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ABSTRACT: In scale-invariant models of fundamental physics all mass scales are generated
via spontaneous symmetry breaking. In this work, we study inflation in scale-invariant
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evolves from an unstable fixed point to a stable one thus breaking scale-invariance. We in-
vestigate the dynamics by means of dynamical system standard techniques. By computing
the spectral indices and comparing them with data, we put some constraints on the three di-
mensionless parameters of the theory. We show that certain regions of the parameter space
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second half of the paper is dedicated to the analysis of inflationary first-order tensor pertur-
bations and the calculation of the power spectrum of the gravitational waves. We comment
on our results and compare them with the ones of mixed Starobinsky-Higgs inflation.

KEYwoRrDS: Cosmology of Theories BSM, Scale and Conformal Symmetries, Phase Tran-
sitions in the Early Universe

ARX1v EPRINT: 2205.06475

OPEN AccESS, © The Authors.

Article funded by SCOAP?. https://doi.org/10.1007/JHEP05(2023)023


mailto:anish.ghoshal@fuw.edu.pl
mailto:debangshu@iitk.ac.in
mailto:massimiliano.rinaldi@unitn.it
https://arxiv.org/abs/2205.06475
https://doi.org/10.1007/JHEP05(2023)023

Contents

1 Introduction 1
2 Scale-invariant model of quadratic gravity 3
3 Fixed-point analysis of scale-invariant model 4
4 Fields redefinition 7
5 Inflation 10

5.1 Small field limit 11

5.2 Large field limit 13
6 Tensor perturbations in scale-invariant model of gravity 16
7 Discussion and conclusion 19

1 Introduction

Understanding a dynamical origin of energy scales (like the Planck scale or the electroweak
scale) has been a quest for theoretical research in gravity and field theory. Scale-invariant
theories present several very interesting aspects in this perspective as they do not con-
tain any fundamental scale in the action at the classical level but dynamically leads to
scale-genesis via quantum corrections [1-12]. Some of the salient features that are mani-
fest from such investigations over the past four decades lead to naturally flat inflationary
potentials [4, 13—18] and provide mechanisms of particle production or dark matter can-
didates [16, 19-24], possess a motivating framework to address the gauge hierarchy prob-
lem, [4, 5, 16, 19, 21, 25-41] and also leads to strong first-order phase transitions in early
universe. In turn, these can produce large amplitude gravitational wave (GW) signals,’
mainly due to the dominant nature of thermal corrections in the absence of tree-level mass
terms [46-53]. Black holes in quadratic gravity were studied concerning their stability
in [54], the thermodynamics in [55, 56], and as dark matter candidates in [57]. Finally the
importance of such theories having no-scales also lies in the fact that the only dimension-4
operators are allowed in the classical Lagrangian and this means that there is a strong
constraint on the allowed free parameters in the action, which in context to the gravita-
tional piece of the Lagrangian says that it is only quadratic in the curvature tensors and
not beyond. The most general gravitational Lagrangian can be shown to be the sum of the
Ricci scalar squared R? and the Weyl-squared terms.

'For inflationary sources of GWs in modified gravity theories, see refs. [42-44] and for dark matter [45].



Thus, if Nature does not allow us to have fundamental scales at the classical level and
all observed energy scales are in fact dynamically generated (like via quantum corrections)
then it gives us a theory of gravity containing only terms quadratic in the curvature along
with all possible scale-invariant couplings to the matter sector. Now, since all scales will be
generated at 1-loop level, this puts constraints on some of the parameter space and makes
predictions in the early universe, as in inflation.

Particularly, in the context of inflationary cosmology, scale-invariant models of gravity
have been able to predict values very consistent with observations for the spectral index of
scalar perturbations ng.2 Moreove, scale-invariance symmetry must be broken dynamically,
usually by quantum corrections (for example see [4, 15, 17, 58-62])

In the model presented in ref. [63], scale-invariance is promoted to a global symmetry
of the Lagrangian and scale-invariant operators are built with combinations of R, R? and
a scalar field ¢ with a canonical kinetic term and a quartic potential. When implemented
with a flat Robertson-Walker metric, the equations of motion show that the corresponding
dynamical system has only two fixed points: one is unstable and corresponds to a quasi
de-Sitter space-time with a vanishing scalar field while the other, manifestly stable, cor-
responds to damped oscillations of the Hubble parameter and of the scalar field around
non-vanishing fixed values, which depends on the three free parameters of the theory. The
most interesting aspect is that the path from the unstable to the stable point corresponds to
an arbitrarily long expanding quasi-de Sitter phase followed by damped oscillations. Thus
the interpretation of this model as inflation and reheating is quite natural. The (asymp-
totic) equilibrium value of ¢ is associated with a fundamental energy scale, which emerges
dynamically (just due to transition from one fixed point to another fixed point in the entire
system). Thus the global scaling symmetry breaking spontaneously generates a mass scale
in the system, without the need of quantum corrections. This can be the Planck mass
that we observe in gravity. Later on the scalar field oscillates and produces excitations of
the Standard Model fields leading to successful reheating of the visible Universe that we
observe today (see [63, 64], and [18] for details).

In this work we review the model described in [63] by considering the three parameters
completely free. In fact, in the original model one parameter was a priori fixed in terms of
the other two to guarantee certain cancellations in the action at late times. We study in
great detail the inflationary phase in the Einstein frame by computing the spectral indices.
We also study the generation of primordial gravitational waves and compare our results
with similar models [65, 66].

The paper is organized as follows: in section 2 we present the classical scale-invariant
action underlying the inflationary model we want to study. In section 3 we study the
equations of motion by using a dynamical system approach. We find the fixed points and
analyse their stability. In section 4 we show that, in the Einstein frame, a suitable field
redefinition yields a potential that depends on one field only. In section 5 we study the
inflationary evolution, calculate the spectral indices and show how the parameters of the

2In fact in the original Starobinsky model, the fact the ns departs slightly from 1 is attributed to the
Einstein-Hilbert dimensionful term.



theory are constrained by observations. In section 6 we compute the spectrum of tensor
perturbations for this model and we conclude in section 7 with a summary and a brief
discussion of our results.

2 Scale-invariant model of quadratic gravity

Following [63], we consider the scale-invariant action
S — /d4a:\ﬁ [ R’ + 5¢2R _ fa,lw% _ f¢> (2.1)

Unlike [63], however, here we will keep the parameter « arbitrary. By assuming the flat
Friedmann-Robertson metric ds? = —dt? + a(t)?dz? one finds that there are two equations
of motion, one for ¢ and the other for H = a/a, that contains derivatives up to second
order only:

g'zi+ 3H¢ — 26pH — p(AEH? — \p?) = 0, (2.2)
2
o (2HH — H? + 6H*H) - ¢2 T+ 26pbH + 2 TUEH” =20%) =0
The addition of a term like SR, RM to the action (2.1) would simply yield the shift
a — a+ 128 and we do not consider this term here. Of course, at the perturbative level,
the effects of the two parameters o and 8 would probably decouple. However, we choose to
set 6 = 0 to keep the parameter space as small as possible and, at the same time, to capture
the essential features of scale-invariant inflation. In addition, a quadratic term in the Ricci
tensor would make rather involved the analysis of this model in the Einstein frame, which
is one our main goals. In addition, we do not consider the quadratic Riemann term since
it can be factored out by using the Gauss-Bonnet combination in four dimensions.
The action (2.1) is globally scale-invariant since its form does not change under the
transformations
Gu(@) = gu(lx),  Blx) = to(ta), (2.3)
where ¢ is an arbitrary positive dimensionless constant. In contrast, the action is not
invariant under local Weyl (or conformal) transformations. Global scale invariance becomes

manifest also at the level of the equations of motion (2.2), since they are left unchanged in
form by the transformations

G(t) = Lo(ft), a(t) =a(tt), H(t) = dlr;(;l(t)

We now write the action in the Einstein frame. First, we introduce an auxiliary field

— CH(tt). (2.4)

o along with an auxiliary variable x defined as

_ap | &9°
=5t (2.5)

which leads to the following form of Lagrangian density

L 2 A
Ner i xR - % — 5 Oupd" ¢ — Z¢4' (2.6)



The equation of motion for the auxiliary field ¢ is simply ¢ = R thus ensuring (2.6) indeed
reduces to (2.1) on-shell. Operationally, one can think that the dynamics described by the
action (2.1) near its saddle can be alternatively well-approximated by the saddle of (2.6).
To put it differently, on-shell configurations of the auxiliary scalar ¢ boils down to (2.1).
In terms of the field variable y, the action (2.6) can be recast in the form

2
§= [ate v=g |xR - 506) + Zotx - <4 f)& J ] (2.7)

To write the above action in the canonical Einstein-Hilbert form we perform the Weyl

transformation
Guw = > gy, . (2.8)
Finally, by identifying,
1 2x

where M is an arbitrary parameter having dimension of mass, we find the action in Einstein
frame

3M2¢

1
SE = /d T\ — [R 3M3?gG " 0, wow — 56_2“’ 3" 0,00, + —— o e 2g?

AN . M
‘<4+4a>@ T T |

The kinetic term for w can be written in the canonical form by defining @ = v6Mw, thus

(2.10)

the action reads

4
sp= [t v [ R—lg*‘ 000, — LoV 8,00, + V(@,6) — S |
(2.11)
where the potential
2 2 @ 2 2 &
V(©,¢) = 3];404567\/%& — (i‘ + L) e*Q\/gms”‘, (2.12)

involve the two scalars ¢ and @ coupled to gravity while the constant term appearing
in (2.11) can be thought of as a cosmological constant.

3 Fixed-point analysis of scale-invariant model

We now perform a dynamical system analysis of (2.11) to study the fixed points. For
computational convenience, we introduce the field f, defined as,

f=Me Vi, (3.1)
The Lagrangian density given in (2.11) can then be written as,

3£¢2f2 Q¢4f4 9M4

M? 3M? 9 §2 B B
2av daM4 4o |’

L= V5|5 R= "5 00" -~ 335(00)" +

(3.2)




where
Q=a\+£. (3.3)

Note that in the above, we have dropped the ‘bar’ from R and g,, since it is understood
that we are working with the action in Einstein frame.
By imposing the usual FLRW metric

ds? = —dt* + a(t)*(de® + dy® + d2?), (3.4)
we find the Friedmann equations

g 1 P 3MP g’ Ofet

_ — 3.5
2 6M4+ 4o 2aM2+12aM6’ (3.5)
7 S
f2 2M4 )

a

where H = ¢ is the Hubble parameter, while the Klein-Gordon equations for ¢ and f take
the form

b+ 3Ho + 2ﬂ + ot 3EM7

f o aM? a

FE ; 1262 242 OftHl
[ T AT s R il A
foof f 6M*  2aM?  6aMS
Here, the dots denote derivative with respect t. To study the fixed points and their stability,

0 (3.6)

we define the new variables

r1 =¥, $2=f, n=0¢, yp=¢, H=z. (3.7)
The first Friedmann equation reads

o w3 xtys  Caly? | Qatyt | 3M2

TR T M oM 12aMS T 4o (3.8)

i
and we consider it as a constraint. The second one along with the two Klein-Gordon

equations and two auxiliary conditions leads to a closed system of non-linear first order
equations given by

2 2.2
3z;  z1Y;

2T 3.9
oy (39)
. 2roys  Qaiyd  3EMPy
o = ey - 2o O SNy, (3.10)

2 2.3 4.5 3,2

. ry | ypry  Quiay G
= -3 —= — 3.11
2 2t TG M 6aMS | 2002’ (3.11)
b1 = 72, (3.12)
1 =Y2- (3.13)

By definition, the fixed points are determined by the solutions of the algebraic system

f=gy=go =i =dy=0. (3.14)



Solving the system of equations (3.9)—(3.13) we find two family of solutions as follows

Solution P; — unstable fixed point. This solution is essentially given by
5  3M?
21#0, 19=0, y1 =y =0, 2° = . (3.15)
4o
Written in terms of the field variables, this family of solution is characterized by
. . . V3M
Gunst = Punst = 0, funst = arbitrary, funst =0, Hunst= (316)

2/a
Linearising the equations of motion around the above fixed point and solving for ¢ yields

V3
Pi:m

and cy 2 are arbitrary constants. Note that, for & > 0 and £ > 0, the exponents of our

B(t) = ¢y P+ M 4y eP-ME where,

(=3 + V16 +9) (3.17)

solution p4 > 0 and p_ < 0. It is precisely the exponentially growing mode which renders
this fixed point locally unstable. The solution for f is,

_3V3
f(t) = dy +dy e 2val"

(3.18)
with d; 2 arbitrary, thus f (and so @) decay rapidly around the unstable fixed point.

Solution P, — stable fixed point. This attractor class of solution is described by

/BEM? V3AM

T = , xa =0, y; = arbitrary, 39 =0, 2= ——. (3.19)
\/ﬁyl 2\/5
In terms of the field variables, the above can be recast as
V/3EM? . .
3 f =0, ¢s = arbitrary, ¢g =0, (3.20)

fSt B \/ﬁ¢st ’
Vad . VDM
\/ﬁ unst — 2\/5 .

Note that, when o = £2/) (as in [63]), one has Hyns = V2Hg;. The arbitrariness in ¢g;
at the stable fixed point, also makes fs arbitrary. However, in the Jordan frame, at the
stable fixed point the value of the field ¢ is related to the Planck mass, the latter being
generated by the spontaneous breaking of the scale invariance. Since the Planck mass is

Hst =

the same in the two frames (see e.g. [67]) it is meaningful to identify, at the fixed point

5505 (3.21)

which leads to
(3.22)
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Figure 1. Plot of Hubble parameter H, scalar fields f and ¢(N) with respect to e-folding time N.

The dynamics of the scalar fields f and ¢ around the stable fixed point are governed by the
following system of coupled second order differential equations,

o 3MV3X,  6M*V/3VQ,  6\3EM3 _

¢ e 0t e ) B 0, (3.23)
iy 3\;:\3/7%]\4ij 3]\0{;62% i]\éjg, .
with solutions given by
f(t) = Fot + c1 €94 4 e e@ (3.24)

3 _3V3A
o(t) = \/;Mﬂzl et 4 dyeQ-t - dge 2ve M

where the exponents

0 4\/@% (~3var+oar—16¢2) (3.25)

are always negative and c1 2, d12,3 are arbitrary constants of integration. Demanding that
¢(t)and §(t) are real implies that (€2 is positive definite)

9a\ > 16£2. (3.26)

However, we anticipate that inflationary constraints impose that 0 < aX < 0.1547 &2 (see
section 5). This further implies that § and ¢ are real if, and only if, ¢; 2 = 0 and d; 2 = 0.

Note that in the above analysis, in either case the Hubble parameter z (or equivalently
H) is fixed by the constraint equation (3.8). In figure 1 we plot the functions H(N), (V)
and ¢(N) as functions of the e-folding time N = Ina by numerically solving (3.4)—(3.7)
with the parameter values @ = 1 and £ = A = 0.15. These parameter values are compatible
with the inflationary constraints found below.

4 Fields redefinition

To analyse inflation efficiently, we adopt the scalar field redefinition found in [18]. The
central goal of this redefinition is to obtain a potential described by a single effective scalar



field. Let us define the two fields

¢ = V6M arcsinh (\/(EQXJQ) ) (4.1)

M > 3M?2

The Lagrangian density (3.2) takes the form

L= \f[ R- f(ag) ~ 3cosh? (\/GCM> () — U(C)] , (4.3)
where the potential is now

9¢ M4 9QM* 9MH
U =- §a sinh? (\/gM> +— sinh? <\/gM> + (4.4)

As claimed earlier, the potential now is entirely governed by the effective scalar field ¢

which is non-linearly related to f and ¢ via (4.1) and (4.2). Such a potential has two local

Cmin _ 2Q + 5
cosh (ﬁM) = 50 (4.5)

and a local maximum at (pnax = 0. The values of the potential at the maximum and at the

minima given by?

minimum are, respectively

9M* 9AMA
Umax = ﬂ ) min = 10 (46)

We will shortly show that the non-zero value of the potential at the minimum is crucial for
the inflationary phenomenology.
The Friedmann equations now read

62

2+3cosh< ¢

VM
IM?*H = —(% — 6 cosh (C>2p2 ,
V6M

3M?H? = )2 P+ UQ), (4.7)

while the Klein-Gordon ones become

C+3HC—\/ésmh(;§w> p2+dZEO

tanh (

=0, (4.8)

j+3Hp+

\/éM fM> h =

From the above two equations it is evident that p = constant is a trivial solution of the
system, and this reinforces the fact that the inflationary dynamics is fully ruled by one field
only. This can also be seen by simply adopting the standard slow-roll approximation in the

30ne can verify that the second derivative is always positive at Cmin if A, @, £ are positive.



above equations. By demanding that, during slow-roll, \H |/H? < 1 one finds immediately
that both the terms ¢2 and cosh(¢/v/6M)?p? must be much smaller than U(¢). This implies
that 3M2H? ~ U(() and that 3H( ~ dU(¢)/d¢, from which one computes the slow-roll
parameters in the standard way.

One may finally wonder if the p = const solution is the only one with an inflationary
evolution. We now show that p = const is actually a stable attractor for the system. To
see this, we first convert the system time parameter form ¢t to N = Ina. Then, the second
equation of (4.7) and the two equations (4.8) become, respectively

,_ A2 3C(¢)%0°

H = -H (2 VR : (4.9)
;L A% 30(¢)%0? V6 , 1dU
;o AZ 30(¢)%0?  2T(()A

U__<3_2M2_ M? Ve )7

p=o,

¢ =4,

where C(¢) = cosh [g/(JéM)}, T(¢) = tanh [g/(\/éM)}, S(¢) = sinh [2g/(¢6M)], and a
prime denotes a derivative with respect to V. For the system written in this form is trivial
to find the fixed point, which are given by

A=0, o=0, C:\/éMarccosh( 292;2_5), H:]\;UW (4.10)

A=0, o=0, (=0, = VM (4.11)

2/a

where we have also used the first Friedmann equation (4.7) to compute the values of H

and

and ¢. Upon linearization, we see that the equation for o is simply ¢/ = —30 for both
fixed points, thus o = 0 (that is p = const) is a stable attractor in both cases. Consistently
with what we found in the previous section, the fixed point (4.10) is a stable attractor
and corresponds to (3.20), as one can see by using the field redefinition (4.1)—(4.2).* The
fixed point (4.11) turns out to be a saddle point, and corresponds to the point (3.16). In
summary, this analysis implies that also in the (p,() representation the system has only
two fixed points characterised by H = const and p = const. Of these, however, only one is
stable. The above analysis confirms that the field p is constant and arbitrary throughout
the whole inflationary evolution.

This can be further checked numerically: we have also solved the system (4.7), (4.8)
by choosing initial conditions nearby the unstable fixed point and we plotted the results in
figure 2. As one can see, the value of p’ rapidly drops to zero after just a few e-foldings.
Analogously the values of H and ( follow slightly different patterns but reach the same fixed

4One also need the formula arccosh, /1 + 2= arcsinh\/%.
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Figure 2. Plots of the curves p'(N), H(N),((N) resulting from the system (4.7), (4.8). The
red dashed curves are the asymptotic values, corresponding to the stable fixed point defined by
egs. (4.10). The six curves have six different initial values for p’(0) (see the first plot). As for the
remaining initial conditions we chose p(0) = 1.47, ¢(0) = 0.25, ¢'(0) = —0.25, H(0) = 0.27. All
variables have been rescaled so that M = 1. As for the parameters, we have chosen £ = 0.01, Q =
1.07€2, a = 10, as at the end of section 5.

point value reported in egs. (4.10). We checked that the results are unchanged by choosing
different values of p(0), thus confirming that the value of p(NN) is constant, completely
arbitrary and does not affect the overall dynamics.

5 Inflation

We now analyze the system to ascertain whether our model is suitable for a consistent
inflationary scenario. Since an exact analytical study is not feasible, we will consider two
opposite inflationary regimes, namely one that possibly occurs when (/M < 1 and the
other when (/M 2 1.

First though, we study the slow-roll parameters in the inflationary potential given
by (4.4) as generally as possible. The first two slow-roll parameters following from (4.4) are

M2 1dUN? 16y(y + 1)(20y — £)?2
‘T2 (Udc> 3(4Qy? -4y +1)2 o1
MU 4802 +2y(3Q — €) — ¢ 5.9
TTUAE T A gyt ) 2

where,

y = sinh (\/éM)Q . (5.3)

We note here that the parameter space is given by £ and 2. In the limit of large 2, both
slow-roll parameters become independent of £. In fact, it is then straightforward to ver-
ify both e[, |n| > 1 for arbitrary values of (, thus not allowing inflation to occur in this
parameter regime.

~10 -



r =0.0003
1000 -
r=0.003
r=0.03
10 -
Q
0.100
0.001
o4 02 03 o4

Figure 3. Plot of (2 vs £ parameter space for ny = 0.96 and r = 0.03,0.003,0.0003 corresponding
to brown, blue and green curves respectively.

Since, o and A are both positive, the condition Q > ¢? must be always implemented
in the subsequent analysis. An important constraint comes from the fact that,

4
limn = —— 4
i 7 3¢ (5.4)

which implies that a slow-roll kind of approximation is good only if £ < 3/4, as it is
consistent with the slow-roll condition |n| < 1. In our case, 7 is negative only for small
¢ but becomes positive before inflation ends. If one uses the Hubble flow parameters
instead [68], the constraint on ¢ is tighter, namely £ < 3/8, which we will use from now
on. Recall that, for slow-roll inflation, the spectral indices are given by,

ns~1+4+2n—=6e, r=16¢, (5.5)

and we can initially estimate the range of the parameters 2 and £ in the small and large
field limit.

5.1 Small field limit
By expanding to order ¢(2/M? the two spectral indices ns and r can be related as

_1662(1 — ny 4 8¢)
" To0 —8ez 3¢

(5.6)

In figure 3, we have plotted € as a function of £ by assuming the above relation with
ns = 0.96 and r = 0.03 (recently measured upper limit, denoted by brown curve) and two
smaller values of r = 0.003 (blue curve) and r = 0.0003 (green curve). The range of
increases with smaller value of r within the constraint 0 < £ < 3/8. Let us keep in mind
that this results is only indicative as it refers to the case when inflation occurs for small
(/M and, furthermore, it does not take into account yet how long inflation lasts.

- 11 -



To check the viability of this area of the parameter space we compute the duration of
inflation in terms of the number of e-foldings AN. We simply use the standard formula,
in the small (/M limit, to connect the values of the field ¢, at the beginning and at the
end of inflation (enq, namely

1 Cend U

The end of inflation conventionally occurs at € = 1, which yields, in our approximation,

3V2M

Cend = T (5.8)
By using (5.7) with the potential expanded to order ¢?/M?, we find that
4N
Cs =~ Cona €XP (—3€> . (5.9)

Note that (g is inversely proportional to & and thus, even for the largest possible & we
find that the smallest possible (eng = 2.83 M, while, with N = 60, ¢, ~ 1073 M. This is
suggestive of a breakdown in the small {/M approximation during inflation rendering the
above analysis unreliable.

There is an alternative argument for excluding the small field limit as a candidate for
viable inflationary scenario. In the limit { < M, we can expand the potential around the
maximum to find

oM 26 7 1 (¢ 4 6
vl [1—3W—9<3—Q>W+O<MG)1 (5.10)

which is essentially the so-called hilltop inflation. However, Planck results strongly favours

the quartic model over the quadratic one. This means that, in our case, £ should be
vanishing but then the coefficient of the quartic term would be negative, turning the local
maxima into a local minima.

FExamining this case a bit closer, we first compute the slow-roll parameters ¢ and 7
using the above form of the potential in (5.10). We find that for e = 1 to have real solutions,
one must set 0 > 4/3. Further, setting £ = 0, we find

81+ y5(y? — 24)0% + 18y2(y% + 12)Q 128025

s i 5.11
" (Qu* +9)? "7t 1) (5:11)

where y = (/M. By computing (,, i.e. the value of the field at the beginning of inflation
with the help of (5.7), we find that (., < M, in turn implying y. < 1. In this limit, we have

ng ~ 1+ §Qy2, (5.12)

which is clearly incompatible with data, since © > 4/3 leading to ns > 1.

- 12 —
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Figure 4. Plot of the spectral indices n and e with respect to the dimensionless quantity (/M for
Q=1/50 and £ = 1/8 on the left and 2 =1/60 and £ = 1/8 on the right.

5.2 Large field limit

The above discussion on the small field limit shows that we need a different kind of ap-
proximation in order to have inflation. We note that e¢ vanishes, by construction, at the
local minimum of the potential U. In contrast, for a typical Mexican hat potential of the
form V = (¢? — ¢2)? the parameter € diverges at the minimum located at ¢ = ¢. Then,
if inflation begins off the local maximum at ¢ = 0 (like, e.g., in hilltop models) it certainly
ends at a value of ¢eng < ¢o, where €(¢eng) = 1.

We note an interesting point regarding the behavior of the slow-roll parameters plotted
above. For the point 2 = 6%1 and £ = %, we see that € and 1 both diverges. This behavior
can be traced back to the explicit forms of € and 7 as given in (5.1) and (5.2). From these
equations, we see that, for £ = %, the denominator does not have any real valued zero for
Q< & For Q= ¢, y=sinh ﬁ = 4, however, we see that the denominator of (5.1) (and
hence (5.2)) vanishes leading to a divergence. Thus, it seems that beyond these parameter
regimes, there will always exist a real value of { where the slow-roll parameters will blow
up. This implies an upper bound on 2 consistent with the inequality imposed by (3.26).

We now return to our discussion on inflation in the large field limit. The phenomenol-
ogy differs substantially since the potential does not vanish at the minimum while the first
slow-roll parameter does. This implies that, eventually, the inflaton field can roll over and
beyond the minimum of the potential before the end of inflation. We first show that €
must have a local maximum between ( = 0 and { = (in- In fact, the potential has a local
minimum at (yin, defined by (4.5). Here, we obviously have

dU d’U ‘

ale, =0 @l >0 = ) =0 and n(Guin) > 0. (5.13)

Cmin
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On the other hand, at ¢ = 0 (the maximum of the potential), we have

dU d2U

o= d—cgjo<0 = €0)=0 and 7(0)<0. (5.14)

Since € is a semi-positive definite function, there exists (at least) one value 0 < ¢ < Coin
where € has a local maximum, that is

de
—|_.=0. 5.15
aiclc (5.15)
This said, we notice that
de V2
N ) 1
thus the condition (5.15) becomes
_ 1 -
e(Q) =0 or €(¢)=n(C). (5.17)

The second condition implies that the maximum value of the first slow-roll parameter e,
in the range of interest, is at most one half of 7, hence, if n < 1 also ¢ < 1. Note that
the condition Q > £? is crucial to guarantee that the potential is positive-definite so that
the slow-roll parameters do not diverge anywhere. figure 4 shows a typical plot of the two
slow-roll parameters for two slighly different choices of 2 and the same £&. We note that,
in one case, n = 1 for smaller values of ( than in € = 1 while in the other ¢ = 1 for smaller
values of ( than (piyn and in n = 1. In the first case, the inflation seems to go through
the zero of the potential at (ynin, however this scenario is not physically viable. In fact,
eq. (5.7) can be written also as

AN = —— = 5.18
M Je. V2e (5.18)

which clearly shows that the integral is divergent if (. < (min < (end- In this case, inflation
proceed for an infinite amount of time as ¢ approaches asymptotically (iin. A similar case
occurs in the case of Kéhler Moduli Inflation (see p. 60 of [68])

In view of all these considerations, it is evident that a viable inflationary scenario is
realised only when the field slow-rolls from some point near the maximum of the potential
and the condition € < 1 breaks for ¢ < iy that is for €(¢) > 1. In such a case, the equation
€ = 1 has four real solutions that are algebraically extremely complicated and intractable.
Nevertheless, we found a valid approximation for the regime of interest, which is consistent
with the fact that, as proven before, inflation occurs in the large field limit. Thus, we modify

the potential by replacing the hyperbolic sine with the positive exponential, namely

U—U= oM* [1 — & exp <\/6<> + & exp (2\/&>] . (5.19)

4o 3M 4 3M

This approximation is particularly accurate in the area of the parameter space where the
spectral indices are within the experimental bounds, as we will show below. The first

slow-roll parameter reads
422 (Qx — 26)?
e(z) = )
3(Na? — A€z + 4)?

(5.20)
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where we set

T = exp (\/2&) > 1. (5.21)

The equation € = 1 has the solutions

2v3 - 1)¢ , 2v3Y/(2V3 - 3)(2v/3e: — 30)

- 19 30 ; (5.22)
o 2(VBH 1) N 2\/3\/(2\/3 +3)(2v/3¢€2 + 3Q)
T 30 ’

and they are all real (three positive and one negative) if, and only if, the new condition

2
Q< *3/552 ~ 1.1547¢€2, (5.23)

is enforced. This new bound, together with the previous condition Q > ¢2, substantially
shrinks the parameter space (€2, £) into a narrow band. In terms of the original parameter,
we thus have 0 < a\ < 0.1547£2 as a condition to have inflation. This result also exclude
the original assumption, made in [18, 63], that a = &2/ is compatible with inflation.
In addition, the constraint 2 < 1/64, which prevent the slow-roll parameters to diverge,
implies that & < 0.11.

In terms of x the first two spectral indices read

. 48 — 52*02% — 80 ¢x + (16€2 + 880)2? — 160w (5.24)
o 3(Qx? — 4x€ +4)? ’ ’

6422 (Qx — 2¢)?

©3(Qa? — 4af +4)27

We invert the definition of = to find x = z(r) and we choose the solution (there are 4)
which corresponds to the first positive zero of ¢ = 1. We then expand for small r to find

V3r
4g

By substituting x with z, in ny and expanding again for small  we finally find an approx-

Ty

(5.25)

imate relation between r and ng, which is the same obtained for the Starobinsky model,

ns~1— \/z, (5.26)

and that does not depend on the parameters ¢ and €2 and it is plotted in figure 5.

namely

We now compute the value of the field at the beginning of inflation. We consider the
1 Gend U

AN ~ —— —dC. 5.27

Tl AT (5.27)

By using the variable x and the expansion for Q — £2, justified by the above considerations,
we find that

standard formula

3

1 U 3

~15 —



Now, let x; r be the values of the field at the beginning and at the end of inflation, respec-
tively. The value of xf is the smallest positive solution among (5.22) i.e.

L a(/B-De 2V3/(2V3-3)(2v3¢2 - 30)

— 2
o Q 30 ! (5.29)
while z; is determined by solving the equation
4 2, _ s
Yi =Y + gAN + ¢ (e7¥ —e7¥) | (5.30)

where y; ¢ = In (z; y) and AN = Ny — N; > 0. The solution can be expressed in terms of
the Lambert function W_; as

4 2
yi=ys+ AN+ 27+ Woi(Q), (5.31)
where the suffix —1 indicates that we are in the “lower” branch of the function and
2 2
Q= o e 3 exp (—yf - geyf) : (5.32)

The lower branch must be chosen because, for AN = 0 (i.e. y; = ys), we have W = —2x;
in (5.30), which is certainly smaller than —1. On the other hand, also for large AN and
Yy > y; one has W < —1. By using the properties of the Lambert function and restoring
the variable x we finally find
2 2 4 2
x; = o W [_W exp (—SAN — )1 . (5.33)
Let’s assume that inflation lasted 60 efolding, that Q = 1.07¢2 and € = 1072, Then

we find
r; =233 = (=104M, xy=299.78 = (f=5.637TM, (5.34)

which makes clear that the small ¢ approximation is not appropriate. In addition, we find
ns = 0.9679, r =0.003, 53 = 0.00024 . (5.35)

By varying these parameters, we find that the results are mostly sensitive to the number
of foldings, rather that the value of Q and &, in line with the result (5.26).

To check the consistency of our approximations, in figure 6 we plot the potentials U
and U and the corresponding first slow-roll parameters.

6 Tensor perturbations in scale-invariant model of gravity

Having explored inflation and the inflationary parameters in the earlier section, we now
shift our focus towards understanding tensor perturbations — in particular the tensor
power spectrum in the model under consideration. It turns out to be convenient to analyse
such tensor perturbations in conformal time 1 which is defined as

dt
”:/a(t)' (6.1)
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Figure 5. Plot of r vs n, following from (5.26). The blue region represents the current PLANCK +
BICEP constraints [69-72] , the green region represents the future reach of Simon’s Observatory [73]
while the brown region depicts the detection range of LiteBIRD [74].
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(blue curve) and U (yellow curve) with Q = 1.07¢2, £ =102, a =1 and M = 1.
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The above transforms the FLRW metric to the form
ds? = a(n)*(—dn? + §;;dx'da?) . (6.2)
The Friedmann equations (3.6) becomes,

e—\/gﬁqba_i_@/z M2, PV

2 _
= 602 PRy VR (6.3)
/28 2 -2
HQ_H/:e 2]\(2)—2"‘0) (64)

where H = C;/((:)) and ‘primes’ denote derivative with respect to the conformal time 7. The

potential V' is given by (2.12). Turning on tensor perturbations h;;, we write down the
perturbed metric as
ds? = a(n)? [~di? + (3 + hij)da'da’ | | (6.5)

and restrict ourselves to the transverse-traceless gauge given by
dhi =h=0. (6.6)

The equations of motion for the tensor perturbations are given by,

/ - 2 4
2M202hi; + AM? S0, iy — 2M%0F Oyhy; = lQ <e\/§;f¢'2 + a/2> _ (OM7 ~ daV)
a «
2aa" — a’?
+4M? <a2 )] hij . (6.7)

Using the two Friedman equations (6.3) and (6.4), we immediately see that the r.h.s. of the
above equation vanishes identically which is a universal behaviour of inflationary scenarios
whose gravity sector is governed by the standard Einstein-Hilbert action. One can of course
carry out a usual momentum space analysis by decomposing h;; into Fourier modes as

his(na%) = G [ S ol e (63)

s=+,X

where p7; are polarization tensors with p7;p® i = 1. Plugging the above mode expansion
back in (6.7), we recover,

hi ()" + 2Hhi (n) + k*hiz(n) = 0, (6.9)

where k? = k - k. Following a standard calculation [75], quantizing the fluctuations, leads
to a power spectrum for the tensor perturbations given by

2H?

Pr= e

(6.10)

where the r.h.s. is measured at horizon crossing.
This is somewhat expected since, although we start with higher derivative terms in
the gravitational sector, we effectively map the system to an Einstein frame action with
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two scalars given by (2.11). This trade-off essentially simplifies the tensor perturbations in
the gravitational sector at least upto linear order. The power spectrum obtained is infact
universal for inflationary scenarios whose gravitational sector is described exclusively by
the Einstein-Hilbert action.

Strictly speaking the Einstein frame action (2.11) consists of two scalars ¢ and @ which
might motivate someone to perform a multi-field inflationary analysis. However, as argued
earlier, a field redefinition renders the potential dependent on only one of the field while the
other direction p can be treated as a flat direction and does not affect inflationary dynamics.
The analysis of tensor perturbations indeed show that the Friedman equations (6.3), (6.4)
conspire in a way to give us the equation of motion of h;; which matches with that of a
single field inflationary model with Einstein-Hilbert gravity thus vindicating our analysis
based on single-field inflationary models.

7 Discussion and conclusion

In this work we have analysed the most general scale-invariant theory with a scalar field
written in the Einstein frame, and investigated the parameter space which leads to satis-
factory inflationary observations. We summarize below the main results we have found.

e We have performed a detailed analysis of the dynamics of the scale-invariant the-
ory (2.1) in the Einstein frame (2.11) by means of dynamical system methods. We
have found that the system evolves from an unstable de Sitter space to another stable
asymptotic de Sitter space point, where an effective mass scale emerges, which can be
identified with the Planck mass. The transition between the two points potentially
yields an inflationary expansion of the Universe.

e In the Einstein frame, dynamics seems to be ruled by two scalar fields, however by
means of a suitable field redefinition (see (4.1), (4.2)) we show that the action can be
written in such a way that the potential depends on one scalar field only, as in (4.3).
Thus the inflationary era can be studied as a single-field inflation model.

e We found a viable model of inflation when the scalar field is of order of the mass scale
M, which is identified with the Planck mass. In this limit, we could compute the
spectral indices and their running, which shows excellent agreement with observa-
tions, see (4.3). In addition, the three free parameters of the theory are significantly
constrained by data but not fine-tuned, see the relation (5.23). In particular, the
non-minimal coupling parameter £ must be small, for viable inflation to occur, as
opposed to the standard Higgs inflation model.

o We have computed the power spectrum of the primordial tensor perturbations (6.10)
and found, as expected, that it does not differ from the usual one in the Einstein
frame.

e These general results have been applied to a specific concrete model where the scalar
sector features the filed ¢ (the scalar field whose fixed-point value generates the
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Planck scale) in addition to, of course, the Starobinsky scalar ¢ due to the R? term.
Interestingly, however, its power spectrum is rather close to the observational bounds
for s-inflation, giving us constraints within the (ns; — r) range to be within ny =
0.9618,r = 0.0044 from the latest PLANCK-BICEP data. ngs = 0.9706,r = 0.0026
range (see figure 5). Furthermore this also leads to possibility to test this model with
future observations with CMB from CMB-S4, Simon’s Observatory, LiteBIRD and
CMB-Bharat [76].

It is interesting to compare our work with the results presented in [77]. Here, the
action contains an additional linear term in R, compared to our action (2). One could
redefine the scalar field in [77] in order to have only one term of type ¢>R but then the
quartic potential would be different and the scale invariance would be lost. The two models
also differ as in [77] there appears to be no field redefinition able to make the potential
dependent on one field only, as in our case. Finally, the predictions in [77] are similar to
ours except that we do not have a branch where the coupling parameter ¢ is large.

The present work has several possible future applications. For example, it would
be interesting to apply the general formulse derived here to scale-invariant models where
scale-invariance is broken by quantum effects or via non-perturbative effects [78-80] and
in general to many scale-invariant models, other than the one considered in this paper.
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