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Abstract Power-law inflation with scale factor a o ™ is
investigated in the context of warm inflation. The treatment
is performed in the weak and strong dissipation limits. In
addition, we discuss the three common cases for the ther-
mal dissipation coefficient I" (7). We compare the theoretical
results of the power-law model within warm inflation with the
observational constraints from Planck 2018 and BICEP/Keck
2018, as presented by the tensor-to-scalar ratio r and spectral
index ngy. The model results agree largely with the observa-
tions for most of the I"(T) cases. Furthermore, in order to
address the problem of exiting the inflationary epoch, we
suggest a perturbed modification to the power-law defini-
tion so that it becomes affine, and find that this small change
indicates a way for having an exit scenario with a suitable e-
foldings number. Finally, we examine this perturbation ansatz
within the context of cold inflation with exponential poten-
tial, and we find that it can accommodate the observational
data with sufficient e-foldings. Our study suggests that the
power-law inflation and the exponential potential, in both
warm and cold inflation contexts, can in principle be made
consistent with the observations and with a possible graceful
exit.

1 Introduction

The inflationary paradigm was suggested to sort out several
drawbacks of the standard Big Bang theory, such as the hori-
zon, flatness, and monopole problems [1-6]! . The second

! Tt is noteworthy that the purely geometrical model of [ 1] remains valid
and produces an acceptable fitting with current observational data, in
contrast to some models proposed later.
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benefit of this paradigm is that it produces the observed
anisotropy of the cosmic microwave background [7-11] as
well as the distribution of the large-scale structure [12—17].

It is commonly assumed that inflation happens when a
single scalar field, the inflaton, be it a matter field or a geo-
metric entity (e.g. [18]) or expressing a distinct physical con-
cept such as variation of constants (e.g. [19]), slowly rolls
down to a nearly flat potential and induces a quasi-de Sitter
phase. Typically, the inflaton’s quantum fluctuations gener-
ate adiabatic density fluctuations. Inflation potentials must be
carefully selected; otherwise, they will overproduce density
perturbations. Inflationary models are often restricted by the
assumption that the inflaton is only (minimally) coupled to
gravity. However, introducing couplings to other early Uni-
verse sectors can alleviate these restrictions.

Warm inflation [20,21], a well-established alternative to
conventional (cold) inflation, entails thermally coupling an
inflaton field to a radiation bath. The fluctuations in warm
inflation are mainly thermal, with quantum fluctuations being
suppressed when dissipation rates between the inflaton field
and radiation sector are large. In contrast to cold inflation,
the inflaton produces radiation continuously, eliminating the
necessity for a reheating phase at the end of inflation.

Two different perspectives can be taken into account when
analyzing inflationary scenarios. As a first approach, we
choose a scalar field’s potential, which plays a key role in the
inflation scenario construction. This type of method is known
as the “potential motivated approach”. Therefore, inflation-
ary models are classified, within this approach, according
to their scalar field potentials. In contrast, one can, on the
other hand, reconstruct the potential V from the dynamics of
the expansion, which are determined by a scale factor a(z).
As a result of this approach, which we shall call a “dynam-
ically motivated approach”, inflationary models are catego-
rized based on the corresponding universe expansion laws.
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In this paper we consider an example of the second
approach, power-law inflation [22], where the scale factor
depends on time as @ = agt™. Several studies have exam-
ined the power-law expansion in the context of cold inflation
[23-29]. There were, however, two main problems with this
model. First, the scalar-to-tensor ratio r turns out to be larger
than the limits set by the Planck data, and the model, thus, can
be ruled out. Second, the model has no exit scenario because
the parameters for the slow roll are constant.

There have been several attempts to improve the model’s
results in the context of cold inflation [31,32]. Some studies
[33,34] accounted also for the possibility of thermal effects
of viscosity caused by couplings of the inflaton and other par-
ticles, exhibiting explicitly dissipation terms in the inflation
equations, expressing decay of inflaton into radiation, which
can be considered as reminiscent of warm inflation. Warm
inflation with exponential potential were recently studied in
[35,36] in the context of landscape/swampland of string the-
ory, albeit only for T -cubic dissipation term, where the effects
of the braneworld extra dimensions allow achieving a strong
dissipative regime.

The purpose of this letter is to present a general discus-
sion of power law inflation within a warm context. Thus, we
shall investigate the early power-law expansion of the uni-
verse within the warm inflation paradigm, considering sev-
eral forms for the dissipation coefficients, and studying the
scalar fields in the weak and strong dissipation limits to radi-
ation. Furthermore, in order to find a graceful exit way, we
introduce an affine perturbation on the power-law scale fac-
tor, and find that its repercussion on the potential, albeit tiny,
is hinting for a way to provide for a successful exit from the
inflationary epoch. Moreover, when assumed within the cold
power-law inflation, we show that our perturbing modifica-
tion can also improve it.

The paper is organized as follows. In Sect. 2, we sum-
marize the main findings of the warm inflation, consider-
ing three different forms of dissipation parameter I". We
then present formulas corresponding to the main observables:
spectral index ng and tensor-scalar ratio r under the weak and
strong dissipation limits. Section3 analyzes the power-law
model within the context of warm inflation. After computing
the potentials of different I” cases and dissipation limits, the
observational results of the model are compared to those of
Planck 2018 and BICEP/Keck 2018. In Sect. 4, we present a
possible perturbative exit scenario in order to accomplish the
end of inflation, and apply it also in the context of cold infla-
tion. We end up with a summary and conclusion in Sect. 5.

2 Warm inflation

The main results of warm inflation will be reviewed in
this section, focusing on strong and weak dissipation limits.

@ Springer

Warm inflation is characterized by the decay of the inflaton
field into radiation during the inflationary epoch. Scalar field
equations and radiation equations both express this decay as,

PR +4Hpg = I'd’ (1
Py +3H(pg + Py) = —T'$? 2)

The energy density pg and pressure Py of the inflaton field
can be expressed in canonical form as,

1. 1.
Py = 5¢2 + V@), Pp= 5¢>2 — V() 3)

On the other hand, the energy density pg and the pressure
Pr of radiation are given as,

Pr = pr/3 “

witha = 72/30g(T) (g(T) is related to the number of mass-
less modes such that « ~ 75 [30]). This corresponds to a
number of degrees of freedom g = 228.75, i.e. of the min-
imal supersymmetric (susy) standard model (MSSM). This
is a plausible choice as the energy scale of the inflationary
period is commonly taken to be around the GUT scale ~ 10'°
GeV. Assuming the breaking of the underlying GUT (rather,
its susy version, which has some benefits compared to the
non-susy version, such as accommodating in an easier way
the gauge couplings unification) occurs at one stage enforc-
ing a big desert picture in that no other particles are created
up to that scale, then the number of relativistic particles with
which the inflaton will thermalize would be that of the theory
governing the low energy scale which, for simplicity, will be
that of the MSSM embedded in most susy GUTSs.

In Einstein’s gravity with minimal coupling between the
scalar field and the gravitational sector, Friedmann equation
has the form,

or = aT?,

2 (1
3H® = pror = 2¢ + V(o) +pr ). %)

Here, and henceforth, we work in units where the reduced
Planck mass is set to one.

2.1 Slow-roll regime of warm inflation

Assuming the potential energy dominates all other forms of
energy, the slow-roll approximation is expressed as,

¢ < Hp, pr < Hp, %q’sz L V(9). (6)
As a result, Egs. (1), (2) and (5) are read as,
3 .,
PR = ZQd) @)
S - ®)
3H(1+ Q)
3H>~V 9)
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where,

r

Q=7 (10)

represents the effectiveness at which the inflaton converts
into radiation.
We can find the slow-roll parameters as,

1Y) Voo Ty Ve
e==-|—) .,n=—,8= .

2\ V Vv rv
As opposed to the cold inflation, the slow-roll condition
appears now in the warm inflation as:

° < 1, 7 < 1, p
1+0 S 0+0 C a+0

Y

< L 12)

2.2 Perturbations spectra

The primordial power spectrum of warm inflation at the hori-
zon crossing is given by [37],

Vi(l 4 04)2
i :
8 = A1+ 204 0)G(0) 1 4, = EETE

(13)

where * denotes the parameters at the horizon crossing,
—1. S .
n= (exp H/T — 1) is the Bose—Einstein statistical func-

% jﬁ% and A; represents the amplitude of the

CMB fluctuations. The function G (Q) describes the growth
of inflaton fluctuations due to the coupling to radiation.

In our study, we shall investigate three different cases
of the dissipation parameter (1'(7")). The function G(Q) is
determined for each case [38]:

tion, w =

First dissipation case: constant parameter
G(Q) = 1,for I' = Iy = constant,
(14)
Second dissipation case: linearly 7T-dependent parameter
G(Q) =1+03350"3% 4 0.01850%315 for I = IHT.
15)
Third dissipation case: cubically T -dependent parameter
G(Q) =1+4.9810"9% +0.1270*3% for I = 1, T3.
(16)

The general formula for temperature 7' can be found by
combining Egs. (4), (7), (8) and (9) in the slow-roll approx-

imation as,
v 1/4
20 (1 4+ O4)
The scalar spectral index is determined by,
dlIn A% (k/k
ng = li M (18)
k—>k, dlIn(k/ky)

The tensor-to-scalar perturbation ratio, r is,

A2

r=-1, (19)
AR

where A2T is the power spectrum of the tensor perturbation,

AL =2H% /7%, (20)
2.2.1 Weak dissipation limit

In this section, we will cover the principal formulas of the
observables n; and r in the weak dissipation limit Q < 1.1tis
crucial to note the differences in the formulas for the spectral
index ng as well as the temperature 7 formulas based on
I'(T). We summarize these formulas below:

T V;FO ' 21
N (36aH3> @D
2nI’'T 2
ng—1= (—68+277)+W(158—277)+yQ (e—pB)
(22)
H
r=—16¢ (23)
2T
where: for I' = Iy
1
x=-, y=0, z=0 (24)
4
forI' = IyT
1
X = 3 y =0.456, z=1.364 (25)
for ' = IHT?
x=1, y=9.69, z=1.946. (26)

2.2.2 Strong dissipation limit

Similarly, in the strong dissipation limit where Q > 1, we
can find the following relations:

VEoA®
T = ¢ Q27
4aloH
1 9 3 9 y
—1=—=-- -n—=B)—=(B— 28
ng Q< yiay 4/3) Q(ﬂ €) (28)
H 16¢
r=—|——— (29)
r (Feonen)
where: for I' = Iy
1
x—Z, y=00, z=1, w=0 30)
for I' = Iy T
1
ng, y=2.3, z=0.0185, w=2.315 (31)
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Table 1 Main specific characteristics of the warm model in the weak dissipative regime with exponential potential

=1y I =T r =113
1 1 1
€ m n m
2 2 2
n I " m
1 3
B 0 e 3
o V29 V2¢
Q ie\/ﬁ F04/3 em F04 e vm
3m 33/ 2am 24a3m
) ¢ _ 9
T I~ I =3/ 0~ Ajm
V2 V2a
7¢ 0.94¢ 0.64¢ _2.75¢ _ L41g
e —1 Unlpyied2m 2 2,633 Vm + 004957 8le v o 003957 78e  Vm + 0.52I% vm 2
s 6 2qm? m @0-66,,,3 045,,2.36 m @583, 207 o3 m
39 5
- 8324 "5/ 8324 =5 16
V1o Iy Iy
for I' = I 0T3 The potential (36) is identical to the case of cold inflation,
1 mainly due to the weak dissipation limit in which I" <« H.
X = 7 y =433, z=0.127, w=4.330. (32)  This exponential potential can be induced in many contexts,

3 Warming the power-law inflation

This section will examine the power-law inflation within a
warm context. Power-law inflation is characterized by Hub-
ble parameter H = ¢ given by:

m
H=—,
t
where m > 1 in order to achieve an accelerated inflationary
phase. Using Eqgs. (9) and (33), we find,
3m?

(33)

(34)

Assaid earlier, we shall consider the weak dissipation limit
0 « 1, as well as the strong dissipation one Q > 1, and
our goal is to identify the potential function responsible for
this type of expansion, then calculate the crucial observables,
represented by the tensor to scalar ratio r and the spectral
index ny, in order to compare with the experimental results
of Planck 2018 and BK18.

3.1 Power-law inflation in the weak dissipation limit

We start by determining the potential function imposing the
power-law expansion (33).

Substituting Eq. (34) into the integration of Eq. (8), under
the weak dissipation limit, we find,

¢ = 2/mlog(1).
As aresult, the potential V is given in terms of the field ¢ as,
V2¢

V=Ve v,

(35)

(36)

with Vy = 3m2.

@ Springer

such as a temporal variation of coupling constants, eventu-
ally with nonminimal coupling to gravity and/or modified
gravity [39,40]. However, the empirical observables of n;
and r derived from this potential under warm inflation differ
dramatically from those under cold inflationary conditions.

Table 1 summarizes the main formulas of the observables
ng and r, along with key characteristic quantities of warm
power-law inflation, such as Q, T, and H, following Eqgs.
(21)—(26).

By examining Table 1, we can see that we have different
results from the cold inflation scenario, where the observables
r and ng are determined by equations:

-2
16

r=—. (38)
m

Itis apparent that, unlike the case of cold inflation, the observ-
ables may give various and different results according to the
expression of " as a function of 7' (our setup), and of ¢ (in
other possible setups) as well.

A comparison between I' = Iy, I’ = [T and I’ =
F0T3 cases, shows that when the third case is considered,
the scalar-to-tensor ratio r is, for fixed «, independent of the
scalar field ¢ but dependent only on the parameter Iy, as
compared to the other two cases where r is dependent upon
all model parameters. On the other hand, the spectral index n;
has a minimum value in both casesof I" = Ipand I" = [T,
while it has a maximum value in the case of I = I T3, as
shown in Fig. 1 depicting the spectral index for a range of
m € [45, 100].

A quick glance at Table 1 reveals that the slow-roll param-
eters are independent of the scalar field ¢. Therefore, warm
power-law inflation is like the cold one in that it has no end.
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Fig. 1 Plot of a spectral index ny as a function of m. The green line
indicates the I = I case with (I = 1 x 1078, ¢4 = 163), the blue
line represents the I" = [T case with ([ = 2 x 1074, ¢ = 178),
and the red line refers to I = I T3 with (I = 79 x 103, ¢, = 200)

In Fig.2, we compare the observational results of the
model with those of Planck 7T — TE — EE + LowE +
lensing and BK 18, and see that there is a significant agree-
ment in that the model predictions fall within the 68% confi-
dence level (CL) region for the combined Planck TT — T E —
EE + LowE + lensing&BK 18.

Table 2 presents specific benchmarks (I, m, ¢,) giving
acceptable values for observables (n; and r), along with the
corresponding values of some characteristic model quanti-
ties (Q, T, and H) in order to demonstrate that all warm
inflationary constraints are met.

Few important points are in order here. First, unlike the
cold scenario, the exponential potential of Eq. (36) will not
remain always the one on which the inflaton moves, because

Warm Weak limit
T

it was obtained assuming the weak limit (Q < 1). The issue
here is that Q is a dynamical quantity which, thus, evolves
in time, as can be seen in the Figure-Table 1. Starting from
a value where Q < 1, the inflaton field tends to grow going
down the potential surface, but then Q evolves quickly to
be exponentially larger (smaller) in the first two cases (third
case) of constant/T -linearly dependent (7' -cubically depen-
dent) dissipation factor, and consequently only in the third
case the exponential shape remain valid for all the inflaton
values.

To fix the ideas, we took the parameters stated in the
Figure-Table 3 for the three cases of the dissipative factor
I', and illustrated the corresponding forms of Q and V, in
which place the green dot denotes the horizon crossing, where
the observables are evaluated and found to meet the observa-
tional constraints, whereas the red point designates the bound
of the weak limit region, corresponding to (Q = 1), sig-
nalling where the validity of the weak dissipation assumption
ceases to be maintained. Thus, the portion of the exponential
graph describing the weak limit is bounded by the red point,
and one should check for consistency, upon introducing an
exit scenario as will be done in the next section, in that the end
of inflation, assuming a weak limit regime, should remain on
this portion not reaching the corresponding red point.

Second, the choice of benchmarks is not exhaustive. Actu-
ally, and as will be shown in next section, the parameter
space accommodating the observational constraints is not too
much limited, and no need to resort to fine tuning in order to
meet the constraints on (ng, 7). One can start analytically by

0.1400 T T T T T T
95% Planck TT,TE EE
— +lowE +lensing
0.1200 - 68% Planck TT,TE EE g
= +owE+ lensing
0 riQS% Planck TT,TE EE
0.1000 |- “+lowE + lensing +BK18+BAO | -
68% Planck TT,TE.EE
-olowE + lensing +BK18+BAO
0.0800 — Unperturbed I‘O 4
- - = perturbed l‘0
w— unperturbed I' T
0.0600 = == perturbed I' T =1
unperturbed I' T3
3
pertwbed I' T
0.0400 == Cold
0.0200 |- .
0.0000 ! .
0.95 0.955 0.96 0.965 0.97 0.975 0.98 0.985 0.99

Fig. 2 Contour plots of n; and r in the case of weak dissipation limit.
Solid lines represent the theoretical results of the model for an exponen-
tial potential (Eq.36). A solid black line corresponds to I" = [ with
Iy =1x1078, ¢« = 163 and m € [45—70]; a solid red line represents
I' = IyT with Iy = 2 x 1074, ¢« = 178 and m € [50 — 70]. Finally,
the yellow solid line indicates the I" = IoT? case withm = 1 x 102,

ns

¢ = 200 and Iy € [50 — 79] x 103. On the other hand, dashed lines
represent the observables resulting from the potential of (Eq. 44) taken
with the same case of I in their same-color solid lines, with the pertur-
bation parameter ¢ = —1 x 1077 (¢ = —1.5 x 107°) for black and red
(yellow) dashed lines. The other parameters for the dashed lines are the
same as those for their same-color solid lines
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Table 2 Benchmark points in the case of weak dissipation limit for different instances of dissipation coefficient I", with ¢, = 163 for I' = I,

¢s = 178 for I' = I T and ¢, = 200 for I" = IHT?

r'=TIy r'=TIpT Ir'=Ipr?

P Py P Py P P Py P3
m 50.0 60.0 70.0 50.0 60.0 70.0 100 100 100
To(x107%) 0.010 0.010 0.010 200 200 200 50.0 x 10° 60.0 x 10° 70.0 x 10°
ns(x1072) 96.3 96.7 97.1 97.6 96.7 97.1 97.7 97.3 96.5
r(x1072) 1.37 3.98 9.12 0.510 1.43 3.20 2.40 2.00 1.71
0(x107% 7.99 1.61 0.458 20.9 6.19 2.38 32.1 66.6 123
H(x107%) 4.16 20.7 72.8 0.930 5.26 20.5 72.1 72.1 72.1
T(x107%) 4.85 6.92 9.12 2.92 4.89 7.31 24.0 28.8 33.7
T/H 11.6 3.34 1.25 31.3 9.29 3.56 3.33 4.00 4.67

Table 3 Warm inflation parameters in the weak limit regime (Q < 1) leading to acceptable observables, in the three cases of dissipative factor I".
‘Green’ corresponds to horizon crossing, whereas 'Red’ denotes where the weak limit regime stops (Q = 1)

I = Iy

T LT3

Parameters m=45,a =751 =108

m=42,a = 75,1 = 102

m =100, = 75,5 = 5 x 10%

V T

14,

Green (94,Q,V) (163,2 x 1073,7 x 10~12)

(99.8,11 x 10~3,1.8 x 10~9)

(200,3 x 1073,1.6 x 10~8)

Observables (ns,r) (0.976,0.007)

(0.958,0.109) (0.977,0.024)

Red (®.,Q,V) (221,1,3 x 10—17)

(161,1,2.8 x 10~12) !

expanding in powers of ¢, and see that generically Iy appears
raised to some positive power in the denominator of the lead-
ing order of r, which means that one needs large values of
Iy, in order to meet (r < 1), but then these large values of
Iy can not satisfy the condition on n; (look at the expres-
sions of r, ny in Table 1) with ¢, small. So, one searches for
large values of ¢, and once we find an acceptable value we
can refine the search around it, while changing accordingly
the other parameters. Upon carrying out the scan, one finds a
non-negligible region in the parameters space accommodat-
ing the phenomenological constraints.

Third, the issue of Q being dynamical will not change the
conclusion that the inflation in this model does not have an

@ Springer

end, because (¢, 1, B) are constant and the conditions (Eq. 12)
remain satisfied if they are met at horizon crossing.

3.2 Power-law inflation in the strong dissipation limit

Similarly, in the strong dissipation limit, we can identify the
potential responsible for the power-law expansion as we did
in the weak dissipation limit. However, it is interesting to note
that, unlike the weak case where the potential was exponen-
tial, the strong dissipation limit does not have a single-form
potential; instead, we can find different forms of potential for
the different types of dissipation parameter I (7).
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Table 4 Main specific characteristics of the warm model in the strong
dissipative regime for different cases of dissipation rate 1" (7")

r=n r=nRT I'=I1,T?
3 32 32
3 2 &2 e
n 12 56 2
@2 @2 @2
16 48
p 0 @ P
8m 32m 32m
0 rd P 3
T NanY:) Iyg? 32VeJam’/?
2 234 3 Yam/t 326, /am?/? Too?
H Iyg? gt 2048+/60>2m"/2
24m 3072/64/am5/2 R
0.4 4.415
ng — 1 0 o -
, YaToe* 5.3x 1070 17¢% 6 4.4x10" 0?00
6 23/4 Y3 fam1/4 m3-815 om*83

Starting with the case I = I, and substituting Eq. (34)
into the integration of Eq. (8), we find
2\/6m
VTovt

As aresult, the potential V' is given in terms of the field ¢ as

¢ =—

(39)

20 x 3m?
The potential (40) appears as a quartic one in the field.

As to the other cases of I"(T'), we can find different poten-
tials using the same strategy:

\% 4 , for I' = Iy = constant. (40)

F04

221 % 32gmd
V(¢)—V¢_8'V _M
=V~ : Vo = ot

Vip) = Vopd : Vo = forI' =T (41)

Jfor I' = ILT? (42)

The potential of Eq. 41 (42) is just a monomial with positive
(negative) power.

Table 4 shows the slow-roll parameters in each case, along
with the dissipation effectiveness coefficient Q, in addition
to the observables n; and r. From the table, we can see that
the inflation has no end under the slow-roll approximation
because the slow-roll parameters ¢, n, and 8 have all the same
dependence (ox ¢~2) on the field, as that of the dissipation
effectiveness coefficient Q so that their ratio becomes field-
independent.

The table shows that for the case I = I, where the
potential V oc ¢*, the spectral index equals zero, which is
excluded by experimental surveys in which ny < 1. On the
other hand, for I' = [T, we have ny > 1, which is also
excluded. Finally, looking at the case (I" = I} T3), we can
see thatng < 1 and the model can successfully accommodate
the experimental results.

Figure 3 shows the theoretical results of the model under
the strong dissipation limit for the case (I" = Iy T3). As we

see, the results are in perfect agreement with the empirical
ones. The parameter m is scanned between 100 and 200 for
specific values of ¢, for each line; most results are within the
68% confidence level.

Table 5 shows some benchmark points in the strong limit
with (I" = I'pT?). In this table, we stated the values of the
observables, n; and r, in addition to those of Q, where we
should keep in mind that the case is performed under the
strong dissipation limit Q >> 1. The table also shows both
H and T in which T > H which is usually required in the
warm inflation.

Again, one should determine the validity range of the
strong limit regime. We restrict this analysis to the third case
of cubically 7-dependent dissipation factor, as the other two
cases are rejected phenomenologically, and the Figure-Table
6 shows the plots of O, V vs ¢ for abenchmark accommodat-
ing the observational constraints. The two points (green, red)
designate respectively the horizon crossing and strong limit
regime boundary, and so the portion of the V-curve to the
left of the red point (the dashed part) is the part representing
the strong limit regime potential.

4 Possible graceful exit

The purpose of this section is to suggest a model modifi-
cation, representing a small perturbation, that would enable
the inflationary phase to be exited. Following the dynami-
cally motivated approach, our strategy will be the same as the
one adopted in the power-law model of inflation, where we
started from the Hubble parameter and ended in determining
the potential. However, we assume now a small perturbation
in the Hubble parameter as,

m
H=" 1 (43)

where ¢ acts as an affine perturbation, typically, as we shall
see, of the order of 10~/ with negative sign. According to
this modification, the power-law expansion (Eq. 33) appears
as the first term of Eq. 43, inversely proportional to time,
which dominates during the early stage of the universe over
the affine perturbation. Specifically, we restrict our study here
to the weak dissipation limit, as we found that the perturbed
potential was well determined analytically in this case, unlike
the strong case where it needed to be determined numerically.
Since the unperturbed potential in this limit is exponential in
the scalar field, similar to the cold paradigm, we expect, and
will show it to be the case, that finding an exit solution by
perturbing will offer a similar way out for the problems of
the cold power-law inflation.

A similar treatment to that of Sect.3.1 reveals that the
potential, in the presence of the affine perturbation ¢, is mod-
ified to:
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Fig. 3 A plot of r and n, under

the strong dissipation limit in 1.0000 & 102
the case of I' = 73, All lines
correspond to Iy = 3 x 107, 0.9000 [
while ¢, = 7, 8, 9 for the red,
green, and blue lines, 0.8000 -
respectively. The parameter m is 0.7000 -
scanned in the range [100-200] )
in all cases 0.6000 |
~ 0.5000 -
0.4000
S
0.3000 |
0.2000
0.1000
0.0000
0.95 0.955

Table 5 Benchmark points in the case of strong dissipation limit in the
case of I' = I'pT? with I) = 3 x 107 and ¢ =7

P1 P2 P3
m 100 150 200
ns 0.956 0.970 0.977
r(x10713) 3.51 0.495 0.123
0 65.3 97.9 131
T(x10%) 4.61 8.48 13.0
H(x1079) 1.50 6.23 17.0
T/H 30.6 13.6 7.65
j=2 P
-t
U= Z Aje "o (44)
j=0
where:
Ao =3¢%, Ay =6me, Az =3m’. (45)

Note that, in the large field limit, we have a constant positive
term (Ag ;2) dominant corresponding to a Minkowski
universe with a tiny cosmological constant.

As shown in Fig.4, the potentials (36) and (44) are the
same for |{| < 1 but differ palpably for |{| > 1, which is
not considered in this study. However, we see in the figure’s
zoomed area that the potentials are not completely identical
in the case of { < 1. Although the difference is slight, it is,
however, sufficient to achieve the necessary requirements in
order to end the inflationary epoch. Actually, and as opposed
to pure exponential potential, the slow roll parameters appear
now as functions of the scalar field,

e ™ (46)

) p
(;eﬁﬁ + m)

@ Springer

Warm Strong Limit

95% Planck TT,TE,EE
— +lowE +lensing 4
68% Planck TT,TE,EE
e +lowE+ lensing

95% Planck TT,TE,EE
—J +lowE + lensing +BK18+BAO

68% Planck TT,TE,EE
-olva + lensing +BK18+BAO
— — @:7 -
- =8
- == $=9 .

N B
N

~ 4

™ -~

0.975 0.98 0.985 0.99

0.96 0.965 0.97
ns

[
LeV2Vm 4+ 2m

n= s @7
(;em + m>
_9
(24‘(3*/5\/’7 + m)
g=C (48)

) p)
<§e Vaym 4 m)

withC =0forI"' =1y, C =1/3forI' = [pT,and C =3
for I' = I 0T3. We see from Eqs. (46-48) that ¢ should
be of negative sign, in order to allow for an exit scenario,
otherwise (¢, 7, B) keep decreasing when the inflaton rolls
down the potential surface.

Figure 2 depicts the observables ng and r, which are rep-
resented by dashed lines in this perturbed case. We fixed
all parameters to those of the pure unperturbed exponential
potential case, except with ¢ = —1 x 10~/ for both I' = I
and I' = IyT,and ¢ = —1.5 x 1076 for I' = Iy T3.

Despite the slight deviations, the results of (ng, r) are
pretty similar in the perturbed and unperturbed cases. In
contrast, unlike the unperturbed case, the perturbed results
now correspond to N € [81 — 392] folds for I” = [} and
N € [66 — 302] folds for I" = I'HT, whereas N is still not
applicable for I' = 1"0T3 since, as we shall see, there is no
end to inflation in the weak regime. The effect of the param-
eter ¢ is shown in Table 7, where we take specific points
with the same input parameters of (m, Iy and @) but with
different values of ¢. We present the corresponding number
of e-folding which is less than the acceptable upper bound of
80 [41]. As expected, as ¢ decreases in magnitude, there is
a decrease in the difference between the pure “unperturbed”
exponential potential and the modified “perturbed” exponen-
tial potential and vice versa. However, we note that in the third
case of cubically 7-dependent dissipation factor there is no
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Table 6 Warm inflation
parameters in the strong limit
regime (Q > 1) leading to
acceptable observables, in the
case of cubically 7T'-dependent
dissipative factor I' = IT3.
‘Green’ corresponds to horizon
crossing, whereas ‘Red’ denotes
where the strong limit regime
stops (Q = 1)

I'= IoT3

Parameters m =100, = 75,1 = 3 x 107

\%

Green (¢.,Q,V) (7,65.3,7 x 10~7)

Observables (ns,r) (0.956,2 x 10~19)

Red (©.,Q,V) (56,1,4 x 10~17)

Table 7 Main specific characteristics of the “perturbed” warm model in the weak dissipative regime with modified exponential potential

=1y I =1yT I =173

(107%) ng r N (1079 ng r N £(107%) g r N
1% 0 0.976 0.0070 N/A 0 0.976 0.0051 N/A 0 0.977 0.024 N/A

—167 0.971 0.0079 60 —145.6 0.977 0.0057 50 —21.6 0.949 0.024 N/A
U —129.8 0.972 0.0077 70 —115.4 0.976 0.0055 60 —18.8 0.951 0.024 N/A

—103.5 0.973 0.0075 80 -92.2 0.975 0.0054 70 —16.5 0.954 0.024 N/A

end scenario and the corresponding efoldings number is not
applicable.

Actually, and as was done in the unperturbed scenario,
one should check for consistency that the weak limit regime
(Q « 1) is well respected for the dynamical variable Q
through the whole of inflation. For this, we show in the
Figure-Table 8 the dissipative coefficient Q and the poten-
tial U for the three cases of the dissipative factor I”, for
some benchmark points in the parameter space meeting the
observational constraints of (n;, ) and of A 2 at the horizon
crossing, where, as in the unperturbed scenario, the green and

2 The curvature perturbation spectrum has been measured by PLANCK
(WMAP) at 68% confidence level at the fixed wave number k, =
0.05(0.002) Mpc~! as [42,43]

A, € [2.136,2.247] x 1072, (e [2.349, 2.541] x 10—9) (49)

and thus the model seeks at least to reproduce a comparable order of
magnitude (< 1079).

red dots designate respectively the horizon crossing, where
the observables are evaluated, and the stoppage of the weak
limit regime, i.e. the (Q = 1)-boundary. However, a yellow
dot is added here to denote now the end of inflation where
one of the conditions of Eq. (12) breaks down (whichever
first). In all of these cases, the inflaton field would roll to the
right, but in the third case of cubically T-dependent dissipa-
tion factor there is no end of inflation consistent within the
weak regime, since the slow roll conditions of Eq. (12) are
maintained due to (1 4 Q) being far larger than (¢, 1, 8). The
consistency check amounts to (Q <« 1) at the yellow dot,
which, as the figure Table 8 shows, is met indeed. The red
dot determines the portion (dashed curve) of the potential
curve which represents correctly the inflaton potential.

To conclude on the graceful exit in warm inflation [44],
we present also in the Figure-Table 8 the plots of (1 + Q)
in blue, ¢ in red, n in green and B in purple for the consid-
ered benchmark points in three dissipation cases. We see that

@ Springer
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Table 8 Warm inflation parameters, within the perturbative scenario
with ¢ = 75, in the weak limit regime (Q <« 1) leading to accept-
able observables, in the three cases of dissipative factor I". ‘Green’ dot
corresponds to horizon crossing, ‘Yellow’ dot corresponds to end of

inflation whereas ‘Red’ dot denotes where the weak limit regime stops
(Q = 1). For the slow roll parameters, ‘Blue’ curve corresponds to
(14 Q), ‘Red’ curve corresponds to &, ‘Green’ curve corresponds to 7
whereas ‘Purple’ curve corresponds to 8

I'= Iy

T IoT?

Parameters

]

m=45Tp=10"8%,(=—-1.7x10"7 m=>50,I=2%x10"%(=—-1.5x10"7 m=100,Ip =79 x 103,{ = —1.5 x 10~°

zf{ﬁj;**%v#;

slow roll parameters ¥ 1 s2/7

1945 A5/ 1955 196.0°

Green (P.,Q,U) (163,0.002,5.7 x 10~12)

(187,0.007,1.6 x 10~ 13)

(200,0.05,9.7 x 10-9)

Observables (ns,r, Asg) (0.972,0.008,5 x 10~11)

(0.977,0.006,2 x 10~ 11)

(0.914,0.015,5 x 10~8)

Yellow (6., Q,U) (182,0.11,2.7 x 10~15)

(194,0.08,1.8 x 10~19) 3

efoldings N 60

50 3

Red (®.,Q,U) (184,1,3 x 10~17)

(196,1,4 x 10~17) (219,1,3.7 x 10~ 11)

¢., the inflaton value at end of inflation, in the first case of
constant I" occurs at (¢, ~ 182) and is determined by the
condition (1+ Q = n), which helps also in the second case of
linearly T-dependent I", where f is too small, to determine
that (¢, ~ 194). In the third case of cubically 7-dependent
I, the curves of (¢, n, B) are with too small values, that do
not intersect those of (1+ Q), so no consistent end of inflation
within the weak limit region in this case.

Again, as in the unperturbed case, the choice of ¢, does
not need to be fine tuned, but a simple scan for large val-
ues of ¢, and suitable choices of the other parameters can
hit an accommodating data solution, in the neighbourhood
of which, changing appropriately the other parameters, one
can find many other solutions. In Table 9 we list several
benchmark points with the corresponding observables of
(ng, 1, Ay), and constraints on (Q < 1, T/H > 1 and
N > 50) for the constant case (I = Iy). For the second
case (I" = IyT), we checked also the existence of consid-
erable acceptable region in the parameter space, but we did

@ Springer

not study the third case (I" = Iy T3) as there was no end to
inflation.

A further interesting fact is that the potential of Eq. (44),
which is responsible for the expansion described by Eq. (43),
may have contributed to a transition into another cosmolog-
ical phase after the inflationary stage. Let us assume Eq.
(43) to be valid even after the inflationary era, then using
a = a(H + H?), one can determine the signs of a,d in
terms of the physical comoving time ¢, as in Table 10, where
we do not extrapolate beyond t, = I}Zl_l as this corresponds to
a contracting universe unlike ours.

Thus, one can justify moving at 1 = Mo from the
inflationary stage (¢ > 0) to a decelerated phase (@ < 0)
which would correspond to matter dominated era. However,
the decelerating phase here corresponds to an e-folding num-
ber increase by just around 0.5 which can not account for the
whole matter dominated phase. The figure Table 11 shows

3 This comes because A(N,) = ;]2 Hdt = ;112(% +¢o)dt = 0.5+
o1/ J/m).
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Table 9 Benchmark points in the case of weak dissipation limit for the case of constant dissipation factor I" = I, with « = 75, and Q, denoting
Q at end of inflation

Parameters Observables Constraints
m Iy B ¢ ng r As N 0. T/H
1 80 107 200 —1.035 x 1077 0.974 0.0355 1.04 x 10710 292 0.035 2.87
2 60 10-° 200 —1.035 x 1077 0.954 0.006 1.16 x 10711 63.5 0.021 28.8
3 143 10-8 300 —1x 107 0.966 0.006 1.05 x 10710 55.8 0.035 20.7
4 150 10-8 300 —1x107° 0.975 0.008 3.24 x 10710 108 0.036 11.4
5 241 107 400 —1x 107 0.974 0.008 9.73 x 10~ 100 0.005 9.6
6 234 10-° 400 —1x107° 0.958 0.007 3.7x 1071 55 0.004 15.5
Table 10 Signs of ¢ and d
_ m—./m m
uounoa‘\ t 0 1 = I h = m
0.00006 a + + O
0.00004 a + 0 —
uv (m), we consider it now as time dependent:
600
m(t
300 H = —( ). (50)

400

300

200

100

Fig. 4 Unperturbed (perturbed) potential V (U) as function of the
scalar field ¢, with m = 50. Blue and dashed red lines correspond
respectively to the potential V and U with { = —0.001. Zoomed
area shows the tiny deviations between the two potentials in the range
¢ € [90 —100]. The green line represents the potential U for { = —10,
where we see a tangible change in the potential form whenever |¢| > 1

H and d versus the e-foldings number N, where the red
X mark (sky blue dot) correspond to t> (¢1), for the choice
(m =45, = —1.035 x 1077) leading to:

79.86%N=<—>H=0<—>t2=|’?—|=4.35x108s

m— /m
<1

In order for the quintessence field ¢ generating the infla-
tion to contribute to the whole historical evolution of the
universe including the dark energy era justifying the current
accelerating expansion, the perturbation of Eq. (43) should
be looked at differently as a generalization of the power-law
expansion (Eq. 33), where rather than to have a fixed power

7936~ N =< d=0<1 = =370 x 10% s

t

As seen above, withm () = mg+ ¢t one can account for a
transition into a decelerated phase, but without being capable
of justifying the current accelerating expansion. Looking at
Eq. (43) as a first-order approximation for the function m (),
one can conceive more general forms of m (¢). For instance,
with m(1) = mg + ¢t + &% and assuming & > % then the
expanding state (@ > 0) is enforced. For this quadratic form
in ¢, one finds:

m(2) —mo  2mo¢
3 +
t t

+2Emo + £ +28Ct + £

H+H? = 42

and thus with mg > 1 we assure that d is positive for early
and late times. With suitable choice of ¢ and & one can find
situations with three phases as in the figure Table 12. How-
ever, and as discussed before, this idea needs a deeper inves-
tigation, as the figure here, albeit successful qualitatively in
predicting three phases, is still misleading quantitatively in
that the regime of @ < 0 is just a short transient (of the
order of 10° Planck times, i.e O(10~*) years) far shorter
than actual non accelerating expansion era. This can be bet-
ter elucidated when represented in terms of the post-inflation
efolds increase AN = ft€ H (s)ds instead of time ¢ (the bot-
tom part of the figure table), where, for the taken values of
mo=2,=-2x 107° and & =5.1 x 10713, the scenario
can only effectively stop the accelerated inflationary regime
by around one efold, whereas a truly graceful exit scenario
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should have led to around 60 efolds of non accelerated expan-
sion after inflation.

Finally, applying the “perturbed” modification of Eq. (43)
and adopting the potential of Eq. (44) within the cold sce-
nario can improve the latter’s results. This improvement is
illustrated in Fig. 2, where the observables for the cold power-
law inflation are shown as magenta dashed lines. The figure
shows a satisfactory improvement in the results, which meet
the 68% confidence level for Planck 2018 results; otherwise,
it is still far from the planck+ BK18 contours.

5 Summary and conclusion

In this work, we studied power-law inflation in the context of
a warm inflation scenario. Three dissipation parameters are
considered: I' = Iy, I" = IpT,and I' = F0T3, with weak
and strong dissipation rates.

Similarly to cold inflation, we found that the potential
causing the power-law expansion in the weak dissipation
limit is exponential. However, whereas the cold scenario
gives a too large r ~ 0.3 making it unviable, we find that
(ng, r) in the weak regime, for all the various cases accord-
ing to the dependence of I" on temperature, agree largely
with the observational results. Still, the weak regime does
not have an exit scenario, like the cold paradigm. Consider-
ing the dynamics of Q, we see that only a part of the expo-
nential potential is valid for the weak limit regime, however
for the third case of cubically 7-dependent I” the entirety of
the potential is consistent with the weak regime.

A strong dissipation limit was then applied to the model.
As opposed to the weak case, we observed different analytical
forms for the potential according to the different I"(T") cases.
The study showed that the model is excluded in both cases
of I' = I'yor I' = [T, since they lead to spectral indices
greater than or equal to one. The I" = I T3 case, however,
showed excellent concurrence with observations. Still, the
strong regime does not either have an exit scenario because
the slow-roll parameters remain constant and independent of
the field. Dynamics of Q shows that only a portion of the
potential is consistent with the strong regime.

Furthermore, we proposed a graceful scenario assuming
a small Hubble parameter perturbation. Based on this mod-
ification, we examined the weak dissipation limit, since —
unlike the strong limit — analytical expressions for the poten-
tial could be obtained. The corresponding ‘perturbed’ poten-
tial is a sum of three terms, one of which can play the role
of cosmological constant in the large field limit. The ‘per-
turbed’ spectral observables (ng, ) are very close to their
‘unperturbed’ counterparts, and the model is viable in this
respect. Moreover, unlike the pure unperturbed case, one can
reach now the end of inflation in both cases of (I" = I and
I' = IyT) lying consistently before reaching the bound-
ary of the weak limit regime, and enough e-folds have been
produced to overcome the flatness problem of the big bang
theory. For the case (I' = IoT?>), and unlike the unper-
turbed scenario, only one portion of the potential is consistent
with the weak limit regime, but no consistent end of inflation
within this weak limit portion.

Finally, by applying the same ‘perturbed’ modification to
the cold power law inflation, we found an indicative way

Table 11 Transition from accelerated into decelerated phases, assuming H = m/t 4 ¢

Parameters m =45, =—1.035 x 10~7
E . .
f .
"o
! L]
| X
H 80
L
a S
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Table 12 Top Left: plot of the acceleration & and velocity a/10°
rates of cosmic expansion as a function of physical time 7 in the case
of m(t) = mo + ¢t + étz, with mg = 2, ¢ = =2 x 1070 and
& = 5.1 x 10713, Top Right: the post-inflation e-folding increase

AN(t) = fti H(s)ds in terms of 7. Bottom: the acceleration rate d
in terms of the efolding increase AN after inflation, where the left part
corresponds to non accelerated expanding universe

Parameters mo=2,(=-2x10"6,6 =5.1x10"13
Delta ¥
20
04f
15
0.3
0.2
f B 10}
01F i
f,,
-01F )
-02
-0.3 20x10° 40x10® 60x106 80x10® 1.0x107 12x107
. a
a
- Delta N St ess*®
02 04 06 08 1.0 12
-0.05 Ll
1 /
-0.10
10"
-0.15}
=1(
-0.20 10
-0.25} 10-15
Delta N
-0.30 0 2 4 6 8 0 1

for improvement, when compared with the pure unperturbed
case, towards a possible graceful exit.
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