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1 Introduction

Recently it has been demonstrated that the conditions imposed on the Killing spinor
form bilinears, as a consequence of the gravitino Killing spinor equation (KSE) of any
supergravity theory,1 can be organised as a twisted covariant form hierarchy (TCFH) [1, 2].

1The supergravity theory may include higher curvature corrections and be defined on a spacetime of
any signature.
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This means that there is a connection DF on a suitable space of spacetimes forms such that
schematically

DFXΩ = iXP +X ∧Q , (1.1)

for any spacetime vector field X, where Ω is a multi-form spanned by the form bilinears, and
P and Q are multi-forms that depend on the form bilinears and the (form) fluxes F of the
theory. The TCFH connection DF is not necessarily form degree preserving. A consequence
of the existence of the TCFHs is that the form bilinears of all supergravity theories satisfy
a generalisation of the conformal Killing-Yano2 (CKY) equation with respect to DF .

It is well-known that KY forms are associated with conservation laws of the geodesic
flow and the integrability of some classical field equations on some black hole spacetimes [3–
11], see also reviews [12, 13] and references therein. They also generate symmetries [14]
for spinning particles probes [15] propagating on a spacetime. For other applications,
see [16–23]. Therefore, it is natural to raise the question on whether the form bilinears
generate symmetries for various particle probes propagating on supersymmetric spacetimes.
Much partial progress has been made to answer this question in [24–27].

In this paper, we shall demonstrate that the conditions imposed on the Killing spinor
form bilinears on the internal space of all IIB AdS backgrounds by the gravitino KSE of
the theory can be organised as a TCFH. In particular, we shall determine the TCFH
connection DF and investigate some of its properties like its (reduced) holonomy on generic
backgrounds. In addition, we demonstrate that the form bilinears of some AdS backgrounds,
which include the maximally supersymmetric AdS5 solution as well as the near horizon
geometries of some intersecting brane configurations, are either KY or CCKY3 forms and
therefore generate symmetries for some spinning particle probes propagating on the internal
space of these backgrounds.

This paper is organised as follows. In sections 2, 3, 4 and 5, we present the TCFHs
on the internal spaces of AdSk backgrounds, k ≥ 2, and describe some of the properties
of their TCFH connections. In section 6, we present some examples of AdS backgrounds
whose Killing spinor form bilinears generate symmetries for spinning particle probes, and
in section 7 we give our conclusions. In appendix A, we describe our conventions. In
appendix B, we prove the Liouville integrability of geodesic flow on all AdSk × Sm × Rn

backgrounds, and in appendix C we give the TCFH of IIB supergravity in the Einstein frame.

2 The TCFH of warped AdS2 backgrounds

2.1 Fields and Killing spinors

Let g be the spacetime metric, and G, F and P be the U(1)-twisted 3-form, 5-form and U(1)-
twisted 1-form field strengths of IIB supergravity [28] in the Einstein frame, respectively.

2The standard CKY condition on a k-form ω is ∇Xω = iXdω− 1
n−k+1X ∧ δω, where ∇ is the Levi-Civita

connection of a metric g. If ω is co-closed, δω = 0, then ω is a Killing-Yano (KY) form, while, if ω is closed,
then ω is a closed CKY (CCKY) form.

3The Hodge dual of a CCKY form is a KY form and vice versa.
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These fields for warped AdS2 backgrounds, AdS2 ×w N8, can be expressed [29] as

g = 2 e+e− + g(N8) ,
F = e+ ∧ e− ∧ Y + ?8Y , G = e+ ∧ e− ∧ Φ +H , P = ξ , (2.1)

where g(N8) is a metric on N8, Y is a 2-form on the internal space N8, Φ and ξ are
U(1)-twisted 1-forms and H is a U(1)-twisted 3-form on N8. The pseudo-orthonormal
frame, (e+, e−, ei), on the spacetime is expressed as

e+ = du , e− = dr + rh− 1
2r

2`−2A−2 du , ei = eiI dy
I , (2.2)

with ei an orthonormal frame on N8, g(N8) = δijeiej , and h = −2A−1dA, where A is
the warped factor, yI are the coordinates of N8 and (u, r) are the remaining spacetime
coordinates. It can be seen after a coordinate transformation that the spacetime metric can
be written in the standard warped form g = A2g`(AdS2) + g(N8), where g`(AdS2) is the
standard metric on AdS2 with radius `.

The gravitino and dilatino Killing spinor equations (KSEs) of IIB supergravity can
be integrated over the coordinates (u, r) [29]. One finds that the Killing spinors ε can be
expressed as ε = ε(u, r, η±), where4 Γ±η± = 0 and η± depend only on the coordinates y of
N8. In addition, as a consequence of the gravitino KSE of the theory, one finds that η±
satisfy the KSEs

∇(±)
i η± = 0 , (2.3)

on N8, where the supercovariant derivatives are

∇(±)
i ≡ ∇i +

(
− i2 Qi ±

1
2 ∂i logA∓ i

4
/Y i ±

i

12 (Γ /Y )i
)

+
(
± 1

16 (Γ/Φ)i ∓
3
16 Φi −

1
96 (Γ /H)i + 3

32
/H i

)
C∗ , (2.4)

∇ is the connection induced on the spin bundle from the Levi-Civita connection of g(N8),
and the anti-linear operation5 C∗ commutes with all the gamma matrices and squares to
the identity map, i.e. C∗ can be used as a spin invariant reality condition. Q is a U(1)
connection on N8 constructed from the scalar fields of IIB theory. The spinor η± satisfy
additional conditions on N8 arising from the dilatino KSE of IIB supergravity. These
conditions will be explored later in examples that we shall present but they are not essential
in the investigation of the TCFH of the warped AdS2 backgrounds.

4From here on, all the gamma matrices are taken with respect to a spacetime pseudo-orthonormal frame
as that stated above.

5We follow the spinor conventions of [30] appendix B, see also appendix A. In the basis of that paper C =
Γ6789.
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2.2 The TCFH and holonomy

To present the TCFH of AdS2 backgrounds consider some spinors ηr±, r = 1, . . . , N/2, and
construct a basis6 in the space of form bilinears on the internal space N8 as

ρrs± = 〈ηr±, ηs±〉 , ρ̃rs± = 〈ηr±, Cη̄s±〉 ,

ωrs± = 1
2 〈η

r
±,Γi1i2 ηs±〉 ei1 ∧ ei2 , ω̃rs± = 1

2 〈η
r
±,Γi1i2 Cη̄s±〉 ei1 ∧ ei2 ,

ζrs± = 1
4! 〈η

r
±,Γi1...i4 ηs±〉 ei1 ∧ · · · ∧ ei4 , ζ̃rs± = 1

4! 〈η
r
±,Γi1...i4 Cη̄s±〉 ei1 ∧ · · · ∧ ei4 , (2.5)

where C ∗ η± = Cη̄±, with η̄± the complex conjugate of η± and (time-) space-like gamma
matrices are (anti-)Hermitian with respect to the inner product 〈·, ·〉. In fact ρ̃, ω̃ and ζ̃
are U(1)-twisted forms on N8. Moreover, ζ+ is self-dual, while ζ− is anti-self-dual, on N8,
and similarly for ζ̃+ and ζ̃−. This is a consequence of the chirality of η± as IIB spinors
and the conditions Γ±η± = 0 which in turn imply that (

∏8
i=1 Γi)η± = ±η±. Furthermore,

Re ρrs± , Imωrs± , Re ζrs± , ρ̃rs± and ζ̃rs± are symmetric, while Im ρrs± , Reωrs± , Im ζrs± and ω̃rs± are
skew-symmetric, in the exchange of the spinors ηr± and ηs±.

Assuming that ηr± are Killings spinors on N8, i.e. allowing ηr± to satisfy (2.3), and using
the identity

∇i φrs±i1...ik =
〈
∇i ηr±,Γi1...ikη

s
±
〉

+
〈
ηr±,Γi1...ik∇i η

s
±
〉
, (2.6)

where φ stands for any of the form blinears above, one finds after some extensive Clifford
algebra computation that

D(±)F
i ρrs

±
..=∇iρ

rs
± =∓∂i logAρrs

± ±
i

2 Yi
j1j2 ωrs

±j1j2
± 3

8 Re{Φiρ̃
rs
± }

+ 1
48 Re{Hj1j2j3 ζ̃rs

±ij1j2j3
}∓ i8 Im{Φj ω̃rs

±ij}

− 3i
16 Im{Hi

j1j2 ω̃rs
±j1j2

} , (2.7)

D(±)F
i ωrs

±i1i2
..=∇iω

rs
i1i2
±∂i logAωrs

±i1i2
∓iY j1j2

i ζ
rs
±i1i2j1j2

+ i

4 Im{Hi
j1j2 ζ̃rs

±i1i2j1j2
}

∓ 1
2 Re{Φi ω̃

rs
±i1i2

}−Re{Hj
i[i1 ω̃

rs
±i2]j}

=∓iYii1i2ρ
rs
± ±

i

3 Y
j1j2j3 δi[i1 ζ

rs
±i2]j1j2j3

∓ 3i
2 Y j1j2

[i ζ
rs
±i1i2]j1j2

∓ i8 Im{Φj ζ̃rs
±ii1i2j}±

i

4 δi[i1 Im{Φi2]ρ̃
rs
± }−

i

24 δi[i1 Im{Hj1j2j3 ζ̃rs
±i2]j1j2j3

}

+ 3i
16 Im{Hj1j2

[i1 ζ̃
rs
±i2i]j1j2

}+ 3i
8 Im{Hii1i2 ρ̃

rs
± }±

1
4 δi[i1 Re{Φj ω̃rs

±i2]j}

∓ 3
8 Re{Φ[i1 ω̃

rs
±i2i]}+

1
16 Re{?Hii1i2

j1j2 ω̃rs
±j1j2

}− 1
8 δi[i1 Re{Hi2]

j1j2 ω̃rs
±j1j2

}

− 3
8 Re{Hj

[i1i2 ω̃
rs
±i]j} , (2.8)

6The bases in the space of form bilinears that we are considering are up to a Hodge duality operation on
the internal space.
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D(±)F
i ζrs

±i1...i4
..=∇i ζ

rs
±i1...i4

±∂i logAζrs
±i1...i4

−8i?Y j
i[i1i2i3ω

rs
±i4]j±12iYi[i1i2 ω

rs
±i3i4]

∓ 1
2 Re{Φi ζ̃

rs
±i1...i4

}−2Re{Hj
i[i1 ζ̃

rs
±i2i3i4]j}+2i Im{?Hj

i[i1i2i3 ω̃
rs
±i4]j}

−3i Im{Hi[i1i2 ω̃
rs
±i3i4]}

=−2iδi[i1
?Yi2i3i4]

j1j2ωrs
±j1j2

−5i?Y j
[i1...i4ω

rs
±i]j∓12iδi[i1 Yi2i3

j ωrs
±i4]j

±10iY[i1i2i3 ω
rs
±i4i]±

1
2 δi[i1 Re{Φj ζ̃rs

±i2i3i4]j}∓
5
8 Re{Φ[i ζ̃

rs
±i1...i4]}

∓ 1
8 Re{?Hii1...i4 ρ̃

rs
± }−

3
4 δi[i1 Re{Hi2

j1j2 ζ̃rs
±i3i4]j1j2

}− 5
4 Re{Hj

[i1i2 ζ̃
rs
±i3i4i]j}

+ 1
2 δi[i1 Re{Hi2i3i4]ρ̃

rs
± }∓

i

16 Im{?Φi1...i4i
j1j2 ω̃rs

±j1j2
}± 3i

2 δi[i1 Im{Φi2 ω̃
rs
±i3i4]}

+ 3i
2 δi[i1 Im{Hi2i3

j ω̃rs
±i4]j}−

5i
4 Im{H[i1i2i3 ω̃

rs
±i4i]}

+ 3i
4 δi[i1 Im{?Hi2i3i4]

j1j2 ω̃rs
±j1j2

}+ 15i
8 Im{?Hj

[i1i2i3i4 ω̃
rs
±i]j} , (2.9)

D(±)F
i ρ̃rs

±
..=∇iρ̃

rs
± +(iQi±∂i logA) ρ̃rs

± =± i6 Y
j1j2j3 ζ̃rs

±ij1j2j3
∓ 1

8 Φ̄j ω
(rs)
±ij ±

3
8 Φ̄iρ

(rs)
±

+ 1
48 H̄

j1j2j3ζ
(rs)
±ij1j2j3

− 3
16 H̄i

j1j2ω
(rs)
±j1j2

, (2.10)

D(±)F
i ω̃rs

±i1i2
..=∇i ω̃

rs
±i1i2

+(iQi±∂i logA) ω̃rs
±i1i2

∓4iY j
i[i1 ω̃

rs
±i2]j∓

1
2 Φ̄iω

[rs]
±i1i2

+ 1
4 H̄i

j1j2 ζ
[rs]
±i1i2j1j2

−H̄j
i[i1 ω

[rs]
±i2]j

=± i2
?Yii1i2

j1j2 ω̃rs
±j1j2

∓iδi[i1 Yi2]
j1j2 ω̃rs

±j1j2
∓3iY j

[i1i2 ω̃
rs
±i]j

∓ 1
8 Φ̄jζ

[rs]
±i1i2ij±

1
4 Φ̄j δi[i1ω

[rs]
±i2]j∓

3
8 Φ̄[i1 ω

[rs]
±i2i]±

1
4 δi[i1 Φ̄i2] ρ

[rs]
±

+ 1
16

?H̄ii1i2
j1j2 ω

[rs]
±j1j2

− 1
24 H̄

j1j2j3 δi[i1 ζ
[rs]
±i2]j1j2j3

+ 3
16 H̄

j1j2
[i1 ζ

[rs]
±i2i]j1j2

− 1
8 δi[i1 H̄i2]

j1j2 ω
[rs]
±j1j2

− 3
8H̄

j
[i1i2ω

[rs]
±i]j + 3

8 H̄ii1i2 ρ
[rs]
± , (2.11)

D(±)F
i ζ̃rs

±i1...i4
..=∇i ζ̃

rs
±i1...i4

+(iQi±∂i logA) ζ̃rs
±i1...i4

∓8iY j
i[i1 ζ̃

rs
±i2i3i4]j∓

1
2 Φ̄i ζ

(rs)
±i1...i4

±2?H̄j
i[i1i2i3ω

(rs)
±i4]j−2H̄j

i[i1
ζ

(rs)
±i2i3i4]j−3H̄i[i1i2ω

(rs)
±i3i4]

=−i?Yii1...i4 ρ̃
rs
± ∓6iδi[i1Yi2

j1j2 ζ̃rs
±i3i4]j1j2

∓10iY j
[i1i2 ζ̃

rs
±i3i4i]j

±4iδi[i1Yi2i3i4] ρ̃
rs
± −

1
16

?Φ̄ii1...i4
j1j2 ω

(rs)
±j1j2

± 1
2Φ̄j δi[i1 ζ

(rs)
±i2i3i4]j

∓ 5
8 Φ̄[i1 ζ

(rs)
±i2i3i4i]±

3
2 δi[i1Φ̄i2 ω

(rs)
±i3i4]∓

1
8

?H̄ii1...i4 ρ
(rs)
±

− 3
4 δi[i1H̄i2

j1j2 ζ
(rs)
±i3i4]j1j2

− 5
4 H̄

j
[i1i2 ζ

(rs)
±i3i4i]j + 3

2 δi[i1H̄i2i3
jω

(rs)
±i4]j

− 5
4 H̄[i1i2i3 ω

(rs)
±i4i]+

1
2 δi[i1H̄i2i3i4] ρ

(rs)
± ± 3

4 δi[i1
?H̄i2i3i4]

j1j2 ω
(rs)
±j1j2

± 15
8

?H̄j
[i1...i4 ω

(rs)
±i]j . (2.12)

Clearly, the conditions on the form bilinears have been arranged as a TCFH as defined
in (1.1) with connection D(±)F . In fact, the TCFH above has been given in terms of the
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minimal connection, see [2]. A consequence of the TCFH above is that the form bilinears
satisfy a generalisation of the CKY equation with respect to D(±)F .

To investigate the (reduced) holonomy of the minimal TCFH connection D(±)F notice
that the TCFH factorises into two parts. One part is spanned by the form bilinears
symmetric in the exchange of ηr± and ηs± spinors and the other part is spanned by the form
bilinears which are skew-symmetric in the exchange of ηr± and ηs± spinors. Furthermore,
D(±)F acts trivially on the scalars ρ while it acts as a U(1) connection on the scalars
ρ̃. A consequence of this is that the (reduced) holonomy factorises and it is included in
(the connected to the identity component of) U(1)×GL(133)×GL(119). Note that the
rank of the bundle of symmetric and skew-symmetric form bilinears in the exchange of ηr±
and ηs± is 136 and 120, respectively. One can also consider the holonomy of the maximal
TCFH connection, see [2]. As this acts non-trivially on the scalars, its reduced holonomy is
included in (the connected component of) GL(136)×GL(120).

The factorisation of the holonomy of the TCFH connections can be also seen from the
decomposition of a product of spinor representations of spin(8) in terms of forms. Each ηr±
spinor can be viewed as a complex chiral spin(8) spinor. The product of two complex chiral
representations, ∆±8 (C), of spin(8) decomposes as

⊗2 ∆±8 (C) = Λ0(C8)⊕ Λ2(C8)⊕ Λ4±(C8) , (2.13)

in terms of form representations, where Λ4+(C8) (Λ4−(C8)) is the space of the (anti-)
self-dual 4-forms on C8. Then notice that the dimension over the real numbers of the
symmetric product, S2(∆±8 (C)), and skew-symmetric product, Λ2(∆±8 (C)), of two ∆±8 (C)
representations is 136 and 120, respectively. This is exactly the rank of the bundle of the
symmetric and skew-symmetric form bilinears in the exchange of ηr± and ηs± spinors we
have considered in the computation of holonomy of TCFH connections. The right-hand-side
of (2.13) spans all form bilinears.

The description of the holonomy of the TCFH connections we have presented above
applies to generic backgrounds. As we shall see later for special backgrounds, where some
of the form field strengths vanish, the holonomy of the TCFH connections reduces further.

3 The TCFH of warped AdS3 backgrounds

3.1 Fields and Killing spinors

The fields7 of a warped AdS3 background, AdS3 ×w N7, can be expressed as

g = 2 e+e− + (ez)2 + g(N7) ,
F = e+ ∧ e− ∧ ez ∧ Y − ?7Y , G = Φe+ ∧ e− ∧ ez +H , (3.1)

7We have not mentioned the U(1)-twisted 1-form field strength P of IIB scalars, P = ξ, with ξ a
U(1)-twisted 1-form on the internal space. This is done to avoid repetition. This equation will also be
omitted from the expression of the fields of all AdS backgrounds below. Though it is understood that for
the complete description of the fields, it has to be included.

– 6 –
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where g(N7) is the internal space metric, Y is a 2-form on N7, and Φ and H are a U(1)-
twisted 0- and 3-form on N7, respectively. Furthermore, the pseudo-orhonormal frame can
be written as

e+ = du , e− = dr − 2r(`−1 dz +A−1dA) , ez = Adz , ei = eiI dy
I , (3.2)

where yI are coordinates of the internal space N7, (u, r, z) are the remaining coordinates of
the spacetime, ei is an orthonormal frame on N7, g(N7) = δijeiej , and A is the warp factor.
It can be seen, after a coordinate transformation, that the spacetime metric g takes the
standard warped spacetime form g = A2g`(AdS3) + g(N7), where g`(AdS3) is the standard
metric on AdS3 with radius `.

The KSEs of warped AdS3 backgrounds can be intergraded over the coordinates (u, r, z),
see [29], and the Killing spinors can be schematically expressed as ε = ε(u, r, z, σ±, τ±),
where σ± and τ± depend only on the coordinates of N7 and Γ±σ± = Γ±τ± = 0. The
integration over the coordinate z introduces a new algebraic KSE on σ± and τ± which
will not be explored here but it is essential for the correct counting of Killing spinors of a
solution. This algebraic KSE is in addition to the dilatino KSE of the theory.

A consequence of the gravitino KSE on ε is that

∇(±)
i σ± = 0 , ∇(±)

i τ± = 0 , (3.3)

where

∇(±)
i ≡ ∇i ±

1
2 ∂i logA− i

2 Qi ±
i

4 (Γ /Y )i Γz ∓
i

2
/Y i Γz

+
(
− 1

96 (Γ /H)i + 3
32

/H i ∓
1
16 ΦΓzi

)
C∗ , (3.4)

∇ is induced on the spinor bundle by the Levi-Civita connection of g(N7) and Q is a U(1)
connection on N7 constructed from the IIB scalars. The definition of the Clifford algebra
operation C∗ can be found in section 2.1.

3.2 The TCFH and holonomy

Before we proceed to describe the TCFH of the supecovariant connections (3.4), let us first
simplify somewhat the analysis. The TCFHs of the form bilinears constructed using the
pairs (ηr+, ηs+) of Killing spinors are identical, where η± stands for either σ± or η±. The
reason is that σ+ and τ+ satisfy the same gravitino KSE, see (3.3). As the bilinears along
N7 constructed from ηr± and ηs∓ vanish, it remains to consider the TCFH constructed from
the bilinears of η−. This TCFH can be easily deduced from that of the η+ form bilinears
after appropriately compensating for the differences in the signs of some of the terms in
the supercovariant derivatives ∇(+) and ∇(−), see (3.4). There is also an additional sign
required in all terms that contain a Hodge duality operation on the fluxes that appear in
the TCFHs. This is a consequence of conditions Γ±η± = 0 on the spinors, see also below.

A consequence of the discussion above is that, without loss of generality, we can focus
on the TCFH associated with the bilinears of σ+ Killing spinors. Setting σ+ = σ, one finds
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that a basis in the space of form bilinears on N7 is

ρrs = 〈σr, σs〉 , ρ̃rs = 〈σr, Cσ̄s〉 ,
κrs = 〈σr,ΓzΓi σs〉 ei , κ̃rs = 〈σr,ΓzΓiCσ̄s〉 ei ,

ωrs = 1
2 〈σ

r,Γi1i2 σs〉 ei1 ∧ ei2 , ω̃rs = 1
2 〈σ

r,Γi1i2 Cσ̄s〉 ei1 ∧ ei2 ,

ψrs = 1
3! 〈σ

r,ΓzΓi1i2i3 σs〉 ei1 ∧ ei2 ∧ ei3 , ψ̃rs = 1
3! 〈σ

r,ΓzΓi1i2i3 Cσ̄s〉 ei1 ∧ ei2 ∧ ei3 .

(3.5)

It turns out that ρ̃rs, ψ̃rs, Re ρrs, Im κrs, Reψrs and Imωrs are symmetric, while κ̃rs, ω̃rs,
Reκrs, Imψrs, Reωrs and Im ρrs are skew-symmetric in the exchange of the spinors σr

and σs. Note that as a consequence of the IIB chirality of spinors σ± and the condition
Γ±σ± = 0, one has that Γ(7)Γz σ± = ±σ±, where Γ(7) =

∏7
i=1 Γi. This justifies the choice

of the above basis in the space of form bilinears up to a Hodge duality operation on N7.
As it has already been mentioned in the beginning of the section, the sign of the condition
Γ(7)Γz σ± = ±σ± accounts for the additional sign required in the terms that contain a
Hodge duality operation on the fluxes in the TCFH associated with the σ+ form bilinears
relative to the same terms of the TCFH constructed from the σ− form bilinears.

The computation of the TCFH for the bilinears (3.5) is similar to that described for
warped AdS2 backgrounds in the previous section. After some computation, one finds that

D(+)F
i ρrs ..=∇i ρ

rs =−∂i logAρrs−iYi
j κrs

j + 1
48 Re{?Hi

j1j2j3 ψ̃rs
j1j2j3

}

− 3i
16 Im{Hi

j1j2 ω̃rs
j1j2
}+ i

8 Im{Φκ̃rs
i } , (3.6)

D(+)F
i κrs

k
..=∇iκ

rs
k +∂i logAκrs

k + i

4 Im{Hi
j1j2 ψ̃rs

kj1j2
}

=− i6
?Yik

j1j2j3ψrs
j1j2j3

+iYik ρ
rs+ i

48 δik Im{Hj1j2j3ψ̃rs
j1j2j3

}

+ i

8 Im{Hj1j2
[i ψ̃

rs
k]j1j2

}− i8 δik Im{Φ ρ̃rs}− 1
16 Re{?Hik

j1j2 ω̃rs
j1j2
}

− 3
8 Re{Hik

j κ̃rs
j }+

1
8 Re{Φ ω̃rs

ik} , (3.7)

D(+)F
i ωrs

i1i2
..=∇iω

rs
i1i2

+∂i logAωrs
i1i2

+2iYi
j ψrs

i1i2j + i

2 Im{?Hj1j2
i[i1ψ̃

rs
i2]j1j2

}−Re{Hj
i[i1 ω̃

rs
i2]j}

=−iY j1j2 δi[i1ψ
rs
i2]j1j2

−3iY j
[iψ

rs
i1i2]j + i

8 δi[i1 Im{?Hi2]
j1j2j3ψ̃rs

j1j2j3
}

+ 9i
16 Im{?Hj1j2

[i1i2ψ̃
rs
i]j1j2
}+ 3i

8 Im{Hii1i2 ρ̃
rs}+ i

8 Im{Φ ψ̃rs
ii1i2
}

− 1
8 δi[i1 Re{Hi2]

j1j2 ω̃rs
j1j2
}− 3

8 Re{Hj
[i1i2 ω̃

rs
i]j}−

1
8 Re{?Hii1i2

j κ̃rs
j }

− 1
4 δi[i1 Re{Φ κ̃rs

i2]} (3.8)
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D(+)F
i ψrs

i1i2i3
..=∇iψ

rs
i1i2i3

+∂i logAψrs
i1i2i3

−6iYi[i1 ω
rs
i2i3]+

3
2 Re{Hj

i[i1 ψ̃
rs
i2i3]j}

− 3i
2 Im{Hi[i1i2 κ̃

rs
i3]}+

3i
2 Im{?Hj

i[i1i2 ω̃
rs
i3]j}

=−i?Yi1i2i3i
j κrs

j +6iδi[i1 Yi2
j ωrs

i3]j−6iY[ii1 ω
rs
i2i3]−

3
8 δi[i1 Re{Hi2

j1j2 ψ̃rs
i3]j1j2

}

+ 3
4 Re{Hj

[ii1 ψ̃
rs
i2i3]j}+

1
8 Re{?Hii1i2i3 ρ̃

rs}− 1
48 Re{?Φii1i2i3

j1j2j3 ψ̃rs
j1j2j3

}

− 3i
8 δi[i1 Im{Hi2i3]

j κ̃rs
j }+

i

2 Im{H[i1i2i3 κ̃
rs
i] }−

9i
16 δi[i1 Im{?Hi2i3]

j1j2 ω̃rs
j1j2
}

− 3i
2 Im{?Hj

[i1i2i3 ω̃
rs
i]j}−

3i
8 δi[i1 Im{Φ ω̃rs

i2i3]} , (3.9)

D(+)F
i ρ̃rs ..=∇i ρ̃

rs+(iQi+∂i logA) ρ̃rs =− i2 Y
j1j2 ψ̃rs

ij1j2
+ 1

48
?H̄i

j1j2j3 ψ
(rs)
j1j2j3

− 3
16 H̄i

j1j2 ω
(rs)
j1j2

+ 1
8 Φ̄κ(rs)

i , (3.10)

D(+)F
i κ̃rs

k
..=∇i κ̃

rs
k +(iQi+∂i logA) κ̃rs

k +2iYi
j ω̃rs

kj + 1
4 H̄i

j1j2 ψ
[rs]
kj1j2

= i

2 δik Y
j1j2 ω̃rs

j1j2
+2iY j

[k ω̃
rs
i]j + 1

48 δik H̄
j1j2j3 ψ

[rs]
j1j2j3

+ 1
8 H̄

j1j2
[iψ

[rs]
k]j1j2

− 1
16

?H̄ik
j1j2 ω

[rs]
j1j2
− 3

8 H̄ik
j κ

[rs]
j + 1

8 Φ̄ω[rs]
ik −

1
8 δik Φ̄ρ[rs] , (3.11)

D(+)F
i ω̃rs

i1i2
..=∇i ω̃

rs
i1i2

+(iQi+∂i logA) ω̃rs
i1i2

+4iYi[i1 κ̃
rs
i2]−H̄j

i[i1ω
[rs]
i2]j + 1

2
?H̄j1j2

i[i1 ψ
[rs]
i2]j1j2

=− i2
?Yii1i2

j1j2 ω̃rs
j1j2

+2iδi[i1 Yi2]
j κ̃rs

j +3iY[i1i2 κ̃
rs
i] −

1
8 δi[i1 H̄i2]

j1j2 ω
[rs]
j1j2

− 3
8 H̄

j
[i1i2 ω

[rs]
i]j −

1
8

?H̄ii1i2
j κ

[rs]
j + 1

8 δi[i1
?H̄i2]

j1j2j3 ψ
[rs]
j1j2j3

+ 9
16

?H̄j1j2
[i1i2 ψ

[rs]
i]j1j2

+ 3
8 H̄ii1i2 ρ

[rs]+ 1
8 Φ̄ψ[rs]

ii1i2
− 1

4 Φ̄δi[i1 κ
[rs]
i2] , (3.12)

D(+)F
i ψ̃rs

i1i2i3
..=∇i ψ̃

rs
i1i2i3

+(iQi+∂i logA) ψ̃rs
i1i2i3

+3i?Y j1j2
i[i1i2 ψ̃

rs
i3]j1j2

− 3
2 H̄i[i1i2 κ

(rs)
i3]

+ 3
2 H̄

j
i[i1 ψ

(rs)
i2i3]j + 3

2
?H̄j

i[i1i2 ω
(rs)
i3]j

=−3iδi[i1 Yi2i3]ρ̃
rs+ i

2 δi[i1
?Yi2i3]

j1j2j3ψ̃rs
j1j2j3

−2i?Y j1j2
[i1i2i3ψ̃

rs
i]j1j2

− 3
8 δi[i1 H̄i2i3]

j κ
(rs)
j + 1

2 H̄[i1i2i3 κ
(rs)
i] −

3
8 δi[i1 H̄i2

j1j2 ψ
(rs)
i3]j1j2

− 3
4 H̄

j
[i1i2 ψ

(rs)
i3i]j

+ 1
8

?H̄ii1i2i3 ρ
(rs)− 9

16 δi[i1
?H̄i2i3]

j1j2 ω
(rs)
j1j2
− 3

2
?H̄j

[i1i2i3 ω
(rs)
i]j −

3
8 Φ̄δi[i1ω

(rs)
i2i3]

− 1
48

?Φ̄ii1i2i3
j1j2j3 ψ

(rs)
j1j2j3

. (3.13)

The TCFH above has been expressed in terms of the minimal connection D(+)F . As for
the AdS2 case, to find the holonomy of this connection for generic backgrounds observe that
it preserves the domain of symmetric and skew-symmetric form bilinears in the exchange of
the spinors σr and σs. Furthermore, it acts trivially on the scalars ρrs, as a U(1) connection
on the scalars ρ̃rs and with the Levi-Civita connection on the 1-form bilinear AReκrs.
Therefore, the (reduced) holonomy of the minimal connection is included in (the connected
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component of) U(1)×GL(133)× SO(7)×GL(112), where the U(1)×GL(133) subgroup is
associated with the symmetric form bilinears while the rest is associated with the skew-
symmetric ones. The holonomy of the maximal TCFH connection is expected to be included
in GL(136)×GL(120) as its action on all form bilinears is not trivial though it still preserves
the subspaces of symmetric and skew-symmetric form bilinears. Similar conclusions hold
for the connections of the TCFHs of the rest of the form bilinears constructed from the
spinors σ± and τ±.

4 The TCFH of warped AdS4 backgrounds

4.1 Fields and Killing spinors

The fields of warped AdS4 backgrounds, AdS4 ×w N6, can be written as

g = 2 e+e− + (ez)2 + (ex)2 + g(N6) ,
F = e+ ∧ e− ∧ ez ∧ ex ∧ Y + ?6Y , G = H , (4.1)

where g(N6) is the metric on the internal space N6, and Y and H are a 1-form and a
U(1)-twisted 3-form on N6, respectively. Furthermore, the components (e+, e−, ez, ei)
of pseudo-orthonormal frame are defined as for the AdS3 backgrounds in (3.2) with the
understanding that the warp factor A is a function on N6 and ei is an orthonormal frame
on N6, g(N6) = δijeiej , where yI are coordinates of N6 and (u, r, z, x) are the remaining
coordinates of the spacetime. Moreover, the remaining component of the pseudo-orthonormal
frame is ex = Aez/`dx. It can be seen after a coordinate transformation that the spacetime
metric takes the standard warped form g = A2g`(AdS4) + g(N6), where g`(AdS4) is the
standard metric on AdS4 with radius `.

The IIB KSEs for warped AdS4 backgrounds have been solved in [29]. Integrating
the KSEs over the coordinates (u, r, z, x), the Killing spinors ε can be expressed as ε =
ε(u, r, z, x, σ±, τ±), where the spinors8 σ± and τ± depend only on the coordinates of N6

and satisfy Γ±σ± = Γ±τ± = 0. Furthermore, the gravitino KSE implies that ∇(±)
i σ± = 0

and ∇(±)
i τ± = 0, where the supercovariant derivatives are

∇(±)
i ≡ ∇i ±

1
2 ∂i logA− i

2 Qi ∓
i

2 (Γ /Y )i Γxz ±
i

2 Yi Γxz

+
(
− 1

96 (Γ /H)i + 3
32

/H i

)
C∗ , (4.2)

and the Clifford algebra operation C is defined as in the AdS2 case.

4.2 The TCFH and holonomy

As for warped AdS3 backgrounds, it suffices to describe only the TCFH of σ+ spinor form
bilinears. The TCFH of the form bilinears of all other spinors can be derived from that of
the σ+ spinors. The method of this derivation has already been described in the AdS3 case.

8Unlike for the AdS3 backgrounds that σ± and τ± are unrelated, the σ± and τ± spinors for all warped
AdSk backgrounds, k > 3, are related with certain Clifford algebra operations [29].
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In addition, the TCFH of warped AdS4 backgrounds factorises on the subspaces of even-
and odd-degree (twisted) forms on the internal space N6. Because of this the two cases will
be treated separately. A basis in the space of even-degree form bilinears of σ = σ+ spinors
can be chosen as

ρrs = 〈σr, σs〉 , ρ̃rs = 〈σr, Cσ̄s〉 ,
ρ̊rs = 〈σr,Γxz σs〉 , ˚̃ρrs = 〈σr,Γxz Cσ̄s〉 ,

ωrs = 1
2 〈σ

r,Γi1i2 σs〉 ei1 ∧ ei2 , ω̃rs = 1
2 〈σ

r,Γi1i2 Cσ̄s〉 ei1 ∧ ei2 ,

ω̊rs = 1
2 〈σ

r,ΓxzΓi1i2 σs〉 ei1 ∧ ei2 , ˚̃ωrs = 1
2 〈σ

r,ΓxzΓi1i2 Cσ̄s〉 ei1 ∧ ei2 . (4.3)

It turns out that ρ̃rs, ˚̃ωrs,Re ρrs, Im ρ̊rs, Imωrs and Re ω̊rs are symmetric while ˚̃ρrs, ω̃rs,
Im ρrs, Re ρ̊rs, Reωrs and Im ω̊rs are skew-symmetric in the exchange of spinors σr and σs.

A direct computation reveals that the TCFH expressed in terms of the minimal
connection DF is

DFi ρrs ..=∇i ρrs =−∂i logAρrs− iYi ρ̊rs−
1
16 Re{?Hi

j1j2 ˚̃ωrsj1j2}

− 3i
16 Im{Hi

j1j2 ω̃rsj1j2} , (4.4)

DFi ρ̊rs ..=∇i ρ̊rs =−∂i logAρ̊rs+ iYi ρ
rs− 3i

16 Im{Hi
j1j2 ˚̃ωrsj1j2}

+ 1
16 Re{?Hi

j1j2 ω̃rsj1j2} , (4.5)

DFi ωrsi1i2 ..=∇iωrsi1i2 +∂i logAωrsi1i2 +2iYi ω̊rsi1i2− i Im{?Hj
i[i1

˚̃ωrsi2]j}−Re{Hj
i[i1 ω̃

rs
i2]j}

=−2iY j δi[i1 ω̊
rs
i2]j +3iY[i ω̊

rs
i1i2]−

3i
8 δi[i1 Im{?Hi2]

j1j2 ˚̃ωrsj1j2}−
9i
8 Im{?Hj

[i1i2
˚̃ωrsi]j}

+ 3i
8 Im{Hii1i2 ρ̃

rs}− 1
8 δi[i1 Re{Hi2]

j1j2 ω̃rsj1j2}−
3
8 Re{Hj

[i1i2 ω̃
rs
i]j}

+ 1
8 Re{?Hii1i2

˚̃ρrs} , (4.6)

DFi ω̊rsi1i2 ..=∇i ω̊rsi1i2 +∂i logAω̊rsi1i2−2iYiωrsi1i2−Re{Hj
i[i1

˚̃ωrsi2]j}+ i Im{?Hj
i[i1 ω̃

rs
i2]j}

= 2iY j δi[i1ω
rs
i2]j−3iY[iω

rs
i1i2]−

1
8 Re{?Hii1i2 ρ̃

rs}− 1
8 δi[i1 Re{Hi2]

j1j2 ˚̃ωrsj1j2}

− 3
8 Re{Hj

[ii1 ω̊
rs
i2]j}+ 3i

8 δi[i1 Im{?Hi2]
j1j2 ω̃rsj1j2}+ 9i

8 Im{?Hj
[i1i2 ω̃

rs
i]j}

+ 3i
8 Im{Hii1i2

˚̃ρrs} , (4.7)

DFi ρ̃rs ..=∇i ρ̃rs+(iQi+∂i logA) ρ̃rs =−iY j ω̊
(rs)
ij −

1
16

?H̄i
j1j2 ω̊

(rs)
j1j2

− 3
16 H̄i

j1j2 ω
(rs)
j1j2

, (4.8)

DFi ˚̃ρrs ..=∇i ˚̃ρrs+(iQi+∂i logA)˚̃ρrs = iY j ω̃rsij + 1
16

?H̄i
j1j2 ω

[rs]
j1j2

− 3
16 H̄i

j1j2 ω̊
[rs]
j1j2

(4.9)
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DFi ω̃rsi1i2 ..=∇i ω̃rsi1i2 +(iQi+∂i logA) ω̃rsi1i2−H̄
j
i[i1 ω

[rs]
i2]j−

?H̄j
i[i1 ω̊

[rs]
i2]j

=− i2
?Yii1i2

j1j2 ω̃rsj1j2 +2i δi[i1 Yi2] ˚̃ρrs−
1
8 δi[i1 H̄i2]

j1j2 ω
[rs]
j1j2

− 3
8 H̄

j
[i1i2 ω

[rs]
i]j + 1

8
?H̄ii1i2 ρ̊

[rs]− 3
8 δi[i1 H̄i2]

j1j2 ω̊
[rs]
j1j2

− 9
8
?H̄j

[i1i2 ω̊
[rs]
i]j + 3

8 H̄ii1i2 ρ
[rs] , (4.10)

DFi ˚̃ωrsi1i2 ..=∇i ˚̃ωrsi1i2 +(iQi+∂i logA)˚̃ωrsi1i2 +?H̄j
i[i1 ω

(rs)
i2]j −H̄

j
i[i1 ω̊

(rs)
i2]j

=− i2
?Yii1i2

j1j2 ˚̃ωrsj1j2−2i δi[i1 Yi2] ρ̃
rs− 1

8
?H̄ii1i2 ρ

(rs)− 1
8 δi[i1 H̄i2]

j1j2 ω̊
(rs)
j1j2

− 3
8 H̄

j
[ii1 ω̊

(rs)
i2]j + 3

8 δi[i1
?H̄i2]

j1j2 ω
(rs)
j1j2

+ 9
8
?H̄j

[i1i2 ω
(rs)
i]j

+ 3
8 H̄ii1i2 ρ̊

(rs) , (4.11)

where we have used that (
∏
i Γi)Γxzσ± = ±σ± which is a consequence of Γ±σ± = 0 and

the chirality of the IIB spinors. The (reduced) holonomy of the minimal connection DF

can be computed as in previous cases yielding that it must be contained in (the connected
component of) ×2(U(1)×GL(60)).

Next, a basis in the space of odd-degree form bilinears of σ = σ+ spinors can be
chosen as

κrs = 〈σr,Γziσs〉 ei , κ̃rs = 〈σr,ΓziCσ̄s〉 ei ,
κ̊rs = 〈σr,Γxiσs〉 ei , ˚̃κrs = 〈σr ,ΓxiCσ̄s〉 ei ,

ψrs = 1
3! 〈σ

r,Γzi1i2i3 σs〉 ei1 ∧ ei2 ∧ ei3 , ψ̃rs = 1
3! 〈σ

r,Γzi1i2i3 Cσ̄s〉 ei1 ∧ ei2 ∧ ei3 .

(4.12)
The associated TCFH is

DFi κrsk ..= ∇iκrsk + ∂i logAκrsk −
i

4 Im{?Hi
j1j2ψ̃rskj1j2}

= − i6
?Yik

j1j2j3ψrsj1j2j3 + i

48 δik Im{Hj1j2j3 ψ̃rsj1j2j3}+ i

8 Im{Hj1j2
[i ψ̃

rs
k]j1j2}

+ 1
8 Re{?Hik

j˚̃κrsj } −
3
8 Re{Hik

j κ̃rsj } , (4.13)

DFi κ̊rsk ..= ∇i κ̊rsk + ∂i logA κ̊rsk + i

4 Im{?Hi
j1j2ψ̃rskj1j2}

= −iY jψrsikj + i

16 δik Im{?Hj1j2j3 ψ̃rsj1j2j3}+ 3i
8 Im{?Hj1j2

[iψ
rs
k]j1j2}

− 1
8 Re{?Hik

j κ̃rsj } −
3
8 Re{Hik

j˚̃κrsj } , (4.14)

DFi ψrsi1i2i3 ..= ∇i ψrsi1i2i3 + ∂i logAψrsi1i2i3 −
3i
2 Im{Hi[i1i2 κ̃

rs
i3]}+ 3i

8 Im{?Hi[i1i2 κ̃
rs
i3]}

− 3
8 Re{?Hi[i1

jψ̃rsi2i3]j}+ 9i
8 Im{?Hi[i1i2

˚̃κrsi3]}+ 9
8 Re{Hi[i1

j ψ̃rsi2i3]j}

= i ?Yii1i2i3
j κrsj + 6i δi[i1 Yi2 κ̊

rs
i3] −

3i
8 δi[i1 Im{Hi2i3]

j κ̃rsj }+ i

2 Im{H[i1i2i3 κ̃
rs
i] }

+ 9i
8 δi[i1 Im{?Hi2i3]

j˚̃κrsj } −
3i
2 Im{?H[i1i2i3

˚̃κrsi] } , (4.15)
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DFi κ̃rsk ..= ∇i κ̃rsk + (∂i logA+ iQi)κ̃rsi + 2i Yi ˚̃κrsk + i

4 H̄i
j1j2 ψ

[rs]
kj1j2

= i δik Y
j ˚̃κrsj + 2i Y[i ˚̃κrsk] + i

48 δik H̄
j1j2j3 ψ

[rs]
j1j2j3

+ i

8 H̄
j1j2

[i ψ
[rs]
k]j1j2 + 1

8
?H̄ik

j κ̊
[rs]
j − 3

8 H̄ik
j κ

[rs]
j , (4.16)

DFi ˚̃κrsk ..= ∇i ˚̃κrsk + (∂i logA+ iQi)̊κ̃rsi − 2i Yiκ̃rsk + i

4
?H̄i

j1j2 ψ
[rs]
kj1j2

= −i δik Y j κ̃rsj − 2i Y[i κ̃
rs
k] + 3i

48
?H̄j1j2j3 ψ

[rs]
j1j2j3

+ 3i
8
?H̄j1j2

[i ψ
[rs]
k]j1j2 −

1
8
?H̄ik

j κ
[rs]
j − 3

8 H̄ik
j κ̊

[rs]
j , (4.17)

DFi ψ̃rsi1i2i3 ..= ∇i ψ̃rsi1i2i3 + (∂i logA+Qi) ψ̃rsi1i2i3 + 3i ?Y j1j2
i[i1i2 ψ̃

rs
i3]j1j2

− 3i
2 H̄i[i1i2 κ

(rs)
i3] + 3i

8
?H̄i[i1i2 κ̊

(rs)
i3] −

9
8 H̄

j
i[i1ψ

(rs)
i2i3]j + 9i

8
?H̄i[i1i2 κ

(rs)
i3]

= i

2 δi[i1
?Y j1j2j3

i2i3] ψ̃
rs
j1j2j3 + 2i ?Y j1j2

[ii1i2 ψ̃
rs
i3]j1j2 −

3i
8 δi[i1 H̄i2i3]

j κ
(rs)
j

+ i

2 H̄[i1i2i3 κ
(rs)
i] + 9

4 δi[i2 H̄
j1j2

i3 ψ
(rs)
i1]j1j2 + 9

2 H̄
j
[i1i2 ψ

(rs)
i3i]j

+ 9i
8 δi[i1

?H̄j
i2i3] κ

(rs)
j − 3i

2
?H̄[i1i2i3 κ

(rs)
i] . (4.18)

The (reduced) holonomy of the minimal connection DF is included in (the connected
component of) GL(72)×GL(44).

5 The TCFHs of warped AdSk, k ≥ 5, backgrounds

5.1 The TCFH of warped AdS5 backgrounds

The fields of warped AdS5 backgrounds, AdS5 ×N5, are

g = 2 e+e− + (ez)2 +
2∑

a=1
(ea)2 + g(N5) ,

F = Y
[
e+ ∧ e− ∧ ez ∧ e1 ∧ e2 − dvol(N5)

]
, G = H , (5.1)

where Y is a function on N5 and H is a U(1)-twisted 3-form on N6. The components
(e+, e−, ez, ei) of pseudo-orthonormal frame are defined as in the previous cases with the
understanding that the warped factor A is a function of N5 and ei = eiIdy

I is an orthonormal
frame on N5, g(N5) = δijeiej , where yI are coordinates on N5. Furthermore, ea = Ae

z
` dxa,

where (u, r, z, xa), a = 1, 2, are the remaining coordinates of spacetime. The spacetime
metric can be put into the standard warped form after a coordinate transformation.

As in previous cases, the KSEs of the theory can be integrated over the (u, r, z, xa)
coordinates [29] and the Killing spinors, ε, can be expressed as, ε = ε(u, r, z, xa, σ±, τ±),
where σ± and τ± depend only on the coordinates of N5 and Γ±σ± = Γ±τ± = 0. Again the
integration over the z coordinate introduces a new algebraic KSE on σ± and τ± in addition
to those induced by the gravitino and dilatino KSEs of the theory. In particular, one finds
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that the gravitino KSE implies that ∇(±)
i σ± = 0 and ∇(±)

i τ± = 0 along N5, where the
supercovariant connections are

∇(±)
i ≡ ∇i ±

1
2 ∂i logA− i

2 Qi ±
i

2 ΓiY Γx1x2z +
(
− 1

96 (Γ /H)i + 3
32

/H i

)
C∗ , (5.2)

and the gamma matrices Γxa , a = 1, 2, are considered in the frame ea.
An argument similar to that used in the AdS3 and AdS4 cases leads to the conclusion

that it suffices to consider the TCFH of only the σ+ form bilinears. It is also known that
if σ+ is a Killing spinor, then Γx1x2σ+ is also a σ+-type of Killing spinor. Moreover, if
again σ+ is a Killing spinor, then vaΓxaΓzσ+ is a τ+-type of Killing spinor for any constant
vector v. After consideration of these properties of Killing spinors, one can conclude that it
suffices to consider the TCFH of the following basis in the space of the form bilinears

ρrs = 〈σr, σs〉 , ρ̃rs = 〈σr, Cσ̄s〉 ,
κrs = 〈σr,Γx1x2zΓi σs〉 ei , κ̃rs = 〈σr,Γx1x2zΓiCσ̄s〉 ei ,

ωrs = 1
2 〈σ

r,Γi1i2 σs〉 ei1 ∧ ei2 , ω̃rs = 1
2 〈σ

r,Γi1i2 Cσ̄s〉 ei1 ∧ ei2 , (5.3)

where ρ̃rs, κ̃rs,Re ρrs,Reκrs and Imωrs are symmetric while ω̃rs, Im ρrs, Im κrs and Reωrs

are skew-symmetric in the exchange of σr and σs spinors and σ+ = σ. For example, the
TCFH of the form bilinears that include 〈σr,ΓzΓi σs〉 ei and va〈σr,ΓaΓi σs〉 ei can be easily
computed form that of (5.3) form bilinears using the properties of the Killing spinors
mentioned above.

After a direct computation, the TCFH is

DFi ρrs ..= ∇i ρrs = −∂i logAρrs + 1
8 Re{?Hi

j κ̃rsj } −
3i
16 Im{Hi

j1j2 ω̃rsj1j2} , (5.4)

DFi κrsk ..= ∇i κrsk + ∂i logAκrsk −
i

2 Im{?Hi
j ω̃rskj}

= −i Y ωrsik + 1
8 Re{?Hik ρ̃

rs} − 3i
16 δik Im{?Hj1j2 ω̃rsj1j2}+ 3i

4 Im{?Hj
[i ω̃

rs
k]j}

− 3
8 Re{Hik

j κ̃rsj } , (5.5)

DFi ωrsi1i2 ..= ∇i ωrsi1i2 + ∂i logAωrsi1i2 − Re{Hj
i[i1 ω̃

rs
i2]j}+ i Im{?Hi[i1 κ̃

rs
i2]}

= −2i Y δi[i1κ
rs
i2] −

1
8 δi[i1 Re{Hi2]

j1j2 ω̃rsj1j2} −
3
8 Re{Hj

[i1i2 ω̃
rs
i]j}

+ 3i
4 δi[i1 Im{?Hi2]

j κ̃rsj }+ 9i
8 Im{?H[ii1 κ̃

rs
i2]}+ 3i

8 Im{Hii1i2 ρ̃
rs} , (5.6)

DFi ρ̃rs ..= ∇iρ̃rs + (iQi + ∂i logA) ρ̃rs = −i Y κ̃rsi + 1
8
?H̄i

j κ
(rs)
j

− 3
16 H̄i

j1j2 ω
(rs)
j1j2

, (5.7)

DFi κ̃rsk ..= ∇i κ̃rsk + (iQi + ∂i logA) κ̃rsk −
1
2
?H̄i

j ω
(rs)
kj

= −i Y δik ρ̃rs + 1
8
?H̄ik ρ

(rs) − 3
16 δik

?H̄j1j2 ω
(rs)
j1j2

+ 3
4
?H̄j

[i ω
(rs)
k]j

− 3
8 H̄ik

jκ
(rs)
j , (5.8)
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DFi ω̃rsi1i2 ..= ∇i ω̃rsi1i2 + (iQi + ∂i logA) ω̃rsi1i2 − H̄
j
i[i1 ω

[rs]
i2]j + ?H̄i[i1κ

[rs]
i2]

= − i2
?Yii1i2

j1j2 ω̃rsj1j2 −
1
8 δi[i1 H̄i2]

j1j2 ω
[rs]
j1j2
− 3

8 H̄
j
[i1i2ω

[rs]
i]j

+ 3
4 δi[i1

?H̄i2]
jκ

[rs]
j + 9

8
?H̄[i1i2 κ

[rs]
i] + 3

8 H̄ii1i2 ρ
[rs] , (5.9)

where we have used that (
∏
i Γi)Γx1x2zσ± = ±σ±. One can easily verify that the (reduced)

holonomy of the minimal TCFH connection DF is included in (the connected component
of) U(1)× SO(5)×GL(35)×GL(20).

5.2 The TCFH of warped AdS6 backgrounds

For warped AdS6 backgrounds, AdS6×N4, the 5-form field strength F vanishes, F = 0, and
the remaining fields are given as in (5.1), where now a = 1, 2, 3. The pseudo-orthonormal
frame is again given as in the AdS5 case with the difference that there is an additional
ea = Aez/`dxa frame, e3, associated with a new coordinate x3, and ei is an orthonormal
frame on N4.

The KSEs can again be integrated [29] over the coordinates (u, r, z, xa) and the Killing
spinors, ε, can be expressed in terms of the spinors σ± and τ± which have similar properties
to those of AdS5 backgrounds. Moreover, σ± and τ± satisfy two algebraic KSEs, one is as a
result of the gaugino KSE and the other arises during the integration over the z coordinate.
Furthermore, the gravitino KSE implies that ∇(±)

i σ± = 0 and ∇(±)
i τ± = 0 on N4, where

the supercovariant derivatives are

∇(±)
i ≡ ∇i ±

1
2 ∂i logA− i

2 Qi +
(
− 1

96 (Γ /H)i + 3
32

/H i

)
C ∗ . (5.10)

It turns out that if σ+ is a Killing spinor, then vaubΓxaxbσ+ is also a σ+-type of Killing
spinor for any constant vectors v and u. Also, if σ+ is a Killing spinor, then vaΓxaΓzσ+ is
a τ+-type of Killing spinor for any constant vector v.

The TCFH factorises on the subspaces of even- and odd-degree form bilinears on N4.
Because of the relation between the Killing spinors mentioned above, it suffices to consider
the basis

ρrs = 〈σr, σs〉 , ρ̃rs = 〈σr, Cσ̄s〉 ,
ρ̊rs = 〈σr,Γ(4) σ

s〉 , ˚̃ρrs = 〈σr,Γ(4)Cσ̄
s〉 ,

ωrs = 1
2 〈σ

r,Γi1i2 σs〉 ei1 ∧ ei2 , ω̃rs = 1
2 〈σ

r,Γi1i2 Cσ̄s〉 ei1 ∧ ei2 , (5.11)

with Γ(4) = Γz
∏3
a=1 Γxa , in the space of even-degree form bilinears. Note that ρ̃rs, ˚̃ρrs,

Re ρrs, Re ρ̊rs and Imωrs are symmetric, while ω̃rs, Im ρrs, Im ρ̊rs and Reωrs are skew-
symmetric in the exchange of σr and σs spinors. The TCFH of the rest of even-degree form
bilinears, e.g. of the form bilinears 〈σr, vaubΓabσs〉 and others, can be derived from that
of (5.11).
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A direct computation of the TCFH of (5.11) form bilinears reveals that

DFi ρrs ..= ∇i ρrs = −∂i logAρrs − 1
8 Re{?Hi ˚̃ρrs} −

3i
16 Im{Hi

j1j2 ω̃rsj1j2} f, (5.12)

DFi ρ̊rs ..= ∇i ρ̊rs = −∂i logA ρ̊rs − 1
8 Re{?Hi ρ̃

rs}+ 3i
8 Im{?Hj ω̃rsij } , (5.13)

DFi ωrsi1i2 ..= ∇i ωrsi1i2 + ∂i logAωrsi1i2 − Re{Hj
i[i1ω̃

rs
i2]j}

= −3
8 Re{Hj

[i1i2 ω̃
rs
i]j} −

1
8 δi[i1 Re{Hi2]

j1j2 ω̃rsj1j2} −
3i
4 δi[i1 Im{?Hi2] ˚̃ρrs}

+ 3i
8 Im{Hii1i2 ρ̃

rs} , (5.14)

DFi ρ̃rs ..= ∇i ρ̃rs + (iQi + ∂i logA) ρ̃rs = −1
8
?H̄i ρ̊

(rs) − 3
16 H̄i

j1j2 ω
(rs)
j1j2

, (5.15)

DFi ˚̃ρrs ≡ ∇i ˚̃ρrs + (iQi + ∂i logA) ˚̃ρrs = −1
8
?H̄i ρ

(rs) + 3
8
?H̄j ω

(rs)
ij , (5.16)

DFi ω̃rsi1i2 ..= ∇i ω̃rsi1i2 + (iQi + ∂i logA) ω̃rsi1i2 − H̄
j
i[i1 ω

[rs]
i2]j

= −3
8 H̄

j
[i1i2 ω

[rs]
i]j −

1
8 δi[i1 H̄i2]

j1j2 ω
[rs]
j1j2
− 3

4 δi[i1
?H̄i2] ρ̊

[rs]

+ 3
8 H̄ii1i2 ρ

[rs] , (5.17)

where we have used that (
∏
i Γi)Γx1x2x3zσ± = ±σ±. The (reduced) holonomy of the minimal

TCFH connection DF is included in (the connected component of) U(1)× SO(4)×GL(18).
Next, a basis in the space of odd-degree form bilinears is

κ = 〈σr,Γziσs〉 ei , κ̊ = 〈σr,Γx1x2x3iσ
s〉 ei ,

κ̃ = 〈σr,ΓziCσ̄s〉 ei , ˚̃κ = 〈σr,Γx1x2x3iCσ̄
s〉 ei , (5.18)

where ˚̃κ, Im κ and Re κ̊ are symmetric while κ̃, Reκ and Im κ̊ are skew-symmetric in the
exchange of the spinors σr and σs. There are more odd-degree form bilinears that one
can consider but their TCFH can be computed from the one of the basis above. The
TCFH reads

DFκrsk ..= ∇i κrsk + ∂i logAκrsk −
i

2 Im{?Hi ˚̃κrsk }

= −3i
8 δik Im{?Hj ˚̃κrsj } −

3i
4 Im{?H[i ˚̃κrsk]} −

3
8 Re{Hik

j κ̃rsj } , (5.19)

DF κ̊rsk ..= ∇i κ̊rsk + ∂i logA κ̊rsk + i

2 Im{?Hi κ̃
rs
k }

= 3i
8 δik Im{?Hj κ̃rsj }+ 3i

4 Im{?H[i κ̃
rs
k]} −

3
8 Re{Hik

j ˚̃κrsj } , (5.20)

DFi κ̃rsk ..= ∇i κ̃rsk + (∂i logA+ iQi) κ̃rsk = −3
8 H̄ik

j κ
[rs]
j , (5.21)

DFi ˚̃κrsk ..= ∇i ˚̃κrsk + (∂i logA+ iQi)˚̃κrsk = −3
8 H̄ik

j κ̊
(rs)
j . (5.22)
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The (reduced) holonomy of the minimal connection DF is included in (the connected
component of) ×2GL(12)× SO(4).

6 TCFHs and hidden symmetries

6.1 Symmetries of a spinning particle probe

A consequence of the TCFH is that the form bilinears of supersymmetric backgrounds
satisfy a generalisation of the CKY equation with respect to the TCFH connection [2].
This indicates that the form bilinears may generate (hidden) symmetries for certain probes
propagating on these backgrounds. This question has been investigated in [24–27]. Here we
shall explore the question on whether the TCFH on the internal spaces of AdS backgrounds
generate symmetries for spinning particle probes. This will be illustrated with examples
that include the maximally supersymmetric AdS5 solution as well as some other AdS2 and
AdS3 solutions that arise as near horizon geometries of intersecting IIB branes, see [32–35].

In all examples we consider the warp factor A to be constant. The dynamics of a
spinning particle propagating on such an AdS background factorises into one part that
involves the dynamics of the probe on the AdS subspace and another part that involves the
dynamics of the probe on the internal space. Focusing on the latter, the action of such a
spinning particle probe can be described as

A = − i2

∫
dτ dθ gIJ Dy

I ∂τy
J , (6.1)

where y = y(τ, θ) is a superfield with τ and θ the even and odd coordinates of the worldline
superspace, and D is the superspace derivative satisfying D2 = i∂τ .

The symmetries of (6.1) that concern us here are those generated by forms on the
internal space N . Given such a form β the above action is invariant under the infinitesimal
transformation

δyI = αβIJ1...Jk−1Dy
J1 · · ·DyJk−1 , (6.2)

provided β is a KY form, where α is an infinitesimal parameter.
It is clear that not all Killing spinor form bilinears generate symmetries for the

action (6.1). This is because although they are CKY forms with respect to the TCFH
connection, they are not KY forms which is more restrictive. However, we shall demonstrate
in many examples below that the TCFH simplifies on special supersymmetric backgrounds
and the form bilinears become KY (or CCKY) forms which in turn generate symmetries for
the action (6.1).

6.2 The maximally supersymmetric AdS5 solution

The only non-vanishing form field strength of the AdS5 × S5 maximally supersymmetric
solution is the 5-form flux F which is determined in terms of the (constant) function Y on
the internal space S5. The IIB scalars as well as the warped factor A are constant. Also,
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without loss of generality, one can set A = 1. In this case, the TCFH dramatically simplifies
and yields

DFi ρrs ..= ∇i ρrs = 0 , DFi κrsk ..= ∇i κrsk = −i Y ωrsik ,
DFi ωrsi1i2 ..= ∇i ωrsi1i2 = −2i Y δi[i1κ

rs
i2] , DFi ρ̃rs ..= ∇iρ̃rs = −i Y κ̃rsi ,

DFi κ̃rsk ..= ∇i κ̃rsk = −i Y δik ρ̃rs , DFi ω̃rsi1i2 ..= ∇i ω̃rsi1i2 = − i2
?Yii1i2

j1j2 ω̃rsj1j2 . (6.3)

Clearly, the (reduced) holonomy of the TCFH connection is included in SO(5). Furthermore,
κ, ?ω, ?κ̃ and ω̃ are KY forms on S5 and so generate symmetries for the spinning particle
action (6.1), where the Hodge duality operation has been taken over S5. As the IIB
scalars are constant, the U(1) twist of ρ̃, κ̃ and ω̃ vanishes and all of them are (standard)
forms on S5.

6.3 AdS3 solution from strings on 5-branes

Taking the IIB 5-form flux to vanish and the IIB scalars to be constant, an ansatz that
includes the near horizon geometry of a fundamental (D-) string on a NS5- (D5-) brane is

g = g`(AdS3) + g(S3) + g(R4) , G = p dvol`(AdS3) + q dvol(S3) , (6.4)

where g`(AdS3) (g(S3)) and dvol`(AdS3) (dvol(S3)) is the standard metric and associated
volume form on AdS3 (S3) with radius ` (unit radius), respectively, g(R4) is the Euclidean
metric of R4 and p, q ∈ C. As the 5-form vanishes and the IIB scalars are constant, one has
Y = 0 and ξ = Q = 0. Moreover, without loss of generality, one can set A = 1. From the
ansatz above H = q dvol(S3) and Φ = q. See [32–35] for an extensive discussion of the near
horizon geometries of intersecting branes [36–38].

To determine the constants9 p, q and `, the field equation10 of the IIB 1-form flux,
H2 = 6Φ2, gives q2 = p2. Next, the Einstein field equation along S3 and the warp factor
field equation

RS
3

αβ = 1
4 H̄(α

γζHβ)γζ + 1
8‖Φ ‖2δαβ −

1
48 ‖H ‖

2δαβ ,

3
8 ‖Φ ‖2 + 1

48 ‖H ‖
2 − 2`−2 = 0 , (6.5)

respectively, give `2 = 1 and |p|2 = 4, i.e. the AdS3 and S3 subspaces have the same radius.
The dilatino KSE, A(+)σ+ = 0, with

A(+) = −1
4 ΦΓz + 1

24
/H , (6.6)

9We use the approach of [29] to investigate the KSEs of AdS backgrounds as it has the advantage of
deriving the results from first principles without any additional assumptions, like for example the factorisation
the Killing spinors.

10This corrects a sign in the field equation for ξ in [29] for warped AdS3 backgrounds. Although a
modification in the analysis of some cases in [31] is needed, it does not affect the final conclusion.
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gives the condition ΓzΓ(3)σ+ = (q/p)σ+, where Γ(3) is the product of the three gamma
matrices along the orthonormal directions tangent to the 3-sphere. The additional algebraic
KSE [29], Ξ+σ+ = 0, with

Ξ+ = − 1
2` +

( 1
96 Γz /H + 3

16 Φ
)
C∗ , (6.7)

which arises from the integration of gravitino KSE along z, yields the relation Cσ̄+ = (2/q)σ+.
Therefore |q| = 2 as expected.

Furthermore, the gravitino KSE along R4 implies that the Killing spinors σ+ do not
depend on the coordinates of R4. Using these, the gravitino KSE along S3 can be written
as

∇(+)
α = ∇S3

α −
1
2ΓzΓα , (6.8)

and does not impose any additional conditions on σ+, where we have used both ΓzΓ(3)σ+ =
(q/p)σ+ and Cσ̄+ = (2/q)σ+. As a consequence, there are no additional conditions on p
and q and therefore there is a solution for any p ∈ C such that |p| = 2 and q = ±p. From
the analysis above, it is clear that the KSEs on σ+ admit 4 linearly independent solutions.
This is also the case for the KSEs on the remaining σ− and τ± spinors. As a result, all these
solutions admit 16 Killing spinors, i.e. they preserve 1/2 of supersymmetry as expected.

Next consider the form bilinears with components only along S3. Because of Cσ̄+ =
(2/q)σ+, the φ̃ bilinears are not linearly independent from the φ bilinears, where φ stands
for all bilinears. It is easy to see that κ is a KY form, while ψ and ω are CCKY forms.
Therefore ∗ψ and ∗ω are also KY forms, where the duality operation has been taken over
S3. Hence, κ and ∗ω generate symmetries for the particle action11 (6.1) restricted on S3.

6.4 AdS3 solution from two intersecting D3-branes

An ansatz which includes the near horizon geometry of two D3-branes intersecting on a
1-brane is

g = g`(AdS3) + g(R4) + g(S3) , F = dvol`(AdS3) ∧ Y − ?7Y , (6.9)

whereH,Φ vanish, the scalar fields are constant and so Q, ξ = 0, Y = p dx1∧dx2+q dx3∧dx4,
p, q ∈ R, is a 2-form on R4 with Cartesian coordinates (x1, . . . , x4). The metrics g`(AdS3),
g(R4) and g(S3), and volume form dvol`(AdS3) have already been described in the previous
example. We have also set A = 1. To specify the solution, we have to determine the
parameters `, p and q of the ansatz.

The field equation of the warp factor, Y 2 = `−2, as well as the Einstein field equation,
R

(7)
ij = 2Y 2δij − 8Y 2

ij , restricted along R4 give p2 + q2 = 1/2 and ` = 1, i.e. AdS3 has
the same radius as S3. The algebraic KSE [29], Ξ(+)σ+ = 0, has solutions provided that
Γ12σ+ = −iλσ+, Γ34σ+ = −iµσ+ and that λp + µq = 1, where λ, µ = ±1. Using this
equation together with the gravitino KSE along R4, one finds that p = λ/2 and q = µ/2.

11For the near horizon geometry of a fundamental string on a NS5-brane, one can consider other probes like
a spinning particle probe with a 3-form coupling as well as a fundamental string probe with a Wess-Zumino
term. In such a case, the form bilinears are covariantly constant with respect to a connection with torsion
and generate symmetries for these probe actions [39].
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Furthermore, the supercovariant derivative along S3 is

∇(+)
α = ∇S3

α −
1
2ΓzΓα , (6.10)

and the associated KSE does not impose any additional conditions on σ+. As a consequence,
the KSEs on σ+ admit 4 linearly independent solutions. A similar analysis reveals that
this is the case for the remaining KSEs on σ− and τ±. Thus the background preserves
16 supersymmetries.

Considering the form bilinears along S3, a direct computation of the TCFH connection
using (6.10) reveals that κ and κ̃ are KY forms, ω and ω̃ are CCKY forms, and ψ and ψ̃
are parallel, i.e. the latter are proportional to the volume form of S3. As a consequence, all
of them or their duals on S3 generate symmetries for the probe action (6.1).

6.5 AdS2 solution from four intersecting D3-branes

An ansatz that includes the near horizon geometry of four intersecting D3-branes on a
0-brane solution is

g = g`(AdS2) + g(S2) + g(R6) , F = dvol`(AdS2) ∧ Y + ?8Y , (6.11)

with H,Φ, ξ,Q = 0, i.e. the scalar fields are constant, where

Y = p dx1 ∧ dx2 ∧ dx3 + q dx1 ∧ dx4 ∧ dx5 + r dx2 ∧ dx4 ∧ dx6

+ s dx3 ∧ dx5 ∧ dx6 , (6.12)

p, q, r, s ∈ R, is a 3-form on R6 with Cartesian coordinates (x1, . . . , x6). The metrics
g`(AdS2), g(S2) and g(R6) and volume form dvol`(AdS2) are defined in an analogous way
to those described for the AdS3 backgrounds in previous sections. Again, we set A = 1.

To find the values of the constants p, q, r, s, ` such that the above ansatz is a solution,
consider the Einstein equation R

(8)
ij = −4Y 2

ij + 2/3 δijY 2. In particular restricting this
equation on R6, we find that p2 = q2 = r2 = s2. Furthermore, the warp factor field equation
2/3Y 2 = `−2 gives 16p2 = `−2. Next restricting the Einstein equation on S2, we have that
` = 1 which in turn gives p2 = q2 = r2 = s2 = 1/16. This specifies the solution.

It remains to count the number of supersymmetries preserved by the background.
Restricting the gravitino KSE

∇(+)
i η+ = ∇iη+ −

i

4
/Y iη+ + i

12
/ΓY iη+ = 0 (6.13)

along R6, we get the conditions

(pΓ23 + qΓ45 − rΓ1246 − sΓ1356) η+ = 0 ,
(pΓ31 + rΓ46 − qΓ2145 − sΓ2356) η+ = 0 ,
(pΓ12 + sΓ56 − qΓ3145 − rΓ3246) η+ = 0 . (6.14)

These can be solved by decomposing η+ into the eigenspaces of Γ2345 and Γ1346 as Γ2345η+ =
λη+, and Γ1346η+ = ζη+, where λ, ζ = ±1. In such a case, the above equations can be
solved to find

q = −λp , r = ζp , s = ζλp . (6.15)
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Clearly, there are solutions to the field equations which are not supersymmetric. Next, the
gravitino KSE along S2 yields

∇S2
α η+ + 2ipΓαΓ123η+ = 0 , (6.16)

and does not impose any additional conditions on η+. Therefore, the KSEs on η+ have 4
linearly independent solutions. A similar analysis reveals that the KSEs on η− have also 4
linearly independent solutions. As a result, the background preserves 1/4 of supersymmetry
as expected.

Considering the form bilinears restricted on S2, it is easy to see that ω is a KY form
while ω̃ is a parallel form on S2 and so the latter is proportional to the volume form. Both
generate symmetries for the spinning particle action (6.1).

7 Concluding remarks

We have presented the TCFHs on the internal space of all IIB AdS backgrounds. Therefore,
we have demonstrated that all Killing spinor form bilinears satisfy the CKY equation
with respect to the TCFH connection. We have also investigated some of the properties
of the TCFHs we have found, like for example the (reduced) holonomy of the TCFH
connections. Moreover, we have given some examples of solutions for which the form
bilinears are KY and CCKY forms and therefore generate symmetries for spinning particle
probes propagating on the internal spaces of these backgrounds. These solutions include the
maximally supersymmetric AdS5 solution as well as the near horizon geometries of some
intersecting IIB branes.

Although we have presented some key examples which illustrate the close relationship
between TCFHs and symmetries for certain particle probes propagating on supersymmetric
backgrounds, this investigation has proceeded on a case by case basis. In particular, there is
not a systematic way to relate the conditions on the Killing spinor form bilinears described
by the TCFH with the invariance conditions of certain probes propagating on the associated
supersymmetric backgrounds. Although the TCFHs are determined by the KSEs of the
supergravity theory under investigation given a choice of form bilinears and that of the TCFH
connection, there is a plethora of actions with different couplings and worldline fields that
describe the dynamics of spinning particle type of probes propagating on supersymmetric
backgrounds, see [40]. Each such action gives rise to different invariance conditions for
transformations generated by Killing spinor form bilinears. Although some such probe
actions have been considered before in this context [24, 26], a systematic understanding of
the relation between TCFHs and invariance conditions for probe actions is still missing,
and it will be considered in the future.

A Notation and conventions

Let φ be a k-form φ ∈ Ωk(M) on a n-dimensional manifold N with metric g. Then

φ = 1
k! φi1...ik ei1 ∧ · · · ∧ eik , (A.1)
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and the components of its exterior derivative, dφ, are (dφ)i1...ik+1 = (k + 1)∇[i1φi2...ik+1],
where i = 1, . . . , n. The components of the Hodge dual, ?φ, of φ are

?φi1...in−k
= 1
k! φj1...jkε

j1...jk
i1...in−k

, (A.2)

where ε is the Levi-Civita tensor. Note that φ is self-dual if ?φ = φ, and anti-self-dual if ?φ =
−φ. Furthermore, for φ complex, we have, ‖φ ‖2 = φ̄i1...ikφ

i1...ik , and φ2 = φi1...ikφ
i1...ik .

The Clifford algebra element associated with a form φ is

6φ = φi1...ikΓi1...ik , (A.3)

and
6φi1 = φi1i2...ikΓi2...ik , (Γ6φ)i1 = Γi1 i2...ik+1φi2...ik+1 , (A.4)

where Γi is a basis in the Clifford algebra, ΓiΓj + ΓjΓi = 2δij1.

B Complete integrability of AdS geodesic flow

It is well known that the geodesic flow equations on AdSn are separable and can be integrated.
Here we shall prove the Liouville integrability of the geodesic flow by explicitly presenting
the independent charges in involution. It is well-known that AdSn, n ≥ 2, can be described
as hyper-surface

ηabx
axb = −`2 , (B.1)

in Rn−1,2, where η is the mostly plus signature standard metric on Rn−1,2 and ` is the
radius. The metric on AdSn is the restriction of η on the hyper-surface. The Killing vector
fields on AdSn written in Rn−1,2 Cartesian coordinates are

kab = xa∂b − xb∂a , (B.2)

where xa = ηabx
b. Observe that kab are orthogonal to the radial direction xc. Setting

Qab = xapb − xbpa, the n conserved charges

Dm = 1
4

∑
a,b≥n+2−m

(Qab)2 , m = 2, . . . , n+ 1 , (B.3)

are independent and in involution. Therefore, the geodesic flow on AdSn is completely
integrable as expected. Observe that −Dn+1 is the Hamiltonian of the geodesic system on
AdSn as

−Dn+1 = −1
4(xapb − xbpa)(xapb − xbpa) = −1

2ηabx
axbηcdpcpd = `2

2 η
cdpcpd , (B.4)

where we have used that xapa = 0.
As the geodesic equation on AdSk × Sm × Rn factorises into those on AdSk, Sm and

Rn, respectively, the Liouville integrability of the geodesic flow on AdSk × Sm ×Rn reduces
to that of the geodesic flow on each of the three subspaces. The Liouville integrability of
the geodesic flow on AdSk has been demonstrated above and that of the round Sm has been
considered before; for the conserved charges in involution see [25, 26]. This demonstrates
that the geodesic flow on all AdSk × Sm × Rn backgrounds is Liouville integrable.
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C The TCFH of IIB theory

In [26], we have given the TCFH of IIB supergravity in the string frame. As we have used
the Einstein frame for determining the TCHFs of IIB AdS backgrounds, we also present
the TCFH of IIB theory in Einstein frame for completeness. A basis in the space of form
bilinears, up to a Hodge duality, can be chosen as

krs = 〈εr,ΓP εs〉D eP , k̃rs = 〈εr,ΓP Cε̄s〉D eP ,

πrs = 1
3! 〈ε

r,ΓP1P2P3 ε
s〉D eP1 ∧ eP2 ∧ eP3 , π̃rs = 1

3! 〈ε
r,ΓP1P2P3 Cε̄

s〉D eP1 ∧ eP2 ∧ eP3 ,

τ rs = 1
5! 〈ε

r,ΓP1...P5 ε
s〉D eP1 ∧ · · · ∧ eP5 , τ̃ rs = 1

5! 〈ε
r,ΓP1...P5 Cε̄

s〉D eP1 ∧ · · · ∧ eP5 ,

(C.1)

where 〈·, ·〉D is the Dirac inner product, eP is a spacetime frame and εr is a spin(9, 1)
complex Weyl spinor, obeying the chirality condition Γ0...9 ε

r = εr. The gravitino KSE
of IIB supergravity, DM εr = 0, is the parallel transport equation of the supercovariant
derivative

DM ≡ ∇̃M + i

48ΓN1...N4FN1...N4M−
1
96
(
ΓMN1N2N3GN1N2N3 − 9ΓN1N2GMN1N2

)
C∗ , (C.2)

where
∇̃M = DM + 1

4ΩM,ABΓAB , DM = ∂M −
i

2QM , (C.3)

is the spin connection, ∇M = ∂M + 1
4ΩM,ABΓAB, twisted with a real U(1) connection Q

that depends on the IIB scalars. Moreover, F is real, whereas G is complex. We choose
the spacetime orientation as ε0...9 = 1 and the self-duality condition on F is expressed as
FM1...M5 = − 1

5!εM1...M5
N1...N5FN1...N5 . The TCFH with respect to the minimal connection is

DFMkrsP ..=∇MkrsP + i

4 Im{GN1N2
M π̃rsPN1N2}=− i6 FMP

N1N2N3 πrsN1N2N3

− 1
48 Re{GN1N2N3 τ̃ rsMPN1N2N3}−

3
8 Re{GMP

N k̃rsN }

+ i

48 gMP Im{GN1N2N3 π̃rsN1N2N3}+ i

8 Im{GN1N2
[M π̃rsP ]N1N2

} , (C.4)

DFMπrsP1P2P3
..=∇MπrsP1P2P3 + i

4 Im{GMN1N2 τ̃ rsP1P2P3N1N2}−
3i
2 Im{GM [P1P2 k̃

rs
P3]}

+ 3
2 Re{GNM [P1 π̃

rs
P2P3]N}

= i

8 gM [P1 F
N1...N4

P2 τ
rs
P3]N1...N4

+ i

2 F
N1N2N3

[P1P2 τ
rs
P3M ]N1N2N3

− iFP1P2P3M
N krsN + i

16 Im{GN1N2N3 gM [P1 τ̃
rs
P2P3]N1N2N3

}

+ i

4 Im{GN1N2
[M τ̃

rs
P1P2P3]N1N2

}− 3i
8 gM [P1 Im{GP2P3]

N k̃rsN }

+ i

2 Im{G[P1P2P3 k̃
rs
M ]}−

1
48 Re{?GMP1P2P3

N1N2N3 π̃rsN1N2N3}

− 3
8 gM [P1 Re{GP2

N1N2 π̃rsP3]N1N2
}− 3

4 Re{GN [P1P2 π̃
rs
P3M ]N} , (C.5)
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DFMτ rsP1...P5
..=∇Mτ rsP1...P5−20iFNM [P1P2P3 π

rs
P4P5]N + 5

2 Re{GNM [P1 τ̃
rs
P2...P5]N}

− 5i
4 Im{?GN1N2

M [P1...P4 π̃
rs
P5]N1N2

}−5i Im{GM [P1P2 π̃
rs
P3P4P5]}

=−15iFN [MP1P2P3 π
rs
P4P5]N +10i gM [P1 FP2P3P4

N1N2 πrsP5]N1N2

− 1
8 Re ?GP1...P5M

N k̃rsN −
5
4 gM [P1 Re{GP2

N1N2 τ̃ rsP3P4P5]N1N2
}

− 15
8 Re{GN [P1P2 τ̃

rs
P3P4P5M ]N}+ 5

2 gM [P1 Re{GP2P3P4 k̃
rs
P5]} ,

− 15i
4 gM [P1 Im{GP2P3

N π̃rsP4P5]N}+ 5i
2 Im{G[P1P2P3 π̃

rs
P4P5M ]}

− 5i
16 gM [P1 {

?GP2...P5]
N1N2N3 π̃rsN1N2N3}

+ 9i
8 Im{?GN1N2

[P1...P5 π̃
rs
M ]N1N2

} , (C.6)

DFM k̃rsP ..=∇M k̃rsP + iQM k̃rsP −
i

24 FM
N1...N4 τ̃ rsPN1...N4 + 1

4 ḠM
N1N2 π

(rs)
PN1N2

=− 1
48 Ḡ

N1N2N3 τ
(rs)
MPN1N2N3

+ 1
48 gMP Ḡ

N1N2N3 π
(rs)
N1N2N3

+ 1
8 Ḡ

N1N2
[M π

(rs)
P ]N1N2

− 3
8 ḠMP

N k
(rs)
N , (C.7)

DFM π̃rsP1P2P3
..=∇M π̃rsP1P2P3 + iQM π̃rsP1P2P3 + 1

4 ḠM
N1N2 τ

[rs]
P1P2P3N1N2

+ 3
2 Ḡ

N
M [P1 π

[rs]
P2P3]N −

3
2 ḠM [P1P2 k

[rs]
P3]

= i

2 gM [P1 FP2P3]
N1N2N3 π̃rsN1N2N3−2iFN1N2

[P1P2P3 π̃
rs
M ]N1N2

−3iFN1N2
M [P1P2 π̃

rs
P3]N1N2

− 1
48

?ḠMP1P2P3
N1N2N3 π

[rs]
N1N2N3

+ 1
16 Ḡ

N1N2N3 gM [P1 τ
[rs]
P2P3]N1N2N3

− 1
4 Ḡ

N1N2
[P1

[rs]τP2P3M ]N1N2

− 3
8 gM [P1 ḠP2

N1N2 π
[rs]
P3]N1N2

− 3
4 Ḡ

N
[P1P2 π

[rs]
P3M ]N

− 3
8 gM [P1 ḠP2P3]

N k
[rs]
N + 1

2 Ḡ[P1P2P3 k
[rs]
M ] , (C.8)

DFM τ̃ rsP1...P5
..=∇M τ̃ rsP1...P5 + iQM τ̃ rsP1...P5−10iFM [P1...P4 k̃

rs
P5] +5iFN1N2

M [P1P2 τ̃
rs
P3P4P5]N1N2

− 5
4
?ḠN1N2

M [P1...P4 π
(rs)
P5]N1N2

+ 5
2 Ḡ

N
M [P1 τ

(rs)
P2...P5]N −5 ḠM [P1P2 π

(rs)
P3P4P5]

=−5i gM [P1 FP2...P5]
N k̃rsN +6iF[P1...P5 k̃

rs
M ]−

1
8
?ḠP1...P5M

N k
(rs)
N

− 5
4 gM [P1 ḠP2

N1N2 τ
(rs)
P3P4P5]N1N2

− 15
8 ḠN [P1P2 τ

(rs)
P3P4P5M ]N

− 15
4 gM [P1 ḠP2P3

N π
(rs)
P4P5]N + 5

2 Ḡ[P1P2P3 π
(rs)
P4P5M ] +

5
2 gM [P1 ḠP2P3P4 k

(rs)
P5]

− 5
16 gM [P1

?ḠP2...P5]
N1N2N3 π

(rs)
N1N2N3

+ 9
8
?ḠN1N2

[P1...P5 π
(rs)
M ]N1N2

, (C.9)

where we have not made a sharp distinction between spacetime and frame indices.
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Following the same prescription as in the AdS backgrounds and after decomposing the
form bilinears into the real and the imaginary parts, one finds that the (reduced) holonomy
of the TCFH connection is included in (the connected component of) SO(9, 1)×GL(518)×
GL(496). This result agrees with the calculation in [26] performed in the string frame.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited. SCOAP3 supports
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