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Abstract

In this paper, we will present analytic formulas to express one-loop contributions to lepton flavor violating
decays e, — e,y , which are also relevant to the anomalous dipole magnetic moments of charged leptons
eq. These formulas were computed in the unitary gauge, using the well-known Passarino- Veltman notations.
We also show that our results are consistent with those calculated previously in the 't Hooft-Veltman gauge,
or in the limit of zero lepton masses. At the one-loop level, we show that the appearance of fermion-scalar-
vector type diagrams in the unitary gauge will violate the Ward Identity relating to an external photon. As
a result, the validation of the Ward Identity guarantees that the photon always couples with two identical
particles in an arbitrary triple coupling vertex containing a photon.
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1. Introduction

The lepton sector is one of the most interesting objects for experiments to search for new
physics (NP) beyond the prediction of the standard model (SM). For example, the evidence of
neutrino oscillation confirms that the SM must be extended. Recently, the experimental data of
anomalous magnetic moments (AMM) of charged leptons (g — 2).,/2 = a., has been updated,
where the deviation between SM prediction and the lasted experiment data for muon is [1]

Aa)’ =ap? —a3M = (251 £59) x 107!, )]

corresponding to the 4.2¢0 deviation from standard model (SM) prediction [2] combined from
various contributions [3-23]. For the electron anomaly, the deviation between SM and experi-
ment is 1.60 discrepancy [24].

On the other hand, Aa, , are strongly constrained by the experimental data obtained from
searching for the charged lepton flavor violating (cLFV) decays e, — e,y are [25,26]:

Br(t — uy) <4.4x 1078, Br(t — ey) <33 x 1078, Br(u — ey) <4.2x 10713, (2)

This important property was discussed previously, for example see discussions for a general es-
timation in Ref. [27], and many particular models beyond the standard model (BSM) [28-33].
General formulas expressing simultaneously both one-loop contributions to AMM and cLFV
amplitudes were introduced in the limits of new heavy scalar and/or gauge boson exchanges
m% > m% with m, being the mass of a charged lepton e, = e, i, T [27]. Other calculations in
the unitary gauge were discussed [34,35] for the one-loop contributions to a., with m, # 0,
without the relations with the cLFV amplitudes. The analytic one-loop formulas for cLFV am-
plitudes calculated in the 't Hooft Feynman (HF) gauge were also shown in Ref. [36], using the
notations of the Passarino-Veltman (PV) functions [37,38] with m, # m;. The approximate for-
mulas with m, = mj, = 0 were introduced and consistent with those given in Ref. [27], as shown
particularly in Ref. [39] for 3-3-1 models. The general analytic formulas of these PV functions
were introduced for numerical investigations. They are consistent with the results generated by
LoopTools [40], which can be transformed into other PV notations implemented in the Fortran
numerical package Collier [41], used to investigate cLFV decays in a two Higgs doublet model
(2HDM) [42]. Many particular expressions to compute the AMM and/or cLFV decay amplitudes
predicted by different particular BSM were constructed [28]. The relations among them can be
checked by using suitable transformations, starting from the set of particular PV notations in
this work. On the other hand, in a discussion on analytic formulas for one-loop contributions to
AMM, a class of fermion-scalar-vector (FSV) diagrams consisting of a photon coupling with
two different physical particles, namely one scalar and one gauge boson, were considered even
in the unitary gauge [34]. It leads us to whether the Ward identity (WI) for the external pho-
ton is still valid with the presence of this diagram type. We emphasize that the general results
for one-loop contributions to decays e, — e,y and AMM of leptons introduced in many previ-
ous works do not include these F'SV diagrams. Moreover, they imply the existence of the triple
photon coupling with two distinguishable physical particles that has never been mentioned previ-
ously. In particular, many works introducing general one-loop contributions for AMM of charged
leptons [27,28,35], or decays relating with photon such as cLFV decays e, — e,y [27,28,36],
loop-induced Higgs decays h — yy [43,44], h — Zy, f fy [44—47], quark decays g — ¢’y ,
.... Excluding the FSV vertex type will reduce a huge number of related one- and two-loop
diagrams as well as confirm the validation of general one-loop calculation introduced previously.
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Fig. 1. Feynman diagrams for one-loop contribution to a,, and cLFV amplitudes e;, — e,y in the unitary gauge.

In this work, we will show precisely the important steps to derive the one-loop contributions
to both AMM and cLFV decays. The calculation is performed by hand, which is consistent with
another cross-checking using FORM package [48]. The final formulas are expressed exactly in
terms of the PV functions defined by LoopTools. The results are then easy to change into all
the other available forms using suitable transformations. The conventions of the PV-functions
are very convenient to derive the exact formulas before solving particular pure mathematical
problems. We also determine contributions arising from a new form of photon coupling with
vector bosons such as leptoquarks and confirm the consistency between our results and those
introduced in Ref. [44,49,50].

Our paper is organized as follows. Section 1 explains our aim of this work. Section 2 in-
troduces notations and important formulas to establish the relations between AMM and cLFV
amplitudes. Section 3 shows discussions to confirm the consistency of our results and previous
works, and the validation of the WI for the relevant analytic formulas. Section 4 summarizes
main features of our work. Finally, we provide many appendices showing precisely many in-
termediate steps and notations to derive the final results mentioned in this work, including the
analytic formulas of the PV functions consistent with LoopTools given in appendix A.

2. General amplitudes and notations

It is well-known that analytic formulas of one-loop contributions to the cLFV amplitudes
ep(p2) = eq(p1)y(q) and AMM of SM charged leptons e, can be presented in the same ex-
pressions, see for example Ref. [27] corresponding to the presence of new heavy particles in
BSM. Possible one-loop Feynman diagrams contributing to a,, and cLFV decay amplitudes
ep — e,y in BSM are shown in Fig. |, where F is a fermion coupling with the SM charged
lepton e, = e, u, T; and the boson B = h, V is a scalar or gauge boson, respectively. For a de-
tailed calculation, precise conventions for external momenta and propagators are presented in
appendix C. We note here that Ref. [34] argues another type of F'SV one-loop diagrams giving
new contributions to the AMM. They will be discussed in detail in this work.

Firstly, we adopt the Lagrangian generating one-loop diagrams in Fig. 1, namely [27]

Ly =F(gk pyPL+ g8 py Pr)eah +hec., 3)
Ly =Fy" gl py P+ 85 py PR)€aVi +hoc., )
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Table 1
Feynman rules for cubic couplings of photon A#, where pg 4+ are incoming momenta into the relevant vertex.

Vertex Coupling Vertex Couplings Vertex  Couplings
AR (po) VY (p)V¥*(p-)  —ieQy T (po, p+.p—) APh(ph*(p-) ieQu(py —p—)u APFF ieQpyu

where the fermion F* and the boson B =V, h have electric charges Q r and Q g, and masses m
and m p, respectively. These Lagrangians (3) and (4) are consistent with those in Ref. [36]. More-
over, the photon couplings with all physical particles should be mentioned clearly, as given in
Ref. [36], i.e., we will adopt the Feynman rules that the photon always couples with two identical
physical particles, as given in Table 1, where I3 (po, P+, P—) = guv(Po — P+ + gun (P4 —
P+ 8. (P— — po)y is the standard form. The more general form of T, (po, p+, p—) intro-
duced in Refs. [44,49,50] will be discussed in detail later.

All couplings listed in Lagrangians (3), (4), and Table 1 result in the following form factors
relevant with one-loop contributions:

e fB(xB) + Orgp(xB)
cab — Lx R me X
RB —167T2ga,Fng,FB F m%
e Lv L Rx R fe(xp) + Qrgp(xp)
+ T6x2 (mbgaj"ng,FB +maga,>;‘ng,FB> X 3 , 5)

my

where xp = m%/m%. The four scalar functions fg(x), gp(x), fB (x), and gp(x) are listed in Eq.
(A.24) of appendix A, as the approximate formulas in the limit m,, mj, < mp. The formula in
Eq. (5) does not contain contributions from the F'SV diagrams mentioned in Ref. [34], because
of the absence of photon coupling AV h. The corresponding formulas of AMM and cLFV decay
rates are:

2m 4m
e, = —— (¢ + gy =- y “Re[c%'], (6)
3
m 2 2
Br(ep — eqay) = mfib ( el +|ck ) : )

where m,, mp, and ', are the masses and total decay width of the leptons e, ¢, and
b b
X=) iy (8)
B.F

The amplitude for a vertex e,e, A, in Ref. [51] is consistent with the following form present-
ing both AMM and cLFV amplitudes [52,53]

mwg,

iM=—icig(p) [y“Fl - L ik ySFg)} up(p2)e: ©)

a
where o"V = ’5 [y“y” — y"y“]; Fj 23 are scalar form factors; €7, and ¢, is the polarized vector
of the external photon. The derivation of Eq. (9) respecting the WI from the most general form
was explained clearly in Ref. [53]. The form factors F> 3 get contributions only from loop correc-
tions. They relate with the well-known experimental quantities called the anomalous magnetic
moment a,, and electric dipole moment d,, for b = a, respectively. Specifically, we have F; =1
for the on-shell photon, and
e

o, =Fy; dy, = F3. (10)

a

B 2mg
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Regarding the LFV decay e, — ¢,y the amplitude can also be written in the same form [36,
54], suggesting that F> can be calculated based on the one-loop corrections to LFV decays. In
particular, the second term of the amplitude (9) can be expanded as follows [39]

M = @2p1.e)g (Capyr PL + Clabyr Pr) tp + g [ Diapy.#* PL + Diapyr#™ Pr|up, (11)

where m, = mj, and we can prove that Cp)r P + Cup)r PR = ﬁa(Fz — iy5F3). The WI for
the external photon gives

Dpyr. = —mpCapyr +maCiabyr)s Dabyr = —MmpCapyr +maCanr)- (12)

We note that although WI does not require the condition of on-shell photon ¢ = 0 in general,
it was also used to derive the two relations given in Eq. (12), which simplify our calculation in
the unitary gauge.' The general case of ¢> = 0 is beyond our scope, see Ref. [42] for a detailed
discussion of this case in the 2HDM framework. The hermiticity that C4q)r = CE"a Q)L [53] gives

_ ma(Caa)r + Caa)r) _ 2maRe[Caayr R]
o e - e ’
de, = i1(Caa)R — Caa)L) = Im[Cgayr] = —Im[C4a)r]. (13)

Hence, the following relations between two different notations must be satisfied:

€q

1 1
C‘]leb = _Ec(ab)R and Cl;ea = —Ec(ab)L~ (14)

From the above discussion, we see that one-loop contributions to the a,, and d,, can be written
in terms of well-known PV functions, see detailed discussions in Ref. [39] or general formula
introduced for calculations of the cLFV decay rates [36], with the identification that o7 g =
—Cb)L,r- In the limit of 0 = m,, mj < m p, the numerical values of a,, can be evaluated using
the numerical packages such as LoopTools [40] or Collier [41]. Although the exact analytic
formulas of one-loop three-point functions presented in Ref. [39] can not be applied to calculate
de,, the limit of mj, — m, can be used to solve this problem. The analytic formulas of a., were
introduced completely in Ref. [34].

Because of the relations in Eq. (12), only Cp)L,r is needed to determine a,, and Br(e, —
eqy). Because all two-point diagrams give contributions to just Dp)r.r, C(ab)r,r are calculated
by considering only three-point diagrams. In this work, the analytic formulas of D)1, g Will be
determined directly from all diagrams in Fig. 1 to check the validation of the W1 in the presence
of the FSV.

The analytic formulas for one-loop contributions to the cLFV decay amplitudes presented in
this work are more general than the results introduced in Ref. [39] for general 3-3-1 models.
Many important steps in our calculations were shown in appendix C. Using this unitary gauge,
the assumption for a particular form of the Goldstone boson couplings given in Ref. [36] is
unnecessary. In contrast, we use the same photon couplings to other physical particles in an
arbitrary BSM, as given in Table 1. Namely, a tree-level photon coupling always contains two
identical physical particles. This implies that the contributions from the F'SV diagrams are not
included.

Using the notations of PV-functions defined in appendix A, the Fhh contributions from dia-
gram (1) in Fig. 1 are:

' We thank the referee for reminding us this point.
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Fhin _ —€Qhn L L f R R f R L f
@)L =72 [maga}hgb,mxl +mb8q Fi8b Fn Xy — MF8&a rn8h FnXo |-
Frh _ —€Qh Rx bRy f Lx L f L R f
Clabyr = Ton2 [maé’a,?hgmxl + M8y Fn8b Fn Xy —MF84 Fn8bFnXp |- (15)
where XOf , X { , ... are linear combinations of the PV-functions Cy gp,;,;; (m%, mi, m%) defined

precisely in appendix A.
The diagram (2) in Fig. 1 gives h F'F contributions as follows:

nrr _ —€QF Lx _bL +yh Rx _R h Rx _L h
Cunt BTN [magu,thb,FhXI +mu84 rn&p, FnX2 +mFga,thb,FhX3]’

nrr _—€QF R R h L L h L* R h
C(ah)R :—16312 I:magaj?hgb,FhXI +mb3a,?h8h,FhX2 +mFga,thb,FhX3]f (16)

where X {‘,2’3 are linear combinations of Co; ;; (m%, m%, m%). The above results are completely
consistent with those introduced in Ref. [36], except an overall sign and the signs before the
PV-functions ¢ 7, arising from the different definitions of the external momenta p; in the denom-
inators of the one-loop integrals. We also give the analytic formulas of D@Z})ZL’ g and Df’al;;f LR
used to confirm the WI given in Eq. (12) for the only-scalar contributions. The PV-functions
derived from diagram (2) defined as X lh are different from X ;f defined for three diagrams (1),

(3), and (4). In contrast, the equal functions are denoted as follows:
. . b _
B =B = B{"" = Bo(p?,m},m%), Xo=X] =X}, i=1,2.
The form factors D41, g originated from scalar contributions are:

Fhh —eQH [ | L f
@)L = [ 2 {ga;hgb,Fh x 2Coo}

—eQe {( L¥ _R R+ _L (1 (2)
—— 1 (my +m )mF (B — B )
1672 (m2 %) 8a,Fh8b,Fh a8a,Fh8b,Fh 0 0

L L 2 (D) f 2 ) f R R I f @f
- ga}hgb,Fh (maBl —my,B, ) - mambé’a}hgb,m <B1 - B )} ’

Fhh _ nFHH[ L R L R
Dianyr =Dnyr [ga,Fh <> 84,Fh» 8b,Fh <> gb,Fh:I ;

hFF eQr [ 1 L 2 ~h h 2 vh 2vh
Dy == Ton2 {ga,*thb,Fh [mFCO + 2 —-d)Cpy —myX| — mbxz]

Rx R Rx* L Lx* R h
+84, Fn8b, FnMamp Xo + [&;,thb,Fhma + ga,thb,Fhmb] mpCy } ;

hFF hFF L R L R
Dapyr =Dapyr [ga,Fh < 8a.Fhs 8b,Fh < gb,Fh] ; a7

h : ot h —r 2 2 2N ~f 2 2D
where X1,2,3 are linear combinations of COJ.’I.]. = Co,i,ij(my, my, my), Coy = Coo(my, mj,, mj,),

and B/ = B (%, m2) given in Eq. (A.3).

It is noted that the Fhh contributions are the sum of three diagrams (1), (3), and (4), while
the h F F contributions are from only diagram (2). We emphasize that the electric charge con-
servation Qr = Q) + Q. is one of the necessary requirements to guarantee the WI given in Eq.
(12), see a detailed proof in appendix C. We can see this crudely from the necessary condition
that div[ D{LF 1+ divIDERY, 1~ gk*gf (Qe + Qn — QF) = 0 and div[D{ 1+ divIDE 1 ~
gX *g;f (Q¢+ Or — OF) =0. This conclusion supports completely the only case of electric con-
servation among the remaining ones mentioned in Ref. [36].

6
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Regarding Lagrangian (4), which results in four diagrams in the second line of Fig. 1, diagram
(5) gives the following F V'V contributions:

FVV eQy f 1 Ls R mamb f
Clabr = T 1672 {ga Fng Fvinr |:3X3 + o —ga}vgb,vaF X —5—Xo12
my v
2y /f f
myp Xy +mpX;
+ gclz‘,y%vgzﬁvaa |:2(X1f - X{) + %]
my
B 2 v/ 2y f
R« R o fy L, MEXg tme X,
+ga,j;rvgb,FVmb 2(X2 - X3 )+ —m2 “ ) (18)
L %
where X lf is the linear combinations of Co ;; (mZF, m%,, m%,), given in Eq. (A.6), and
Fvv __ €Qv fy 1 Re L mg 7
Clabyr = T 16722 {ga Fng Fvmr | 3X3 —2 2 :| —ga,?vgb,vaF X X012
L mv
f
m2X! +m X
+85?vg£vaa[ Xf) £ b2 3 b :|
my
2y /f 2y f
muXy, +ms X
gl gk pym [2(}({ —x)+ %]} . (19)
4
Diagram (6) gives V F' F contributions:
2yv
vir __ €QF Lx L — X3) +mpX3
CabL ="Te,2 {maga,Fng,FV |:2X01 + m%/
2 yv
mF (X;—X§)+m Xi
+mb85?v81§,FV |:2X82 + 2 s
my
2 yv 2yv 2 vy
ms XY +mi XY —meX
_gc]f}VglI;,FVmF |:4X0+ a1 b22 F 3}
my
magmp
—8 v pv — 3 X mp(XY, — X%’)} . (20)
my
where all X7 are expressed in terms of PV functions Cg/lFl] Co.i.ij (m%,, m% sz), and
2 yv
eQF my (X} — X5) +mp X5
CVFF —— m Rx R 2Xv +
(ab)R 1672 a8a,FV8b,FV 01 m%/
2 v v 2 yv
my (X5 — X3) + m3X|
+mbg£,>;’vg£,FV |:2X82 + 2 s
my
2 yv 2yv 2 yv
my X +mpX; —mpX
— 82 kv 8h FYMF [4X5+ — " 3:|
my
mpm
_gg;vghv—mz“ me(X}’z—Xg)}. (21)
v
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Finally, using the simple notations gaL R = gi ‘va, the formulas of D ,p); and Dp)g are

78) _ () 8)
Dapye =Pabyr + Pianyr

eQ. ( L+ R Rx L ) ) )
e mp + mg ) 3mp [B ~B ]
167'[2(7713 _m}%) { 8a 8b 8a 8pMa 0 0

—mp (magl*ef +moglgf)

2 +m? 2 2 p(D)
X |:<2_|_ w> BEZ)U n Ao(my) +2m% B, N 1:|

2 2
% my

+ma (mogR gl +magl sk )

2 2 2 2 p(2)
+ A +2m2%B
x [<z+"””—2m“>3{”"+ olmy) T +1“, (22)
mv my,

(78) (78) L R L R
D(ab)R =D(ab)L [ga <84 8y <> 8p ] .

FVV e0v [ 14 1 f 2 2y f
DY == <=5 ek ek [26d = 20 + 20m2 + mD) X

1 2 nf 2)f
o (m (8" + B = 2Cq) + Aolmy) +m B 4 mi By )f)}
14

f 2y f
2C 1 m; X
+ 8485 mams [4X§ + —SO} + 848y X mamp [3C5 — ot 2012]
my, 2my, my,

. 1 mZXf
+84" 8y X mpmp |:3C({ -+ 072012“ ’
2mv my,
FVV _~FVV [ L R L R
D(ab)R =C(ub)L [ga <> 84,58 < &y ] , 23

where all Xl.f are expressed in terms of PV functions C({ij = Co,ij (szf m%/, m%/) and Bl(i)f is
given in Eq. (A.3).

The remaining formulas of D)z, g from diagram (6) of Fig. 1 are

eQF 2 2 2 2
A~ {gaL*gg [_2ch0 +(d = 2)°Cly +2m X§, + 2mp X ¢,

1 2
2 [(2 — dym%Cly + Ao(m3) +m*% (Bél) + B(g ))
v
2 (5 BY) < (B2 5 BE) 4 mEm o
—m (0n2 +mf —m3)Co+m2X} +mix3)|]

1
+g4 " ghmamy [2X0 - ((2 —d)Cly +mE XY —m2XY — m%,x;)}

\%4
Rx L
magmp
480 By RF [—B}“” +Q2—d)Cop —m2XY +mi(X} — Xg)]
my
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Lx ,R
ga *gb mbmF

2
my

+ [—B{”” + (2~ d)Chy — mpX3 +m2(X3 — x’;)]} :

VFF _VFF[ L . R L. R
Dapyr =D apy1. [ga <8 8 < 8 ] ; (24)

where all X} are expressed in terms of PV functions C(l)),ij = Co,ij (m%,, m%, m%) and Bf’)” is
given in Eq. (A.3).

We note that all results presented here are crosschecked by FORM package [48], using inter-
mediate steps given in appendix C. There is a property that CJ,,, . = C (84 < 5. g < &[]
forall X = Fhh,hFF, FVV,VFF.The above results of one-loop contribution to C(pyz,r are
totally consistent with those introduced in Ref. [36], after some transformations of notations
presented in appendix B. In the limit of m%,m%, > mg,mi, ie., mg/m%,m%/mi ~ 0 with
B =h,V, we get consistent results with those given in Ref. [27,55,56]. To derive the above
results for gauge boson exchanges, we start with many important features different from those
mentioned in Ref. [36], namely: i) we do not use the typical form of couplings relating to Gold-
stone bosons going along with the presence of new gauge bosons, ii) we have to use the massless
property of the on-shell photon ¢ = 0, iii) to confirm the WI for all diagrams given in Fig. |, we
need the charge conservation law corresponding to the Lagrangian (1): O = Qv + Q.. There-
fore, our calculation is another independent approach to confirm the result given in Ref. [36].
The details of the calculation to confirm the WI for all one-loop contributions are given in ap-
pendix C. We remind that our results are derived from the photon couplings listed in the Table 1,
and do not contain the contributions from the FSV diagrams. In the following, we pay attention
to the possibility of adding the FSV diagrams or the new forms of the photon couplings.

3. Discussion on WI and previous results
3.1. WI to constrain the form of photon couplings

Now we focus on the feature that the WI of the on-shell photon will constrain strongly the
forms of the cubic photon couplings with two physical particles in a renormalized Lagrangian.
Now we consider the existence of the photon coupling types at tree level:

L% =eQpA* [Fiy" Fy +he.] +ieQpA* [(h}d,uha — hadyh) +hee.]

~[eQv A"V VI T (o, popo) +hic ] + [gyav guh @AMV 2 4 hc.,
(25)

where all couplings are more general than those well-known as the standard forms given in
Table 1. In addition, the last term corresponds to the photon coupling to a scalar # = S and a
gauge boson V mentioned in Eq. (D.1). The above Lagrangian results in the following decays
from the heavy particle to the lighter one: i) F> — F1y, ii) ho — hyy, iii) Vo — Viy, and iv)
V — hy. The WI for these decay amplitudes at tree level is M*(X| — X2y) po,, = 0 with po,
being the external photon momentum. It can be derived that:

e Using the same convention of external momenta given in Fig. 1, we have M*(F, —
F1y)qu ~ (mp, —mp)up,(p2)ur, (p1) =0, where po = —q. Therefore, mp, = mp,. This
case is automatically satisfied for the tree-level AMM amplitude.
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o MH(hy = h1y)pou ~ (p2—p1).(p2+p1) = (m%l2 —m%”) = 0, where all on-shell momenta
are incoming the vertex A"h}khz, implying that pg = —(p1 + p2) and pfz = m%l 5 The
consequence is my, = mp,. ’

o MMV — hy)pou ~ €v.po =0, where &, and pg are the polarization of gauge boson V
and the external momentum of the photon A,. Hence, the presence of a AhV vertex does
not automatically satisfy the WI. One-loop contributions for all diagrams arising from this
vertex must be checked for the validation of WI. In Ref. [34], the presence of these vertices
was mentioned in a Higgs triplet model (HTM). A detailed calculation in appendix E shows
an opposite conclusion that this vertex vanishes at tree level.”

o My (Vi — sz)pg ~ sfsé*pgr’w;\(po, p1, p2) =0, where €1 2, and p1 2 are the polar-
ization of the gauge boson V; > and the external momentum of the gauge bosons V; > and
photon A, respectively. We will use the following properties of the external gauge bosons
Vi(i = 1,2) and photon: ¢;.p; =0, p(z) =0, pi2 = m%,i, and the momentum conservation
po + p1 + p2 =0 following notations in Table 1. After some intermediate calculating steps,
we have:

M (Vi = Vay) phy ~(po-e1) [(po — p1).€3] + (e1.63) [(p1 — p2).pol
+ (po-£3) [(p2 — po)-£1]

—(e1.63) [mzv2 _ m%,l] —0. (26)

Hence, my, = my, is necessary. From this, we consider the more general photon coupling
with a gauge boson [49] describing the couplings of a leptoquark field [50]

)03 (Pos P1, p2) =guv(kypo — p1)i + gua(p1 — p2)y + gap(p2 — kv po)y
=T (Pos P1, P2) + 8ky (800 P03 — G Pov) 27

with 8k, = k, — 1 showing the deviation from the standard vertex listed in Table 1. This may
change the one-loop contributions of the diagram (5) in Fig. 1, hence change the formulas
of C (IZZ)‘L r &iven in Egs. (18) and (19), respectively. One can prove immediately that the
vertex deviation

8T v (po, p1, p2) =T, (o, p1, p2) — Cpva(po, p1, p2) = 8ky (800 Pox — &y POV)
(28)

guarantees the WI. The new one-loop contributions arising from 8T are also satisfied the W1,
see analytic formulas given in Eq. (C.30).

Now we start from the point that all results of one loop contributions given from Eq. (15)
to Eq. (24) based on the standard forms of photon couplings given in Table 1, where a photon
always couples with two identical physical fields. On the other hand, a recent work [34] assumed
the existence of a new photon coupling kind ASV, which may appear in some BSM, in which the
photon couples with one gauge boson V' and one scalar S. The appearance of a boson V or S will
generate by itself the one-loop contributions that always guarantee the WI by the respective set
of four diagrams given in Fig. 1. Hence, the two FSV diagrams must give contributions satisfying
the WI themselves, namely

2 To the best of our knowledge, we have not seen any UV models beyond the SM that have violated U (1), couplings
of the form S-V-y, which is the necessary source for generating F SV -type diagrams.

10
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FSV FSV FSV FSV FSV FSV
Dy, T maClapy, +mbCiapy = Digpy, +MaClapy, +mbCiapy, =0. 29

As aresult, the divergent parts of 4 = S given in appendix D for both L and R parts give:
0 =gy |28Lrehyme — gl efyms — gl ehyma)
=gynv [ngh*gﬁva — Zan &by ™Mb — &ur gfvma] : (30)

Considering the case of g,,v # 0. Then, all quantities gaLh, gfh, glfv, and gllfv are zeros if at
least one of them is zero. More strictly, we require that the two Egs. (29) must be held for both
divergent and finite parts arising from D4p)1, g and C(up)r, g given in appendix D. Consequently,
gynv =0, 1i.e., the FSV diagram type does not satisfy the WI.

Regarding the vertex deviation of the AVV couplings defined in Eq. (28), the new one-loop
contributions relating to C (‘ZZ)‘Z’ g and D(’ZZ)‘L r are shown in Eq. (C.36) of appendix C. Our
results are consistent with previous works [49,50]. Although they satisfy the WI, they contain
divergences. For example, the divergent part of §C f VViis

Skye Q \%
: FVV Lx L R% R R¥ L
div [—5CL ]232;—2’"%/ [ga “gymat8a 8 Mb — 285 8 mF]- (€29)]
Hence, 6k, = 0 is equivalent to the renormalizable condition of the theory, see a more detailed
explanation in Ref. [49]. This confirms that the AV V coupling listed in Table 1 is still valid for
a general UV-complete model. Consequently, §C f VV =0, implying that the results of C(’ZZ)‘L R
given in Egs. (18) and (19) are unchanged for many renormalizable theories.

3.2. Discussions on previous results

It is easy to derive that C(upyr,r = o g corresponding to the notations given in Ref. [36],
see a detailed explanation in appendix B. This confirms a perfect consistency of the two results
obtained from different original assumptions that we have indicated above. In addition, these
results are also consistent with those given in Ref. [27] in the limit of heavy boson masses in the
loops, which are very useful for studying the correlations of AMM and cLFV decays.

In some BSM, SM light quark may play the role of the light fermions u, d = F in the Yukawa
couplings [29], hence the condition m%, > mg, mi is not held. But numerical illustrations [39]
to investigate cLFV decays e, — e,y with very light neutrinos show that the case of mZF < mg
are also valid for approximation formulas with m(% = m% =0, provided mi, m% < m%, m%, An
analytic approximation to explain this result was given in, for example, Ref. [58].

For analytic formulas of cLFV and a,, introduced in Ref. [28], they can be changed into the
form of PV-functions consistent with our results. An exceptional case mentioned is the coupling
of a doubly charged boson with two identical leptons. For example, the Lagrangian containing
couplings of a doubly charged Higgs boson is [28]:

Line= g0 et + 8507 e y3¢; +he., (32)
where we can identify that gi Fn= gié + g;g and g£ Fn= gié — g;j3. But the Feynman rules

for the vertex Zlcﬁ j¢ T containing two identical leptons give an extra factor 2, implying that
CbyL,r givenin Egs. (15) and (16) must be added a factor 4. Instead of many particular formulas
to calculate one-loop contributions relating to different charged particles, the one-loop results for
(g —2)¢, and e, — e,y decays can be generalized for a,, with an arbitrary electric charge Qr

11
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of a new fermion and the boson with Qp = Qf — Q. with B = h, V. Namely, the a,, formulas
are

0umq /l x(x— 1) [2Re[gR Imp + (g1E + gRR)mqx]
dx x

ae, (h) =
é 1672 J (1—x)m%+x[m%l+m3(x—l)]
1
2_2RL RL + LL+ RR -1
+Qsza/d P26 ]sz (g2 g Jmatx = D] (33)
1672 J (1 —x)m2 +x [m% +m2(x — 1)]
Q 1
"
Vi=———— [ d
e (V) 16n2m2V/ '
0

Re[gRETmp [mh(x — 1) + m3yx(6x — 1) + m2x (3 — 5x +2x?)]
X
(1 —x)m% +x[m} +m2(x —1)]
ma(ght + gRR) [m%(2 — 3x +22) +m3 2x(x + 1) + m2x(x — )]
(1 —x)m% +x[m% +m2(x —1)]

1
Ormy /‘ 2gRL[g R \mpx [m%;x — 4m%,(1 —X) +m5x(2x — 1)]
1672m3, / (1 —x)m} +x [m% + m2(x — 1]

L@+ g max [mix( ) 4+ 2mF 2 = 3x + x%) + mix(x — 1]
(1 —x)m? 4+ x[m% +m2(x — 1)] ’
(34)

where gRl =g ol o, gtl =gl* gl o and gRR = gR% ok o with B=h, V. The cou-
pling identifications are gﬁ =80+ g% and glﬁ =8 — g;Z for k =1, 2, 3 relating to neu-
tral, singly, and doubly charged Higgs bosons. Similarly to the gauge bosons, gﬁ v =8+
and gaR’FV =gul —gii for Qy =1,0, —1, 2 corresponding k = 1, 2, 3, 4. The two formulas (33)
and (34) are derived by inserting the PV functions given in appendix A in the limit p% = p% = mg
into Cap)L, . We have checked that our results are consistent with all HFF, FHH,and VFF
contributions relating to the diagrams (1), (2), and (6) in Fig. 1, respectively. For the one-loop
FVV contributions arising from the diagram (5), there is a difference between our result and that
in Ref. [28], namely

1
Qvmgmp Qvmgmp
8(ag )(FVV) = === (gsf P —lgai ) | dx@x+1) = =—="5=(lgui P — 1844 1").
16m=my, 8m2my,
0

It shows that the two results are consistent if gi} = +g’/, i.e., gi FB g(f’ rp = 0, which appears
in many BSM such as the SM, 3-3-1 models,... We also see that the F'V'V contribution to a,, of
the doubly gauge boson given in Ref. [28] has an opposite sign with our result.

We note that our results are also valid as the exact solutions for studying the AMM and
ep — e,y decay in BSM consisting of very light bosons mp < mﬁ, m}z) such as an axion-like

particle (ALP) [59,60], or a new scalar singlet [61].

12
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4. Conclusion

Using the unitary gauge, we confirm the exact results of analytic formulas in terms of PV
functions for one-loop contributions to the cLFV decay rates e;, — ¢,y given in Ref. [36], which
are also applicable to compute the AMM of charged leptons. These results are consistent with
those given in Ref. [27] in the limit of heavy bosons mp > m,, mp. The general expressions
in terms of PV-functions are very convenient to change into available forms. Our calculations
here have many new features as follows. Our calculation is independent of the Goldstone boson
couplings of the new gauge bosons. The Ward Identity of the external photon allows only the
couplings of a photon with two identical physical particles, as given in Table 1. At tree-level,
the ASV couplings do not satisfy the WI if &,.pg # 0, where &, and p¢ are the polarization
of gauge boson V and the external momentum of the photon, respectively. The one-loop F SV
contributions arising from this vertex type to cLFV amplitudes and AMM do violate the WI.
Therefore, the results given in Ref. [27,36] are valid in all renormalizable BSM respecting the WI.
They are still applied for other similar decays of quarks ¢ — ¢’y . The photon-scalar-vector ASV
vertex does not appear in BSM satisfying the WI. Our conclusion is very useful for constructing
loop calculations relating to photon couplings, where only the vertex types listed in Table | are
valid.
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Appendix A. PV functions for one loop contributions defined by LoopTools

A.l. General notations

The PV-functions used here were listed in Ref. [39], namely

Qrp)d / d%k

Ag(m?) = ,
0(m™) in? K2 —m?+id

13
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Qru)* [ d%% x {1,k,, k.ky}
B '2’ M2’ M2 — / [ [
0. (Pjs My, My) ) DoD;

Qrp)*— / dUk{1, Ky, k)
in? DoD1 D,

Bu(p}, M7, M3) = (=pi) B)",

Cp = (=p1u) C1+ (—p2u) Ca,

Cuv = &guwCoo + p1up1vCii + P2 P2vC22 + (P1P2v + P2 P1V)C12, (A.1)

L i=1,2,

Clo,u, vy =

where Do = k> = M} +i8, Di = (k—p;)* = M3 +i8, Co v = Co.u v (P71, 0, p3s MY, M3, M3),
W is an arbitrary mass parameter introduced via dimensional regularization [57]. In this work,
we discuss only the case of external photon g2 = (p» — p1)?> = 0. The scalar functions

Ao, Bo, Bfi), Co, Coo, Ci, and C;; (i, j = 1,2) are well-known PV functions, which are con-
sistent with those defined by LoopTools [40]. The well-known relations are:

By = By (p}; M7, M3) = B (p}: M3, M),

. . 1 .
B = B (p}: M}, M3) = 37 [A0(M3) — ao(MD) + fiB{" | (A.2)
i
where f; = pi2 + M22 -M 12 Depending on the particle exchanges in Feynman diagrams, the

Bl(i)-function given in Eq. (A.2) is denoted more precisely as follows:
. 4 , 4 - 4
B = B (plymi,m3), B = B (pfsmy,mp), B = B (pFimi, mp). (A3)

The scalar functions Ag, Bg, and Cp can be calculated using the techniques of [38]. Other PV
functions needed in this work are

Qrp)* / dk {1, ky, kuky}
B M) = ) A4
O,LL,MU( 2) i7T2 D1D2 ( )
For simplicity, we define the following notations appearing in many important formulas:
Xo=Co+C1+Cy,
X =Ci+Cn+Cy,
X2 =C12+Cnn+Cy,
X3=C1+Cy= Xy — Co,
Xonz = Xo+ X1+ X2, Xij = Xi + Xj. (A.5)
Depending on the form of the PV-functions, we have
X{ = X;mh my, m%), X!~ X;m¥.me,m¥E), X!~ X;(m},m, m%) (A6)

corresponding to the diagram types of FBB, HF F,and VFF with B=h, V.

A.2. pr# ps#0and p3, p3 #0
From the definitions of PV-functions given in Eq. (A.1), it can be proved that:

BY” = B\” (M2) = By(0; M2, M2) = Cyry — In(M3) 4 O(e),

14
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Ao(M) = M? [B(O)(M) n 1] , (A7)
B/ (M) = B“”(p1 +pb), (A-8)
B (M>) LAy By +1 130 (2 2045 p3)
2— 5 M2 6 2o Py Py + Py ps+phpy +2p5 D)),

(A9)

2

2 2 2\ p(D) 2 2 2\ p(®
(M5 — M} +m3) By’ — (M5 — M} +mj) By 41
m2 —m; ’

1
Coo = 1 |:2M22C() +

where Cyy is defined as the divergent part of the PV functions when D — 4, Cyy = 1/e —
vE + log(4m u?) with yg being Euler’s constant and D = 4 — 2e¢. It is well-known that the PV-
functions having non-zero divergent parts are:

div] By ] =div| B" | = div [ B | = —2div| B" | = ~2div] B ]| = ddivICool = Cuv,
div[Ao(M)] = M>*Cyy . (A.10)

As mentioned in Ref. [39], we can derive all formulas of C;, and C;; as functions of Ay, B(()i),
and Cy consistent with Ref. [39], using the following relations:

2m2Cy + (m2 +m)Cr = — fuCo — B + B,
(m2 +m})Cy +2m3Cy = — f,Co — B + By,

1
2Co0 +2m;Cr1 + (g +m)Cra = 2By — fuC

1 o 2
2m2C1y + (m2 +m2)Cop = 533 ) 4+ Bl( )~ £uCs
I ©
2Co0 + (m2 +m})Cra 4+ 2m3Cor = 585 ) — fCa,

1 1
(mz +mi)C11 +2miC12 = EB(SO) + Bl( ) f»Ci,

1
4Cop — 2 +m2Cy1 + (m2 +m3)Crp+miCop = B(go) + M} Co, (A.11)

where f, ) = M22 — M12 + mg p» and C12 = Cy1 is used. In this work, we need just combinations
of these PV-functions for our immediate steps. In particular, we can prove that:

M) _ @
BO _BO

Xo=—"5——-,
m2 —m3
B _ g
Xp=—— 5
m2 —mj,
A M2 —_A M2 M2 _ M2 B(l) B(z)
o(M{) — Ao(M5)  (M] 7 [ By 0 lX
= 5 T T 5 | T 540
2m§m§ 2(m? —mi) m2 mi 2

1
m2B" —m2B? = -5 [(mﬁ + M2 Mf) BV — (m%, + M3 M%) B(gD] ,

leBfl) — m%B(z)

by = — = —(2Co0 +m2 X1 +m3X2),
(ma_mb)

15
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1
(2= d)Coo + M;Co = —2Co0 + 5 + M;Co
_(m2+ M7 — m3) B — (m} + M} — M3) B”
2(m2 —m?)
=b; + (M3 — M})Xo, (A.12)

where Ag(M2) = M2(B{” + 1) and Ag(M?) = MZ(B\” + 1 + In(M2/M?)).
It was proved previously, for example [39], that

1
Bo(p*s M7, M3) = Bo(p?s M3, M}) = Cuy —In(M3) +2 = 3 (1= —)In(l = xo),

o=% g
Co(m}. 0, m,,,M%,Mz,M2>——m —5 2 Li20as) ~ Li2 (o)1 (A.13)
a ba =+

where p = pg, pp; and

1 2 a2 2 2 21 232 22
xi=2M2|:(M2_M1+P)i\/(M2_M1+P) —4M;p= |,
2, 2
Vot = ZMZ[(MZ ME+mD A,
Vbt = Xa+ [b— a] (A.14)

with A = (M} + M3 +m? —2M} M3 — 2M}m? —2M3m?2)'/2. The above formula of Cy is also
consistent with that introduced in loop-induced decay amplitude of 7 — Zy [62].

A3 my=pi=p;#0

Formulas for AMM in Ref. [34] require that analytic formulas of PV functions with m;, = m,.
It seems that the results of PV-functions listed in Ref. [39] are not valid. But the limit m; = m,
can be derived mathematically. For example, the result of C¢ given in Eq. (A.13) leads to a
consequence that

co(mﬁ,o,mg;M%,Mg,Mg)=mhm Co(m?2,0,m2; M?, M3, M3)

= Z Liz (yao) = Z —y‘m In( = Yao)

C3(m 2) Yao
In(1 M? + M?% —
_Z n( Zy“”) | gy Mit My —mg . (A15)
2M5 yao A

where f' = af/ (8m2) denotes a well-known derivative notation. In addition, B ) B(2) nd

Bfl) = sz) is automatically satisfied. Many formulas containing (m2 — m b) in the denominators
corresponding a derivative in the limit m, — my:

X B(l)/ Z yag [yaa + 11’1(1 yaa)]
o=+ ya”

Xp=-B". ... (A.16)
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In this way, we can confirm all results introduced in Ref. [34]. There is another way to calculate
form factors, using the Feynman trick:

1
1 dxdydz 8(1 —x —y —
7:1“(3)/ xdydzd(—x -y Z), (A.17)
DoD1 D> D3
0
where
D =[k— (yp1 +zp2)* — M* + i3,
M*=y(y+z—D)p?+z2(y+z—Dp3+xM? + (1 —x)M3. (A.18)

With M§ = (p3 — p7)xy —x(1 —x)p5 + xM} + (1 — x)M3, the PV functions are:

X

dy{L_yv_(l_x_y)vyz’(l_x_y)ys (l_x_y)z}
Mg

Co.1,2,11,22,12) =— | dx

)

X

dy x {x,—xy,—x(1 —x—y),—(1 —x)}
5 .
MO

X0123=— | dx (A.19)

St— | O Y—
T °T—7T

The expressions of X; in Eq. (A.19) are very convenient for the case of (g — 2) anomaly, where
pl2 = p% = mg results in Mg =—x(1- x)mg + xM12 + (1 — x)M?2, which is independent with
y. Consequently, the

X123 = —/ldx (= x). —x(1 = 0%/2, =x(1 = x)?/2, = (1 = 1))

0 Mg
; _ _(1_ 27 (1279 2
:_/dx{x(l x),—(1—x)x /22, (1-)x°/2, —x }. (A20)
0 MO

Formulas of Eq. (A.20) are enough to check the consistency between our results with those of
(g — 2) anomalies and cLFV amplitudes mentioned in ref. [28]. Using the second line of Eq.
(A.20), we can write the general formulas of a;, as shown in Eqgs. (33) and (34).

Indeed, all integrals in Eqgs. (33) and (34) can be solved analytically. Starting from the general
formulas of Mg as functions of x: Mg(x) = mg (x — x4)(x — x_) corresponding to the two
solutions x4. All numerators in Egs. (33) and (34) are always written in the following forms:

2

2 2 2 dMg
ax“ 4+ bx +c=a1M0+b1d—+c1. (A.21)
X
The consequence is
1
2 2 2
b M 1—x_
/dxxwzm—l—b]ln—lz—i—c—lln[w] (A.22)
M() M2 VA (1 —=xp)x_—

0

The result in this way must be consistent with those discussed in Ref. [34], hence we do not show
precisely here.
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2 2
A4 p;=p,=0
Results for the case of pg = pl% = 0 were provided in Ref. [36], namely

2
M? — M3 4+ M} [%}
1

)

C =d=
' (M — M52

4 2042 4 4| M3
3MH — AMPMZ + M3 +2M*In |:M_T2j|

C1=C2=C=—

4(M? — M3)? ’
6 472 214 6 610 | M3
1M} — 18M{ M5 +9IMi M5 —2M3 + 6M7 In [Ffz

Cli=Cn=2C1p=d= :| (A.23)

18(M7 — M3)*

This approximate formulas of PV functions give results consistent with those given in Ref. [27],
namely

2
- x“—1—2xlogx
:2 =,
Jn(x) =28n(x) T
) x—1—logx
X)= ———F—,
&h 2(x — 1)
. 2x3 +3x% —6x + 1 —6x%logx
= , A24
) 24(x — 1)* (A2
x3 — 12x? 4 15x — 4 + 6x%logx
fvx) = 3 ,
4(x — 1)’
( )_x2—5x+4+3x10gx
- —4x* 4 49x3 — 78x% +43x — 10 — 18x3 log x
fv(x)= 7 ,
24(x — 1)
2 () —3(x3 —6x2+7x —2+2x210gx)
X)= s
8v 8(x — 1)3

where x = m% / m%. The diagrams FBB and BF F corresponds to different identifications that
{My, M2} ={mp,mp} orand {My, My} ={mp,mpr}.

Appendix B. Notations in Ref. [36]
Here we give a brief review of the approach of Ref. [36]. Apart from the general couplings of
physical Higgs and gauge bosons given in Egs. (3) and (4), the photon couplings were assumed

to be the standard forms given in Table 1. Furthermore, the couplings of the Goldstone boson
Gy corresponding to V are assumed to be the following forms:

i —
Lg, = {va—vF I:(gée,FVmu - gcl;,vaF) Pr + (gé“’FVma — giFVmF) pR] eu +h.c.}
+eQymy A, V* Gy —eQymyA, VG . B.1)
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The above assumptions of the Gy couplings are necessary for the calculation of one-loop gauge
contributions that were done in the 't Hoof Feynman gauge. These final results introduced in
Ref. [36] were the sum of all diagrams consisting of gauge and Goldstone boson exchanges.
Corresponding to the two one-loop diagram classes F'VV and VFF, we have the following
equivalence between two classes of notations

{a,c1,c2,dy, da, f, g} ={Co, C2, C1, Caa, C11, C12, Coo}?
la,—¢1,—¢2.d1. o, f, g} ={Co, C2, C1, C11, Coa, Cr2, Coo} .

where B = h, V are gauge bosons in the loop. In addition, the different notations in the def-
initions of the one-loop integrals given in Eq. (A.1), we have {m,m3} = {mp, m,} while
{p1, P2} ={—p2, —p1} and {p1, p2} = {p2, p1} for the diagrams VF F and FvVv respectively.
The couplings in the Yukawa Lagrangian of physical bosons are L = gb , R = gb , L= ga ,

and Ry = g%, Which result in the following equivalences: A = gé‘*g;f =gt p= gaR *ng =g

¢ =gl gl =gtk and v = gl gl = gRL. As aresult, we can identify that:

ki =mpX2, ko =m,XE, ks=mp(ci +c2) =mpX5,
121 :mbX‘zf, lgzzmbX‘lf, k3:—mFX'3f. (B.2)

For a gauge boson B, the one-loop form factors relate to the following notations:

2 v/ f 2y f
ms (X5 — Xz2)+m:X
Y1=Mb[2X({z+ L2 m23 = 1]
B
f_ f 2
- my(X; +mi X
yzzm{zxgl PO ZX5) 4 m; 2},
m
B
2y f 2y f 2y f f f
meXs +m-X] +miX mompmp(Xi, — X3)
y3=mF[—4x({+ roa el 2},y4=— : ", (B3)
mg mpg
2y f 2y f
B myXg, +my Xy
Y1=mb[2(X{—X3f)+%i|,
mp
f f
_ X +mX
fr=ma | 2x{ — x)+ TEE0 T |
mp
B f —m%Xo—mgXl—m%Xz _ mompmp
y3=mp|4X3 + 5 s ya=——7—2Xo12. (B.4)
Mg mB

Appendix C. Important steps to derive C,p)r, g and Dp) 1, g by hand

The notations for calculating the amplitude corresponding to all diagrams of both Higgs and
gauge boson exchanges in Fig. 1 are shown in Fig. 2. All diagrams in the same class will have
the same conventions of external momenta and propagators. There are three classes of diagrams:
i) The first class consists of four diagrams (1), (2), (5), and (6) in Fig. 1, and the two diagrams
(1) and (2) in Fig. 2; ii) the second class consists of three diagrams: (3) and (7) in Fig. 1, and
(3) in Fig. 2; iii) the last class consists of the remaining diagrams in the two Figs. 1 and 2.
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—-— —— ——
ep A €q ep ht €a ey ey T €a ep 2 €q €q

Fig. 2. Momneta notations to derive the one-loop contributions.

Although all the internal momenta have opposite signs with those denoted following LoopTools,
the PV-functions are defined with the same values. The relations relevant to momenta are:

ki =k — pi, p%=mi, pP2=4q+p1, P§=mi7 q2=(),
q.c"=0, p1.e" =py.e*
Only four diagrams (1), (2), (5), and (6) in Fig. 1 give non-zero contributions to C(4p)L,r, hence
we firstly derive Cup)1, as the factors of (2p1.e*) in the amplitudes arising from these dia-
grams. For convenience in detailed calculations, we use simple notations for all the coupling
factors g‘}% R ga R For integrals containing divergences, we use the regular dimensional reg-
ularization defined by the following replacement:

d*k i (271“)4 d a
D
/(271)4 T len X in2 /d / k.

The final results now are written in terms of the PV functions. In many intermediate steps, we
use many results for products of gamma matrices in the dimension d [51], namely

(C.1)

yiyu=d,

Y'Y v =Q—-dy" =y pyt =2 -adp,

Y Py =4¢" +d—dy 'y’ — vy ppoyt =4p1p2+d =D pps.

Vv Py v = =2vy Pyt — @ =4y vy’ = vEpipapavu
==2p3pop1 —d =B P prps -

C.1. Scalar contributions

We list here 8 formulas of amplitudes corresponding to 8 particular diagrams shown in Fig. 1.
Namely, for three diagrams (1), (3), and (4) we have

, _ (mp +§)
iMi=—eQp / Dk x ig[gR" P+ g-" P ]m[ Epr+ gf PrIup x (2ky.6%),
(C2)
. —eQ, (mp+§)
,M3:27 Dk x ig[gR" Py + g-" Prl-——[ gk P+ gf PRI(mp + p )¢ up,
mg —mb DoDq
(C.3)
. eQ _ (mp+K)
iMs=—C [ Dl xmag na+ plel Pt gl Pl gk P+ of Pelu,
m2 —m; Do D,

(C.4)
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where Dy = k% — m% and D; = kl.2 — mi The amplitude for the diagram (2) is:

iMy=—eQr f Dk x ug[gk “PL+g ](mF - leo)f%(l’;le — kZ)[ Pr + g Prlus,
(C.5)

where Dy = k% — m% and D; = kl.2 — m%-
In the next calculation, we use the following simple notations:

gLL — gaL*g;f gRR — gf*gf gRL — gf*gﬁ, gLR — gg*gf,
Ay =gl*ef Pr+ g g PL. Ay =gl*gf PL+ gl sk Pr. (C.6)
where g, = ga,’ph and g, LR gb”}fh without any confusions with the gauge boson couplings
gi’]f v- [tis not hard to write all amplitudes in terms of PV-functions as follows:
—eQH__
My =——5 T [=2p1e 1A1meXo+ 2™+ (X] py+ X p, ) Cp1.e®) | 1421} o,
(C.7)
— 1
M —€Qe < Ma[gf*PL +g£*PR](mFB(()1) _ Bl( )fpl)[gé,PL +gl]fPR](mb+pl)¢*uh
3= ,
(C.8)
T 2
M eQ. » Uad™ (mgy +P2)[85*PL +gaL*PR](mFB(§2)—B{ )fpz) PL+g Prlup
4= ’

1672 (mg - m%)
(C.9)

and

Mzz—er/Dkx%{m%¢*+k1¢*k2}[z42]uh

- gQF(—l)mF/Dk X Ug {2k.e* — p#* — ¢ p,r ) [A1up

=%52FW [13:Co+ @ = d)Coo | # + (i1 + COPy#*p, + (Ca2 + C)pst ™ ps
+(Xo+ Cr) p £ Py + Crapf™py} x [Azluy
_%_{(2’" £)(C1+Co) + (P + ¢ o) Co} [A1Tup. (C.10)

The validation of the WI given in Eq. (12) implies whether f LW I' =0 is correct with:

I =Dapyr + maCiapyr, +mbsCoanyr
f

1 2
Q. (mng ) —miB| )> 1 h 2 ~h

a

2
mg, —my

f
— 0y (m2X) +m} Xz +2Co0) }
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f
RR Q <Bl(1) B 31(2)) h f
+ g " "mamy 3 3 — 0 X1 — OnXin |- (C.11)
m2 —m;,

We have used many formulas listed in Egs. (A.2) and (A.12) to show that

f h h f
0=Xy, + X}, + Xo— Xp1, ==Xy,

o1
bf =~ (m2X, +m}X+2Cw) = 5 = 2Chy + miCy. (C.12)
Finally, the electric charge conservation Qr = Q. + Qj must be satisfied so that Eq. (C.11)

resulting in fLW I'= 0. On the other word, the W1 is valid for only one-loop Higgs contributions
arising from the set of four diagrams (1)-(4) in Fig. 1.

C.2. Vector contributions

To calculate the one-loop contributions from gauge boson exchanges corresponding to La-
grangian (4), we denote gé"R = gaL’va and g{;’R = g{;’ﬁv then use the notations given in Eq.
(C.6). The amplitudes relevant with gauge boson exchanges are:

. . * «  i(mp+K)
zM5=/Dk X aivalel Pu+ gl PRI“ T yglek P+ f Pl

A AT wr =i gy K
X D_l <ga(x — m—2 [_leQVF;w/ﬂ/ (—q,kl, —k2)8 ”’] D_2 8 -5

% my
_ d4k _ L*P R*P (mF—l_k) LP RP
=eQy Wuaya[ga L+ 8, R]myﬁ[gb L+ &, Prlup
Rk . KBk
< [Cuarp (—q. ki, —ka) €] (g"“" - 1—;) (gf’ﬂ - 2—5) , (C.13)
m m
% %

B
. eQ, 1 kT ky
iMs =7/Dk X x | g% —
m2 —mi DyD; m%,
X UaYalgl Pr+ gk PrI(mr +B)ypleh P+ gk Pr1(ms + py) ¢*up.  (C.14)
B
iMg=— —22¢ [ prs Ly (g8 - kzky
m2 —m? DoD» m2
a b \%4

X g™ (ma + po) vulgl Pr+gX PRIGmp + B)yplgl P+ gX PRlup,  (C.15)

where Dy = k2 — m%, D; = kl2 — m%,, and

F;wt’ﬁ/ (—q. k1, —k2) = 8a'p’ (k1 + kZ),u +8pu (k2 +q)o + 8ua' (—q — kl)ﬂ/ . (C.16)
The amplitude for the diagram (6) is:

1 k% kP
i Mg = Dk x ——— “p _
16 eQF/ * DoDiDs <g m>, )

X Tayvalgl’ PL+ ¢X PrInE — K)# (mr — k) yslek PL + gf Prlup,  (C.17)
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where Dy = k% — m%, and D; = ki2 — m%,

Considering diagram (7), we have:

eQ, /Dk 5 g [Yavsmr [A1]+ vakys [A2]] (mp + p,) #*us

iMy =m§ _mi DoD;
K kY
o
my
_ o
_m,% _WZi /Dk x DyDy
k2
. {mF <d . _12> A <(2 —Ok- klkf[) [Az]} (s + py) £ up
mv mv
— ieQe _ " Ao(m2)
_mua {mF [A1] |:(d — ])BO _ TF

2 2 2 2 p)
mey +m Ao(mz,) + 2m+4. B

my
x (mp + py) £ up, (C.18)
where we have used the following results

kit = (Do +m3) k=2 (Do+m3) p,+ pikp,,

d*k ky Ag(m)
X — = Ao(m .
Qmy* “p, T AOVIPIe
Then the one-loop contribution form factors from diagram (7) are:
2
eQ. RL LR M Aolmg)
(ab)L,7 1622 (m2 — ) { g ma+g  mp)mr | ( )B, )

+my (magLL + mbgRR)

2 2 2 2 p()
my +m Ao(m%,) +2m+% B
X[<—(2—d)+7F2 “>B§1>+ e
m

4 my
Db)r,7 =Dab)L.7 [g,f gl gh o g;f] . (C.19)
The same calculation for diagram (8) gives the following one-loop contribution form factor:

eQ Ag(m%,)

DabyL,8 = —ﬁ (gRLma + gLRmb) mp | (d— I)Béz) - 72F
1672 (m2 — my) my
+myp (magRR + mthL)
2 2 2 2 p@
my+m Ao(m%,) +2m% B
my my

D@b)r.8 = Dab)L.3 [85 < gl gy < g;f] : (C.20)
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Using d = 4 —2¢ and the divergent parts of PV-functions given in Eq. (A.10), we get the formulas
of Dpyr,78 given in Eq. (22).

Diagram (5)
From the equalities g2 =0, g.* =0, and k| = g + k», it is easy to prove that
[Fl"a/ﬂ/ (_qv kl ’ _kz) S*M] ktlxk?/kgkzﬂ/
= KUKE [ (k1 ko) [(ky + ko).6*] + (ka-6™) k1. (—ka + )] + (k1.6%) [ka.(—q — k)]1}
~ (k1 ko) [2Kk1.6*] + (K1 .£%) [q2 - k%] + (kp.e") [q2 - k%] —0. (€21

As a result, the amplitude (C.13) is written as follows:

. Uq Yo [Alypup X
Ms = Dk———— [T ,o/p (—q., k1, —k n
iMs eQV/ DoD1Ds [Tpap (—q. ki, —kz) £**]
, , ,Bﬁ/kakot’+ aa’kﬁkﬁl
x(g‘”’gﬂﬂ—g L 2g 22 ), (C.22)
my
where

A=mp (gL gl PL+ gl gk Pr) + 1421 k. (€23)

The first term in the integrand is
(1) =itg {4(k1 + k). + (=K +2p, — pF* + (=K +2p, — py)} x mp [A1]uy
+ g {2 —d) k1. + (=K +2p, — pORE + FR(—K+2p, — py)} x [A2]uyp
=ity {6k.e* = 3(p ¢ + £ p,) } mr[Ailup
T {2 = d) ke + Qpy — pORET +F T, — py) — 2% | (421,
(C.24)
After integrating out, the formula is
(1) =iz {2p1.%) x (=3mp)X3 = 3mpCo(p,#* + ¢ p,) ) [A1lup
+%{(2 - d)zga*(caﬂ - CﬁPla))/ﬂ + Cot [(ZPZ - ]171)1/0[?5* + ¢*Va(2p1 - 1172)]
-2 (B(§°> + m%Co) ¢*] x [A2]up
=iig(—3mp) x {2p1.£5) X3+ Co(p#* + # py)} [A1lup
g {¢* [2(2 —d)Coo — 2B + m%.Co) — (Bm% + 2mHC1 — (2m2 + 3m,2,)C2]
+p,# P, (=3X3)} [A2lup

+ua(2p1.e") {[-2(C11 + C12) + C2] p; + [—2(C12 + C22) + C1] p, } [A2] up.
(C.25)

The second term in the integrand is

-1
1
(‘m—a) @
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=Ty (—q. k1. —kp) e (gﬂ/f"k‘fk‘f’ + g““’kfkf’) X iigva [Al vpits
=itk (A1 (k1.6 — 83 [ + 7 [ (k1. — 3 | 14T b
=mp (] [200. o — Kk — K¢k s
17 |20k a ke — Rk — IR | (A2l
= iamp (A [l19gRa] o + T | 20607 B — K3 RE™ = K347 | (A1 up. (C.26)
The first term in Eq. (C.26) gives
Eig*gha= (K —p,)#"q (K= p,) =ke"qlk — p#" gk — Kt dp, + p1#74 Py
= Capy*#° 47" — Cap #4v® — Cav*#*4py + Cop#°4p,
+(Cipy+Capy) 49y + p1#°9 (Crpy + C2py) + Cop 74 p,
=Coo[e*.g — 4= DF*q] + (Crop, + Crip, + C1p)) 4 p,
+(Ci2py +Copy + Crpy + Capy + Copy + Copy) £74 P (€.27)

Because the divergent part Cog = A /4 = 1/(4¢€), which d =4 — 2¢, hence Cop(4 —d) = 1/2.
The result is:

1
khif*gha == ¢4 +[Ci2 (p1 +4) + Cri+C0 py]#79 (P = 9)
+[(Cr2+Xo) py +(C2+C) (p +4)1#74P,

1

=— 5¢*q + Xon2p,#74 s (C.28)

where we have used £*.qg = g> =0 and d¢ g =2e%.qq — g%#* = 0. The final result is
_ _ 1 1
uamp [A] [k gk | up =tiamp {P1¢* [_5 +m%X012} + ¢ p, [—5 + mﬁxou}

+2p1.e") B - szplpz} } [A1]up. (C.29)
Consider the last two terms in the last line of the formula (C.26)
— K3k — ki ke
=— 13 (K2 = p k)¢ — ¢ (¥ —kpy) &}
=— 12 (K +K3) ¢+ (D2 +mi ) pibe™+ (D1 +m ) £k p,

(Do +mp)(D1+D2+2m3) | pkE*  Fkpy | o [ Pk #kp,
+ + +my, +
DoD1 D> DoD; DyD» DoD{D>, DogDiD>

— -y
=— ¢ [2m} (B + 1)+ 20 B + b (B + B + 2m,Co)]

—p [ B P+l (Copy+Copy) | — ¢ [ B by (Cipy+ Comy) | 1

— [m2V(4B(§°> +2+42m%Co+m2Ci +m3Ca) +m2 B + m}B® + m%(B"
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2 2
+ Bé ))] —my (C2W1P2¢* + C1¢*l’71¢2)
=—4* [m%,(élB(()o) +2+ Zm%-Co + miCl + m%Cz) + mﬁBfl) + misz) + m%;(B(()l)
+ B+ X gy py + @pr.e i) [Cap, +Capy). (C30)

Lastly, consider the first term in the last line of the formula (C.26):
2(k1.e* )k Kkky = (k.e™ —2p1.e) x (K— p,) k(K — p,)
= (—2p1.* +2k.e¥) x (kzk — K2 p, — K p, + plkpz)
1 m? pikp
_2p1e* 4 2k £ —p - L
_)( pi-&" +2k.e ) x |:(D1D2 + DOD1D2> (k g Pz) * DyDD;
=(—2p1.€")

1
x {[_EB(()O) - m%CO] (P + P —mE(Cip, + Capy) — p(Cip, + C2P2)1‘72}

e | (o Yo (S e
8 J—
1" DDy  DoD|D; DDy DoD1D> Pit P

Pikpk"
+ DOD1D2:|

20
= (2p1.6%) {[% +méco] (pr+95) + (mECL+miCo) py+ (mhCatmlC) pz}

+ (2ep) % [(B +m3C) = (B +mECH) () + p) + CV pyips |
(C.31)

where B* = B”(O,m%,,m%,) and B*Y = B’“’(O,m%,,m%,). The last line in Eq. (C.31) is ex-
pressed in terms of the PV functions as follows

" 8" () Loy v | v i now
(2e5,) \ o T(Bo +1)+830 2Py pi + Py Py + Py Py +2P5 P3)

+m%y, [Coog"” + Cr1p) Py + Crapy Py + Ci2ph p} + C2ph P3]

= (380 2 =i ot Cor) | (01 1)
+[Coog™" + C11p} Py + Cr2p) Py + Cr2ph P} + C2pb P3| Py 1o Py )
=my g (B +1) + (o128 (p, + p)
+m% [2Co0f™ + (2p1.*) (Cripy + Crapy + Crapy + Co2ppy)]
B 2p1.e) = m @pre®) €1+ C) | (py + o)
+p1[2¢°Coo+ (2p1-67) (Cuipy + Crapy + Cropy + Co2py) | - (€.32)
Hence the final result of Eq. (C.31) is
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2k e =4 [ (B + 1)+ 2m3 Coo ] + £ p (2Co0)

+2pre) [mfvxol +m§X2] P+ Q2pie) [m%Xm +m§x1] Py
(C33)

The sum of three terms given in Egs. (C.25), (C.30), and (C.33) gives C(up)L,r corresponding to
the diagrams (5) given in Eqs. (18) and (19). The formulas of D4p)1.,5 and Dp)r,5 are given in
Eq. (23).

Regarding to the case of photon couplings in Eq. (27), the equality given in Eq. (C.21) is
still valid because the new part AT, = I yorpr — F;w,ﬁ, = 0ky (g,m/q/g/ - gﬂ/ﬂqa/) satisfies

(8uarap — 8puda’) g*/‘k‘l"/k’;, = q%(e* k2) — (q.k2)(¢*.q) = 0. The other relevant part of M is:

— Ve [Alyp X AT g™ (g““ g — 5

K + gk kY
my

=(¢¢" —#"q)mrAi + (gk¢* — £ Kg) Az
— {[(k1 QDK — F k) + (ki .e") gk — qu)] mrAj
%4
+ [(k1.g@) (= p k5" + Fkpy) + (k1€ (p kg — gkpy)] Az} (C.34)

The final result of new contributions to i§. M5 is:

d*k Taye A BB kg 4 g kBiF
i5M5=/ UgVa [Alvgup SYN (g gﬁﬁ 8 151 8 2Ky

(2m)*  DoDiD; 2

nmy
] )
= O a4 e 2,47 25p,) Comrai]

FiTa | @p1E") (py + py) — (2 + mDE = 2p# p, | Xa Aoy

1
—m—zﬂ [Coo (¢¢* — #*¢) + (Ci1 + C12) [-2(p1-9)¢* py +2(p1.£M)g p ]

v
+(Co2 4 C12) [—2(p2-@) ¢ Py + 2(p2-£¥)g ps |
+(P1-g) [~ Xo (=1 £ +£7py) + Qp1.e™)(C2 = C) +2(Crp " — Cof™py)]

—(p1.£") (29, py = m2 —m3) QX3 + Co) | mr Ay

1 — 2 2N 4% * *
- [coo (Z(ma+mb)¢ AP Py —2(py + Py) X 2p1e ))

my
mi_mczz X 2 % * 2 *
+ T X (—m2 = pyd Py + i),
mi—mg

ot x X (mie + pr#7p, - (2p1.8*)p2):| Azuh} . (C35)

Ignoring the factor e§126‘/62/q , the form factors are:

4Cop — (m? —m?2) X,
—schyy =gttmy, |:X3 + b
\4

2m?
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4Coo + (m2 —m2) X,
+g®®m, |:X3 + b ¢

2
2my,

8Coo +m2(2X1 + Xo) + m2(2X, + X
+gRLmF|:2C0— 00 +my(2X 0) 52X 0)]

2
2my,
LrMEMampXo12

5 ,
my

+8

—5CEk =0CLs 8k < . ok < ok |,

4(m2 +m2)Coo + (m3 —m2)(—m2X| +m3X>2)
Zm%,

8Dy =g [—(mi +mp)Xs -

8Coo + (mj —m2)(—X1 + X
+gRRmamb|:—2X3— 00 + (mj, —mz) (=X 2)i|

2
2my,

—8Coo + (m2 —m2)(2X1 + X
+ oRlmamp |:—2C0— 00 + (m;, —mg)(2X, 0):|

2
2my,

8Coo + (m2 —m2)(2X2 + Xo
+ g’ mpmp |:—2C0+ 00+ () a)( ) ,

Zm%,
8Dy =8D()1 [g,f AR g;f] : (C.36)

All results given in Eq. (C.36) were cross checked using FORM package [48]. All formulas in

Eq. (C.36) satisfy automatically the WI, namely § D@Z)‘Z +my8C (fl};)‘z + mb(SC(IZX)‘;Q =0.

Diagram (6)

After using the property of chiral operators Py _ g, the amplitude (C.17) is written as
d*k 1
—_— X
(2m)* DyD| D,
—mp[Ai] (gﬁ*ngPR - gf*glfPL) (vak1#*vp + Va¢*kzyﬁ)] up.  (C37)

iMg=eQF i [ (vt v + v Have) [A2]

The numerator is divided into the two parts Ny ~ ¢g*# and N, ~ —k%kP/ m%, After extracting
g“P, the first part is

N =it [ @ = mbs* =2tk + (= Dl 2 142]
—mp [A1][4e%.(k1 +k2) — (4 —d) (k1#" + ¢ ¥2) ]} us. (C.38)
Ignoring the overall factor e Q r/(16772), the formula in terms of tensor notations is
N1 =g [Azluy [ =20} Co+ (d = 4)(d = DCo0 | + (2p1.8") T [A1] (4mr Xo) u

+ g [2 = d)Capy® ¢y +2Co (Pt v +vo#*p,) — 2Cop.#" P, x [A2]up.
(C.39)

After expanding the tensors in terms of scalar PV-functions, the final result is
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Ny =it [Alup | ~2m3 Co+ (d = 22 Coo + 2m2 Xo1 +m3 X2

+uap ¢ p,y [A2lup x (2X0)

+ (26*.p1) ua(=2) [Xo1p; + Xozp, | [A2lup + (26*.p1) g (4mp Xo [A1]} usp.
(C.40)

Considering the second term proportional to k<“k#, we have

iy Ny = Tig (bR K + ka g lok ) (A2l y — mpit (R K+ REHaR) [A 1],
(C41)

The two relations ¥¥| = D1 +m?% —m?2 + p, ¥ and fof = Dy +m3, — mj + kp, give
Na ~itg (mHR¢°E) [Azluy
+%(D1 +m3 —m%+p1k) #* (Dz+m% —m3 +kp2) [A2]uyp
—mpﬁ[(Dl +m2 —m? +Né) £+ kg (Dz +m2 —m2 +k1ﬁ2)] [Ar]up
=i, [(L1 + L2) [A2] —mp [A1] L3]up, (C.42)

where
Ly =m% {¢* [(2 —d)Cop —m%(C11 + C12) —m} (Cia + sz)]
+@2p1.e") [(C11 4+ C12) p; + (C12+ C22) ps ]}

1 2 2 2 2
L2=m (Dl +myp —my, +P1k) ¢ <D2 +my —mb-i-k])z)
_gt RS mp —mp+kp,  myp—mg  (my —mg) (mf —mj) PikE
Dy DoD» DoD DoD1 D, DyDq
L bRy | PR (g —mp) (e —ma) ¢k,
DyD1 D DoD1 D> DoD1 D,
=g¢* Ao(m%,) + (sz — m%) B(gz) — miBl(z) + (m% — mg) B(gl) — mﬁBil)
o) i)
+ Cop Py y po) + Calpry ) (mh = m3) + Cal@y " p) (mh = m2).
# K kg mEQk.e*) —mif K —mikg*  pREE A+ kKD,
Ly= + +

_D()D2 DoDy DoD1 D> DoD1 D>
2 1
=— B¢ p, — Bl pf" — 2p1.eM)(C1 + Coymi:

—Cq (mﬁff*y" + m?,y“¢*) +Cop (P v + v 8P py) .-
It can be proved that:
Cap(pyv #°77 ) = p1#°p, [ 2 = DCo0 = m2(Cr1 + C12) = m}(Car + C12)
+ (2p1.€") [Mi(czz +C)p, +m2(Cry + C12)p2] ,

29



L.T. Hue, H.N. Long, V.H. Binh et al. Nuclear Physics B 992 (2023) 116244

Calpyy#") = —mgCig* = C2[@p1e")p, = pi#*py].
Co(#*y* py) = —mjCof™ — C1 [2p1M)p, — pi#*ps)
Co (m2g* v +miyeg”)
=Qp1.e*) [ ~m2C1 = miCa| + py#*(mE = mCL + ¢ py(omf — mD)C,
Cop (P17t v" + v 7P p,)
=(2p1.€%) I:mi(cll +C12) + mi(Cap + Cr2) + py po(C11 +2C12 + sz)]
+(p g+ ¢ py) [(2 —d)Cop —m2(C11 + C12) —ma(Cx + C]Z)] . (C.43)
Final results are:
Ly =m ¢ [@ = d)Coo = m2 (11 + Cr) = m} (Ciz + C) |
+2p1.£9)[(C11 4+ C12) py + (Ci2 + C2) ps ]}
Ly =¢* [m%/(B{,O) + 1) +m3 B + BP) —m (B + BV) = m2(B® + B?)
—}—m‘;Co - sz [(mg + m%)Co + m%Cl + mzCz] + mgml%Xo]
P [ dCo0 +mi Xa — Xy —miXo)
+@pre) [ (miXa = miCo) py + (m2 X = miC1) s ]
Ly=p,#*[~B" + @ = d)Coo = mEXy +m} (X3 X2)|
+£p, [—B{” + (2 —d)Coo — m2Xa +m3(X3 — xl)]
+ @pre®) [mEXy 4 miXa —mE X3+ pypy (X1 +Xa — X3)). (C.44)

The above calculation is enough to derive relevant contributions to C Z_’;F given in Egs. (20) and

(21), and D} BF given in (24).
Ward identity for the only gauge boson exchanges

Before coming to discuss the WI, we use the relations given in Eq. (A.12) to write all the one-
loop factors (22), (23), and (24) from gauge boson exchanges in the following simple forms,
ignoring the overall factor e¢/(1672):

D@Z)LJS =0, (gRLma + gLRmb) (=3mFrXo)

f 2 f
by —m%(2Xo+ X7,)
+ QegRRmamb |:—2X{2 + -1 sz 12
v

2 2

2 2 2 2 2 2y [

my+ms+m Ao(my) +m-mi X

+QegLL{<2+—F a ”)b{+1+ 0my) & mam; Xip
my, my,

2 (2 ph 2pQ2)
2m3.(m2BY" — m? B )}' 45

23,2
(mZ —mj)my,
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The WI for the FVV and FVV diagrams are fFWV’V = D@}:)‘z + maC(Z}:)‘I/‘ + mbC(ﬁX)‘; and
IViE =Dy +maClpl +mpCl Lk, respectively. The relations given in Eq. (A.12) give:
20, +m2x{ +mix] = —b],
f
X1 =—X1
m(X{y — X3) +meX{ +mpX5 + by +1/2=mE(X}; — X3) — m3Cy
= m3 (XY, — 2X0) = —m% (X1, +2X0),
124 m2X? +miX3 —m3 X3 = (m% —m¥)Xo — m%CY —m% X3 = —m% Xo. (C.46)

Combining the above formulas and results of C;;; functions listed in Ref. [39], the WI of all
diagrams with boson exchanges is derived as follows

I I I
I =Danras+ i)y + FVeF

~(Qe+ Qv —0F)

0
P By (m}) L Aong)  Ong i —2mym + Ong — iy
2 2m3, 2(m% —m3)m3, 0
(ml% + m% — Zm%,)m%, + (ml% — sz)2 <« B®
2(m2 — m)m3, 0
0
gRR |:(m%,B(§ ) _ Ao(m%-)) X (m% + Zm%,) — (m% — 4m%,)m%,
2
2my,
_mp Lo+ m = 2myymiy + g —mp)’] )
2(mg — mi)m%, 0
+m§ [(mi +m% — Zm%,)m%, + (mi — m%)z] < B®
2(m2 — m3)m?, 0
+ (gRLma n gLRmh) Gm FXO)} . (C.47)

The final result is f‘}v '~ QF —(Qe+ Qy) =0. In conclusion, the contributions from the four
diagrams with only gauge boson exchanges satisfy the WI when the electric charge conservation
is valid.

Appendix D. Ward identity for the diagrams of FSV-type in the unitary gauge

This type of diagrams were mentioned firstly in Ref. [34] for the general case of their contri-
butions to BSM. The y — § — V vertices come the kinetic terms of the scalars:

LP(S) = (3,8 — i P,S)" (95 — i P"S) = [gySVgWS_QA”VQ” —l—h.c.] +..., (D.1

where P,, containing the photon A, and V), is the covariant part of the covariant derivative of the
Higgs multiplets. The Feynman diagrams in the general gauge Rg are shown in Fig. 3. Here only
two diagrams (1) and (2) give non-zeros contributions in the unitary gauge, which correspond to
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o)) 2) ®3) (4)

Fig. 3. One-loop three-point FSV diagrams in the gauge Rg.

the two diagrams (b) and (a) in Fig. 5 introduced in Ref. [34]. In this gauge, the contributions of
these two diagrams are:

, d*k
iMo =8ySsv W
 Talsq Pr+gd PLIOne +B)valgy Pr+ gy Prlus ( ., ("k2)kS
DoD1 D m?,
B d*k 1
—Ersv Q2m)4 x DoD1 D>
kp.e*
X iy {¢* [mF [A2]+ K [A1]] — M—i”m [A2]
\%4
2 _ *
— [A(] (Do +mi — kp,) (ka.8") uy
my,
=S ¢ [Comr [42] = (C1p, + Capy) [A1]
mr L kU * *
- (") Cpv — (Cuy™)(p2-£") + p, Xo(p1.£)] [A2]
\%4
1 * * 2 2
+—2[A1][c00¢ Pyt (pre )(mFX0+X1p1p2+mbX2)]}ub, (D.2)
my

where we have used kz.¢*/(D1D2) — 0. The formulas of Dy g and Cr g are:

8ySv 1 C (

F yS L I 8

eD( h!yl 9 X (—2> _—gL mpg (:0——020 —gR maC1+g Rm;, C2+—00 S
’ 167T mV 2

Fh Fh L R L R
D(abl))R,9 ZD(abBJL,Q [ga <~ 8q8b <> 8b ] )

gysvy~! mpg
ec([:z%lLB X (—1gn2) =—gttc, - 2 [gLLmaXI + gRRmbxoz]
%

1
+— [gRL(M%Xo +miX2) + gLRmamhxl] ,
2my,
I
Chteo =Cani[gk < s& st < off ] (D3)
Fho _ v .(2 2.2 2 2 -~ : .
where X; " = X;(m, 0, my; my, mjy, my,). Similarly, the results for diagram (10) are:
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Ful gysv\~! 1L Coo Coo
D(alz);;L 10 <—16712> =g “mp <C0 - m_) g mbCZ + g (C1 +— ],
v

Foh
D(ab)R 10 _D(ab)L 10 [ga < ga > gb < & ]

Fuh 8ysv Rx L mr R Lx L
ec(ab)L 10 <167T2> — 84 gb Cl - 2m [ga gb mbX2 +ga gb maX01]
1 Rx L
+— ot [ gk (myXo+m’X1) + gk* bmambxz],
%
Fuh 8ysv Ful
eClapyr.10 X (—16712) =ClabyL [ga 8b] (D.4)

where X; Foh — =X; (m 0, m? B m%, mv, m h) The above formulas are consistent with calculation
using FORM The corresponding formulas of WI are

thv

fhv fhv

=gl tmp [2(m%/C0 — Coo) + mambX012:|‘ — g®Rmp [mﬁxl + mion]

kySV

fhv
+ gRE [—Zm%,(maﬁ +mpC2) +myp (m%XO +mg Xy +m,2,X2)]

LR [, 2 2 2 fho
+8 [2mv(mbC2—maC1)+ZMbC00+ma(meo-l-mlez)] ,

fth foh

W =g"mp [2(m%/co — Coo) — mambX012] — " mp [mﬁxm + min]
ySV

RL 2 2 2 foh
+g [va(macl —mpCs) 4+ 2m,Coo + myp, (meo—i-maXlz):I
LR 2 2 2 2 foh
+g [—va(macl +mpCa) + mq (m3Xo +m2X) +mbX2)] , (D.5)

where k, sy = gysv/(327l’2 v)- The W1 valid if only th“ fF“h = 0. We can see crudely that
all Ciapyr,9> Cab)r,9- C((lb)L,]O’ and Cup)R, 10 are convergent. In contrast, all Dp)1,9, Dab)R,9,
Dapyr,10, and Dup)r, 10 contain divergent terms. Therefore, the necessary condition to guarantee
the validation of the WI given in Eq. (12) is that all of these divergent terms must vanish. Strictly,
the W1 is valid if only g, sv=0 or g&' = g® = 0. Because at least one of g or gX must be non-
zero, the condition g, sy =0 is the only valid choice, i.e., the vertex-type y-S-V does not appear
in the all BSM guaranteeing the WI for the external photon. This conclusion is also true for the
case a = b, corresponding to the one-loop contribution to the AMM of the leptons.

Finally, using the assumption of the Lagrangian for couplings of the Goldstone boson given in
Eq. (B.1), we can determine the one-loop contributions of the FSV diagrams mentioned above,
using the general gauge R:. The propagator of the gauge boson V' can be written in terms of two
separated parts:

T
A(‘f)lﬂ)(kZ) = As‘)l‘“)(kZ) +A§.")/Mv(k2),

—i kM kY
PP = e (o),

k= —my, my,
—i k* kY —k*EY

AU = - = xin% (D.6)
miy,  k2—&m3 my, v
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where Ag)“ "(k?) is the propagator in the unitary gauge, and A%EV relates to the propagator of

Gy as follows:
¢ N i 0 & — oo : Unitary(u), D7
Ag, =iBg, = K2 —&m%/ - m, & =1: 't Hooft — Feynman(H F) - (D.7)
For two diagrams (3) and (4) in Fig. 3, the Feynman rules for the couplings y — § — Gy are the
same form as those given in Lagrangian (25), namely S = h{ and Gy = h,. The reason is that all
mass eigenstates of the scalar with the same electric charges come from the same squared mass
matrix. Therefore, £Y"CV =ieQy A* [(h*auGV — Gy 8Mh*) + h.c.]. Formulas corresponding
to diagrams (1) and (3) of Fig. 3 in the general gauge Rg are

iMy) =iM§ + Ak
9 - 9 g)/SV (27_[)4
5 Ualgl vy PR+ 88y PLImE + B)valgf py PL + &F 5y PRIub (6% k)k§

’

2
DoDyDymy,

where Dy = k? — m%-, D = k% - m%, D, = k% — Em%/, and Mé“) is exactly the part given in Eq.
(D.2), calculated in the unitary gauge. The results of the two diagrams (1) and (3) are:

iIAME =iMP —im”

_igySVu_
T 162

{% [(" &™) Crv = (Cuy™)(p2.£%) + py Xo(p1.6") ] [A2]
v

1 * * 2 2
+— [Al][Coo¢ Pyt (pre )(mFXo+X1p1p2+mbX2)]}ub, (D.8)
my

—ieQp__
W”a [—2P1o8* [AilmFpXo

+ (2 + (X py+ XL p,) @pre®) | 121, (D.9)

M =

where Cgg = Coo(m%, m%, Em%/) and Xo; = Xo,l-(m%, mi, ém%,).

As we showed clearly in Eq. (D.6), a propagator of an arbitrary internal gauge boson always
consists of two parts: i) the first part is exactly the unitary propagator resulting in ./\/lé”), and
ii) the second is proportional to the propagator of the respective Goldstone boson, in which the
parameter £ defines a new mass value in the denominator, which results in A./\/lg) + ./\/lgé).
Because & is arbitrary, the two one-loop contributions corresponding to the two mentioned parts
are independent. As a result, the WI violation of the contributions relating to M;“) is enough to
guarantee that the contributions from the FSV-type diagrams always violate the W1.

Appendix E. Higgs gauge couplings in the Higgs triplet models

Here we summarize the HTM and derive precisely the Higgs gauge couplings. The Higgs
sector consists of a Higgs triplet A ~ (3,2) and a Higgs doublet ® ~ (2, 1) in the electroweak
gauge symmetry SU(2); x U(1)y corresponding to the electric operator Q = T + Y /2. Here

we will use the notations from Ref. [63,64], the Higgs sector is
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+ At A+ 5 .
d>=<1 v .>,A=(ﬁ )withA():M, (E.1)

75 (@ t+vetix) A° _% V2

where vy and va are the vacuum expectation values (VEV) of the neutral Higgs components.
Because vy has the lepton number 2, vy < va.
The Higgs gauge couplings appear in the following kinetic terms:

Lin = (Du®) (D" @) +Tr [ (D, 8)" (D"4)]. (E.2)

where
/

, g .8 .8
D, ®= (3u +15r“Wﬁ ‘HEB;A) &, DyA=0,A +15 [r“W,‘j, A] +153MA. (E.3)
The masses and mixing parameters of the gauge bosons are derived from the Eq. (E.2), with
VEVs of ® and A. A detailed calculation shows that the physical states W*, neutral Z and
photon A, are:
wlxiw?
Wi=—Lt—t Wi=cwZi+swAu Bu=—swZi+cwAy. (E.4)
V2
The respective masses are m%v = gz(vé + 21&)/4, m2Z = gz(vfb + 2vi)/(4c%‘,) and the photon
is massless. The relation g’/g = tw is well-known, the same as that in the SM. The covariant
derivatives in Eq. (E.3) are written in the mass eigenstates as follows:

b oA vaW, + v2tw By, —2ATWF
" _2 20T W, — Y2z, —vAW;f — V21w AT By, ’

cw

2 2
D & — ig <LWchW ZN+2SWAH) ¢++U¢le
b= '8
? VAWt - B2

where we just focus on the couplings SV V relating to the vertex H*W ¥y . Therefore, the rele-
vant parts in the kinetic term are:

+..., (E.5)

Lin= (2sWAM(p +vo W, ) (ZSWA“(p+ +vpWTH )

g_
4
2

+ & (vAW +21twA~B )(uAW+“+J§zWA+B“)+...

2
g

: [ (vow™ +V20aAT) W b he | A+ (E.6)

The Higgs potential of all Higgs multiplets was investigated previously, for example, [63,64].
The results of masses and mixing parameters of all Higgs bosons are confirmed by our careful
cross-check. We focus on the Higgs gauge couplings of the singly charged Higgs boson in this
model, the mixing parameter B4 relating to mass eigenstates and the original ones are:

(pjt _(cp. =SBy G? ; _«/QUA (B.7)
AT SBy  CBy H* ) =T Vo :

Here Gﬁ is the Goldstone bosons of W, while H* is the only singly charged Higgs boson pre-
dicted by the HTM. Then the couplings H*W¥y ~ \/Ec/gi vA — Sg, vep = 0, and the couplings
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with Gviv are (emwy) [W;r Gy + h.c.] A, consistent with the SM. In contrast, Ref. [34] seems
to take into account only the contribution of A* to H*, and ignored that of ¢*, although they
have the same amplitude but opposite signs.

It is noted that the results derived from our calculation are consistent with those in recent
works discussing all tree-level decays of Higgs and gauge bosons predicted by the HTM at LHC
[63,64]. The decays H* — Wy do not appear in the decay lists of these works.
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