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1 Introduction

Recently it has been demonstrated that the conditions imposed on the Killing spinor
form bilinears, as a consequence of the gravitino Killing spinor equation (KSE) of any
supergravity theory,! can be organised as a twisted covariant form hierarchy (TCFH) [1, 2].

!The supergravity theory may include higher curvature corrections and be defined on a spacetime of
any signature.



This means that there is a connection D7 on a suitable space of spacetimes forms such that
schematically

DiQ=ixP+XAQ, (1.1)

for any spacetime vector field X, where € is a multi-form spanned by the form bilinears, and
P and Q are multi-forms that depend on the form bilinears and the (form) fluxes F of the
theory. The TCFH connection D7 is not necessarily form degree preserving. A consequence
of the existence of the TCFHs is that the form bilinears of all supergravity theories satisfy
a generalisation of the conformal Killing-Yano? (CKY) equation with respect to D7

It is well-known that KY forms are associated with conservation laws of the geodesic
flow and the integrability of some classical field equations on some black hole spacetimes [3—
11], see also reviews [12, 13] and references therein. They also generate symmetries [14]
for spinning particles probes [15] propagating on a spacetime. For other applications,
see [16-23]. Therefore, it is natural to raise the question on whether the form bilinears
generate symmetries for various particle probes propagating on supersymmetric spacetimes.
Much partial progress has been made to answer this question in [24-27].

In this paper, we shall demonstrate that the conditions imposed on the Killing spinor
form bilinears on the internal space of all IIB AdS backgrounds by the gravitino KSE of
the theory can be organised as a TCFH. In particular, we shall determine the TCFH
connection D7 and investigate some of its properties like its (reduced) holonomy on generic
backgrounds. In addition, we demonstrate that the form bilinears of some AdS backgrounds,
which include the maximally supersymmetric AdSs solution as well as the near horizon
geometries of some intersecting brane configurations, are either KY or CCKY? forms and
therefore generate symmetries for some spinning particle probes propagating on the internal
space of these backgrounds.

This paper is organised as follows. In sections 2, 3, 4 and 5, we present the TCFHs
on the internal spaces of AdSy backgrounds, k > 2, and describe some of the properties
of their TCFH connections. In section 6, we present some examples of AdS backgrounds
whose Killing spinor form bilinears generate symmetries for spinning particle probes, and
in section 7 we give our conclusions. In appendix A, we describe our conventions. In
appendix B, we prove the Liouville integrability of geodesic flow on all AdS; x S™ x R™
backgrounds, and in appendix C we give the TCFH of IIB supergravity in the Einstein frame.

2 The TCFH of warped AdS, backgrounds

2.1 Fields and Killing spinors

Let g be the spacetime metric, and G, F' and P be the U(1)-twisted 3-form, 5-form and U(1)-
twisted 1-form field strengths of IIB supergravity [28] in the Einstein frame, respectively.

2The standard CKY condition on a k-form w is Vxw = ixdw — =51 X Adw, where V is the Levi-Civita
connection of a metric g. If w is co-closed, dw = 0, then w is a Killing-Yano (KY) form, while, if w is closed,
then w is a closed CKY (CCKY) form.

3The Hodge dual of a CCKY form is a KY form and vice versa.



These fields for warped AdSs backgrounds, AdSy x., N®, can be expressed [29] as

g=2ete” + g(N®),
F=e"Ne AY+™Y, G=etrhe AN®O+H, P=¢, (2.1)

where g(N®) is a metric on N® Y is a 2-form on the internal space N®, ® and ¢ are
U(1)-twisted 1-forms and H is a U(1)-twisted 3-form on N®. The pseudo-orthonormal
frame, (e*,e™,e’), on the spacetime is expressed as

1 , .
et =du, e =dr+rh— 57’257214*2 du, e =erdy’, (2.2)

with e’ an orthonormal frame on N®, g(N®) = §;;e'e/, and h = —2A"'dA, where A is
the warped factor, y! are the coordinates of N® and (u,r) are the remaining spacetime
coordinates. It can be seen after a coordinate transformation that the spacetime metric can
be written in the standard warped form g = A%gy(AdSs) + g(N?®), where g,(AdSs) is the
standard metric on AdSo with radius £.

The gravitino and dilatino Killing spinor equations (KSEs) of IIB supergravity can
be integrated over the coordinates (u,r) [29]. One finds that the Killing spinors e can be
expressed as € = €(u, 7,7+ ), where* T.ne = 0 and 7+ depend only on the coordinates y of
N8, In addition, as a consequence of the gravitino KSE of the theory, one finds that 7.
satisfy the KSEs

Vi =0, (2.3)

on N®, where the supercovariant derivatives are

@ o (_to 4l Ty Lt )
V= Vit (-3 Qi 3alos AT (Y ik 5 (TY)

1 3 1
L (TB) F — & — —

(CH)i+ 55 1) O, (2.9
V is the connection induced on the spin bundle from the Levi-Civita connection of g(N?®),
and the anti-linear operation® C* commutes with all the gamma matrices and squares to
the identity map, i.e. C'* can be used as a spin invariant reality condition. @ is a U(1)
connection on N® constructed from the scalar fields of IIB theory. The spinor 7+ satisfy
additional conditions on N® arising from the dilatino KSE of IIB supergravity. These
conditions will be explored later in examples that we shall present but they are not essential
in the investigation of the TCFH of the warped AdSsy backgrounds.

“From here on, all the gamma matrices are taken with respect to a spacetime pseudo-orthonormal frame
as that stated above.

"We follow the spinor conventions of [30] appendix B, see also appendix A. In the basis of that paper C' =
TCe7s9.



2.2 The TCFH and holonomy

To present the TCFH of AdSs backgrounds consider some spinors 7%, r = 1,...,N/2, and
construct a basis® in the space of form bilinears on the internal space N® as

Py =, ni), = (0, CnY),
1 A . 1 A A
wy = 9 (g, Tiyiy ni) € Ne™, 5 (s Tiye, CNL) € N,
1 . X 1 )
:1;:8 - E <77T:i:7 I‘2'14“2'4 77:S|:> et A Ne ) i - 4| <77:|:7 F’u Jiq C77:I:> YA Ne™ ’ (2'5)

where C *ny = Cny, with 774 the complex conjugate of ny and (time-) space-like gamma
matrices are (anti-)Hermitian with respect to the inner product (-,-). In fact , @ and ¢
are U(1)-twisted forms on N®. Moreover, (; is self-dual, while (_ is anti-self-dual, on N®,
and similarly for ¢, and ¢_. This is a consequence of the chirality of 7y as IIB spinors
and the conditions I'tn+ = 0 which in turn imply that (H?Z1 Ii)ne = £ny. Furthermore,
Rep’?, Imw}®, Re ¢}, g5 and (}® are symmetric, while Im p%*, Rew’?, Im ¢}° and &F° are
skew-symmetric, in the exchange of the spinors 1L and ni.

Assuming that 7%, are Killings spinors on N® i.e. allowing 77, to satisfy (2.3), and using
the identity

where ¢ stands for any of the form blinears above, one finds after some extensive Clifford
algebra computation that

D7 s —Vzpi = ¥0; logAprs:I: yiiis s 43 o Re{@iy

ih]z

Re{Hhhh Cizgug]g } :F Im{q)] ‘:};SU}

37/ ~ TS
717 Im{H Jrjz wi]l]z} (27)

+)F
D( ) Wi ZZV z lgia IOgAwizlzg $ZYJ1]21Ci1112]1j2 Im{H ]1]2§i1112j1j2}

7 +i10

. 3Z 117 rs
=T YmiQp :I: 3 YJlJ ja § 5; s Cizg]j1j2j3 T 0 Yz i giil'£2]j1j2

Z ~Ts 1J2
Im{fbjgimm}ilé Im{CIDlQ]pi 24 8ifiy Im{H’ P20 (i}

3 -
+E Im{H]lj? [i1 C;‘iQ’i]jl]Q}—l— Im{H”l'L2 ~rs}:|: 51[11 Re{(Iﬂ ®;i2 }
3 ~TS 1 * 1J2 ~ T8 1 172 ~rs
¢§ Re{q’[il Wim‘]}‘FE Re{ Hiiug] J Wimg} Oifiy Re{Hz = Ot

J1J2

3 j ~TS
7% Re{HJ[ilzé wj:i]j}ﬂ (2'8)

5The bases in the space of form bilinears that we are considering are up to a Hodge duality operation on
the internal space.
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Clearly, the conditions on the form bilinears have been arranged as a TCFH as defined
in (1.1) with connection D)7 In fact, the TCFH above has been given in terms of the



minimal connection, see [2]. A consequence of the TCFH above is that the form bilinears
satisfy a generalisation of the CKY equation with respect to D(F)7

(H)F notice

To investigate the (reduced) holonomy of the minimal TCFH connection D
that the TCFH factorises into two parts. One part is spanned by the form bilinears
symmetric in the exchange of /. and n7 spinors and the other part is spanned by the form
bilinears which are skew-symmetric in the exchange of 7!, and n% spinors. Furthermore,
DE)F acts trivially on the scalars p while it acts as a U(1) connection on the scalars
p. A consequence of this is that the (reduced) holonomy factorises and it is included in
(the connected to the identity component of) U(1) x GL(133) x GL(119). Note that the
rank of the bundle of symmetric and skew-symmetric form bilinears in the exchange of 1/,
and n% is 136 and 120, respectively. One can also consider the holonomy of the maximal
TCFH connection, see [2]. As this acts non-trivially on the scalars, its reduced holonomy is
included in (the connected component of) GL(136) x GL(120).

The factorisation of the holonomy of the TCFH connections can be also seen from the
decomposition of a product of spinor representations of spin(8) in terms of forms. Each n)
spinor can be viewed as a complex chiral spin(8) spinor. The product of two complex chiral
representations, Az (C), of spin(8) decomposes as

®2 AF(C) = A°(C®) @ A%(C®) @ A*E(CP), (2.13)

in terms of form representations, where A*+(C®) (A*~(C®)) is the space of the (anti-)
self-dual 4-forms on C®. Then notice that the dimension over the real numbers of the
symmetric product, S?(A5(C)), and skew-symmetric product, A2(AZ(C)), of two AT (C)
representations is 136 and 120, respectively. This is exactly the rank of the bundle of the
symmetric and skew-symmetric form bilinears in the exchange of 1L and n% spinors we
have considered in the computation of holonomy of TCFH connections. The right-hand-side
of (2.13) spans all form bilinears.

The description of the holonomy of the TCFH connections we have presented above
applies to generic backgrounds. As we shall see later for special backgrounds, where some
of the form field strengths vanish, the holonomy of the TCFH connections reduces further.

3 The TCFH of warped AdS; backgrounds

3.1 Fields and Killing spinors

The fields” of a warped AdS3 background, AdSsz x,, N7, can be expressed as

g=2ete” + ()2 +g(NT),
F=etNe A“ANY —*Y, G=0be"Ne Ne*+H, (3.1)

"We have not mentioned the U(1)-twisted 1-form field strength P of IIB scalars, P = &, with £ a
U(1)-twisted 1-form on the internal space. This is done to avoid repetition. This equation will also be
omitted from the expression of the fields of all AdS backgrounds below. Though it is understood that for
the complete description of the fields, it has to be included.



where g(N7) is the internal space metric, Y is a 2-form on N7, and ® and H are a U(1)-
twisted 0- and 3-form on N7, respectively. Furthermore, the pseudo-orhonormal frame can
be written as

et =du, e =dr—2r({"tdz4+ A"'dA), & =Adz, e =ebdyl, (3.2)

where y! are coordinates of the internal space N7, (u,r, z) are the remaining coordinates of
the spacetime, €’ is an orthonormal frame on N7, g(N7) = §;;e'e/, and A is the warp factor.
It can be seen, after a coordinate transformation, that the spacetime metric g takes the
standard warped spacetime form g = A%gy(AdS3) + g(N7), where go(AdS3) is the standard
metric on AdS3 with radius /4.

The KSEs of warped AdS3 backgrounds can be intergraded over the coordinates (u,r, z),
see [29], and the Killing spinors can be schematically expressed as € = e(u,r, z,04,74),
where o4 and 7+ depend only on the coordinates of N7 and I'toy = I'y7y = 0. The
integration over the coordinate z introduces a new algebraic KSE on o1 and 7+ which
will not be explored here but it is essential for the correct counting of Killing spinors of a
solution. This algebraic KSE is in addition to the dilatino KSE of the theory.

A consequence of the gravitino KSE on € is that

Vo, =0, v =0, (3-3)
where
1 ) ) )
Vl(i)Evii§8ilogA—§Qij:1(FY)in¥§Yirz
1 3 1
+< og THD:i+ o5 M, F ) * (34)

V is induced on the spinor bundle by the Levi-Civita connection of g(N7) and Q is a U(1)
connection on N7 constructed from the IIB scalars. The definition of the Clifford algebra
operation Cx can be found in section 2.1.

3.2 The TCFH and holonomy

Before we proceed to describe the TCFH of the supecovariant connections (3.4), let us first
simplify somewhat the analysis. The TCFHs of the form bilinears constructed using the
pairs (1,77 ) of Killing spinors are identical, where 7+ stands for either o+ or n+. The
reason is that oy and 74 satisfy the same gravitino KSE, see (3.3). As the bilinears along
N7 constructed from 7% and n% vanish, it remains to consider the TCFH constructed from
the bilinears of n_. This TCFH can be easily deduced from that of the ny form bilinears
after appropriately compensating for the differences in the signs of some of the terms in
the supercovariant derivatives V() and V()| see (3.4). There is also an additional sign
required in all terms that contain a Hodge duality operation on the fluxes that appear in
the TCFHs. This is a consequence of conditions I'.+n+ = 0 on the spinors, see also below.

A consequence of the discussion above is that, without loss of generality, we can focus
on the TCFH associated with the bilinears of o Killing spinors. Setting o4 = o, one finds



that a basis in the space of form bilinears on N7 is

p = (0", 0%, /3” (0", Ca%),
K" = (0", T.T;0% e = (0", I.T;C5°) €
1 , . 1 , ,
W' = 5 <U Fuzz s) e Ne” ) Q" = 5 <U F'Ll'LQ Co* >e“ Ae® ’
1 : . . - 1 : 4 ,
Y = 3 (0", TG00, 0%) € N2 Ne, Y = 30 (0", T i0is CT%) € N2 Ne® .

It turns out that g™, U, Re P, Im k™ Rey™ and Im w™ are symmetric, while £™

(3.5)
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Rex™, Imy"™, Rew™ and Im p™ are skew-symmetric in the exchange of the spinors o”
and o°. Note that as a consequence of the IIB chirality of spinors o1 and the condition
I'toy =0, one has that I'yI'; 04 = o, where I'(7) = szl I';. This justifies the choice
of the above basis in the space of form bilinears up to a Hodge duality operation on N”.
As it has already been mentioned in the beginning of the section, the sign of the condition
'yl 04 = o4 accounts for the additional sign required in the terms that contain a
Hodge duality operation on the fluxes in the TCFH associated with the o4 form bilinears

relative to the same terms of the TCFH constructed from the o_ form bilinears.

The computation of the TCFH for the bilinears (3.5) is similar to that described for
warped AdS, backgrounds in the previous section. After some computation, one finds that
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The TCFH above has been expressed in terms of the minimal connection D). As for
the AdS, case, to find the holonomy of this connection for generic backgrounds observe that
it preserves the domain of symmetric and skew-symmetric form bilinears in the exchange of
the spinors 0" and o®. Furthermore, it acts trivially on the scalars p™, as a U(1) connection
on the scalars p"® and with the Levi-Civita connection on the 1-form bilinear A Rek"*
Therefore, the (reduced) holonomy of the minimal connection is included in (the connected



component of) U(1) x GL(133) x SO(7) x GL(112), where the U(1) x GL(133) subgroup is
associated with the symmetric form bilinears while the rest is associated with the skew-
symmetric ones. The holonomy of the maximal TCFH connection is expected to be included
in GL(136) x GL(120) as its action on all form bilinears is not trivial though it still preserves
the subspaces of symmetric and skew-symmetric form bilinears. Similar conclusions hold
for the connections of the TCFHs of the rest of the form bilinears constructed from the
spinors o+ and 7.

4 The TCFH of warped AdS, backgrounds

4.1 Fields and Killing spinors
The fields of warped AdSs backgrounds, AdSy x,, N®, can be written as

g=2ete + ()% + (e")* + g(N?),
F=e"Ne Ae*Ne" ANY +7Y, G=H, (4.1)

where g(N®) is the metric on the internal space N® and Y and H are a 1-form and a
U(1)-twisted 3-form on N, respectively. Furthermore, the components (e, e, e, e’)
of pseudo-orthonormal frame are defined as for the AdS3 backgrounds in (3.2) with the
understanding that the warp factor A is a function on N® and e’ is an orthonormal frame
on N® g(N®) = §;;e’e’, where y! are coordinates of N6 and (u,r, z,2) are the remaining
coordinates of the spacetime. Moreover, the remaining component of the pseudo-orthonormal
frame is e® = Ae?/!dx. It can be seen after a coordinate transformation that the spacetime
metric takes the standard warped form g = A%g,(AdSy) + g(N®), where go(AdSy) is the
standard metric on AdS4 with radius 4.

The IIB KSEs for warped AdS, backgrounds have been solved in [29]. Integrating
the KSEs over the coordinates (u,r, z, ), the Killing spinors € can be expressed as ¢ =

8 o4+ and 7+ depend only on the coordinates of N6

()

)

e(u,r, z,x,04,7+), where the spinors
and satisfy I'to4 = 't 74 = 0. Furthermore, the gravitino KSE implies that V:"7o4 =0

and V&)

, T+ = 0, where the supercovariant derivatives are

1 . . .

1 3
—— TH); + —H, , 4.2
+( QG(H)+32HZ>O* (4.2)
and the Clifford algebra operation C is defined as in the AdSs case.

4.2 The TCFH and holonomy

As for warped AdS3 backgrounds, it suffices to describe only the TCFH of o spinor form
bilinears. The TCFH of the form bilinears of all other spinors can be derived from that of
the o spinors. The method of this derivation has already been described in the AdS3 case.

8Unlike for the AdSs backgrounds that o+ and 7+ are unrelated, the o+ and 7+ spinors for all warped
AdSy, backgrounds, k > 3, are related with certain Clifford algebra operations [29].
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In addition, the TCFH of warped AdS,4 backgrounds factorises on the subspaces of even-
and odd-degree (twisted) forms on the internal space N°. Because of this the two cases will
be treated separately. A basis in the space of even-degree form bilinears of ¢ = o spinors
can be chosen as

prs — <O_r7 0_5> , ~rs <O'T, > ,
pors — (UT,Fm O_s) ’ ~rs < Fzz C5s >
1 . . 1 . .
W' = 5 (0", Tiyi,0°) et Ne?, "= 5 (0", T4, Co®) e Ne™ |
1 - A . 1 . .
(:)TS - 2 <J F:L"zrulz >e“ A e’ ’ @7"5 5 <U szrlllz CU >e“ N e”. (43)

It turns out that p™* , " Re P8, Im p"¢ Imw™ and Rew™ are symmetric while ,5’"5 , e
Im p™®, Re p™, Rew™ and Im " are skew-symmetric in the exchange of spinors ¢” and o°.

A direct computation reveals that the TCFH expressed in terms of the minimal
connection D7 is

DI prs =V, p"* = —0;log Ap"™ —iY; p"* — Re{*H 192 ~;1532
3z 5 (i, iz gyrs (4.4)
DI prs =V, p"* = —8;log Ap"™ +iY; p"* — 3 Im{H 7172 ~;1812}
+ g RelHI» 575, ), -
DI s, = Viwls, +0; og Ay + 2% 007, Im{*H g5, &7} = Re{H 1 i

=2V 51[21 ] +3ZY[1 Im{* 31]2 &rs }_7 Im{*H [2112 } }

1112} 8 1[11 ]1]2

L3 . B o
Im{HunzP S} z[zl Re{ JUZ @i’ }_ Q Re{H [i122 S}

8 Wi ja Wil
+3 Re{*HiiliQ P}, (4.6)
DI & Wi, = Vi, +0ilog AW, —21Y; w{fm —Re{H]Z [ix Tj Y HiIm{*H’ ilin Z;]J}
=2i Y7 Gy, wi, — 3 Vw mz} Re{ Hiyiy 7} — 1[11 Re{ Hyy 72 Wi, }
-° Re{H iy &0 }+ 8igiy Im{* Hy, 192 w;fj2}+ " Tm{*Hy;, @5}
+3§ Im{ Hy 57} (4.7)
DE = Vil +(iQi-+ ilog A) 77 = —i Y9 &5 — o)
_ % 172 ](:2 ’ (4.8)
DF 7= Vi 4 (1Qi+ 0ylog A) 5 =i YT aff + — *H 3l
_ % H;912 w][:i (4.9)
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DI @y, = Vi@, +(iQi+0;log A) @y, — HI s, o — * H g, )
= —% Yo iy 2 @55, 4206505, Yig 57 — 3 Sifiy Hip? w][:i
= Wl 4§ i 47 = b g3,
- 2 YHY Lf)ll]r;] + g Hijyiy p") (4.10)
DTG}, = VilolS, + (iQi+ 0 log A) &L, +*HY iy, 1) — Yy, @5;?
= _%*Y;imjl] ~;15] —2i0;5, Yiy) P P é*ﬁiim p( )_ g diiy H, ]]1]2 wj(ug
z H’ [id1 W &y i2]j )+ 3 51[11 *le]jlj2 %(Ifz Z i [i1ip W 1(]1;5)
n g By, o) (4.11)

where we have used that ([[; I';)I"

20+ = *to4 which is a consequence of I'to4 = 0 and

the chirality of the IIB spinors. The (reduced) holonomy of the minimal connection D7

can be computed as in previous cases yielding that it must be contained in (the connected

component of) x2(U(1) x GL(60)).

Next, a basis in the space of odd-degree form bilinears of ¢ = o spinors can be

chosen as
K= (0", T.i0®) €, 7 = (0", T.,C5°) e
R = (0", Tyio®) e, k'S = (", T';Cc®) e’
1 . ‘ , _ . ‘ ,
P = 3 (0", Tsijigis 0°) €'t Ne? Ne'? | P = 3 (07, T iyigis Co°) €'t Ne? Ne® .
(4.12)
The associated TCFH is
D k= Vik® 4 0;log AR} — — Im{* s
1, i
= _6 R L — 48 Sik T { H77203 s, - % + — Im{H]”Q[z Didiiga)
1 . -
+ 3 Re{*Hikjmgs} — = Re{Hikjli;s}, (4.13)
Dfliz =V, ik + 0ilog AR + — Im{*H Jl”@[)k]m}
i 31
Zijzk] 16 zk Im{*HJUQJs w]lh]s} + = Im{*H]Uz [lwk]ﬂp}
-3 Re{*Hikﬂﬁ;S} -3 Re{Hikjégs}, (4.14)

Df¢7,1227,3 = v 17[)7,17,213 + a 1OgA/IJZ)7,17,27,3 -

—§Re{ JqpTs.

[11 i243)7

= i " Yiiyigis K5° + 61 dypi, i f%;";]
9i 31
+ = 3 z[zl Im{

3t
- Im{Hi[im ~T8} + ry Im{*

9¢
}—i— — Im{
32

i2i3] J 595} Y Im{*H[iliziﬁﬁs} )

ili1d2 ~:38]}
iiria Wi} + 5 Re{ [u] Viyisli}
Z[Zl Im{HZ2ZB] Ts} + Im{H[Z11223 ~’L] }

(4.15)

i3]
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D &S = ViR 4 (9;log A +iQ; )n’“s + 20 Y; R}S +1 HJU? zp,j]jp

= i5ik V7R 4+ 20V Ry 4 o ' 5 HI20 w[y«s]

J1J233
bL Bl Rl (4.16)
DI} o= Vi A + (Bhlog A+ iQ0AT — 2 Yikp? + & A olr
= YA g
b = R, (1)
Dﬂﬁmm =V, 1/)112213 (0;log A + Ql) igis T30 *Y]1]22[21i2 73“(”]]-1]-2
- %ﬁi[im ’fg]s) + %*gz[mz“g}S) gﬁji[ilwgg]g T %* iliriz Hgf)
_ 3'5'[ *ijjsmg] %132]3 4 94 ¥y fiivin 1;;:”]].1].2 — %5%'[11 .F_[Z-2i3]j K’;TS)
n D i 10 2 9 2 b 2, W) g iy 073
N % i ﬁgm % “Higyiiy (4.18)

The (reduced) holonomy of the minimal connection D7 is included in (the connected
component of) GL(72) x GL(44).

5 The TCFHs of warped AdS;, k > 5, backgrounds

5.1 The TCFH of warped AdS5 backgrounds
The fields of warped AdSs backgrounds, AdSs x N°, are

g=2ete +( +Z )2+ g(N?),
F:Y{e+Ae_Ae nel Ae? —dvol(NE’)}, G=H, (5.1)

where Y is a function on N® and H is a U(1)-twisted 3-form on NS. The components
(eT,e™, e, e') of pseudo-orthonormal frame are defined as in the previous cases with the
understanding that the warped factor A is a function of N° and e’ = ei[dy[ is an orthonormal
frame on N®, g(N®) = §;;e'e’, where y are coordinates on N°. Furthermore, e® = Aetdz®,
where (u,r, z,2%), a = 1,2, are the remaining coordinates of spacetime. The spacetime
metric can be put into the standard warped form after a coordinate transformation.

As in previous cases, the KSEs of the theory can be integrated over the (u,r,z, z%)
coordinates [29] and the Killing spinors, €, can be expressed as, € = e(u,r, z, 2% o1, 74),
where o4+ and 74 depend only on the coordinates of N° and I'to4+ = I't74+ = 0. Again the
integration over the z coordinate introduces a new algebraic KSE on o4 and 74 in addition
to those induced by the gravitino and dilatino KSEs of the theory. In particular, one finds
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that the gravitino KSE implies that Vgi)ai = 0 and Vgi)ri = 0 along N°, where the
supercovariant connections are

1

) _g 4Ly P _1 3
\% _Vlj:28llogA 2Q2i2FlYFx1xzz+< 96(FH),+32

and the gamma matrices [';a, a = 1,2, are considered in the frame e®.

ﬁh-) Cx, (5.2)

An argument similar to that used in the AdSs and AdS, cases leads to the conclusion
that it suffices to consider the TCFH of only the o form bilinears. It is also known that
if o4 is a Killing spinor, then I'j1,204 is also a o-type of Killing spinor. Moreover, if
again o4 is a Killing spinor, then v*I'zal", 04 is a 74-type of Killing spinor for any constant
vector v. After consideration of these properties of Killing spinors, one can conclude that it
suffices to consider the TCFH of the following basis in the space of the form bilinears

a°)
x$2FCU)

7S ~'I"S

p
K = (0", T2, 0%) €

= <O'T7 Us> )

""I“S

= (0"
= (0"
1

1 . A . A
W' = 5 (0" Tii,0°) et Ne?, " = 3 (0", T4, Co®) et Ne™ (5.3)
where p"%, k"%, Re p"®, Re k™® and Im w"® are symmetric while @"%, Im p"*, Im x"® and Re w"®

are skew-symmetric in the exchange of ¢” and ¢® spinors and o4 = o. For example, the
TCFH of the form bilinears that include (0", T.I'; 0*) e’ and v*(c",T',I'; 0°) €’ can be easily
computed form that of (5.3) form bilinears using the properties of the Killing spinors
mentioned above.

After a direct computation, the TCFH is

DI p™* =V, p"* = —0;log Ap™ + = Re{*HJ Ry} — 3— Im{H 12 Y, (5.4)
DF KL = Vi k}® + 0, logA Ky — 3 Im{*H )
= iV W+ Re[*Hue ) — 3¢ b T HO 535, ) + 5 Tm{* 9 ff)
- g Re{Hikj R}, (5.5)
Dl Wi, = Vw5, + 0;log Awj’, — Re{H';; &! Sp;} i Im{"Hypy, 7))
=20 Y &5, Kp) — éa Re{H g} — < Re{Hj finin D17
+ %5% Im{*H,,’ #}°} + Im{ Hy, & ~’“S} + 3— Im{H;,s, p7°}, (5.6)
D = Vi + (iQ + ;log A) i/ = i YR]® + 3 L f K
_ % A ) (5.7)
DI} o= ViR + (iQi + 0/ log A) R — 1 il
= Y G g Hap) — o b ) 4 Sl
_ % Had w7 (5.8)
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Do, = Vi wm (iQi + i log A) &f3y, — HY gy, i) + *Higy )
‘ i190 ~18 1 T 1o I7rs] 3 [rs]
~3 S Yinis 2 G, — g Oy Higt™ wi5, = < H iy
3 * TSs TS 3 rs
+ Z 5i[11 H’LQ]J [ ] 8 H[lez [] ] + 8 Hlll’iQ p[ } Y (59)

where we have used that ([[; I';)I';1,2,04 = +0+. One can easily verify that the (reduced)
holonomy of the minimal TCFH connection D7 is included in (the connected component
of) U(1) x SO(5) x GL(35) x GL(20).

5.2 The TCFH of warped AdSg backgrounds

For warped AdSg backgrounds, AdSg x N4, the 5-form field strength F vanishes, F' = 0, and
the remaining fields are given as in (5.1), where now a = 1,2,3. The pseudo-orthonormal
frame is again given as in the AdS5 case with the difference that there is an additional

3

e® = Ae?/!dx® frame, e, associated with a new coordinate 2, and e’ is an orthonormal

frame on N*.

The KSEs can again be integrated [29] over the coordinates (u,r, z,2%) and the Killing
spinors, €, can be expressed in terms of the spinors o4+ and 7+ which have similar properties
to those of AdSs backgrounds. Moreover, o+ and 74 satisfy two algebraic KSEs, one is as a
result of the gaugino KSE and the other arises during the integration over the z coordinate.
Furthermore, the gravitino KSE implies that Vgi) =0 and V( ) = 0 on N*, where
the supercovariant derivatives are

1 3

ORIV S
Vi =Vit 5 0log A— 5 Q, (QG(PH)JFSQJ}L)C*. (5.10)

It turns out that if o is a Killing spinor, then v*ulT L. b0, is also a o4 -type of Killing
spinor for any constant vectors v and u. Also, if o4 is a Killing spinor, then v*I"za" 04 is
a 74-type of Killing spinor for any constant vector v.

The TCFH factorises on the subspaces of even- and odd-degree form bilinears on N*.
Because of the relation between the Killing spinors mentioned above, it suffices to consider
the basis

p"*=(o",0%, p*=(o",Cc%),
pre=(0"To), o = (0", Ty Co®),
1 ; ; 1 . .
W' = 3 (6", Ty,i, 0%) e Ne' | " = 3 (6", Ty,i, Co®) et Ne™, (5.11)
with I'y) =T, H —1 I'za, in the space of even-degree form bilinears. Note that p"*, o,

Re p"?, Rep and Imw™ are symmetric, while ©"%, Im p"*, Im ¢ and Rew" are skew-
symmetric in the exchange of ¢” and ¢® spinors. The TCFH of the rest of even-degree form
bilinears, e.g. of the form bilinears (o, v“ubFabas> and others, can be derived from that
of (5.11).
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A direct computation of the TCFH of (5.11) form bilinears reveals that

1
D pr* =V, p"* = —0;log Ap™ — = Re{*H; p"*} — Im{H Juzgrs L f (5.12)

8 ]1]2
1
DI prs =V, p™ = —9;log Ap"™* — 3 Re{*H; p"*} 432 Im{*HJ A (5.13)
DJ-' Wi, = Viw; 5y, +0ilog Awi’ — Re{H ili1 22]]}
3 j ~7"s 1 ~TSs 31
=79 R’e{H][il’LQ z]g} 8 51[11 Re{ ]1]2 w]1]2} 4 1[11 Im{ i2] p }
31
+ ) Im{H;i,i, p7°}, (5.14)
~rSs ~rs . ~rSs 1 *x17. o(rs 3
DY " = Vi " + (iQi + O log A) j* = — ¢ *H, pre) — 15 B W, (5.15)
D]—' 2rs \va 2rs 0, + 0 los A frs 1 (rs) 3 *ﬁj (rs) 5.16
707 =Vip” + (iQ; + 9 log A) p”* = 3 i p +8 Wij " (5.16)
DI &S, = Vil + (2Q1+a log A) &%, — Hiy, wgfj
3 - [rs] [rs] TS
=g Hnwy; — *5[ T2 )i, *5[ “Hiy p
3 rs
8 Hmlzz p[ ] (517)

where we have used that ([]; I';/)["y1,2,3,04 = £o+. The (reduced) holonomy of the minimal
TCFH connection D7 is included in (the connected component of) U(1) x SO(4) x GL(18).
Next, a basis in the space of odd-degree form bilinears is

k= <UT7FZZ'O-S> ei7 k= <U Lyrg243;0 S> ei’

k= (c"T,Cc% ei, k= (0", T y14243,C0° >ei, (5.18)
where &, Im k and Re & are symmetric while &, Re x and Im & are skew-symmetric in the
exchange of the spinors ¢” and ¢®. There are more odd-degree form bilinears that one

can consider but their TCFH can be computed from the one of the basis above. The
TCFH reads

DT K = Vi k4 0;log AR} — Im{*H Ry

31 3 3 .
- —§Z o Im{*H7 &7°) — i Im{*Hy; Kif} — 5 Re{Hy! 7’} (5.19)

DTS = Vi k7 4 0 logA/@};S—i— Im{*H Ry’

. 3 3 - o
- g@ u Tm{*HY R*} + 5 Tm{*Hy R} = Re{Ha &7}, (5.20)
3 = i Irs
DI R = Vi + (9ilog A +iQi) &} = —2 Hir! ke, (5.21)
. . . 3 = s
DY = Vi + (9ilog A +iQi) R} = —2 Hir/ . (5.22)
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The (reduced) holonomy of the minimal connection D7 is included in (the connected
component of) x2GL(12) x SO(4).

6 TCFHs and hidden symmetries

6.1 Symmetries of a spinning particle probe

A consequence of the TCFH is that the form bilinears of supersymmetric backgrounds
satisfy a generalisation of the CKY equation with respect to the TCFH connection [2].
This indicates that the form bilinears may generate (hidden) symmetries for certain probes
propagating on these backgrounds. This question has been investigated in [24-27]. Here we
shall explore the question on whether the TCFH on the internal spaces of AdS backgrounds
generate symmetries for spinning particle probes. This will be illustrated with examples
that include the maximally supersymmetric AdSs solution as well as some other AdS, and
AdS3 solutions that arise as near horizon geometries of intersecting IIB branes, see [32-35].

In all examples we consider the warp factor A to be constant. The dynamics of a
spinning particle propagating on such an AdS background factorises into one part that
involves the dynamics of the probe on the AdS subspace and another part that involves the
dynamics of the probe on the internal space. Focusing on the latter, the action of such a
spinning particle probe can be described as

A= —%/de@gU Dyl o,y7 (6.1)

where y = y(7,0) is a superfield with 7 and 6 the even and odd coordinates of the worldline
superspace, and D is the superspace derivative satisfying D? = i0;.

The symmetries of (6.1) that concern us here are those generated by forms on the
internal space N. Given such a form S the above action is invariant under the infinitesimal
transformation

oyl =aply 5. Dy Dy, (6.2)

provided § is a KY form, where « is an infinitesimal parameter.

It is clear that not all Killing spinor form bilinears generate symmetries for the
action (6.1). This is because although they are CKY forms with respect to the TCFH
connection, they are not KY forms which is more restrictive. However, we shall demonstrate
in many examples below that the TCFH simplifies on special supersymmetric backgrounds
and the form bilinears become KY (or CCKY) forms which in turn generate symmetries for
the action (6.1).

6.2 The maximally supersymmetric AdSs solution

The only non-vanishing form field strength of the AdS; x S® maximally supersymmetric
solution is the 5-form flux F' which is determined in terms of the (constant) function Y on
the internal space S°. The IIB scalars as well as the warped factor A are constant. Also,
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without loss of generality, one can set A = 1. In this case, the TCFH dramatically simplifies

and yields
D]: TS .= V. 0" =0 D]: TS . V. kIS = Y WS
i P = Vip T =0, i B = Vil = 711 Wi,
F.ors rs __ . rs F ~rs .__ TS __ -\ ~TS
Di wi1i2 = VZ wiliZ = —QZY(SZ‘[Z‘I/{?;Q} s D’L p = Vzp = —1 YK’i s
Df~rs L V‘~TS——'Y(5‘ ~rs D}'~rs ,_v‘~rs __IL-*Y‘ . Jije2 ~rS 63)
i K "= Vikp = =11 0 p i Wiip = ViWii, = 9 fiii Wi o (6.

Clearly, the (reduced) holonomy of the TCFH connection is included in SO(5). Furthermore,
K, *w, *& and @ are KY forms on S° and so generate symmetries for the spinning particle
action (6.1), where the Hodge duality operation has been taken over S5 As the IIB
scalars are constant, the U(1) twist of g, & and @ vanishes and all of them are (standard)
forms on S°.

6.3 AdSj3 solution from strings on 5-branes

Taking the IIB 5-form flux to vanish and the IIB scalars to be constant, an ansatz that
includes the near horizon geometry of a fundamental (D-) string on a NS5- (D5-) brane is

g = ge(AdS3) + g(S%) + g(RY), G = pdvoly(AdS3) + ¢dvol(S?), (6.4)

where g,(AdSs) (g(S®)) and dvoly(AdSs) (dvol(S?)) is the standard metric and associated
volume form on AdS3 (S®) with radius ¢ (unit radius), respectively, g(R?*) is the Euclidean
metric of R* and p,q € C. As the 5-form vanishes and the IIB scalars are constant, one has
Y =0 and £ = @ = 0. Moreover, without loss of generality, one can set A = 1. From the
ansatz above H = ¢dvol(S3) and ® = q. See [32-35] for an extensive discussion of the near
horizon geometries of intersecting branes [36-38].

To determine the constants” p,q and ¢, the field equation'® of the IIB 1-form flux,
H? = 6d2, gives ¢°> = p?. Next, the Einstein field equation along S® and the warp factor
field equation
1

1 - 1 9 9
1 H(, " Hgy¢ + gH P [|%6ap — 8 | H [|%6as ,

3 1 _
@I+ I H P - 202 =0, (65)

SS
Raﬁ -

respectively, give /2 = 1 and |p|? = 4, i.e. the AdS3 and S® subspaces have the same radius.
The dilatino KSE, Ao, = 0, with
1 1

A = —7 O+ o , (6.6)

9We use the approach of [29] to investigate the KSEs of AdS backgrounds as it has the advantage of
deriving the results from first principles without any additional assumptions, like for example the factorisation
the Killing spinors.

9This corrects a sign in the field equation for ¢ in [29] for warped AdS; backgrounds. Although a
modification in the analysis of some cases in [31] is needed, it does not affect the final conclusion.
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gives the condition I',I'3y04 = (¢/p)o+, where ['(3) is the product of the three gamma
matrices along the orthonormal directions tangent to the 3-sphere. The additional algebraic
KSE [29], E404 = 0, with
1 1 3
Er=—= —T — | C 6.7
. 2€+(% Mt ) , (6.7)

which arises from the integration of gravitino KSE along z, yields the relation Coy = (2/q)o .
Therefore |¢| = 2 as expected.

Furthermore, the gravitino KSE along R* implies that the Killing spinors o do not
depend on the coordinates of R*. Using these, the gravitino KSE along S® can be written
as ]

vgj_) = V§3 - irzraa (6.8)

and does not impose any additional conditions on o, where we have used both I'.I'3y0+ =
(¢/p)os and Co4 = (2/q)o4. As a consequence, there are no additional conditions on p
and ¢ and therefore there is a solution for any p € C such that |p| = 2 and ¢ = +p. From
the analysis above, it is clear that the KSEs on o4 admit 4 linearly independent solutions.
This is also the case for the KSEs on the remaining o_ and 71 spinors. As a result, all these
solutions admit 16 Killing spinors, i.e. they preserve 1/2 of supersymmetry as expected.
Next consider the form bilinears with components only along S®. Because of Cay =
(2/q)o, the ¢ bilinears are not linearly independent from the ¢ bilinears, where ¢ stands
for all bilinears. It is easy to see that x is a KY form, while ¢ and w are CCKY forms.
Therefore *¢ and *w are also KY forms, where the duality operation has been taken over
S3. Hence, x and *w generate symmetries for the particle action'! (6.1) restricted on S3.

6.4 AdSj3 solution from two intersecting D3-branes

An ansatz which includes the near horizon geometry of two D3-branes intersecting on a
1-brane is

g = go(AdS3) + g(RY) + g(S3), F = dvoly(AdS3) AY —*TY (6.9)

where H, ® vanish, the scalar fields are constant and so Q, € =0, Y = pdaz' Adax?+q da® Adz?,
p,q € R, is a 2-form on R* with Cartesian coordinates (z!,...,z%). The metrics g,(AdS3),
g(R%) and ¢(S?), and volume form dvol,(AdS3) have already been described in the previous
example. We have also set A = 1. To specify the solution, we have to determine the
parameters ¢, p and ¢ of the ansatz.

The field equation of the warp factor, Y2 = ¢£72, as well as the Einstein field equation,
Rg) = 2Y25ij — 8Yi§, restricted along R* give p? + ¢% = 1/2 and ¢ = 1, i.e. AdS3 has
the same radius as S2. The algebraic KSE [29], =)o, = 0, has solutions provided that
Mooy = —idoy, I'sgo4 = —ipoy and that Ap + pug = 1, where A\, p = £1. Using this
equation together with the gravitino KSE along R*, one finds that p = A\/2 and ¢ = p/2.

" For the near horizon geometry of a fundamental string on a NS5-brane, one can consider other probes like
a spinning particle probe with a 3-form coupling as well as a fundamental string probe with a Wess-Zumino
term. In such a case, the form bilinears are covariantly constant with respect to a connection with torsion
and generate symmetries for these probe actions [39].
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Furthermore, the supercovariant derivative along S is
1
vgj_) = vgg - §Fzro¢a (610)

and the associated KSE does not impose any additional conditions on 0. As a consequence,
the KSEs on o4 admit 4 linearly independent solutions. A similar analysis reveals that
this is the case for the remaining KSEs on o_ and 74. Thus the background preserves
16 supersymmetries.

Considering the form bilinears along S2, a direct computation of the TCFH connection
using (6.10) reveals that s and & are KY forms, w and @ are CCKY forms, and ¢ and ¢
are parallel, i.e. the latter are proportional to the volume form of S. As a consequence, all
of them or their duals on S% generate symmetries for the probe action (6.1).

6.5 AdS: solution from four intersecting D3-branes

An ansatz that includes the near horizon geometry of four intersecting D3-branes on a
0-brane solution is

g = ge(AdSy) + g(5%) + g(R%), F = dvoly(AdSy) AY +*3Y (6.11)
with H, ®,&,Q = 0, i.e. the scalar fields are constant, where

Y = pdat Adz? Ada? + gdat A dat A da® + rda? A dat A daS
+ sdx A da® A da (6.12)

p,q,m,s € R, is a 3-form on RS with Cartesian coordinates (z!,...,2%). The metrics
ge(AdSs), g(S?) and g(RY) and volume form dvol,(AdSs) are defined in an analogous way
to those described for the AdS3 backgrounds in previous sections. Again, we set A = 1.
To find the values of the constants p, q,r, s, £ such that the above ansatz is a solution,
consider the Einstein equation RS) = —41/;? +2/3 5in2- In particular restricting this

2 = 52, Furthermore, the warp factor field equation

equation on R, we find that p? = ¢2 = r
2/3Y? = (72 gives 16p* = /=2, Next restricting the Einstein equation on S?, we have that
¢ =1 which in turn gives p? = ¢®> = r? = s?> = 1/16. This specifies the solution.

It remains to count the number of supersymmetries preserved by the background.
Restricting the gravitino KSE

1 1
V£+)?7+ =Ving — 1Y¢77+ + EF/Yer =0 (6.13)

along R®, we get the conditions

(pTa3 + ql'as — 1T1246 — sT'1356) 1+ = 0,

(PT'31 + 1T46 — ql'2145 — sT2356) 14 = 0,

(pT'12 + sT'56 — qT'3145 — rT'3246) N+ = 0. (6.14)
These can be solved by decomposing 74 into the eigenspaces of I'9345 and 1346 as 'agasny =

ANy, and T'ys46m+ = (n4, where A\, = £1. In such a case, the above equations can be
solved to find

g=-Xp, 7=(p, s=(\p. (6.15)
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Clearly, there are solutions to the field equations which are not supersymmetric. Next, the
gravitino KSE along S? yields

Vs + 2ipal1asny =0, (6.16)

and does not impose any additional conditions on 7. Therefore, the KSEs on 7 have 4
linearly independent solutions. A similar analysis reveals that the KSEs on n_ have also 4
linearly independent solutions. As a result, the background preserves 1/4 of supersymmetry
as expected.

Considering the form bilinears restricted on S?, it is easy to see that w is a KY form
while @ is a parallel form on S? and so the latter is proportional to the volume form. Both
generate symmetries for the spinning particle action (6.1).

7 Concluding remarks

We have presented the TCFHs on the internal space of all IIB AdS backgrounds. Therefore,
we have demonstrated that all Killing spinor form bilinears satisfy the CKY equation
with respect to the TCFH connection. We have also investigated some of the properties
of the TCFHs we have found, like for example the (reduced) holonomy of the TCFH
connections. Moreover, we have given some examples of solutions for which the form
bilinears are KY and CCKY forms and therefore generate symmetries for spinning particle
probes propagating on the internal spaces of these backgrounds. These solutions include the
maximally supersymmetric AdSs solution as well as the near horizon geometries of some
intersecting IIB branes.

Although we have presented some key examples which illustrate the close relationship
between TCFHs and symmetries for certain particle probes propagating on supersymmetric
backgrounds, this investigation has proceeded on a case by case basis. In particular, there is
not a systematic way to relate the conditions on the Killing spinor form bilinears described
by the TCFH with the invariance conditions of certain probes propagating on the associated
supersymmetric backgrounds. Although the TCFHs are determined by the KSEs of the
supergravity theory under investigation given a choice of form bilinears and that of the TCFH
connection, there is a plethora of actions with different couplings and worldline fields that
describe the dynamics of spinning particle type of probes propagating on supersymmetric
backgrounds, see [40]. Each such action gives rise to different invariance conditions for
transformations generated by Killing spinor form bilinears. Although some such probe
actions have been considered before in this context [24, 26], a systematic understanding of
the relation between TCFHs and invariance conditions for probe actions is still missing,
and it will be considered in the future.

A Notation and conventions

Let ¢ be a k-form ¢ € QF(M) on a n-dimensional manifold N with metric g. Then

1

= E ¢11'Lk el ANtk , (Al)

¢
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and the components of its exterior derivative, d, are (d¢)i,..i, ., = (k+ 1) Viiy Pig..igsn]>
where ¢ = 1,...,n. The components of the Hodge dual, *¢, of ¢ are

1 L
*¢i1...’in,k = y Qsjl...jke]lmjki1...in,k ) (A2)

where € is the Levi-Civita tensor. Note that ¢ is self-dual if *¢ = ¢, and anti-self-dual if *¢ =
—¢. Furthermore, for ¢ complex, we have, || ¢ ||? = (Eilmik&l'“ik, and ¢? = ¢j, ., O,

The Clifford algebra element associated with a form ¢ is

G = ¢y i, DLk (A.3)
and
¢i1 = ¢i1i2---ikrl2mlk s (F¢)i1 = Fillz..'1k+1¢i2---ik+1 ) (A'4)
where I'; is a basis in the Clifford algebra, I';I'; + I';T'; = 26;51.

B Complete integrability of AdS geodesic flow

It is well known that the geodesic flow equations on AdS,, are separable and can be integrated.
Here we shall prove the Liouville integrability of the geodesic flow by explicitly presenting
the independent charges in involution. It is well-known that AdS,, n > 2, can be described
as hyper-surface

nabxa:cb =72, (B.1)

in R"~12 where 7 is the mostly plus signature standard metric on R"~12 and ¢ is the
radius. The metric on AdS,, is the restriction of 1 on the hyper-surface. The Killing vector
fields on AdS,, written in R" 1?2 Cartesian coordinates are

kapy = a0y — 2404 , (B.2)

b

where z, = nupa’. Observe that kg, are orthogonal to the radial direction x¢. Setting

Qab = TaPp — TpPa, the n conserved charges

1
Dm:Z > (Qw), m=2...n+1, (B.3)

a,b>n+2—m
are independent and in involution. Therefore, the geodesic flow on AdS,, is completely
integrable as expected. Observe that —D,, 41 is the Hamiltonian of the geodesic system on
AdS,, as

1 1 02
— Dyt =~ (wapp = zppa) (20" — zbp®) = —inabx“xbnwpcpd = 577€dpcpd, (B.4)

where we have used that x%p, = 0.

As the geodesic equation on AdS; x S™ x R" factorises into those on AdSy, S™ and
R"™, respectively, the Liouville integrability of the geodesic flow on AdS; x S™ x R" reduces
to that of the geodesic flow on each of the three subspaces. The Liouville integrability of
the geodesic flow on AdS has been demonstrated above and that of the round S™ has been
considered before; for the conserved charges in involution see [25, 26]. This demonstrates
that the geodesic flow on all AdS, x S™ x R™ backgrounds is Liouville integrable.
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C The TCFH of 1IB theory

In [26], we have given the TCFH of IIB supergravity in the string frame. As we have used
the Einstein frame for determining the TCHFs of IIB AdS backgrounds, we also present
the TCFH of IIB theory in Einstein frame for completeness. A basis in the space of form
bilinears, up to a Hodge duality, can be chosen as

k™S = (" Tpe’)pe’, k™ = (", TpCe&)pe
1 1

i ? <6r,rp1p2p3 68>D et nef2 pels , 7%= ? <€r,rp1p2p3 CES>D e nel? pels ,
1 1

T = = (€. Tp, pepelt Nooonels, 775 = = (", Tp, .p, C&pelt Ao nels

(C.1)

where (-,-)p is the Dirac inner product, e’ is a spacetime frame and ¢ is a spin(9,1)
complex Weyl spinor, obeying the chirality condition I'g_ g€” = €". The gravitino KSE
of IIB supergravity, Dyse” = 0, is the parallel transport equation of the supercovariant
derivative

1
Dy = VM+48FN1 N4FN1 N4M_% (F]\/Aer]\IQJ\I‘O’GNIJ\[Q]\[3 — QFNINQGMNlNQ) Cx, (02)

where 1 )
~ 1
Vv =Dy + ZQM,ABFAB , Dy =0m— §QM , (C.3)

is the spin connection, Vs = Oy + %QM,ABFAB, twisted with a real U(1) connection @
that depends on the IIB scalars. Moreover, F' is real, whereas G is complex. We choose
the spacetime orientation as €3¢ = 1 and the self-duality condition on F' is expressed as

Fuyr oo, = —%EMl..‘Ms Ni...Ns Fn, .. N;. The TCFH with respect to the minimal connection is
F 1.rs . rs N1 N2 ~78 i N1N2 N3
Dyrkp =Vukp ++ 1 Im{G MTPN N, } = gFMP TN, Na N3

~rs 3 7.TS
- § Re{GM NN 700 o v ) — Re{GMPN k't

Z ~
48 — gup Im{GN1 VN5 5 N1N2N3}+*Im{G ! 2[M7TPS]N1N2} (C4)

3t

1 1
rs NiNy ~rs
DMWP1P2P3 : C M7TP1P2P3+Z Im{GM TP1P2P3N1N2} Im{GM[p1P2]€P3}}

3 ~7s
+5 R‘3{GNM[P1 Py PN S

1- N1N2N3
_7gM[P1F PQTpd}Nl Ny 2F [P1P2TP5M]N1N2N3

N1 N2 N:
—ZFP1P2P3M k;\?+16 Im{G 12 ;gM[PlTPQPS]NlNZNg}

1 ~rs 3i 17.Ts
T Im{G 12 IMTP PPNy Vo — g g IMIP m{Gp,p, "k}
z 1
5 Im{G[P1P2P3 kM]} Re{ GMP1P2P3 NNz N 7TN1N2N3}
3 ~rs 3 ~78
_,gM[Pl Re{GP2N1N2 PS}N1N2} R,e{G [P1P2 7TP3M]N}, (C5)

8
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)
DyTE . b=V uTh p, —20i N M[P1P2P57TP4P5]N+ Re{G" yrip, 755 pyn }

Y - . -
— = Im{*G™M™2 b T NN, b — 5 I {Gipy py T by

4
_ . AN s . Ni1N2 _rs
_—15ZF [MP1P2P3 7TP4P5}N+1OZ-9M[P1 FP2P3P4 7TP5}N1N2

1 ~ ) -
-3 Re*Gpl...P5MNk7\? — 3 9mip Re{Gp, N P NN}

15

8

157 %)
- TQM Im{GPzpsNWP4P5]N}+ Im{G[P1P2P3 7TP4P5M]}

5
Re{G™ b, p, T pypoaiyn ) + 5 5 Imip Re{Grpupy kit

51 .~
_EQM[Pl{ GP2 .P5] 1N2N37T}n\?1N2N3}

9; .
+ 3 Im {* G2 [Pr...Ps TATING Ng ) 5

- - ) ~ 1 -
D]\]} TPS::VMkTS+ZQMkTS_ﬂFMNl.”NALTJT:’?Vl N4+ G N1 N> §3N)1N2

N1NaN3 _(rs) 1 Ny NoN3 _(rs)
48G TMPN; NoN; 18 gmPpP PG TNy N2Ns

15 TS 3 TS
g GNP R, — g Carp ™V R (C.7)

[rs]

F ~rs N1Na
Dy7p pyps = VM TP pp, HiQM TP pp, + GM TP, P, P3Ny N>

3 s 3
+§G M[Pl EDQ]PQ,}N ZGM[PIPQ k[Pg,}}

N1N2N3 ~rs QZF 1V

)
=5 9M[Py Fp,p, TN, NyN3 — * [Py PaPs TATIN N,

1
. 2N1No ~rs N1N2N3 _[rs]
_3ZF [PIPQ 7TP3]N1N2 48 GMP1P2P3 7TN1N2N3

1 =N VoA [rs] ~N1N:
166G IMIP TR, PNy Ny, T G N S by

— rs 3 =, s
~3 gMp GPz WED3]]N1N2 -SGY [P1 P2 “EDJM]N

3 ~ s ~ rs
_ggM[Pl GPQPS]NI{EV]—i_iG[PlPQPS kg\/[]] ) (CS)

F ~rs N1N2
Dy/7p,..p. vM7'131 st QumT TP1 s — 10 Fyppy kps] +5i F M[P P, 7'P3P4P5}N1N2

9, rs rs
_Z GNINQM[P1 Py 7-(-5:’5])1\71N2+ G M[Py T](Dz )P]N 5GM[P1P2 71-533])341:’5]
Nk(m)

. 1
= —5291\4[ Fp, . .Bs] k‘N +6¢ F[Pl Ps kM] GP1 PsM My
N1Ny _(rs) 15 N (rs)
_ZgM[Pl GPz ! 27-13313’4135}N1N2 8 <G [P P2 TP3P4P5M}N
15 $) 5 s) 5 (rs)

_ZQM[P1GP2P3 7T(P4P5]N+ G[P1P2P37T(P4P5M]+ gM[plGP2P3p4k‘P]

5 rs 9
~16 gurip Gy VNN T G+ 3 "GN, Wgu]gleQ ) (C.9)

where we have not made a sharp distinction between spacetime and frame indices.
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Following the same prescription as in the AdS backgrounds and after decomposing the
form bilinears into the real and the imaginary parts, one finds that the (reduced) holonomy
of the TCFH connection is included in (the connected component of) SO(9,1) x GL(518) x
GL(496). This result agrees with the calculation in [26] performed in the string frame.
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