 60C 60D
Co1 33A 35A 35A 36A 36A 39A 39A 39B 39B 40A 40A 42A 60A 60A
χ 1 1 −1 −1 1 1 −1 1 −1 0 0 0 1 −1

Note that the anomaly forces the twined Witten indices of these classes to vanish. The data on
anomalies are again collected in Table 3.

When we consider orbifolds by cyclic subgroups of Co0 or Co1, only those outside of these
anomalous classes make physical sense. However, because Vf�⊗n/An has Co1 symmetry only
when n is even, for the purpose of Sect. 3.4 let us also record the 23 conjugacy classes in Co1

that are anomalous in Vf�⊗n for n even:

2B, 3D, 4E, 4F, 6B, 6H, 6I, 8F, 10B, 10C, 12F, 12L, 12M,

14A, 15C, 20B, 21C, 24D, 26A, 28B, 30B, 30C, 42A. (41)

Finally, a technical property of Vf� that simplifies the orbifold computations is the following:
for every g ∈ Co0,

Z[T ]g
r = Z[T ]g

gcd(r,N ) ∀ r, (42)

where N is the order of g.

3.3. Symmetric orbifolds of supermoonshine
We may now proceed to orbifolds of supermoonshine, starting with symmetric orbifolds. Con-
sider the second-quantized formula (5) for symmetric orbifolds, but with a ZN = 〈g〉 symmetry
instead of U(1). In the presence of N = (1, 1) supersymmetry, the elliptic genera are constants
given by the twined Witten indices; in other words, the Fourier expansion in Eq. (8) becomes
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simply

Z[V f �]g
k
(τ ) =

∑
�∈ZN

cg(0, �)e
2π i�k

N . (43)

From now on we will write cg(�) := cg(0, �). Due to Eq. (42), Z[V f �]g
k
(τ ) only depends on

gcd(k, N ). The second-quantized formula (5) becomes

ZS[V f �]g(σ ) =
∏
n>0
�∈ZN

1
(1 − pny�)cg(�)

=
∏
�∈ZN

1
(py�; p)cg(�)

, (44)

where y = e2π i/N and (a; q) = (a; q)∞ is the q-Pochhammer symbol. For g = e, if we let I =
Z[V f �] be shorthand for the (untwisted) Witten index, then the generating function for the
symmetric orbifold Witten indices simplifies to

ZS[V f �](σ ) = 1
(p;p)I = p

I
24

η(σ )I . (45)

For supermoonshine Vf� the Witten index is I = −24, while for Ṽ f � := V f � ⊗ (−1)Arf the Wit-
ten index is I = 24. The elliptic genus for Vf�⊗n/Sn and (Ṽ f �)⊗n/Sn can then be obtained by
Fourier expanding Eq. (45) and reading off the order-pn Fourier coefficient, e.g.,

Z[V f �⊗2
/S2] = 252, Z[(Ṽ f �)⊗2/S2] = 324.

Z[V f �⊗3
/S3] = −1472, Z[(Ṽ f �)⊗3/S3] = 3200.

Z[V f �⊗4
/S4] = 4830, Z[(Ṽ f �)⊗4/S4] = 25 650. (46)

In particular, the Witten index of Vf�⊗24/S24 is −25 499 225, while that of Ṽ f � ⊗24
/S24 is

16 610 409 114 771 900. These are collected in Table 1. In all of the cases listed above, we see that
divisibility is satisfied—namely that Z[Vf�⊗n/Sn] and Z[(Ṽ f �)⊗n/Sn] are divisible by 24/gcd(24,
n) (where gcd is the greatest common divisor).

In fact, we may prove this divisibility for arbitrary n by using the fact given in Eq. (1) and ex-
plained in footnote 4, namely that proving divisibility of ZS[T ]|pn by 24/gcd(24, n) is equivalent
to proving divisibility of nZS[T ]|pn by 24. In other words, it suffices to show that

24
∣∣∣ p

dZS[V f �]
d p

. (47)

To this effect, we define φ(p) = p
1

24 /η(p) such that ZS[V f �](σ ) = φ(p)±24, whence

dZS[V f �](σ )
d p

= dφ(p)±24

d p
= ±24 φ(p)±24−1 dφ(p)

d p
. (48)

Since φ(p) has integer Fourier coefficients, the divisibility property (47) is automatically satis-
fied.

Orbifolds by cyclic subgroups of Co0 Due to Eq. (42), if g is non-anomalous then the orbifold
Witten indices can be written as

Z[T /〈g〉](τ ) =
∑
d | N

J2(N/d )
N

Z[T ]g
d
(τ ), (49)

where J2(N) is the Jordan totient function of N, i.e., the number of pairs (m, n) such that m, n
≤ N and gcd(m, n, N) = 1. It admits the following closed-form expression:

J2(N ) = N2
∏
p|N

(
1 − 1

p2

)
. (50)

Using the formula above we may now compute the orbifold Witten indices for T /〈g〉 given the
twisted indices Z[T ]g

d
. Fortunately, in the case of T = V f �, the latter are simply given by the
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characters of the 24D representation of Co0, as in Eq. (38). For example, if g2A ∈ 2A and g3A

∈ 3A one has

Z[V f �] = −24, Z[V f �]g2A = 24, Z[V f �]g3A = Z[V f �]g
2
3A = 12, (51)

in the usual notation for the conjugacy classes of Co0. From these one can then compute

Z[V f �/〈2A〉] = 24, Z[V f �/〈3A〉] = 24. (52)

We note that both of the above are divisible by 24, consistent with the divisibility property
(1). Indeed, computer implementation allows one to check the divisibility for all 167 conjugacy
classes of Co0. For some values of n divisibility is actually found to be violated, but this occurs
only when g belongs to the 43 anomalous conjugacy classes given in Eq. (39), and hence no such
gauging was allowed in the first place; in particular, for n = 1, divisibility is violated precisely
for those 43 classes. Note that for certain values of n, the conjugacy classes in Eq. (39) can
actually become non-anomalous, and in those cases we again find that Vf�⊗n/Sn × 〈g〉 satisfies
divisibility.

We may furthermore compute Z[T ⊗n/Sn × 〈g〉] by combining Eq. (49) with Eq. (9):

ZS[T ; g](σ ) :=
∑
d | N

J2(N/d )
N

∏
n>0

m∈Z,�∈ZN

1

(1 − pnqme
2π i�

N )cgd (nm,�)
(53)

where cg(m, �) are the Fourier coefficients of Z[T ]g
d
(τ ), as in Eq. (8). For T = V f �, we find

ZS[V f �; 2A](σ ) = −1 + 3
2

(−p ; p)24 + 1
2

(p ; p)24

= 1 + 24 p + 576 p2 + 3200 p3 + 29 604 p4 + 155 232 p5 + · · ·

ZS[V f �; 3A](σ ) = −2 + 1
3

(p ; p)24 + 8
3

(e
2π i
3 p ; p)12(e

−2π i
3 p ; p)12

= 1 + 24 p + 324 p2 + 864 p3 + 7986 p4 + 24 192 p5 + · · · (54)

and so on. The indices Z[Vf�⊗n/Sn × 〈g〉] are then obtained by taking the order-pn terms in the
Fourier expansions of the generating functions, e.g.,

Z[V f �⊗n
/Sn × 〈g2A〉] = 576, 3200, 29 604, n = 2, 3, 4,

Z[V f �⊗n
/Sn × 〈g3A〉] = 324, 864, 7986, n = 2, 3, 4. (55)

One may check that each of these is divisible by 24/gcd(24, n), as required by the divisibility
constraint. Computer implementation allows one to check this for all 167 conjugacy classes of
Co0 and verifies that (Vf�)⊗n/Sn × < g > satisfies divisibility for all n for every conjugacy class
outside of Eq. (39).

Discrete torsion Let us finally mention the case of symmetric orbifolds with discrete torsion.
The expression for this was given in Eq. (14); taking T = V f �, it reduces to

ZStor
[V f �]g(σ ) = 1

2

∏
�∈ZN

(−p2y�; p2)cg(�)

(py�; p2)cg(�)
− 1

2

∏
�∈ZN

(p2y�; p2)cg(�)

(py�; p2)cg(�)
+
∏
�∈ZN

1
(py�; p2)cg(�)

. (56)

For g = e we have

ZStor
[V f �](σ ) = 1

2
(p; p2)24

(−p2; p2)24
− 1

2
(p; p2)24

(p2; p2)24
+ (p; p2)24

= 1 − 24p + 252p2 − 1472p3 + 4554p4 + 576p5 + · · · . (57)
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For n ≥ 4, we can read off Z[V f �⊗n
/Stor

n ] from the order-pn term in this expansion, while for n
< 4 we have Z[V f �⊗n

/Stor
n ] = Z[V f �⊗n

/Sn]. Thus we find

Z[V f �⊗2
/Stor

2 ] = 252, Z[V f �⊗3
/Stor

3 ] = −1472,

Z[V f �⊗4
/Stor

4 ] = 4554, Z[V f �⊗5
/Stor

5 ] = 576, (58)

and so on. In particular, the Witten index of V f �⊗24
/Stor

24 is −237 043 714 720 252, which is
recorded in Table 1. We see that these values are always divisible by 24/gcd(24, n), as required
by the divisibility constraint. Similar statements hold for Ṽ f � .

We can also consider orbifolds by cyclic subgroups of Co0 by combining Eq. (49) with Eq.
(14). The closed-form expressions in terms of Pochhammer symbols are straightforwardly ob-
tained but messy, so here we only record a couple of explicit examples,

ZStor
[V f �; 2A](σ ) = 1 + 24p + 576p2 + 3200p3 + 29 052p4 + 148 608p5 + · · ·

ZStor
[V f �; 3A](σ ) = 1 + 24p + 324p2 + 864p3 + 7686p4 + 23 904p5 + · · · , (59)

from which we can read off, e.g.,

Z[(V f �)⊗4/Stor
4 × 〈g2A〉] = 29 052, Z[(V f �)⊗5/Stor

5 × 〈g2A〉] = 148 608,

Z[(V f �)⊗4/Stor
4 × 〈g3A〉] = 7686, Z[(V f �)⊗5/Stor

5 × 〈g3A〉] = 23 904. (60)

These can again be checked to satisfy the divisibility criterion. Computer implementation al-
lows us to check this for all conjugacy classes of Co0, with the list of conjugacy classes violating
divisibility being the same as that in the absence of discrete torsion.

3.4. Alternating orbifolds of supermoonshine
Next consider the second-quantized formula (15) for alternating orbifolds, but with a ZN = 〈g〉
symmetry instead of U(1). In the presence of N = (1, 1) supersymmetry, we have

ZA[V f �]g(σ )

= 1
2

∏
n>0
�∈ZN

1
(1 − pny�)cg(�)

+ 1
2

∏
n>0
�∈ZN

1
(1 + (−p)ny�)cg(�)

+
∏
n>0
�∈ZN

(1 + p2n−1y�)cg(�)

= 1
2

∏
�∈ZN

1
(py�; p)cg(�)

+ 1
2

∏
�∈ZN

1
(py�; −p)cg(�)

+
∏
�∈ZN

(−py�; p2)cg(�), (61)

expressed in terms of quantities defined in the previous subsection. For g = e, we have

ZA[V f �](σ ) = 1
2

1
(p; p)I

+ 1
2

1
(p; −p)I

+ (−p; p2)I, (62)

which admits a rewriting as

ZA[V f �](σ ) = 1
2

1
(p; p)I

+ 3
2

1
(p; −p)I

= 1
2

p
I
24

η(σ )I
+ 3

2
p

I
24 η(2σ )2I

η(σ )Iη(4σ )I
. (63)

The elliptic genus for Vf�⊗n/An and (Ṽ f �)⊗n/An can then be obtained by Fourier expanding Eq.
(63) and reading off the order-pn Fourier coefficient, e.g.,

Z[V f �⊗2
/A2] = 576, Z[(Ṽ f �)⊗2/A2] = 576,

Z[V f �⊗3
/A3] = −4672, Z[(Ṽ f �)⊗3/A3] = 4672,

Z[V f �⊗4
/A4] = 29 604, Z[(Ṽ f �)⊗4/A4] = 29 628. (64)
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In particular, the Witten index of Vf�⊗24/A24 is 381 058 359 637 574, while that of Ṽ f � ⊗24
/A24 is

8306 065 365 519 768. These are collected in Table 1. In all of the cases listed above, we see that
divisibility is satisfied—namely that Z[Vf�⊗n/An] and Z[(Ṽ f �)⊗n/An] are divisible by 24/gcd(24,
n).

Incidentally, note that ZA[V f �](σ ) can be written in terms of the McKay–Thompson series
T4A(σ ) for the 4A conjugacy class of the monster:

ZA[V f �](σ ) = p
2

[
�(σ )−1 + 3T4A(σ )

]
. (65)

If we define the Fourier coefficients of the inverse modular discriminant and T4A(σ ) as follows:

�(σ )−1 = p−1
∞∑

n=1

τ n pn, T4A(σ ) = p−1
∞∑

n=1

c4A
n pn, (66)

then we have

ZA[V f �](σ ) =
∞∑

n=0

1
2

(
τ n + 3c4A

n

)
pn (67)

and the divisibility conjecture becomes the statement that
24

gcd(24, n)

∣∣∣ 1
2

(
τ n + 3c4A

n

)
. (68)

Unfortunately, we will not be able to prove this result, but we have verified it to extremely large
values in n.

Note that proving this would also prove the divisibility for symmetric orbifolds with discrete
torsion, since Eq. (57) can be rewritten as

ZStor
[V f �](σ ) = p3

2
(T2B(σ ) − 24)2 [T4A(σ ) − �(σ )−1] . (69)

For the purposes of divisibility we may drop the factor of 24 above, and then, defining the
Fourier expansion of T2B(p) to be

T2B(σ ) = p−1
∑
n=0

c2B
n pn, (70)

we find that

p3

2
T2B(σ )2 [T4A(σ ) − �(σ )−1] =

∞∑
n=0

n∑
m=0

1
2

c2B
n−m

(
c4A

m − τm

)
pn. (71)

Proving divisibility thus amounts to proving that

24
gcd(24, n)

∣∣∣ 1
2

n∑
m=0

c2B
n−m(c4A

m − τm). (72)

Assuming Eq. (68), there exists an integer km such that
1
2
τm = 24

gcd(24, m)
km − 3

2
c4A

m , (73)

and plugging this into the right-hand side of Eq. (72) gives
n∑

m=0

c2B
n−m

(
2c4A

m − 24
gcd(24, m)

km

)
. (74)

We then need only prove that
24

gcd(24, n)

∣∣∣ c2B
n and

24
gcd(24, n)

∣∣∣ c4A
n , (75)
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since this together with the fact that
24

gcd(24, n)

∣∣∣ 24
gcd(24, n − m)

· 24
gcd(24, m)

(76)

would imply Eq. (72).
Both of the claims in Eq. (75) are shown in a similar manner by taking a derivative and

verifying Eq. (47). For example, the T4A(p) McKay–Thompson series

T4A(p) = �(p2)2

�(p)�(p4)
=
(

η(p2)2

η(p)η(p4)

)24

(77)

is clearly the 24th power of a modular form with integer Fourier coefficients, and hence taking
a derivative gives a function whose Fourier coefficients are all divisible by 24. Similar comments
hold for T2B(p).

Unfaithfulness of Co0 Returning to alternating orbifolds, we now argue that the central ele-
ment z ∈ Co0 is not faithful in T ⊗n/An for n even, at the level of Witten indices. Since χ (e) = I
and χ (z) = −I, we have cz(0) = 0 and cz(1) = I for I ≥ 0, as well as cz(0) = −I and cz(1) = 0
for I ≤ 0. In the former case, only � = 1 contributes to each term in Eq. (61), giving

ZA[V f �]z(σ ) = 1
2

1
(−p; p)I

+ 1
2

1
(−p; −p)I

+ (p; p2)I . (78)

Comparing with Eq. (62), the untwined

2ZA[V f �](σ )|peven = ZA[V f �](σ ) + ZA[V f �](σ + 1/2) (79)

and twined

2ZA[V f �]z(σ )|peven = ZA[V f �]z(σ ) + ZA[V f �]z(σ + 1/2) (80)

generating functions for n even are manifestly equal, suggesting that Co0 is not faithful, and
hence that the Co1 symmetry is non-anomalous. The case of I ≤ 0 proceeds in the same way.

Orbifolds by cyclic subgroups of Co1 We may now consider orbifoldings by subgroups of
Co1. If g is non-anomalous, the orbifold Witten indices take the same form as in Eq. (49),
with Z[T ]g

d
(τ ) replaced by the generating function for alternating orbifolds. We will not bother

to write the formulae out explicitly in this case, but simply note the result that the would-be
orbifold Witten indices of (Ṽ f � )⊗n/An × 〈g〉 satisfy divisibility for all even n and for every g ∈
Co1 (to reemphasize, we restrict to n even since only then do we have a non-anomalous Co1

symmetry). Interestingly, the divisibility in this case holds regardless of any anomalies, echoing
the observations for monstrous moonshine (monster CFT) made in Ref. [31]. On the other
hand, the would-be orbifold Witten indices of (Vf�)⊗n/An × < g > do violate divisibility for
some even values of n, but this occurs only when g belongs to these 8 conjugacy classes of
Co1:

3D, 6H, 6I, 12L, 12M, 15C, 21C, 30C, (81)

all of which are anomalous, cf. the list (41). Note that for some n the anomalies of these conju-
gacy classes in the diagonal Co1 are trivialized, and in those cases divisibility is again satisfied.

3.5. Saturation of divisibility by decomposable theories
Finally, as an aside, let us try to construct decomposable theories (i.e., theories with multiple
vacua at finite volume) saturating the divisibility criterion. In other words, we search for theories
with ν = 2(cR − cL) = −24n and Witten index 24/ gcd(24, n) for any n. Since we can take direct
sums, the question of constructability amounts to whether the greatest common divisor of the
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Table 4. Values of In and 24/ gcd(24, n) for gravitational anomaly ν = −24n for n = 0, 1, … , 24. The
cases where In differs from 24/ gcd(24, n) are shaded.

n 0 1 2 3 4 5 6 7 8 9 10 11 12

In 1 24 12 8 6 24 8 24 3 24 12 24 2
24/ gcd(24, n) 1 24 12 8 6 24 4 24 3 8 12 24 2

n 24 23 22 21 20 19 18 17 16 15 14 13

In 1 24 24 8 6 24 4 24 3 8 24 24
24/ gcd(24, n) 1 24 12 8 6 24 4 24 3 8 12 24

Witten indices of a pair, or more generally a tuple, of theories is equal to 24/ gcd(24, n). It turns
out that it suffices to consider symmetric orbifolds without discrete torsion for Vf� and Ṽ f � ,
further gauged by non-anomalous cyclic subgroups of Co0 (in particular, alternating orbifolds
are not necessary, though they diversify the possible constructions). Let us denote the gcd for
these hundred or so theories by In. These quantities may be obtained via computer evaluation
and are collected in Table 4 for n = 0, 1, … , 24. We see that for n �= 6, 9, 14, 22 mod 24, the gcd
is precisely 24/gcd(24, n), and hence the existence of a theory saturating divisibility is obvious
in these cases.

On the other hand, for n = 6, 9, 14, 22 the gcd is larger than 24/gcd(24, n). However, notice
that an element with n = 24 is realized and that at least one of In and I24−n saturates divisibility
for all n. Suppose In �= 24/ gcd(24, n). Then we can put the theory with cL = 12(24 − n) and
Witten index I24−n = 24/ gcd(24, n) on the right (so that it is anti-holomorphic with cR = 12(24
− n)), and take the tensor product with the holomorphic theory realizing I24 = 1. The result is
a (no longer holomorphic) theory with ν = −24n and Witten index I24−n = 24/ gcd(24, n).
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Appendix A. Permutation anomaly
In this appendix, we discuss the potential anomalies of the permutation symmetry Sn of the
nth tensor product of a theory T . Such anomalies can occur when T has a global gravitational
anomaly [34]. If T has a global symmetry G, there can also be mixed anomalies between Sn and
Gn, including the diagonal G. As we will now describe, the pure cyclic permutation anomaly
can be computed by examining the spins in the g-twisted defect Hilbert space, assuming that
T is a holomorphic CFT with ν = 2c units of the gravitational anomaly.23 Considering cyclic

23The assumption of holomorphy is just so that we can rightfully ignore the energies of states, and only
keep track of the Lorentz spins.
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subgroups of Sn allows us to derive necessary conditions for the Sn to be non-anomalous. The
conditions that we derive will also turn out to be sufficient.24

Bosonic case: We begin with the bosonic (non-spin) case, where ν = 16μ and μ ∈ Z. Let ρ be
a generator of the Cn cyclic permutation symmetry of T ⊗n. Then the torus partition function
of T ⊗n twisted by ρ in the temporal direction is

Z[T ⊗n]ρ (τ ) = Tr H⊗nρ q
∑n

i=1 L(i)
0 − nμ

3

=
∑

ψ1,...,ψn∈H
〈ψ2, . . . , ψn, ψ1|ψ1, . . . , ψn〉 q

∑n
i=1 si− nμ

3

=
∑
ψ1∈H

qns1− nμ

3 = Z[T ](nτ ). (A1)

An intuitive way to arrive at the above answer is to regard T ⊗n as T living on an n-sheeted cover
of a flat torus with the same complex modulus τ , with ρ providing branch cuts connecting the n
sheets. A ρ-twist in the temporal direction means that the branch cuts are extended in the spatial
direction, so the n sheets are woven into a flat torus of complex modulus nτ . This perspective
will be very useful when considering the fermionic case.

By performing a modular S transform and using the modular invariance of Z[T ], we obtain
the torus partition function of T ⊗n twisted by ρ in the spatial direction,

Z[T ⊗n]ρ (τ ) = Z[T ]
(τ

n

)
= q− μ

3n + · · · , (A2)

whose Fourier powers are in Z
n − μ

3n . Under the state-operator map, and with the overall confor-
mal factor q

nμ

3 taken into account, the spins of operators in the ρ-twisted defect Hilbert space
of T ⊗n are

s ∈ μ(n2 − 1)
3n

+ Z

n
. (A3)

This can be compared with the general spin content in the defect Hilbert space of a Zn global
symmetry with k (mod n) units of the anomaly,

s ∈ k
n2

+ Z

n
, (A4)

and we find that the cyclic permutation ρ has an anomaly

k = μ(n2 − 1)n
3

mod n, (A5)

which vanishes when 3 |μ(n2 − 1). When 3 |μ, i.e., when the global gravitational anomaly van-
ishes, Cn is non-anomalous for all n (see Ref. [71] for a similar result). It turns out that Sn for
any n > 2 is non-anomalous if and only if 3 |μ; see Theorem 2 in Ref. [70].

Fermionic case: For fermionic (spin) CFTs, we repeat the above exercise while carefully keep-
ing track of the spin structure and statistics. A nice discussion on fermionic anomalies and their
allowed spins in defect Hilbert spaces can be found in Ref. [72]. Consider T on an n-sheeted

24For a general group, it is untrue that the anomalies of cyclic subgroups determine the anomaly of
the full group. For Sn though, we can see that the conditions are sufficient by comparing our results to
the rigorous cohomological results. In the bosonic case, this rigorous result can be found in Theorem 2
in Ref. [70]. For the fermionic case, we may proceed as follows. First note that permutation anomalies
can only depend on the gravitational anomaly of T or, in other words, on the central charge c ∈ 1

2Z.
Moreover, the dependence is linear. Using the fact that SH3(Sn) = Z24 when n ≥ 4, we then conclude
that the orbifold is non-anomalous when ν = 2c ∈ 24Z. This may be compared to the results around Eq.
(A12), and confirms the sufficiency of our conditions. We thank Theo Johnson-Freyd for explaining this
to us.
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flat torus with complex modulus τ and Neveu–Schwarz (NS) boundary conditions in both di-
rections. By inserting ρ branch cuts, we obtain a flat torus with complex modulus nτ with an
NS boundary condition in the spatial direction, but the boundary condition in the temporal
direction is either Ramond (R) or NS depending on whether n is even or odd:

Z[T ⊗n]NS,ρ

NS (τ ) =
{

Z[T ]NS
NS(nτ ) n ∈ 2N − 1,

Z[T ]RNS(nτ ) n ∈ 2N.
(A6)

Under a modular S transformation,

Z[T ⊗n]NS
NS,ρ (τ ) =

⎧⎪⎨⎪⎩
Z[T ]NS

NS

(τ

n

)
= q− ν

48n + · · · n ∈ 2N − 1,

Z[T ]NS
R

(τ

n

)
= q

ER
n + · · · n ∈ 2N,

(A7)

where ER = ν
24 mod 1 is the energy of the R sector ground state of T on the cylinder. Under

the state-operator map, and with the overall NS conformal factor q
nν
48 taken into account, the

spins of operators in the σ -twisted NS defect Hilbert space of T ⊗n are

s ∈

⎧⎪⎪⎨⎪⎪⎩
ν(n2 − 1)

48n
+ Z

2n
n ∈ 2N − 1,

ν(n2 + 2)
48n

+ Z

n
n ∈ 2N.

(A8)

Now consider n = 2. In this case, the fermionic Z2 anomaly has a Z8 classification. We compare
Eq. (A8) with the general spin content in the NS defect Hilbert space twisted by a Z2 global
symmetry with k mod 8 units of the anomaly25

s ∈ k
16

+ Z

2
, (A9)

and find that σ has

k = ν mod 8, (A10)

which vanishes if and only if 8 | ν.
Next consider prime n > 2. In this case, the fermionic Zn anomaly has a Zn classification. We

compare Eq. (A8) with the general spin content with k (mod n) units of the anomaly

s ∈ k
2n2

+ Z

2n
, (A11)

to find that σ has

k = νn(n2 − 1)
24

mod n, (A12)

which always vanishes for n > 3, and vanishes for n = 3 if and only if 3 | ν.
When 24 | ν, both C2 and C3 are non-anomalous. It turns out that Sn for any n > 2 is non-

anomalous if and only if 24 | ν.

Appendix B. Proofs of alternating orbifold formulae
B1. Proof of Theorem 1
In this appendix, we derive the analog of the DMVV formula for alternating orbifolds, given
in Theorem 1. Before giving the proof, we first give a bit of background. Recall that the Hilbert
space of an orbifold theory can be written as a sum over conjugacy classes [h] of twisted sectors

25See, e.g., Eq. (5.8) in Ref. [72].
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Hh wherein one projects onto states invariant under the centralizer subgroup Ch,

H
(
T ⊗n/Sn

) =
⊕

[h]

H(T ⊗n)Ch
h , (B1)

so that Eq. (17) can be rewritten as Z[T ⊗n/Sn] = ∑
[h] Z[T ⊗n]Ch

h . The group elements h ∈ Sn are
permutations of n elements and can be decomposed into disjoint cycles (k) of k elements as

h = (1)n1 (2)n2 . . . (n)nn, (B2)

where nk indicates the number of cycles of length k.26 Since the cycle type is invariant under
permutations of the n elements, conjugacy classes [h] are in one-to-one correspondence with
partitions {nk} of n, i.e., ∑

k

k nk = n. (B3)

Meanwhile, the centralizer subgroup of h is given by

Ch = Sn1 × (
Sn2 � Zn2

2

)× · · · × (
Snn � Znn

n

)
, (B4)

where the factors Snk permute the different cycles of length k and each Zk acts by shifting all
the elements inside the corresponding (k)-cycle.

It thus follows that

H
(
T ⊗n/Sn

) =
⊕
{nk}

H(T ⊗n)Ch
h =

⊕
{nk}

⊗
k>0

SnkH(T ⊗k)Zk
(k), (B5)

where H(T ⊗k)Zk
(k) is a smaller Hilbert space twisted by the cycle (k) and projected onto the Zk-

invariant states, and Snk denotes a symmetric tensor product of nk copies of it. We will drop
the argument T ⊗k in what follows to reduce clutter. One can now derive the DMVV formula
(5) by computing the elliptic genus of each of the pieces in Eq. (B5) and making repeated use
of the identities Z[H1 ⊕ H2] = Z[H1] + Z[H2] and Z[H1 ⊗ H2] = Z[H1]Z[H2].

As discussed in Sect. 2.2, alternating orbifolds can be obtained from their symmetric counter-
part by projecting out the contributions from odd permutations (and multiplying by two). For
the spatial twists, this implies that we should only keep even partitions of n in the sum of Eq.
(B5), where the parity of a partition is given by |h| = ∑

k(k + 1)nk mod 2. For the temporal
twists, we insert the projector 1

2 (1 + sgn g) when projecting onto the Ch-invariant states. The
factor sgn g has two effects, in parallel with the decomposition (B4) of the centralizer. First,
the transpositions xk ∈ Snk of two cycles of length k pick up a factor of (−1)k and thus the
symmetric products Snk for odd k become antisymmetric products �nk . Second, the generator
ω ∈ Zk—which is the cycle (k) itself—gets multiplied by (−1)k + 1 and therefore instead of pro-

jecting onto Zk-invariant states, we project onto the sector of “Zk-odd states” HZ−
k

(k) when k is
even, a concept that we will explain momentarily. Summarizing, the Hilbert space for alternat-
ing orbifolds is

H
(
T ⊗n/An

) =
⊕

even {nk}

(⊗
k>0

SnkHZk
(k) ⊕

⊗
k>0

�n2k−1HZ2k−1

(2k−1) ⊗ Sn2kHZ−
2k

(2k)

)
. (B6)

This is the analog of Eq. (19) at the level of the Hilbert space. Indeed, the first term in Eq.
(B6) corresponds to setting β = 0 in Eq. (20) while the second one, where we multiplied by the
signature of the temporal twist, is for β = 1. The relation to α comes through the projection

26In this cycle decomposition, all the permuted elements from 1 to n should appear exactly once, so
invariant elements should be counted as 1-cycles, e.g., (345) = (1)(2)(345).
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onto even partitions of n, which is done with 1
2 (1 + sgn h). When multiplying by sgn h (i.e., when

setting α = 1) each cycle (k) contributes an overall factor of (−1)k + 1, adding up to (−1)|h|. We
can now compute the generating functions Zαβ of Eq. (19) by generalizing the ingredients of
the derivation of Eq. (5).

Following DMVV [53], we can relate the elliptic genus of H(k) to Z[T ] with the replacement
τ → τ /k since the former can be seen as the Hilbert space of the theory on a torus of period
2πn in the spatial direction. Then, the projection onto the Zk-invariant sector is done with the
projector Pk = 1

k

∑
b ωb, where ω implements a T transformation τ → τ + 1. In terms of the

mode expansion (16), we have

Z[HZk
(k)](τ, z) = 1

k

k−1∑
b=0

∑
m,�

c(m, �)q
m
k e2π i bm

k y� =
∑
m,�

c(mk, �)qmy�, (B7)

where we have used
∑

b e2π i bm
k = k

∑
j δ j, m

k
. In contrast, when projecting onto the “Zk-odd”

sector, we must add a factor (−1)b in the projector Pk, so we have
∑

b(−1)be2π i bm
k = k

∑
j δ j, m

k + 1
2

and thus only states of half-integer moding contribute:

Z
[
HZ−

k
(k)

]
(τ, z) =

∑
m,�

c
((

m + 1
2

)
k, �

)
qm+ 1

2 y�. (B8)

The next step is to compute the elliptic genus of symmetric and antisymmetric products of

HZ±
k

(k). For that, we first consider a generic Hilbert space H with elliptic genus

Z[H](τ, z) =
∑
m,�

d (m, �)qmy�, (B9)

and we interpret d (m, �) = dimVm,� as the (super)dimension of a vector space Vm, �. Then the
elliptic genera of symmetrized products of H take a compact form if we consider their gener-
ating function [53]: ∑

n>0

pnZ[SnH](τ, z) =
∏
m,�

∑
n>0

pn (qmy�
)n

dim (SnVm,�) . (B10)

Using the fact that the dimension of the symmetric tensor SnVm, � is dim (SnVm,�) =(
d (m, �) + n − 1

n

)
, we can perform the sum on the right-hand side to obtain

∑
n>0

pnZ[SnH](τ, z) =
∏
m,�

1

(1 − pqmy�)d (m,�)
. (B11)

For antisymmetric products �nH, we reach an expression identical to Eq. (B10) with the re-
placement Sn → �n. Since the dimension of the antisymmetric tensor �nVm, � is dim (�nVm,�) =(

d (m, �)
n

)
, we can then also evaluate the sum and get

∑
n>0

pnZ[�nH](τ, z) =
∏
m,�

(
1 + pqmy�

)d (m,�)
. (B12)

We are finally ready to compute the four pieces of Eq. (19). The form of the symmetric orb-
ifold Hilbert space (B5) implies that we can express the generating function of the correspond-
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ing elliptic genera as∑
n>0

pnZ[T ⊗n/Sn](τ, z) =
∑
n>0

pn
∑
{nk}

∏
k>0

Z[SnkHZk
(k)](τ, z)

=
∏
k>0

∑
n>0

pknZ[SnHZk
(k)](τ, z). (B13)

When no sgn( · ) line of the quantum symmetry is inserted, plugging Eqs. (B7) and (B11) into
the above equation yields the original DMVV formula (5):

Z00 =
∏
k>0

∑
n>0

pknZ
[
SnHZk

(k)

]
=
∏
k>0

m∈Z,�

1(
1 − pkqmy�

)c(km,�)
. (B14)

When inserting a sgn( · ) line along the spatial direction so as to keep track of the signature of
the elements g, each copy of HZk

(k) brings in a factor of (−1)k + 1, so we get instead

Z10 =
∏
k>0

∑
n>0

pkn(−1)n(k+1)Z
[
SnHZk

(k)

]
=
∏
k>0

m∈Z,�

1(
1 + (−p)kqmy�

)c(km,�)
. (B15)

In contrast, when the sgn( · ) line runs along the time direction, we get from Eqs. (B7,B8,B12)

Z01 =
∏

odd k>0

(∑
n>0

pknZ
[
�nHZk

(k)

] ) ∏
even k>0

(∑
n>0

pknZ
[
SnHZ−

k
(k)

] )
(B16)

=
∏
k>0

m∈Z,�

(
1 + p2k−1qmy�

)c((2k−1)m,�)

(
1 − p2kqm+ 1

2 y�

)c(k(2m+1),�)
.

Adding on top of this a spatial sgn( · ) line again replaces pk → −(−p)k, which yields

Z11 =
∏
k>0

m∈Z,�

(
1 + p2k−1qmy�

)c((2k−1)m,�)

(
1 + p2kqm+ 1

2 y�

)c(k(2m+1),�)
. (B17)

By plugging these results into Eq. (19) one arrives at Eq. (15). This concludes the proof of
Theorem 1.

B2. Proof of Theorem 2
In this appendix, we prove Theorem 2, namely the formula for alternating orbifolds with dis-
crete torsion. Before doing so, it is useful to first review the calculation for symmetric orbifolds
[61]. First, we will need an explicit form for the discrete torsion phase ε(h, g), for any element
h ∈ Sn and g ∈ Ch. As discussed in Sect. 2.3, this can be obtained by lifting g, h to the central
extension Ŝn and computing the commutator (23). The group Ŝn is generated by the lift t̂i of the
transpositions ti = (i i + 1) ∈ Sn and an element z analogous to (−1)F ∈ Pin−(n − 1), satisfying
the relations

t̂2
i = z

t̂it̂i+1t̂i = t̂i+1t̂it̂i+1

t̂it̂ j = zt̂ jt̂i. (for j > i + 1) (B18)

It is technically non-trivial but conceptually straightforward to lift any two elements g, h to Ŝn

and compute their commutator using these rules [61]. Since the centralizer in Sn factorizes as
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Eq. (B4) and ε(g, h) forms a representation of Ch, it is enough to compute this phase for two
types of generating elements:

i) for a generator ω of Zk (such that ωk = e),

ε(ω, h) =
{

1 k odd
(−1)|h|−1 k even,

(B19)

ii) for a transposition xk that permutes two cycles of length k,

ε(xk, h) = (−1)k−1. (B20)

Then to compute the Sn orbifold with discrete torsion one just has to repeat the derivation
of the DMVV formula keeping track of the additional minus signs due to ε(g, h). Originally,
the Hilbert space was given by Eq. (B5). With the phase ε(g, h) it becomes more involved, but
luckily we already computed all the ingredients that we will need in Appendix B1. The effect of
ε(g, h) shows up in two different steps of the calculation, relating to the two cases above:

i) The Zk-projector in HZk
(k) now becomes Pk = 1

k

∑
b ε(ω, h)bωb, where h is the full element

that we twist by. When h is an odd permutation, ε(ω, h) trivializes and we project onto the
Zk-invariant states HZk

(k), whereas, when h is an even permutation, ε(ω, h) = (−1)k + 1 and
so we keep the Zk-invariant states for k = odd but the Zk-odd states for k = even. The
corresponding elliptic genera were computed in Eqs. (B7) and (B8).

ii) The second part of the discrete torsion phase is relevant in the calculation of the elliptic
genus of SnkH. When k = odd, ε(xk, h) is trivial and we recover the result (B11). When k
= even, in contrast, we weight the transpositions xk by a −1, defining the antisymmetric
product �nkH. The elliptic genera for this case are given by Eq. (B12).

All in all, the Hilbert space of the Sn orbifold with discrete torsion is [61]

H
(
T ⊗n/Stor

n

) =
⊕

even {nk}

⊗
k>0

Sn2k−1HZ2k−1

(2k−1) ⊗ �n2kHZ−
2k

(2k)⊕
odd {nk}

⊗
k>0

Sn2k−1HZ2k−1

(2k−1) ⊗ �n2kHZ2k
(2k). (B21)

Now it is straightforward to compute the elliptic genus of each of these terms using the results
of Appendix B1. The only subtlety might be how to disentangle the even and odd partitions
of nk, but this can be easily done by inserting the projectors 1

2 (1 ± sgn h) in the sum. As in the
discussion around Eq. (B15), the factor sgn h brings in a factor (−1)k + 1 to the summand whose
net effect is to shift pk → −(−p)k. This reproduces Dijkgraaf’s result (17) in Ref. [61].

We can finally come back to alternating orbifolds. As discussed in Sect. 2.3, alternating orb-
ifolds with Z2 discrete torsion can again be obtained by projecting out the contributions from
odd permutations to the calculation above (and multiplying by two). We have to deal with twists
in both the temporal and spatial directions. This is easy for the twists in the spatial direction;
we just have to throw away the second line in Eq. (B21). For the temporal twists we insert the
projector 1

2 (1 + sgn g) and recall from Eq. (B6) that the factor sgn g flips the sign of odd permu-

tations in two different places, the projection onto the sector HZk
(k) → HZ−

k
(k) for k = even and the

symmetric products Snk → �nk for k = odd. Thus, the Hilbert space for alternating orbifolds

28/33



PTEP 2023, 033B06 J. Albert, J. Kaidi, Y.H. Lin

with Z2 discrete torsion is

H
(
T ⊗n/Ator

n

) =
⊕

even {nk}

(⊗
k>0

Sn2k−1HZ2k−1

(2k−1) ⊗ �n2kHZ−
2k

(2k) ⊕
⊗
k>0

�nkHZk
(k)

)
. (B22)

From this point it is completely straightforward to obtain Eq. (27) with the results of Ap-
pendix B1, concluding the proof of Theorem 2.

B3. Proof of Theorem 3
In this appendix, we prove Theorem 3, namely the formula for the generating function of alter-
nating orbifolds in terms of generalized Hecke operators. The first step is to define operations
on the Fourier coefficients of the expressions appearing in Eq. (15). Having done so, we will then
repackage the Fourier coefficients into modular orbits for index-m congruence subgroups. For
simplicity, we will work with the untwisted/untwined versions of the formula. Reintroducing
the factors of g, h is straightforward.

We start with the simplest case of Z10. In this case, we proceed as follows:

log

⎡⎢⎣∏
n>0
m≥0

(1 + (−p)nqm)−cmn

⎤⎥⎦ = −
∑
n>0

∑
m≥0

cmn log (1 + (−p)nqm)

=
∑
n>0

∑
m≥0

∑
t>0

(−1)tcmn
(−p)ntqmt

t

=
∑
n>0

∑
m≥0

∑
t|(m,n)

t>0

(−1)n+tt−1c mn
t2

pnqm.

In the final step we have redefined m → m/t and n → n/t. We then define the following operation:

T(α,0)
n (Z) =

∑
m≥0

∑
t|(m,n)

t>0

(−1)α(n+t)t−1c mn
t2

qm. (B23)

For α = 0 we reproduce the usual Hecke operators, whereas for α = 1 we reproduce the gener-
alized Hecke operation relevant for Z10.

To put this in the form of a modular orbit, we now make the following change of summation
variables. We first redefine m = �t, which gives

T(α,0)
n (Z) =

∑
�≥0

∑
t|n
t>0

(−1)α(n+t)t−1c n�
t
q�t. (B24)

We then define t = n/d to obtain

T(α,0)
n (Z) = n−1

∑
�≥0

∑
d |n
d>0

(−1)α(n+ n
d )d c�d q

�n
d . (B25)

Next we replace � with a new m, now defined as m = �d,

T(α,0)
n (Z) = n−1

∑
m≥0

∑
d |(m,n)

d>0

(−1)α(n+ n
d )d cm q

nm
d2

= n−1
∑
d |n
d>0

d−1∑
b=0

∑
m≥0

cmq
nm
d2 e2π i bm

d (−1)α(n+ n
d ), (B26)
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where in the second line we have inserted
∑d−1

b=0 e2π ibm/d , which is equal to d if d|m and is zero
otherwise. This may finally be reassembled into a sum of index-n subgroups of SL(2, Z),

T(α,0)
n (Z) = n−1

∑
d |n
d>0

d−1∑
b=0

(−1)α(n+ n
d )Z

(
nτ + bd

d2

)

= n−1
∑
ad=n

0≤b<d

(−1)αa(d+1)Z
(

aτ + b
d

)
(B27)

where in the last step we have defined a = n/d. This completes the proof for β = 0.
We now proceed to the conceptually straightforward but technically more challenging case

of β = 1. For simplicity, we also take α = 1. The starting point is

log

⎡⎢⎣∏
n>0
m≥0

(1 + p2n−1qm)c(2n−1)m (1 + p2nqm+ 1
2 )−cn(2m+1)

⎤⎥⎦ (B28)

=
∑
n>0

∑
m≥0

c(2n−1)m log(1 + p2n−1qm) −
∑
n>0

∑
m≥0

cn(2m+1) log(1 + p2nqm+ 1
2 )

=
∑
n>0
m≥0

∑
t>0

(−1)t+1c(2n−1)m
p(2n−1)tqmt

t
−
∑
n>0
m≥0

∑
t>0

(−1)t+1cn(2m+1)
p2ntq(m+ 1

2 )t

t

=
∑
n>0
m≥0

∑
t|(m,n)

(−1)t+1c( 2n
t −1) m

t

p2n−tqm

t
−
∑
n>0
m≥0

∑
t|(m,n)

(−1)t+1c n
t ( 2m

t +1)
p2nqm+ t

2

t

=
∑
n>0
m≥0

∑
t|m

n/t∈2Z+1

(−1)t+1c nm
t2

pnqm

t
−

∑
n∈2N>0
m∈Z/2

∑
t|(2m,n/2)

2m/t∈2Z+1

(−1)t+1c nm
t2

pnqm

t
.

In the second equality we used the Taylor expansion of the logarithm. In the third equality we
switched summation variables from m → m/t, n → n/t. Finally, in the last equation we redefined
2n − t → n in the first sum and m + t

2 → m, 2n → n in the second sum, being careful to introduce
the correct constraints on all of the sums. We may write the final result in a marginally more
streamlined form as∑

n>0
m∈Z/2

∑
t∈N>0

(−1)t+1c nm
t2

pnqm

t

[
δt|m, n

t ∈2Z+1,m∈Z − δt|(2m, n
2 ),n∈2Z, 2m

t ∈2Z+1

]
(B29)

where the delta functions impose the relevant constraints on summation variables. We then
define the generalized Hecke operator via its action on the Fourier coefficients:

T(1,1)
n (Z) =

∑
m∈Z/2

∑
t∈N>0

(−1)t+1c nm
t2

qm

t

[
δt|m, n

t ∈2Z+1,m∈Z − δt|(2m, n
2 ),n∈2Z, 2m

t ∈2Z+1

]
.

We now want to re-express this as a sum over modular orbits. To do so, we follow the same
steps as for β = 0. We begin by swapping the summation variable m for a summation variable
� defined by m = �t. We then replace t with d defined by t = n/d. This gives

T(1,1)
n (Z) = n−1

∑
d |n

∑
�∈Z/2

c�d q
�n
d d (−1)

n
d +1 [δd∈2Z+1,�∈Z − δd∈2Z,n∈2Z,2�∈2Z+1

]
.
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Next we introduce a new m defined as m = �d, giving

T(1,1)
n (Z) = n−1

∑
d |n

∑
m∈ d

2 Z

cmq
nm
d2 d (−1)

n
d +1

[
δd∈2Z+1,d |m − δd∈2Z,n∈2Z, 2m

d ∈2Z+1

]
.

By inserting a factor of 1
d

∑d−1
b=0 e2π ibm/d , the first term on the right-hand side becomes

n−1
∑
d |n

d∈2Z+1

d−1∑
b=0

(−1)
n
d +1Z

(
nτ + bd

d2

)
= n−1

∑
ad=n

d∈2Z+1

d−1∑
b=0

(−1)a+1Z
(

aτ + b
d

)
.

On the other hand, for the second term on the right-hand side we want to impose 2m
d ∈ 2Z + 1

instead of d|m, and hence we should insert a factor of 1
d

∑d−1
b=0 e2π ib(m− d

2 )/d , from which we
obtain

n−1
∑
d |n

d∈2Z

d−1∑
b=0

(−1)b+ n
d +1Z

(
nτ + bd

d2

)
δn∈2Z = n−1

∑
ad=n
d∈2Z

d−1∑
b=0

(−1)a+b+1Z
(

aτ + b
d

)
.

Adding the two pieces, we obtain the remarkably simple formula

T(1,1)
n (Z) = n−1

∑
ad=n

0≤b<d

(−1)a+1+(b+1)(d+1)Z
(

aτ + b
d

)
. (B30)

Combining this with the result for T(α,0)
m (Z) given above proves the formula (31).
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