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Abstract The gauge-invariant two-point function of the
Higgs field at the same spacetime point can make a natural
gauge-invariant order parameter for spontaneous gauge sym-
metry breaking. However, this composite operator is ultra-
violet divergent and is not well defined. We propose using a
gradient flow to cure the divergence from putting the fields
at the same spacetime point. As a first step, we compute it
for the Abelian Higgs model with a positive mass squared at
the one-loop order in the continuum theory using the saddle-
point method to estimate the finite part. The order parameter
consistently goes to zero in the infrared limit of the infinite
flow time.
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1 Introduction

A non-perturbative definition of gauge theory has so far been
given only on a lattice. A gauge symmetry cannot be spon-
taneously broken by the Higgs mechanism when one path
integrates over the whole gauge configurations on the lat-
tice [1]. In the continuum perturbative calculation, the vac-
uum expectation value (VEV) of the Higgs field, (5(x)), is
regarded as the order parameter of the spontaneous symmetry
breaking (SSB). The crucial argument for the impossibility
of the SSB in the non-perturbative lattice gauge theory is that
®(x) is not a gauge-invariant operator, and hence its expec-
tation value ($(x)) = f Dd &(x) e~ 5I?] becomes zero, due
to the Elitzur theorem when one path integrates over all the
gauge configurations without a gauge fixing [1-3]. In lattice
gauge theory, the SSB can be measured, for example, by the
two-point correlation function of the Higgs field at two differ-
ent points, which is not gauge-invariant, by limiting the path
integral to a particular fixed gauge slice; see, e.g., Ref. [4]

@ Springer


http://crossmark.crossref.org/dialog/?doi=10.1140/epjc/s10052-023-11553-4&domain=pdf
mailto:kengo@yukawa.kyoto-u.ac.jp
mailto:kenji.nishiwaki@snu.edu.in
mailto:odakin@lab.twcu.ac.jp

462 Page 2 of 22

Eur. Phys. J. C (2023) 83:462

and also Ref. [5] for a recent review. It is desirable to have a
gauge-invariant order parameter that does not require gauge
fixing.

A natural gauge-invariant operator is 5T(x) 5(x). The
problem is that this operator suffers from ultraviolet (UV)
divergences by placing two operators ®F(x) and P(x)
at the same spacetime point x. One might then turn to
a two-point function inserted with a path-ordered Wilson
line &7 (x) Pexp(ig [} dz*A,,(2)) (») in the infrared (IR)
limit |[x — y| — oo0. This operator contains both the Higgs
VEV and the Wilson line contribution. Therefore, one must
examine the scaling behavior in the limit |[x — y| — oo in
order to distinguish the symmetric, Higgs, and confinement
phases.! It would be worthwhile if one can provide a regu-
larized composite operator for of (x) 5(x).2

Gradient flow is a powerful tool to cure UV divergences by
smearing the field and going into the extra flow time direction
[10-13]. In particular, one can completely remove the UV
divergences from placing the gauge fields at the same space-
time point in the correlation functions [12,13]. The same
argument holds for the quark fields except for the require-
ment for an extra field (wave function) renormalization [14].
(Various other aspects have been explored in the context of
the gradient flow, such as the non-perturbative renormaliza-
tion group [15-26], holographic theories [27-33], the O (N)
nonlinear sigma model and its large-N expansion [34-37],
supersymmetric gradient flow [38—49], phenomenological
applications [50-58], and formal issues in quantum field the-
ory [59-63].)

In this paper, we propose a gauge-invariant order param-
eter for the SSB using a gradient flow—the flowed order
parameter, @T(t, x) W(s, x)), where W' (z, x) and W(s, x)
are the classical solutions to the gradient flow equation
toward the flow times ¢ and s with the boundary condi-
tions \I’T(O, x) = ®T(x) and W(0, x) = d(x), respectively.
This order parameter naturally cures the abovementioned UV
divergence from placing the Higgs fields at the same space-
time point thanks to smearing from the gradient flow.

As afirst step in one of the simplest examples, we compute
the gauge-invariant flowed order parameter in gauge-fixed
perturbation theory in the symmetric phase in the Abelian
Higgs model, which is asymptotically non-free.

The organization of this paper is as follows. In Sect. 2, we
describe our setup of the model and its gradient flow equation.
In Sect. 3, we show the UV finiteness of the gauge-boson two-

! Here, the confinement phase denotes when the Wilson line acquires a
nontrivial (non-unity) expectation value; the Higgs phase denotes when
only the Higgs acquires an expectation value; the symmetric phase
denotes when both the expectation values of the Higgs and Wilson
line vanish.

2 Other discussions on gauge dependence in phase structures are found,
e.g., in [6-9].
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point function at the one-loop level. In Sect. 4, we consider
the Higgs two-point function as a flowed order parameter
and analyze the behavior of the finite part at the large flow
time limit. Section 5 provides a summary and discussions. In
Appendix A, we provide details on the calculations of the
Higgs two-point function at the one-loop level.

2 Gradient flow of Abelian Higgs model

We first present the setup for the analysis in this paper and
then show the gradient flow equations and their solutions.

2.1 Setup

We study the Abelian Higgs model with a U (1) Higgs field &
and a gauge field A, in the d-dimensional Euclidean space-
time, with the metric &, = §*¥ = (14) ., = A)"",

S =S4+ So, (1)
saim [t EF v L (3,40)° )
A= g(z) 4 vy 2&) A B

So = — [ dix {(D,qu)T Dy +md (&) + 20 (qﬁ@)z} ,

80 80
(€)]

where 1, is the d-dimensional identity matrix; ® is a com-
plex scalar field with a unit charge; go, mo, &, and ¢ are the
bare gauge coupling, the bare mass, the bare gauge-fixing
parameter, and the bare self-coupling of ®, respectively;
Fuy = 0,A, — 0,A,, is the Abelian field strength; and the
covariant derivative D, takes the form

Dyi= 09, —iA,. (4)

We have employed the non-canonically normalized fields
® = gg®“ and A, = go A", where the superscript “can”
denotes a canonically normalized field, such that the count-
ing of the number of loops coincides with that of go in the
gradient flow, as we will see. Here and hereafter, we write
bare fields such as ® and A, without any subscript while
writing renormalized fields with subscript “R”, e.g., ®r and
ARy

Hereafter, we frequently use the short-hand notation for
the momentum integral,

_ [ 4P
/p'_/(m)d’ ©)

where d = 4 — 2¢ with an infinitesimal variable ¢ > 0. The
propagators are described as
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elp-(x—=y)
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(40 A, o = (30 [ ,
P

| (w5 rfi] o

eiP'(X*Y)

(@00 @ o = (ghi) [ )
P

p*+mg

where the expectation value is defined in the language of path
integral as

[ DADO®DP' O e~ Siree
[ DADO®DdTeStre

(O)p := ®)

in which Sgree denotes the free quadratic part of the action (1).
Here, we introduce the renormalization scale p to compen-
sate for the physical dimension of the gauge coupling go.

The relations between the bare fields and renormalized
fields are introduced,

Ay =VZAARy, O =+/ZoPg, )

where the wave function renormalization factors are param-
eterized as

Zp=14682Z4, Zo :=1+6Z0. (10)

And we introduce between the bare couplings and renormal-
ized couplings,

my = Zg' (m2 +8m2), 20="2,"(g+82),
fo=1485, ro=Zz>(A+5M), (11)

where we adopt the notation for couplings where renormal-
ized ones do not hold any subscripts, such as m and g; §m?,
8g, 6&, and S are the counterparts for the scalar mass, the
gauge coupling, the gauge-fixing parameter, and the scalar
self-coupling, respectively.

In the minimal-subtraction scheme, the counterparts are
identified at the one-loop level as

2
57— <_g_>, $Zp— L
(4m)% e 3

1
2 2 2.2 _
) (47'[)28 (4Xm gm ), og ,

1 2

8 = — (—g—>,

dm)-e 3

1 2 4 2

= (10x 4 5¢% —2g x), (12)

which leads to®

2 2 2 2.2

=m?+ 4m? -3 , 13
o = (47‘[)28< " gm) (13

1 3
g0=g+— (g—> (14)

4m) e \ 6
A=A+ 1022 + 5¢* — 6g°1) . 15
0 (4n)28( g 4 ) (15)

2.2 Gradient flow

Gradient flow is an efficient method to describe a well-
defined expectation value of a composite operator through
diffusion into the direction of a flow time 7, called the flow
time [10-14].* For A, (x) and ®(x), we introduce a flow-
time-dependent gauge field B, (¢, x) and a complex scalar
field W(z, x), respectively, for t > 0 under the initial condi-
tionattr = 0:

B,(t=0,x)=A,(x), Y(=0x)=>x),
Uiir=0x)=0"(x). (16)

We introduce a flowed action:

~ 1 [>® 4 |1
S=— dr | d“x ZGW(t,x) Guv(t, x)
80 J0O

+(%O(8MBM(I, x))2 + (D ¥ (1, x))TDMlI/(t, x)] . (17)

where G, = 9, B, — 3,B, and «g is a dimensionless
gauge-fixing constant in the bulk (¢ > 0). In the flowed
action, we dropped the scalar mass and self-interaction terms,
which include the bare parameters that contain the divergent
counter terms in order to be related to those of the boundary
theory at # = 0. There is no bulk divergence that cancels such
a counter term [49,66].

The gradient flow equations are a kind of diffusion equa-
tion introduced as

& By (t,x) = —83538—S
w(t, x)
- (5,w 92 — auav) By (t, x) + a0 8,0, By (£, x)
+RE(t.x), (18)
W (1, x) = —g%ﬁ
=3*w(t,x)+ RY(t,x), (19)

3 The one-loop relationship between A and A is not necessary for the
following discussion.

4 You can refer to the materials provided by Hiroshi Suzuki for the
lectures at Osaka University from November 14 to 16, 2018 [64,65].
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2 85
805wz, x)
= 02w, x)+ RY (1. x), (20)

v, x) =

with nonlinear interaction parts,

RE =i (qﬁaﬂxp - (aﬂqﬁ) \y) +2B, W, Q1)
RY := —2i B8, — i (3,B) W — BB, (22)
RY :=2iB,3, V" +i(3,B,) ¥’ — B, B, W, (23)

where the symbol § represents the variation, and we introduce
3% :=9,0,.

We note that if all the flowed fields have fixed values at
t — oo, the left-hand sides of the gradient flow equations
become zero, and hence the limiting values of the flowed
fields are given by the variation of the flowed action (17).
Since the flowed Higgs field has no potential in the flowed
action, any constant flowed Higgs field (independent of x)
can be a solution to the variation of the flowed action in the
limit # — oo if the limiting value of B, is zero. That is, this
setup allows any value for the flowed Higgs field in the large
t limit for the vanishing flowed gauge field. It is nontrivial
whether the flowed order parameter takes a nonzero value or
not.

The flow equations can be formally solved as

Byt x) = / d'y {[Ki"“’) =»] A
t
+ / ds [Kfﬁ? (x — y)] RE (s, y)} NG
0 wv
W(t, x) = /d"y {K, (x —y) @(y)
t
+ / dsK,_, (x — y) RY(s. y)}, 25)
0
witn = [y (& x-n el
t N
+/ dsK,—s (x —y) RV (s, y)}, (26)
0

where the following heat kernels are incorporated:

I:Kt(OZO) (x)] = / eip-x [(81,“) _ pﬂf\)) e—th
w S, p

+p,u,§7u e—aotpz] , (27)
p
K (x) = / elPxe=tP’, (28)
p

Concrete forms of the classical formal solutions in
Egs. (24), (25), and (26) can be derived in a recursive way,

@ Springer

depending on how many times each of the corresponding
nonlinear interaction terms in Egs. (21), (22), and (23) are
incorporated and also on the order of the incorporation. We
adopt the following short-hand notation to reduce the com-
plexity of the following description:

Bu(t, x) = / Ay [Ky (6 = )], Av(Y),
(L, x) = fddyK, (x —y) D(y),

Ui, x) = f dyK, (x —y) @7 (y), (29)
where

[K; ()], = [K;(aozl) (x)]ﬂ Z/eipqca“veftpz. 30)
v p

The quantum two-point correlation functions of the flowed
gauge bosons and the flowed Higgs bosons are estimated
through the operation in the path integral in Eq. (8) as
(Bu(t,x) By(s. y) X)o, (W(t,x) W (s, y) X)o. 31)
where X symbolically represents possible contributions from
perturbative expansions of e~ Sint_where Siy is the interaction
part of the original action in Eq. (1): X is unity for leading-
order (LO) calculations, while X can become nontrivial (non-
unity) at a loop level. It is straightforward to derive the LO
result of the two-point functions:

(Byu(t.x) Bu(s, ) = (Byu(r. %) By (s, »)),

= < / d’z [K,(%)(x fz)]up A, (2) f ddz[K§“°>(y 723] Aa(z“)>
Vo 0

ip-(x—y)
2 2e © PuPv 7(H»x)p2
= (gon ) / [(5 —7)6
( . P I 2

g 2B . Dy e—“<)<f+s>"2} : (32)

(w09 6m) = (T T 6m)

=</ dzK, (x —z)q>(z)/dd21<s(y—aq>*@>

0

ip-(x—y)—(t+s)p*

2 2e e'?

= () [ (33)
p p*+ m(z)

where we have used the definition of the operation (8), Wick’s
theorem, and the form of the heat kernels in Egs. (27) and
(28).°

5 Currently, (lll(t, X)W, y)) = (\Iﬁ(s, y) W (t, x)) is realized since
we consider an Abelian gauge theory. For a flowed complex scalar
field obeying the fundamental representation of the SU (N ) non-Abelian
gauge theory ¥, (@ = 1, 2, ..., N), the corresponding order parameter

should be <Z§,":1 W, (1, x) W (s, y)> - <Z§,":1 Wl (s, v) Walt, x)>.
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As we will soon see, the two-point function of the flowed
massless gauge boson B;, becomes finite without a wave
function renormalization of the flowed field, while that of
the flowed complex scalar field W still contains a divergent
part. To eliminate this part systematically, we introduce a
wave function renormalization factor for W as follows:

v = /Zy Uy, (34)

with the counterpart § Zy defined as
Zy:=14+62y. (35)

Finally, in addition to Eq. (29), we introduce the following
symbols for later convenience:

u
B/L(M,Z) = /ddw/ du/Ku—u’(Z —w)
0
(wta O STAR R
x[i (970, — (3,9 )\D)](u,’w),
u
Pu,z) = /ddwf du,Ku—u’(Z —w)
0
X [—Zl Buaﬂ\lj — 1 (8},(3#) \Ij](u/’w) )
u
’P-}-(u, 7)== /ddw/ du/Kufu/(Z —w)
0
x [2 B0, 87 +i (3,B,) %] . 66
(u’,w)

where we introduced the short-hand notation for a function
f of the flowed fields,

P (Bt 2 w2 Wi 2) = [£(Ba wowT)]

(37

3 UV finiteness of the gauge two-point function

As we saw in Egs. (32) and (33), at the LO, the two-point
functions of the gauge field and the Higgs field are con-
structed by the leading-order solutions, shown in Eq. (29), of
the gradient flow equations (18)—(20). The next-to-leading
two-point functions of the flowed fields can be calculated
in a similar way, namely, by taking an expectation value of
two sequential approximation solutions [refer to Eq. (8), also
Egs. (24)—(26)]. Here, possible configurations are classified
into two categories at the one-loop level:

(1) Itinvolves at least one field that is evolved nonlinearly in
its flow equation.

(i1) It does not involve fields that are evolved nonlinearly
in their flow equations, while a one-loop structure is
observed at the boundary with the zero value of the flow
time.

The gauge two-point function does not have a tadpole
diagram in the symmetric phase. For the scalar two-point
function, we will explicitly show that the tadpole diagrams
become zero. At the one-loop level, in the language of the
flow Feynman diagram [13], possible configurations con-
tributing to the gauge-boson two-point function are summa-
rized as 11 diagrams as shown in Fig. 1. In the following loop
calculation, we will set the two gauge-fixing parameters as

ag =& =1, (38)

which is a Feynman gauge-like configuration in both the bulk
(at a flow time 7 > 0) and the boundary (¢t = 0); see also
(11) and (12) in the tree calculation.

3.1 Configurations

Adopting the short-hand notations in Eqgs. (29) and (36)
allows us to describe the details of each configuration effi-
ciently. First, we write down the five configurations classi-
fied into Category (i), which involve at least one field that is
evolved nonlinearly in its flow equation:

<B (1, %) By (s, y)> = (B (t, x) B”(S’y)>connected

= 448//du/du
p.L

(P +20), (p +20), &P =n=6+07"
(2 +md) [(p+0*+mi]

(Bu(t,x) By(s, ) = <Bu(t,x) {—lzfddx
80
x [iAg (qﬂ‘aacb - (ao,cb"') ¢)](X)} By (s, y)>
- (—géu“) /M/Ot du

(p+20), (p +20), P =n=(+0p°
p2 (2 +md) [(p+ 0%+ mj]

</dd / duK;_,(x —

(u,2) ><.onne<.ted

i )em =)= (s+0)p?
2g "W / / dy——mF——

p.e 2 (€2 + mg)
</dd / duk,_ u(x—z){ [\1/ 3, P
9,0") P }B (s, y)>
( ) ]( connected

golﬁ‘é / fdu[ du
p.L

(2¢ = p),, (2¢ = p), PN =G0’
p?[(p = O + mg]

e—Z(quu’) (+p-e) (39)

connected

e—2u(€2+p-ﬁ)’ (40)

(B/i(t x) By (s, y)

e—ZuZZ ’ (41)

(BL(t,x) By (s, )y

o 2u(t?~

p~l)72ﬁ(p27p~l) i

(42)
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EW O

Fig. 1 All the configurations at the one-loop level for the gauge-boson
two-point function are shown in the language of the flow Feynman dia-
gram [13]. In each flow Feynman diagram, the left and right squares
indicate the spacetime positions of (¢, x) and (s, y), respectively. The
double solid and wavy lines are the flow propagators of the scalar and
vector fields, respectively, i.e., their flow-time evolutions with the non-
linear terms (18)—(20), where both of the endpoints are located in the

t
(Bu(t. x) By(s. y)y 1= < f d’z / duk,y(x —2)
0
[pio,T — (5,P7) @ }Ev, >
X {l [73 n (ﬂ’) ](u,z) (s,y)

= (—gglt4€) /p‘Z /Ot du /Ou du

Q€ — p),, 2L — p), &P GO’
P [(p = O +mj]

connected

67214(527p~5)72ﬁ(p27p~€)’

(43)

where the labels (A) to (E) tell us how they relate to the flowed
Feynman diagrams in Fig. 1, and the label “connected” indi-
cates the operation required to drop off disconnected config-
urations from Eq. (8). Here, p and ¢ represent the physical
momentum flowing from the point y to x and a loop momen-
tum, respectively. To describe the configuration (B) simply,
we introduced a similar notation for the fields on the bound-
ary as introduced in Eq. (37). Note that the result in (D) is
the same as that in (E). The remaining four contributions
classified into Category (i), namely (B’) to (E’), are simply
obtained by the parameter replacement as

(Bu(t,x) By(s, )} = ((Bu(s. y) Bu(t, x)))".
(B,u(tvx) Bv(&)’))@ ((BU(S, y) B}L(t7'x)>c)*a
(Bu(t,x) By(s, )y = ((By(s,y) Bu(t. 1)),

@ Springer

AN

\4,’

bulk (at a flow time ¢ > 0). Black arrows and white-out arrows indi-
cate the directions of the Higgs particle number and of the flow time,
respectively. Each white circle, which is called a flow vertex, indicates
a branching in the bulk due to one of the possible nonlinear interactions
in the flow equations. Each black dot shows an ordinary vertex at the
boundary (¢ = 0). All the diagrams are drawn by the package feynMF
[67]

(Bu(t. x) Bu(s, »))g = ((Bu(s. y) Bu(t. 0))p) ™ (44)

Two configurations are classified into Category (ii) “with a
loop on the boundary,” where their corresponding flow Feyn-
man diagrams labeled as (a) and (b) are shown in Fig. 1:

{Bu(r.x) By(s.y)), = <E,L(r,x>

7L/d"X[AaAa<I>+<I>] By(s, )
&2 x) '

0

X

connected

= (-2s8u*) f,, e eip:;v)); . f[ Iz Jimé’ @
{Byu(1, %) Bu(s, y), = <EM(Z*X)%

{afeetons o

Aok ferfm ne- (no) o)), L)

_ (gé M4e) /,, ) Suv e"'ﬁ'((;;),‘;*(sﬂ)pz - (-’z—lm—(z))p[)(,; (_ZZP;T;”S], (46)

From each of the above results, we recognize that the sin-
gularity for the limit y — x is cured due to the smearing
through the gradient flow for 7, s > 0.
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We can identify the UV poles due to the integrals of the
loop momentum ¢ before the inverse Fourier transforms.
Here, (at least) couplings should be renormalized even in the
gradient flow. Now, our discussion is at the one-loop level,
and thus we should use the one-loop relationships summa-
rized in Egs. (13), (14), and (15) for the LO part (such as
in Eq. (53) below), while the following LO relationships are
sufficient for the one-loop part:

2L0 2 LO LO
my=m-, go=g, Io=A. 47
Each expression is written in the renormalized couplings,
where we ignore higher-order parts in multiplicative compu-
tations:

(Bu(t, %) By (s, V))alyv.aiy = 0 (48)
(Bu(t. x) Bu(s. Y))glyy.qy = (Bult. X)B @ )p lova
=/ Suv e eip(x—y)— (t-+s) p? < ) (49)
) 2(471)2
(B (1, x) By (s, y)) vy = (Bu, ) Bu(s, M) ¢ |y
Z/. 8 € eiP-(x—y)— (t4s5)p? ( ) (50)
) (4m)* e
(Bu(t,x) By (s, y))D|UV—div
= (Bu(t, x) Bu(s, ) b ovaie
= (Bu(t. %) Bu (s, Y| yyeaiy
= (Bu(t. %) Bu(s. V) g | pyeaiv
5, eiP- =) —(+s)p? o
Z/p = (‘4(11)25)’ Y

Byt x) By(s. ) ‘UV—div

:/eip.(xy>(z+s)p2 g 1 _15 +1pupv
P p? @dm2e\ 3" "3 p2 7

(52)

(Byu(r. %) Bu(s, )0 lyy.aiy

eip'(va)f(sﬂ)p2
(gzuza) /

14
pupv)
X Sy —
[( e p?

_/eiﬂ(xy)(ert)p{ g* 1
p p? 3m)te

y [(5 B p,um) N pupu] ¢ 1pupu}
v ’
e p? P’ 3(@dm)?e p?

(53)

pupvi|

UV-div

where we used the one-loop relationships between the bare
couplings and renormalized ones, especially &y = 1 + §&

with §& given in Eq. (12). Note that the first and second
terms of Eq. (53) originate from g% and &, respectively. It is
straightforward to sum over the contributions (48)—(53) and
to reach the conclusion,

(Bu(t,x) By (s, y)>total|UV—div =0, (54)

which means that no extra wave function renormalization
is necessary to regularize the gauge-boson two-point func-
tion, as expected via the (d 4 1)-dimensional Becchi—-Rouet—
Stora—Tyutin (BRST) symmetry that ensures the cancellation
[12,13].

4 Higgs two-point function as flowed order parameter

Next, we focus on the gauge-invariant two-point function of
the flowed Higgs field at the one-loop level. Again, the pri-
mary calculation method is the same as in the previous sec-
tion, and the same gauge fixings in (11) and op = 1 are used.
Also, we take into account the bulk wave function renormal-
ization (34), where for the current one-loop calculation, the
following relation is used (except for the counter term; see
Egs. (66) and (107) below):

W(t,x) =

WR(t, x) . (55)

4.1 Configurations

The following five configurations involve at least one field
that is evolved nonlinearly in its flow equation [in Category

{»H]:
(w0 v s )

- <7>(z, )P, y)>

connected

¢ 2
géu“‘s / du/ du/ (p2+ )
t(p—=20 (€2+m )
x e+lp-(x—y)—(t+s)l7 22 (uA) 42 (u+)e- p’ (56)
(Wi, wie, y)>B
t
- </ ddzf duk,y(x —2) [-BuB, Y], \I/(s,y)>
0 ’ connected
+ip-(x—y)— (r+s)p
( g4M4F)/ € / du/ —Zuéz’ (57)
p p? +m

(Wi Wi, ))

= <7>(z,x)€ﬁ(s,y)
x { p /dd [ (qﬁaacb— (aaq>7> q>)lx)}>

= (83M45)/ e+ip'(x_7y)_(t+hy)p2 /t du
» p2+m} 0

s
connected
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Fig. 2 All the configurations at
the one-loop level for the Higgs
two-point function are shown in
the language of the flow
Feynman diagram [13]. In each
flow Feynman diagram, the left
and right squares indicate the
spacetime positions of (¢, x) and a
(s, y), respectively. The double

solid and wavy lines are flow <
propagators of the scalar and N
vector fields, respectively, i.e., \
their flow time evolutions with b
the nonlinear terms (18)—(20),

where both endpoints are

located in the bulk (at a flow

time of ¢ > 0). Black arrows and

white-out arrows indicate the c
directions of the Higgs particle pPRe
number and of the flow time,

respectively. Each white circle,

which is the flow vertex,

indicates a branching in the bulk CT
due to one of the possible

nonlinear interactions in the

flow equations. Each black dot

shows an ordinary vertex on the

boundary (r = 0). All the

diagrams are drawn by the

package feynMF [67]

X/ (p+£)2 e—2u(l2—l<p) (58)
¢ (p =07 (2 +mf)
<w<r, ) Wi, y)>D
t
= </ddz/ duK,_y(x — 2)
0
x [<2i B8, P — i (9.Bu) P, ., V', y)> )
connecte
B ( . 4g) etip-(x—y)—(145)p? Td
= (&M — u
P P +mg 0
u 2
X / du etp p)2672"((2%"’)725(”27@"’), (59)
0 ¢t (L —p)
(qz(z, ) Wi, y)>E
t
= </ddz/ duK;_,(x —z2)
0
x [<2i Bu9, @ =i (3,8,) 9], ., ¥7Gs, y)>
1PI
+ip-(x—y)— (t+$)p
= (—gé/f“)/ < / du/ du
P p*+mj
e+ p) 2ulz+2(u7§)(-p’ (60)
¢ Ez —I—m

<\1/(z, ) wis, y)>F

t
= <fddz/ duK;_,(x —2)
0

@ Springer

\4’/
B O=xm¢=)-4--0 B O--¢--TC==4q>==0
C |:|<l<=6\’ﬂ\1—<—|:| c D—{-mﬁg
\\ - \\<’,

D D«m< i’}
E D«qu op D—<m< o

F D=<1=<=§—<——n = u—-<-§==44>=g

x [<2i B ¥ — i (9,8,) 9], ¥, y)>

_ ( g4p,46)/ e+ip<(x—y7)—(t+5)l72 /tdu
— \7 480
P p2 +mj 0

/ du/ 4puly SPutp
¢ Zz—i—mo

where the corresponding flow Feynman diagrams are shown
in Fig. 2. In Egs. (60) and (61), we introduced the labels
“1PI” and “tadpole” for discriminating the one-particle irre-
ducible (1PI) part and the tadpole part. Note that they both
are categories in the connected configurations.

The three configurations, (a) to (c) in Fig. 2, do not involve
fields evolved nonlinearly in their flow equations, while one-
loop structures are observed at the boundary with the zero
value of the flow time [in Category (ii)]:

tadpole

—2u¢?
,

(61)

(w0 9 m)
ou ot R i
_<\Il(t,x)\ll (s, ) {—gé /d X[AC,AD,\IJ \p](x)}>

+ip-(x—y)—(1+5) p? d
= (—gé#“)/ : /
P 14

Pem)y hETE
(w0 wie, y))b

connected

(62)

= <\'fl(l, Xx) (Ivﬁ(s, y)
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Ao d + t
x -2 [alx[whowty]
80 (X) connected

e Fip-(x—y)—(i+5) p? 1
= (—4A0g%u4£) / f , (63)
¢

po (Pramd) €2+ mg

<\1:(z, ) wis, y)>c

— <\'f]([’ x) T, y) %
« {(—1) / a'x [iAa CRESCLY) ¢)<x>]}
x {(71)/(1” [i/‘ﬁ (o700 = (350) ¢)<Y>]}>
connected

+ip-(x—y)—(t+s5)p? 2
~ (sin*) [ e [ )
po (P2+md)’ Je = p? (2 +mp)

where a virtual mass for the gauge boson 4 is introduced
for the calculation of diagram (a).

The last five contributions, (B’) to (F'), are obtained by
parameter replacement and complex conjugation as

(w0 wvie ) =((veneien) ),
(v 0¥ ), = ((veneien) )
(v 0w 6 ») = ((venvien) )
(v 6 w) = ((veneien) ),
(v ovis ) =(venvien)) .  ©

From the above forms, we recognize that no singularity
emerges in the limit y — x, and the expectation value of
the smeared version of the composite operator @T(x) @(x)
is well defined.

Also, we need the counter term (CT) from the bulk wave
function renormalization of the flowed field, which is easily
estimated from Eqs. (33) and (34) as

(Wi, W' ) 2y (.0 Tl y)),

=4
CT
eip (x=y)=(t+s)p?
’ p PPt mg
(66)

4.2 Evaluation of momentum integrals

The smeared two-point functions are regular in the limit y —
x, and we can estimate them approximately well by use of
the saddle-point method when the flow times s and ¢ are
sufficiently large, since the solution to the gradient flow has a
form such as fp f( p)e_’pz. We frequently utilize the saddle-

point approximation formula,

1 \9/2
f F(p)e@p=p)’ ~ (—) f(ps), (67)
p

dra

where this approximation works fine for a sufficiently large
positive «, f(p) is a rational function of the d-dimensional
momentum p, and p, represents the position of the saddle
point.

Here, UV divergences appear in the present calculations
executed under the continuous spacetime limit due to inter-
mediate loop diagrams. Also, we will observe the emergence
of IR divergences, which may originate from saddle-point
calculations around p, =~ 0. They are considered artifacts
due to our approximation with the saddle-point method. As
we will see, if we evaluate divergent parts without the approx-
imation, IR divergences do not emerge, as expected.® Details
of the following calculations are available in Appendix A.

After the ¢ expansion around zero, we obtain the form for
the LO part,

<xp(r, X) Wi, x))

LO

2

__% 2m%emg<s+z>r(_1, md (s + t)) + O(e)
(4m)

%

+ O(e), 68
large s, t (47_[)2 m% (S + t)z (S) ( )

where we took the first term of the series expansion of
em3<s+f>r(—1, m(z) (s + t)) around infinity. This form is suit-
able for our current strategy, where the saddle-point approx-
imation is adapted for the one-loop diagrams, assuming that
s and ¢ are sufficiently large. Also, we derive the e-expanded
form of the counter term in the same way,

v g(% !
CT larges, ¢ (47‘[)2 m(2) (s + 1‘)2 CT

+O(e). (69)

(\11(:, X) Wi, x)>

For the contributions (A) to (E), results are shown as fol-
lows:

4
i 80 Loz
(v 0 ¥T60), o G+oFazal ! lox@]

————— 11—+ 1+ log|2my(s + ¢
G (s + 0 m3 e [2ngs 4]

&
3212 ut (s 4 1) 2m2(s+1) ~2.0 (1 2
tlog| —————— |+ G1’2<00‘2m0(s+t)>
m N
0

6 It is understood that the IR divergence in Eq. (62) is cut off by 14 as
in the ordinary QED calculations, and we safely take the limit uq — 0
after the integral.
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9g3 { 1
4m)* s2m?

2 32712;1,4s
+ log [Zmo(s + 21)] + log —
m
0
2
+ et 2069(} o[ 2m(s +20) }

9g3 { 1
(47'[)4 tzm% £

3272t
+log [2m3(2s + z)] +log [ L }
m
0

+ eZm%(ZHf)Gf:g(g)’o( 2md(2s + z)) } +0(e), (70)

£

(\l/(t 0w, x)) —(4]”4 G402 m%

B s.p.
><{%-ﬁ-l+210g[327r2t(s+t)u4:|}+O(8), (71)

&1
@m)* (s +1*m} 2
1 1672(s + 1) u*
X{g_y+1+bg[’f“j>ﬂ}}

mg

<\I—’(t Owis, x)>c -

624 ‘ 1
T m
0

_e%mémmr(o, 2m3 (2s + z))] +0Ce), (72)

8 1
@m)* (s + )2 m3 4

1 1672 (s + 1) u*
x| - —y+log #
€ KR

go 9
@)t 2md 2

+e2’”0(2s+’)G (00) m0(2s+l)>}

g3(s +30%(s +50)?
(4m)* 8t (s + t)sm(z)

<\Il(t ) Wi, x))D -

1
{ —|—1+10g[167r Qs +1) 1 }

1 2 4
X + 1+ log |32t (s + )
&

m2 (s+1)(s+31) +1)(s + 3¢
+e°z,c;§;g(5,0\’"0“ CEIN 40w, 73)
(w0 whs0) — S S
P S T am s 02 md 4

1 16 t
X{_y+LH%[”<gF”L“
& mO

3 1
$5e2m0(23+0 |: (O7 Em(z) 2s + l‘))
T

— 20T (0,2m3 25 +1)) | + O, (74)

@ Springer

where “s.p.” indicates adoption of the saddle-point approxi-
mation. Here, a is a dimensionless regulator for an infrared
divergence, and puR is a virtual mass for the massless gauge
boson to regularize an infrared divergence. I'(a, z) is the
incomplete gamma function defined by

o0
T(a,z) = / 1~ le™tds, (75)
Z

where I"(a, 0) is reduced to the Euler gamma function I'(a),
and y is the Euler—Mascheroni constant. G%:g ((1),0‘ z) is the

Meijer G-function under the designated arguments. The def-
inition of the Meijer G-function is

A
1 I (bj +s)Ni_T(1 —a; —s)
T 2mi /),L Hf:nHF(aj +s) H?:mHF(l —aj — s)
z7%ds, (76)

where m, n, p, and g are integers obeying 0 < n < p and
0 < m < g, and the contour y, lies between the poles
of F(l —a; — s) and the poles of I'(b; + s) [68]. The four
corresponding results of (B") to (E’) are easily obtainable
using the replacement rule in Eq. (65).

We can show that the bulk tadpole contribution (F) van-
ishes without any approximations:

W, x)WUis,x)) =o0. (77)
< )

This means that only the 1PI configurations provide nonzero
contributions to the two-point function.

For the configurations (a) to (c), we reach the ¢-expanded
forms,

<\Il(t,X)‘~Iﬁ(s,x)> —0. -
T m2 1
(\Il(t,x)\ll (S,x)> = 4xog] 7 0)4{_

X [ 1 +em6H (] ( +md (s + t)) E1<mo (s + l))]

+<2 y + log |:167T (S;H)M i|>
my

x[ 1+em0(s+’)( + my (s+t)> E1<m0(s+t)):|

_ emo(s+t)E1 (mo (s + t))

+ Mot (1 +md (s +t)> Ggg(ooo‘ i (s +t)) }

+O@), (79)
£

(e 1e0) 5 G
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1+ 1+1 mg + O(e)
o L L
e 7 B 62 (s + 1) it &

(80)

where E,(z) represents the exponential integral function
defined by

[ee) efzt
E, () = / dar, (81)
1

tn

and Ggg ((1):(1),0‘ z) is another specific case of the Meijer G-
function under the designated arguments.

4.2.1 Divergent part in the saddle-point approximation
In each final expression written below in the renormalized

couplings, we ignore higher-order parts in multiplicative
computations:

e vt
__¢ (ei-t)?
T @mtmi\2 52 (t+s)?) e
g ! 82
S S
FanTar ot a ®
4
i (s.p.) — _g—%
(Wi, ) v 0™ = T (83)
4
i s.p) — g—ll
(\Il(t,x)\l’ (s,x))C w " GGt 2e (84)
(w0 v o™
S S SR B B CR U CR S B
T @mtm? 4@ +9)? 212 8t (s + 1)3 €
4 2 4
g 1 167~ (t +5) 1
— | —log| ————— |, 85
a1t [4 Og< 1iR )} (8
4
i (s.p.) — _g—ll
(Wi, )i, n)g™| = T (86)
(W, ) W75, 0)e vy = O (87)
(W, )W (s, x), |, =0 (88)
m? 1 2 (t4s
(¥, W00y =408 g o {1 e
X [1 +m? (t —I—s)] El(m2 (t —I—s))}, (89)
(\y(z,x)\w(s,x))“'p') = —g—41, (90)
¢ laiv @m)*(t +s5)?m2e
2
v s N6 80 1
( (, x) (Y’x)>LO div (47_[)2 m% (Z+S)2’
! gt 1 1 2 4 1]
= - - 4g%% —3g%) -
Am)2 (t + 5)2 m? [3(4n)2 e (4m)? (4 ¢) el
o1
2
W0 6ol =02 s ©2)

Y amE mi(t +s)2

where the first and second terms of the result for the LO part
originate from g% and m(z), respectively. Here, we straightfor-
wardly determine the condition for § 2y to eliminate both
the UV and IR divergences listed above as

gt 1
T 384726
108 504435 55t 4+1244 54124682 5313 +1244 52144435 5154+108 1°
s2t2(t + s)2

2y =

Al 4 2
Al
_ mgnﬁ (t +S)2 emz(t+s) [l +m2 (t + ‘)]
X Ep (mz (t+ s))
2 2 4
g 16~ (t +s)p
- log(a) +2log | ————— |} . (93)
642 { [ o “

4.2.2 UV-divergent part without approximation

On the other hand, we can identify the UV poles due to the
integrals of the loop momentum ¢ before the inverse Fourier
transforms after taking the safe limit y — x as follows:

(w(e, ) Wi(s, 1))
(w(e, x) wi(s, x)

=0, 94)
= (W(t, x) Uis, x))

A |UV—div

B {UV-div B ' |UV—div

e—(t+s)]72 _2g4 1
:/p P2t m? ((4n>2 5)’ ©3)
(W ) 5. 0) e gy = (YED Y 60) 0 v
ef(H»s)pz g4 1
:/p P2+ (2<4n>25>’ )
(W, ) (5 0)p vy = (@O 0) b v
L [ert gt
_/p p2 +m? (4(4n)22>’ O7)
(W, ) U6 g gy gy = (W06 0) g oy
e—(t+s)p2 _g4 1
_/p P+ m? (4<4n>2 5)’ ©8)
(W, )W (s, )| pyan = 0 (99)
(Wt ) (5.0), | pyeary = 0- (100)
—(t+5)p* 4 2 21
t Y gm 2
(W, 0w (S’x))b|UV-div_/[; (p2+m2)2( @n)? S)’ (101)
(W, )9 0) vy
—(t+s)p? 4 2 2\ _ 2
=/ e r i g 2(p +mz) 3m]l ’ (102)
p (p*+m?) (4m) €
(W, )W (5, 0) 6 v :(gg,ﬂs)/ﬂ (103)
LO IUV-div » p2 +m%
ef(tJrs)]lz g4 1 1 m? s N
_/p P2+ m? [3(47025 " G T3 )5}’
(104)
(W, )W (5, 0)op |y :(3zq,g2)/ ﬂ (105)
’ ’ CTIUV-div » p2 +m2 ’
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where we ignore higher-order parts in multiplicative compu-
tations in each expression written in the renormalized cou-
plings.

The total of the UV-divergent parts shown above takes the
form

<\Ij(t’ 0 WG, x)> UV-div

21 g* ) e
NEIEEY
< 3 e (4m)? »

p2+m2

total
—(t+s)p2

, (106)

where no divergence associated with m or A remains, as
expected. We can remove the remaining divergence asso-
ciated with g by taking the bulk counterpart as

g> 21

82y =

Note that we do not adopt any approximations to identify
the divergences, where only UV divergences emerge. We
confirmed that the IR divergences emerging in the previous
calculation with the saddle-point approximation are artifacts.

In other words, we can take the two-point function of the
flowed Higgs fields as finite when we choose the flow field’s
extra wave function as (107). This result shows that the gra-
dient flow indeed works in the U (1) Higgs model at the one-
loop level, as shown for the non-Abelian gauge theory with
a fermion as a matter field in Ref. [14]. After subtracting the
divergent part, we concentrate on the finite part of the Higgs
two-point function.

4.3 Asymptotic form in large flow time

Here, we consider the series expansion around infinity for
s = t, after the coupling renormalizations and the removal of
the divergences by taking the bulk counter term 6 Zy suitably
as shown in Eq. (93): For a large s corresponding to an IR

region,
(W(s, x) Wi(s, 0P = & oL (108)
64m2m2s2 s3)°

(W, x) (s, 1) P

4
8 2 2
3272t 642t 1

_28810g( ﬂ;u )—|—36log( ﬂ;“ )}—FO(—S),
m m N

(109)

(Ws, x) WG, )0

4 1
= _IOMjW[I +21og(64712 2 4)] + 0(7) (110)

(W(s, x) WG, )P
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4 2.,,4
_ g 32 s i
__2048714m252|:_1+y_10g< m? >]+O(s3)’
(111)

(\l/(s x)‘l—’ (s, x)>( P

g4

3m=s
= et [36 +y+72 log( ) — 36log(dm?s)

2
16725 32125t 1
_36log( 7';12?11 >+7210g( T:nju >]+O<§>

(112)
(Ws, x) WG, )0 P

4 2.4

g 32w s 1
SRS S o).
40967t4m2s2[ ty 0g< m?2 ):| * <s3>

2

(113)
(\If(s, X)W, x))F = (\ll(s, x) Wi, x))F, =0 (114)
(W(s, x)wis, x)), = (115)

(W(s, %) WT(s, 1)),

282 3272t 1
__256714m2s2|:_1+y_10g< m? +0 s3)°

>(9P)

(ws, X)Uis, x)

4 20,4
g 32mspu 1
=———| —1 —1 ol =),
102474m?2s2 |: ty Og( m? ) :| + <s3)

(117)
with
<II/(s,x) \Iﬁ(s,x)> (5P <\IJ(s X)W, x)> )
<\I!(s,x) \IJT(s,x)> /5 <\IJ(S X) \I'T(s x)>( p),
<\Il(s,x) \Iﬁ(s,x)> ) (lll(s X) Wi, x)> ,
<\Il(s,x) qﬂ'(s,x)> /5p) <\If(s )W, x)>
(118)

Therefore, at both the LO and one-loop levels, we can
conclude that

—0
§—>00

(s.p.)
<\I/(s,x)\I/'(s,x)> (119)
in the saddle-point approximation. This result is just as
expected for the spontaneous gauge symmetry-breaking
order parameters in the symmetric phase.

5 Summary and discussion
We have proposed the flowed order parameter for sponta-

neous gauge symmetry breaking: the expectation value of the
manifestly gauge-invariant composite operator at the same
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spacetime point, of (x) o (x), smeared towards the flow-time
direction ¢ under the gradient flow. The deformed configu-
rations W(z, x) and W (s, y) after progressions of the flow
times ¢ and s have the good property: the limit y — x can
be taken without an extra UV divergence in its two-point
function <\If (¢, x) Wi, y)) aslongast,s > 0.

Here, (W(t, x) W'(s,x)) = (W' (s, x) W(t, x)) is inter-
preted as a well-defined version of (6*@) 5(x)). The diffu-
sion in the ¢ direction through the gradient flow can be inter-
preted as decreasing the physical reference energy. There-
fore, under the limit 1 = 5 — oo, (¥(s,x) ¥i(s,x))
would be related to <6*(x) 6()()) that is evaluated with the
ground state. Therefore, the binary information of whether
limg_, oo <\Il(s, X) \Iﬁ(s,x)) takes zero or a nonzero value
might be used for determining the phase.

As a first step, we compute the flowed order parameter
in the Abelian Higgs model with a positive mass-squared
parameter in the continuum theory at the one-loop level. With
the help of the saddle-point approximation, we have derived
the asymptotic analytic form of (\Il(s, x) Wi(s, x)) for large
S.

We have checked the following: (i) the limit (W (s, x) W'
(s,x)) — O for s — oo, which consistently implies that
the theory is still in the symmetric phase after taking into
account one-loop radiative corrections for a finite positive
mass-squared; (ii) the UV finiteness of the U (1) gauge-boson
two-point function at the one-loop level, which is a concrete
confirmation of the magnificent property for gradient-flowed
gauge fields, firstly discussed in Refs. [12,13]; and (iii) the
UV finiteness of the Higgs boson two-point function under
a wave-function renormalization that subtracts the UV poles
originating from loop integrals [14].

This paper is a first step in a new direction, determining
the phase of a physical system by the flowed order parameter,
namely the flowed bilinear of the Higgs at the same space-
time point. It can shed new light on identifying the phase of a
physical system. Here, we have relied on perturbation under
gauge fixing and have adopted the saddle-point approxima-
tion to derive analytic forms. Generalization to non-Abelian
gauge theories and investigations in the lattice gauge theory,
which does not require gauge fixing, will be important next
steps.

Even within the simplest Abelian Higgs scenario, various
aspects await further clarification:

e The standard perturbative method for determining the
phase of the Abelian Higgs model is to investigate the
vacua of the Coleman—Weinberg effective potential [69—
71], which tells us that a dynamical gauge symmetry
breaking occurs if the squared Higgs mass is zero or
takes a sufficiently small positive value. This region of
the parameter space is beyond the scope of our cur-
rent analysis relying on the saddle-point approximation

under the assumption that the flow times ¢ and s are
much greater than other dimensional parameters such
as s, t > m_z, that is, our computation relies on the
saddle-point method (68) for the integral of the form

f » %;;);2 g(p), where g(p) is a rational function. It
would be interesting to investigate the massless or nearly
massless region, which might require a numerical calcu-
lation.

e Asis widely known, if the squared Higgs mass parameter
is negative, the gauge symmetry is spontaneously broken
down through the Higgs mechanism. Investigating the
general properties of the gradient flow for the gauge the-
ory in the broken phase is a theoretically important task.

e The two-point function of the smeared fields at the same
spacetime point is well defined. However, the deforma-
tion through the gradient flow might modify some of the
properties of the original fields. Our result in the focused
parameter region appears consistent, and further theoret-
ical investigation would be worthwhile.

We expect that the theory space at t+ = 0 has one-to-
one correspondence to that at ¢t > 0. For a nonzero t, the
finite parts in Egs. (70)—(74) and (78)—(80) are nonzero even
for a large positive mass-squared at finite . However, we
should remember that the physical value of the flowed order
parameter for the finite 7 can be defined only after we fix a
renormalization condition for the theory at 7, which will be
investigated in future work. This might lead to a new rela-
tionship between the gradient flow and the renormalization
group as suggested in Refs. [15-26] in a different context.
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Appendix A: Details on the Higgs two-point function at
one loop

In this section, we provide details on the calculations of the
Higgs two-point function at one loop, where both the diver-
gent and finite parts are discussed.

We recall the following standard formulas for the £ expan-
sion:

=1+e+o@ﬁ,

1—c¢
Aezl—i—slogA—i-O(ez),

1
1“(E)ZE—)/+(9(8),

F(S—l):—é—l—y—l—l—@(e), (120)

where the variable A is positive. Also, we skip showing
explicit forms for the contributions designated by the dia-
grams B/, C’,D’, and E/, since each part can be easily obtained
from the corresponding result given below and the replace-
ment rule in Eq. (65).

A.1 Leading order

For Eq. (33), after taking the limit y — x safely, no approx-
imation is necessary to perform the p integral:

—(t+s)p

= (¢ M28)/ o

(\11(: X)W, x)>

2 2 _(H‘Y)pz
_( ok )<(4 )d/2r(d/2)> p2+mg
_ 2 2e
= (st ><(4 )d/zr(d/2>)

X ; (1) pyd— 2F< ) (1 —,mg (s-l—t))
(121)

where in the second and third lines, we integrated the
isotropic angular part and the radial part of the d-dimensional
p integral, respectively.

Based on the property

F(l _ %m% (s +t)) = F(—l,m% (s +l)) + O(e),
(122)

@ Springer

it is straightforward to obtain the s-expanded form,’

2 2
(Wt ) W5, ) o = —0sm3e D (=1, m3 (s + 1) + Oe)

(4n)?
g

+0(@),
larges, 1 (47)2 m3 (s +1)*

(123)

where we took the first term of the series expansion of
2 . .
emo(””[‘(—l, m(z) (s + t)) around infinity,

OO (—1,m (5 +1)

1 : 1 ’
R
my (s + 1) mg (s +1)

A.2 One-loop order

(124)

A.2.1 Diagram A

In Eq. (56), after taking the limit y — x safely, we can per-
form the integrals on the flow times exactly, where Eq. (56)
leads to

(p+0)?

v, W 7 4 4e / Y N e (2 =)
Weowe 0l =6 | G @ rm)
« % {672(s+t)(€27€-p)
4(2—¢-p)
e u(—tp) _ g=2(P—tp) 4 } , (125)

where we divide this form into the following four pieces:

<\Il(t, X) \Iﬁ(s, x)>

A-()
(p+0)? _as)p?
- (gé,l/,4s) / — e (t+s)p
pt (p— 0% (€2 +mf)
% 1 26—2(S+f)(€2—e~p)’ (126)
4(2—¢-p)
<\I'(t, X) \IJT(S, x)>
A-(ii)
4 4¢ (p+0° —(t+s)p?
goM / e
( ’ ) pt (p =02 (& +mg)
x ;ze—h(@z—“’), (127)
4(2—¢-p)

<\I'(t, X) \IJT(S, x)>

A-(iii)
(gé M48) /
P,

7 The following form for larger ¢ and s is also obtained through the
saddle-point method for the p integral of the second to last form of
Eq. (121).

(p+0)?

o~ (t+s)p?
¢ (p = O (£ + m)
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sp——— () (128)
4(2 -t p)
<\1/(r, X) Wi, x))A-(iv)
(p+0)? )
=+ 4 de / e (t+s)p
(stn*) ot (0 — O (21 md)
1
X — (129)
4(e2—e-p)’

For Eq. (126), the square completion of the exponent,

—(t+s)p2—2(s+t)(€2—£~p)

2 1
=-26+n(e-2) — 5 G+np (130)

2

tells us the valid information required to make the saddle-
point approximation for the integral of £. The formula in
Eq. (67) with £, = p/2 in Eq. (126) brings us to

(\y(z, X) \yT(s,x)>A 0 (ggms) (9.42)
1 a2 1 7%(S+t)p2
<8n(s+t)) /p (pz)Z (p2+4m%)e
. 1 72 2
= (siu*) (0-#) (8:1 o+ t)) ((4n)d/2 r(d/2)>
%) _ 1 s
X./O ar p’ 1/[7 (p2)2 (p2+4m )e e

E . a2 5
= (g8u*) (- 4) (87[ s +t)> ((471)‘”2 F(d/2)>

2 d
y 277+d62m0(x+t)m66+dr(_2 N ,) r<3 _

d
5 5,2m5 (s+t)),

(131)

where in the second line we integrated the isotropic angular
part of the d-dimensional momentum. The evaluations of
Egs. (127) and (128) can follow the same line, and their final
forms are

<\1:(z, )i, ”)Mm

d/2
()0 5 ()

. d d
% 2—7+d62m(2)(.s+2t)m66+df‘<—2 + 7) F<3 — 3 2m(2, (s + 2t)> ,

2
(132)

(wg, Wi, x)>

A-(iii)

d/2
() 09) (55) (Gmram)

o 2~ THd M54 6+dr( 24 g) F<3 _ ;2”1% s +t)).

(133)

For Eq. (129), it is straightforward to apply the formula
about the p integral around the saddle point p, = 0, and we

obtain the result

) 44 1 dj?
Wt x) Wi, ) ( s) _

< (#, x) W(s, x) A-(vi) okt 4 (s + 1)

/1 1 1

x 4 (p2\2 02 4 m2

(g) L +m

= (g () T2
0 dr(s+1)) 4 (471)01/2

3—-d/2
F(3—d/2)/ fl -
r'Q3) (l—x—y>m0 ’

(134)

where we performed the ¢ integration with the help of the
Feynman parameterization in a standard method.

The first three pieces are e-expanded straightforwardly,
where the formulas are useful,

I'(—e) 1

- 1 2
Fass = 1met o), (135)
e+ 1,4) = e+ [ log() + GT3(b| 4) ] e + O).
(136)

for a positive variable A. The individual results are

(W, 0 WG, 0,

~ ¢{1+1+10g[2m2(€+t)]
@)t (s +1)2mi e or

3R2rlut(s +1 2
+log [“ SO 0GR o 2ms + 1) }

mg
+0(), (137)
(W, ) ¥ 0))p 0
A{l
(4n)4s2m% 3
2.4
+ log [Zm(z)(s + 2l)] + 10g<327r QM S)
mo
£ RGO 3o 1) } +0®), (138)
(W@, 0w (s, 0) 5
984 1 2
— 0 - 4+ log[2md2
(47_[)4 tzm(z){g + 1+ Og[ mi(2s +l)]
2,4
g ZTIL) s iR 0)|
mo '
+0(e). (139)

The form in Eq. (134) has no UV divergence in d — 4,
but it contains an infrared divergence. To regularize this, we
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deform the upper bound of the integral range of y with a
positive dimensionless parameter a as follows:

<mp(z X) Wi, x))

N(47r)4(s+t)2m24/ / [l—x—y]
l1—x—a
c_>(47'r)4(s—i-t)2m / / |:l—x—y:|

8 L1 S rog@)].

L — 140
T @ s 0Pmy4 o

where the step designated by the symbol < corresponds to
the regularization of an infrared divergence.

A.2.2 Diagram B

In Eq. (57), after taking the limit y — x safely, we obtain
the form

(W(t, ) Wi(s, x)),

—(t-H)p d - n
~ (etu®) / 2/du/ ! o
p?+mg Jo IR

. e (1+5)p? d
= |- u
(~son* /,, +ml /0 <<4n)"/2F(d/2)>
o0
x/ dezd—3e—2ulz
0

_ 2
~ i) [ S
p P>+ mg

' du (L) Z‘d/zul_d/zr‘<—l + i)
0 @m)421T(d/2) 2

—(t+s)p 1 t d
4 4e € 1-d/2
= (= du 2u)
(~8om )fp P2 +m32 (4n)d/2/0 d/2—1

_ 2
_ (_géﬂ%)/ e tHOr” 1 4-2¢ (21)¢
» P? +m% @m)> ¢ 1—¢ 2¢
dj2
~ (—gh®) 1 211 42 (2:)8,
0 4 (s +1) mg (4m)>F 1—¢ 2
(141)

X
o

where in the second and third lines we integrated the isotropic
angular part and the radial part of the d-dimensional ¢ inte-
gral, respectively, while in the last step we adopted the for-
mula in Eq. (67) to evaluate the p integral around the saddle
point p, = 0.

It is very straightforward to obtain an e-expanded form of
Eq. (141):

£

<\I/(t,x) \I’%(S,.X)>B —m
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x {% +1+2log [327121‘ (s +1) u“]} +0(@). (142)

A.2.3 Diagram C
In Eq. (58), after taking the limit y — x safely, we can

perform the integrals on the flow time exactly, where Eq. (58)
leads to

<\p(z, i, x))C
(p+10)?

-~ 2
= (g8u™) / A /
p p2+m(2) ¢ (p—1)>? (Ez—i-m(z))

! _ a—2t(2—t-p)
X2(€2—Z~p)[1 e p],

(143)

where we divide this form into the following two pieces:

<\1:(z 0 wis, x))

C-()
— + (i) / e~t+or? / (p+0)?
0 p P2+m§ Je (p— 0% (€% +m)
1
X ———— 144
2@t p) (149

<\Il(z, 0w, x)>c-(n>

2
) [
p P2+md Je (p— 02 (€2 +md)
! e 21(C—tp)
2(2—¢-p)

x (145)

For Eq. (144), it is straightforward to perform the saddle-
point integral of p around the saddle point p, = 0 as

<\Il(t, X) \Iﬁ(s, x)>c-(i)

N (géu‘“)( 1 )‘“2 1 / 1
-2 4 (s + 1) mg (£2+mO)Z

_ (ggn®) 1 21 1 TE-d/2)
T2 <47( (s + t)) m2 @m)¥2 T ()
: | 2—d/2
x / dx <—2) : (146)
0 xmo

where in the second step we integrate the £ part with the help
of the Feynman parameterization in a standard method.

For Eq. (145), we can perform the saddle-point integral of
£ around the saddle point £, = p/2 as
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(9 42 4 4F)
C-Gi) 2

a2
oy
8t p2 p +m0 p +4m(2))

_(942346)(L>d/ 2 )
- 2 87t @m)42rd)2)

o0 1
d d—1
X/o PP (02 md) (7 + 4md)
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- 2 8t @m)421d/2)
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x [—16F(2 = S5 (25 4 0) + 20RO

re- g,zm%(zsw))], (147)

where in the second and third lines we integrated the isotropic
angular part and the radial part of the d-dimensional p inte-
gral, respectively.

The ¢ expansion of Eq. (146) is easily obtained as

(W, Wi, 0

g 1 21 1
2 (47‘[ (s-l—t)) m3 (41)?
x [w* @ (t 4+ 9)° @) T(e) [1 + ¢ (1 — logm)]
_ 80 1
T @t s +n? m(z) 2

2 4
« {1 —y 4+ 141og [16” Crow “ +0@).  (148)
£ m0
Meanwhile, the following expansion forms,

1 _ 2
FOTeTs _g+o(e ) (149)
"t = 1 +ime + 0(82) , (150)
cot [ (2-e)]=—i+fa+o(s2), (151)

e 3

(e, A) = T(0, A) + [r(o, A)log A + ijg(g’oj A)] e
+(9(£2>,

for a positive A, bring us to the final form of the ¢ expansion
of Eq. (147):

(152)
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A.2.4 Diagram D

In Eq. (59), after taking the limit y — x safely, we can per-
form the integrals on the flow times exactly, where Eq. (59)
leads to

—(t+s)p? 2

. (4 4 e L+ p)
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where we divide this form into the following three pieces:
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For Eq. (155), we evaluate the p integral using Eq. (67)
around the saddle point p,, = 0 as
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where in the second line we introduced a virtual mass ur to
regularize the integral. The calculation in the third line was
performed in a standard technique.

For Eq. (156), the £ integral can be performed in the saddle
point method in Eq. (67) around the saddle point £, = p/2

S
?q/(z, Wi, x)>

D-(ii)

A 1 w2
~ 18 <g4,u,4£) <7) / b st
871/ Iy (02) (97 + mi)
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2’2
(159)

e (+1/2)p?

where in the second and third lines we integrated the isotropic
angular part and the radial part of the d-dimensional p inte-
gral, respectively.

For Eq. (157), the exponent is square-completed as

—(s+np*=2t(p—0?
= 3t 2 Z2
= +s)[p_3t+s] B

which tells us the saddle point of the p integral as p, =
[2¢/ (3t + s)] £. Through the formula in Eq. (67), we get
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The structure of the above ¢ integral is the same as that of
Diagram D-(ii), and we immediately obtain the final form:
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where we define the variables for our convenience,

s+ 3t
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) (1 B Szgt)“’

_ 2t(s+1)
o543t

The ¢-expanded form of Eq. (158) is evaluated straight-
forwardly as

4
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2
x {é—y+log [m—jw“ FOE).  (164)

MR

Calculations of the forms in Egs. (159) and (162) are also
straightforward with the help of the formulas in Eqgs. (135)
and (136) as

. & 9
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A.2.5 Diagram E

After taking the safe limit y — x as in Eq. (60), we obtain

<\Il(t, X) \Iﬁ(s, x)>
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4 €
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We can perform the integrals on the flow times exactly,
where Eq. (167) leads to

(\I/(t, x) Wi, x))E
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e—21(8=tp)
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where we divide this form into the following three pieces:
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For Eq. (169), we easily find the saddle point p, = 0, and
utilizing the formula in Eq. (67) leads to
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where the second step is an ordinary calculation with the help
of the Feynman parameterization.

For Eq. (170), the saddle point of £ is located at £, = p/2,
and the formula in Eq. (67) brings us to

(172)
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where in the second and third lines we integrated the isotropic
angular part and the radial part of the d-dimensional p inte-
gral, respectively.

For Eq. (171), we can make a deformation with a Feynman
parameter integral,

<\l—’(t, 0w, x)>E "
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~ 0,

(x +y) 02 + ym%]3
(174)

where in the second and the third steps we performed the
p and ¢ integrals using the formula in Eq. (67) around the
saddle points p, = 0 and £, = 0, respectively.

The ¢ expansion of Eq. (172) is straightforward, and that
of Eq. (173) is doable following the process for Eq. (147),
where their results are
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A.2.6 Diagram F

We can perform the integrals on the flow times exactly, where
Eq. (61) leads to

(\11(:, ) Wi, x)>F

= (—4gin™) /

o P2+ md 02+ m}

y 2£2t—21+ 1 ze_mz ’
4@ 4(@)

where this integral is odd for p, and £, and the result is
Zero.

e—(t+s)p2 pp,gl/,

(177)

A.2.7 Diagram a

For Eq. (62), after taking the limit y — x safely, we find that
the p integral part and ¢ integral part are separable,

o ety [ S
s My = oM » (p2+m(2))2 ; KZ"’ME;’

(178)

where evaluating the latter part is straightforwardly doable,

[t = (3) " re -
= n e—1),
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which contains no infrared divergence, and we can take the
limit w4 — 0 safely. Thereby, we conclude that

(179)

<\I'(t, X) \Iﬁ(s, x)) — 0.

180
a upa—0 ( )

A.2.8 Diagram b

For Eq. (63), after taking the limit y — x safely, we can
perform the p integral part and ¢ integral part separately,

e—(t+s)p 1
W(r,x) Wi(s, x) 4rogdnt f / :
( )b ( ) » (p2 +m(2))2 ¢ KZ +m(2)
(181)
where the latter part can be evaluated as in Eq. (179). The

former integral is also analytically feasible with the help of
the exponential integral function E,(z) as

—(t+s)p 2
/ < 72 ) d—4)(s+1)>?
r(p?+ mg) (4m)*=T(d/2)

x I 2+d
2

@ Springer

x {—2 G [-2+d+2m§ (s +1)] Eiz (md (s + z))} .
(182)

The total form is given as

(m3)"™

(4” )4728

2 e e
T2—e) (‘Z) (s+0)
x {—2 + MO [2 = 26 4 2m (s + )] e (md (s + t))} .

(W, x) Wi s, ), = (—4rogou™)

x I'(e —1)I'(—e¢)

(183)
With the help of the following formulas,
F'e—-1)T(-¢) _l 2—y
re—e &2 e
+ % (36—24y +6y2+712) +O@), (184)
Ere(md s +0) = Ei(mi s +0)
+ G35 (60| M s +0) e+ 0@, (185)

we reach the e-expanded form,

2

<\Il(t,x)\lﬁ(s,x)> =4,\0g§(:1—°)4

X{ _1+emo<v+f> <1+m (s+t)) El(mo(s—l-t))]

+<2 v + log |:1671 (s;—t)u i|>
my

x [~1 48640 (14 md s +0) By (md s +1) ]

_ emo(s+z)E1<m0 (s —i—t)) 1 M+

(1 +md (s +t)> Ggg(ooo\mo (s +t)) } + O(e).
(186)

A.2.9 Diagram ¢

For Eq. (64), the form after taking the limit y — x safely is

4 46 e—(t+s)p2
oM P E——
(s )L(p2+mg)2
5 / ¢+ p)?

¢ (€= p)* (€ +mp)

4 4e 1 ( 1 )d/zf 1

~ (so ) 4 (s +1) ¢ (2 +mj)

= (gdu* L( 1 )11/2 1 z)l—ar .
sor) Nans+n) @’ (o =D,

(187)

(W, ) ¥'(s,x)), =
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where in the second line we performed the saddle-point inte-
gration using Eq. (67) with p, = 0, and in the third line,
Eq. (179) was applied.

The evaluation of the e-expanded form is straightforward,

where the resultant form is

. g5
W, )W (s, x) ~ ———2
< (0w )>c Am)* (s + 1)> m3
1 m(z)
S B eyl | R
(188)
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