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Abstract The vanishing affine connections have been used
solely while adopting the modified f (Q) gravity theory to the
cosmology. Consequently, researchers could not get beyond
what is already known in f (T ) theory earlier. To alleviate this
problem, in the present manuscript we investigate a recently
proposed construction of f (Q) theory using non-vanishing
affine connection in the spatially flat FLRW spacetime. We
then investigate the cosmological solutions of f (Q) theory
for a perfect fluid through the phase space analysis. We intro-
duce few variables and dimensionless parameters to construct
the corresponding equations suitable for the dynamical sys-
tem approach. The conservation of the energy-momentum
tensor leads to a constraint equation that relates the dynami-
cal variables. Briefly, both unstable and stable de Sitter solu-
tions appear which correspond to early and late times acceler-
ated expansions. Also, unstable points corresponding to the
matter dominated and radiation dominated eras have been
found which do exist for every f (Q) function. As a result,
the present discussion shows that f (Q) gravity endowed by
non-vanishing affine connections is capable of explaining a
true sequence of cosmic eras.

1 Introduction

All this while, the underlying spacetime has three geomet-
ric entities: the curvature, the torsion and the non-metricity,
which either individually or jointly can demonstrate the grav-
ity. However, only the curvature of the spacetime was used to
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formulate Einstein’s general relativity (GR) in a torsion-free
and metric-compatible (or, vanishing non-metricity) environ-
ment. The covariant differentiation of tensors were based on
the very special and unique affine connection, the Levi–Civita
connection in this standard theory of gravity. In “Symmetric
teleparallel gravity”, this special affine connection is replaced
by a general affine connection on a flat spacetime with van-
ishing torsion, offering its non-metricity alone to drive grav-
ity. In an earlier “metric teleparallel theory”, which is based
on an affine connection with vanishing curvature and non-
metricity, Einstein himself [1] ascribed gravity to the tor-
sion scalar T of spacetime in an attempt to unite gravity
with electromagnetism. In the currently discussed symmet-
ric teleparallel theory, one considers the Lagrangian density
L = √−gQ using the non-metricity scalar Q, to obtain
the respective field equations. A similar treatment developed
its metric counterpart. However, the latter two theories are
equivalent to GR up to a boundary term and naturally also
suffer from the dark sector issues. As a result, extensions
in terms of f (T) and f (Q)-theories were formulated in the
respective categories, which dynamically diverge from GR.
Of course, the f (T) theory was proposed [2] much earlier
and analyzed for a long time theoretically and also in cos-
mological side [3] and it is almost at its maturity, whereas
the newly proposed [4] f (Q) theory is merely at its infancy
and a lot of theoretical investigations, viability of functional
forms, and contact with observational dataset is still due. The
interesting comparison of these three modes of gravity theo-
ries are well-studied [5–7]. Recently, on a serious inspection
on the literature about cosmological applications of f (Q)

theories, we notice the tendency of using only the vanishing
affine connection in the spatially flat Friedmann–Lemaître–
Robertson–Walker (FLRW) spacetime, however, the Fried-
mann equations in this case match exactly with those of the
f (T) theory [8]. Therefore, this particular gauge bounds the
researchers within the results we already obtained in f (T)
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theory and consequently the importance of f (Q) theory as
an emerging novel modified gravity theory is defeated. This
motivated us to look for a new construction [9] of f (Q)

theory based on another gauge equivalence class of (non-
vanishing) affine connections involving a parameter γ (t) in
the spatially flat FLRW background.

The present article is organized as follows:
After this introductory part, in Sect. 2 we set the stage of
our present discussion by providing the basic mathemati-
cal background of f (Q) theory. The equations of motion
of f (Q) gravity in a spatially flat FLRW spacetime whose
line element is given in spherical polar coordinates and for-
mulated based on a non-vanishing yet torsion-free and flat
affine connection is introduced in Sect. 3. In the next Sect. 4,
an additional constraint in the form of energy conservation
is discussed to construct a closed dynamical system1, fol-
lowed by the formation of the actual system of dimensionless
variables in Sect. 5. To elaborate the analysis a pure power-
law model is considered in Sect. 5.1. Next, a constant γ is
assumed in Sect. 6 and the corresponding field equation and
the dynamical system is analyzed. Three different models are
discussed in the Sects. 6.1, 6.2 and 6.3. Finally, we conclude
all our findings in Sect. 7.

2 Symmetric teleparallel formulation

In the symmetric teleparallel theory of gravity, a general
affine connection �λ

μν with vanishing curvature and null
torsion is considered and let its non-metricity property alone
control the gravity. We define the non-metricity tensor

Qλμν = ∇λgμν. (1)

The two types of traces of the non-metricity tensor are

Qλ = Qλμνg
μν; Q̃ν = Qλμνg

λμ.

The disformation tensor Lλ
μν and the superpotential tensor

Pλ
μν are respectively given by

Lλ
μν = 1

2
(Qλ

μν − Qμ
λ
ν − Qν

λ
μ). (2)

Pλ
μν = 1

4

(
−2Lλ

μν + Qλgμν − Q̃λgμν

−1

2
δλ
μQν − 1

2
δλ
ν Qμ

)
. (3)

It is well-known that the disformation tensor serves as the
linkage between the affine connection and the Levi–Civita
one �̊λ

μν :

�λ
μν = �̊λ

μν + Lλ
μν. (4)

1 To consider a comprehensive study of the application of the
autonomous dynamical systems in various modified theories of gravity
see Ref. [10–14] and also see Ref. [43].

We consider non-metricity scalar

Q = Qλμν P
λμν = 1

4
(−QλμνQ

λμν + 2QλμνQ
μλν

+QλQ
λ − 2Qλ Q̃

λ). (5)

However, being equivalent to GR, the symmetric telepar-
allelism inherit the same ‘dark’ problem as in GR, and so a
modified f (Q) gravity has been introduced [4] in the same
way as a modified f (R) theory was introduced to extend GR.
By varying the action term of f (Q) theory

S = 1

2κ

∫
f (Q)

√−g d4x +
∫

LM
√−g d4x

with respect to the metric we obtain the field equation

2√−g
∇λ(

√−gFPλ
μν) − 1

2
f gμν + F(Pνρσ Qμ

ρσ

−2PρσμQ
ρσ

ν) = κTm
μν. (6)

where we have defined F = d f/dQ (differentiations with
respect to the argument will later be shown by primes). We
consider the stress-energy tensor Tm

μν to be a perfect fluid
given by

Tm
μν = (p + ρ)uμuν + pgμν (7)

where p and ρ denote the pressure and energy density of the
ordinary matter.

Very recently, the covariant formulation of this field equa-
tion was obtained and used effectively in cosmological sector
[15]

FG̊μν + 1

2
gμν(FQ − f ) + 2F ′Pλ

μν∇̊λQ = κTm
μν (8)

where

G̊μν = R̊μν − 1

2
gμν R̊.

All the expressions with a (̊) is calculated with respect to the
Levi–Civita Connection. Hence in its GR equivalent form we
can express it as [16]

G̊μν = κ

F
Tμν = κ

F
Tm

μν + κTDE
μν , (9)

where

κTDE
μν = 1

F

[
1

2
gμν( f − QF) − 2F ′∇̊λQPλ

μν

]
.

Several important publications came up very recently on this
modified f (Q)-gravity theory and its cosmological implica-
tions, see [16–36] and the references therein. The dynamical
system analysis of the f (Q) theory in both background and
perturbative level of a spatially flat FLRW spacetime were
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also conducted [37–40]. However, all these studies were con-
ducted in the coincident gauge choice, line element in Carte-
sian coordinates together with vanishing �λ

μν . This specific
choice reduced the covariant derivative into partial derivative,
making the calculations simpler. But at the adverse side, the
Friedmann-like energy and pressure equations are identical
with the f (T ) theory.

Varying the action term with respect to the affine connec-
tion, we obtain the other field equation of f (Q) theory, on
the basis of the assumption that the matter Lagrangian LM

is not a function of the affine connection,

∇μ∇ν(
√−gFPνμ

λ) = 0. (10)

3 The homogeneous and isotropic model of the universe

The spatially flat homogeneous and isotropic FLRW space-
time metric is given by

g = −dt ⊗ dt + a (t)2
(

dr ⊗ dr + r2dθ ⊗ dθ

+r2 sin (θ)2 dφ ⊗ dφ
)

. (11)

In the current discussion we consider a non-vanishing class
of affine connections �, first introduced and studied from the
cosmological perspective in [9], which are torsion free with
zero curvature, yet non-compatible with the metric (11)

�t
t t = γ + γ̇

γ
, �r

tr = γ, �r
θθ = −r,

�r
φφ = −r sin2 θ, �θ

tθ = γ,

�θ
rθ = 1

r
, �θ

φφ = − cos θ sin θ, �φ
tφ = γ,

�φ
rφ = 1

r
, �φ

θφ = cot θ, (12)

where γ (t) is a nonvanishing function of t , so far uncon-
strained by theoretical results or observational data. Also, an
overdot indicates a time derivative. It produce nonzero non-
metricity tensor components which provides us novel insight
of the f (Q) dynamics in the spatially flat FLRW background,
keeping it completely aloof from the f (T ) theory dynamics.
However, due to the constraint of energy conservation, or
equivalently the connection field equation (10), we pay the
price with a significant restrictions on the viable choices of
the functional form f [41]. The non-metricity scalar Q can
be computed as

Q = −6H2 + 9γ H + 3γ̇ . (13)

The Friedmann-like equations corresponding to the field
equation (8) are given by

κρ = 1

2
f +

(
3H2 − Q

2

)
F + 3

2
Q̇γ F ′ , (14)

κp = −1

2
f +

(
−2Ḣ − 3H2 + Q

2

)
F + Q̇

2
(−4H + 3γ ) F ′ .

(15)

The divergence of the energy-momentum tensor Tμν [41]
yields the continuity relation

κρ̇ + 3Hκ(p + ρ) = 3

2
γ [(Q̈ + 3H Q̇)F ′ + Q̇2F ′′]. (16)

4 Comments on the continuity relation

Before analyzing the Eqs. (14) and (15) via the dynami-
cal system approach we briefly discuss the continuity rela-
tion (16). In the next sections we will define a closed dynam-
ical system corresponding to the Eqs. (14) and (15) based on
the conservation of the ordinary matter stress-energy tensor
assumption, i.e., ∇̊μTm

μν = 0. From the Eq. (16) this leads to

F̈ + 3H Ḟ = 0, (17)

with the following solution

F = C
∫

a−3dt + D, (18)

where C and D being some constants and a is the scale
factor. One observes that the Eqs. (13) and (18) for a known
function f (Q) can lead to a first order differential equation
for γ function. For example for f (Q) = Qn one obtains

3γ̇ + 9γ H − 6H2 =
[
C

n

∫
a−3dt + D

n

] 1
n−1

. (19)

Note that only two of the Eqs. (14)–(16) are independent. This
means that without assuming the conservation of the matter
stress-energy tensor we have only two independent equa-
tions for three unknowns ρ, a and γ (considering p = wρ

for the ordinary matter). Therefore, at least from the mathe-
matical point of view by assuming the conservation of mat-
ter stress-energy tensor we already get a solution for one of
the variables, i.e., ρ ∝ a−3(1+w). In this case equations (18)
and either of (14) or (15) can be used to determine the remain-
ing variables.
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5 Field equations in terms of dimensionless variables

In the present section, we rewrite the field equations (14)–
(16) in terms of some dimensionless variables. To this end, we
suppose that the stress-energy tensor of the ordinary matter
is conserved. This gives the Eq. (17). Thus, we begin with
the following definitions

x1 = − f

6H2F
, x2 = Q

6H2 , x3 = − Q̇F ′

HF
= − Ḟ

H F
,

x4 = γ

2H
, �m = κρ

3H2F
,

r = −QF

f
= x2

x1
, m = QF ′

F
. (20)

As we will see, the parameters r andm can parametrize the
function f (Q). In fact, by eliminating Q from the definitions
ofm and r one gets a functionm(r), at least for well-behaved
f (Q) functions. Rewriting the Eqs. (14), (15) and (17) in
terms of the above variables leads to

�m = 1 − x1 − x2 − x3x4, (21)

2Ḣ

3H2 = −1 − w�m + x1 + x2 + x3

(
2

3
− x4

)
, (22)

F̈

H2F
= 3x3, (23)

respectively. Here, one can define an “effective equation of
state parameter” as it is usual in the modified theories of
gravity. In this regard, we obtain

we f f = −1 − 2Ḣ

3H2 = w�m − x1 − x2 − x3

(
2

3
− x4

)
.

(24)

Comparing to the GR field equations, by defining an
effective equation of state, we consider an effective stress-
energy tensor. In fact, this effective tensor is defined as
T ef f

μν = Tμν/F (see the Eq. (9)) which represents the effec-
tive equivalent form of the GR equations. The first order
dynamical equations are obtained as

dx1

dN
= x2x3

m
− 3x1

[
w (x1 + x2 + x3x4 − 1)

+x1 + x2 + x3

(
1

3
− x4

)
− 1

]
, (25)

dx2

dN
= −3x2

[
w (x1 + x2 + x3x4 − 1) + x1 + x2

+x3

(
1

3m
+ 2

3
− x4

)
− 1

]
, (26)

dx3

dN
= −3

2
x3 [w (x1 + x2 + x3x4 − 1) + x1 + x2 − x3x4 + 1] ,

(27)

dx4

dN
= −3

2
x4

[
w (x1 + x2 + x3x4 − 1) + x1 + x2

+x3

(
2

3
− x4

)
+ 1

]
+ x2 + 1, (28)

where to obtain the Eqs. (27) and (28) the expressions (23)
and (13) have respectively been used. The system (25)–(28)
is not autonomous since m = m(r) = m(x2/x1) has been
appeared in Eqs. (25) and (26). Hence, without specifying
the form of f (Q) function one cannot solve the system. In
this regard, in the Sects. 5.1 and 6.1 we discuss models with
m = constant and two cases with particular form of m(r)
parameter will be investigated in the Sects. 6.2 and 6.3 when
γ = constant . In the case of a varying γ parameter there
are four independent variables and thus we are facing a four
dimensional phase space. Different models can be investi-
gated via Eqs. (25)–(28). However, in this section we only
consider a power-low form for which the phase space reduces
to a three dimensional one and thus we can present a better
illustration of the phase space. When γ is constant the set
of equations get three dimensions, since, one is capable of
demonstrating the whole phase space. We postpone consid-
ering the effects of a constant γ to the Sect. 6. Note that,
throughout the paper we consider only w = 0, although for
being complete all equations of motion are obtained for gen-
eral w.

5.1 f (Q) = αQβ gravity with constant values of α and β

We consider the conditions under which acceptable cosmo-
logical solutions do exist. An admissible solution describes
a transition from an unstable de Sitter era to the matter dom-
inated era followed by a stable dark energy dominated one.
In the case of the power-law model it can be obtained

m = β − 1, r = −β. (29)

The result (29) means that m and r both are constants. The
corresponding dynamical system has three dimensions since
x2 = r x1 in this case, for which the critical points have been
presented in Table 1.

It is worth mentioning that Eqs. (13)–(16) imply that there
are four unknown variables, γ , ρ (assuming p = wρ), H (or
a) and f , from which only three of them can be independent.
However, when one rewrites the equivalent dynamical sys-
tem those terms which include different types of derivatives
define new variables, for instance, consider x2 which include
γ̇ via Q and x3 which contains Ḟ/F . Hence, the number
of independent variables may generally exceed those of the
original equations. This fact, sources the appearance of x4

in Table 1. Here, by fixing the forms of γ and f the num-
ber of independent variables match the number of equations
and thus the coordinates do not appear in the solutions, see
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Table 1 The fixed points
solutions of f (Q) = αQβ

gravity with variable γ

Fixed point Coordinates (x1, x3, x4) Eigenvalues �m we f f

Pa
(

0, 1
x4

, x4

) [
0, 3(1 − w) − 1

x4
, 6 − 1

m +2
x4

]
0 1 − 2

3x4

Pb
(

0, 6m
2m+1 , 1

6

( 1
m + 2

)) [
0, 0, 3

2m+1 − 3w
]

0 2
2m+1 − 1

Pm
(

0, 0, 2
3(1−w)

) [
3(w−1)

2 ,
3(w−1)

2 , 3(w + 1)
]

1 w

Pds
(− 1

m , 0, 1
3

( 1
m + 2

))
[−3,−3,−3(w + 1)] 0 −1

Table 2 The fixed points solutions of f (Q) = αQβ gravity with constant γ

Fixed point Coordinates (x1, x3, �
rad ) Eigenvalues �m �rad we f f

Qa
(

0, 3 + 6
w−3 , 0

) [
3
2 (1 − w), w+3

3−w
,

3(4m+w−1)
m(3−w)

]
2

3−w
0 w+1

3−w

Qb
(

1−4m−w
m(4m+3)(w+1)

, 6m
2m+1 , 0

) [
3

2m+1 − 1, e1(m, w), e2(m, w)a
]

2(1−2m)
(w+1)(1+2m)

0 2
2m+1 − 1

Qc
(

0, 2, w+3
3w−1

) [
2 − 2

m , j (w) − w,−( j (w)b + w)
] 10

3(1−3w)
w+3

3w−1
1
3

Qm (0, 0, 0)
[

3(w−1)
2 , 3w − 1, 3(w + 1)

]
1 0 w

Qds
(− 1

m , 0, 0
)

[−4,−3,−3(w + 1)] 0 0 −1

Qrad (0, 0, 1) [4,−1, (1 − 3w)] 0 1 1
3

a Qb is not implying any physical content, since, e1,2(m, w) functions have not been shown
b j (w) = √

w2 + w + 3

for example Table 2. Similar problem is observed in [42].
Now, we proceed to mention the properties of the solutions
of Table 1 which are as follows.

• The Point Pm : as in Table 1 is indicated, it is an unstable
point for w > −1.

• The Point Pds : we have a stable de Sitter solution for
w > −1, whose location in the phase space depends on
m.

• The Point Pa : it can display the role of a stable point
for the either of the following conditions.

{
m > 0, 0 < x4 < 1

3 ,

m < − 1
2 , 0 < x4 < 2m+1

6m .
(30)

Therefore, only for 0 < x4 < 1
3 the point Pa shows

the features of an accelerated expansion cosmic epoch
with we f f < −1/3.2 An interesting point is that because
there is an unstable area between Pm with x4 = 2/3
(while w = 0 is set) and the interval 0 < x4 < 1

3 , there is
no way to exist a direct connection from Pm to Pa . In this
sense, we call such a fixed point as “isolated fixed point”.
Since, for initial values in the vicinity of Pa we have a
Universe with a single evolutionary step; for appropri-
ate initial values the Universe evolves to an accelerated
expansion state without experiencing enough lasting in a

2 lim
m→∞

2m + 1

6m
= 1

3
.

matter dominated one. Note that, one of the eigenvalues
of Pa is zero, which implies that Pa denotes a line of
equilibrium for the intervals (30) instead of a single one.
The eigenvector corresponding to the zero eigenvalue is
obtained as (0, 1) in the (x1, x4) plane which means that
the x4 axis is the line of equilibrium for the values of x4

which are mentioned in (30). In Fig. 1 the behavior of
phase space trajectories in the vicinity of Pm are drawn
for the model with β = −2.3 To illustrate the interest-
ing feature of Pa , we have chosen x3 = 1/x4. In this
case, since one has x3 = 0 for both Pm and Pds , none
of them can be pictured, suitably. One observes that only
near points to the line of equilibrium can be attracted to
it, otherwise, they recede.

• ThePoint Pb: this point is an attractive fixed point which
lies within the lower intervals of the constraints (30). It
is indicated by a cyan point in Fig. 1.

In Fig. 2 the phase space diagrams of the present model
are drawn in the (X1, X3) plane (x2 is absent in this model).
We have only specified the important points Pm and Pds in
Fig. 2. Two models with β = ±2 have been selected. As can
be seen, the mentioned features are clearly appeared.

Also, the plots of some important cosmological quantities
for β = 2 are depicted in Fig. 3. They have provided in
such a way that the current values of the matter density and

3 Xi ’s are related to xi ’s when a two dimensions part of the phase space
is mapped to a unit radius circle.
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Fig. 1 Illustration of the effect of Pa in the plane (X1, X4) for a power-
law model with β = −2 when γ is a variable. It can be seen that the
corresponding line of Pa is an attractor only for nearby points. This
makes Pm a nonconnectable point to Pa . Note that, because for the best
demonstration of the equilibrium line of Pa we have chosen x3 = 1/x4,
the attractive feature of Pds cannot be depicted, truly

the deceleration parameter predicted by this model, match
the observations, i.e., to have �m

0 ≈ 0.31 and q0 ≈ −0.55
[44]. One observes that the deceleration parameter provide an
observationally consistent current value. Besides, the lower

panel of Fig. 3 indicates that both γ parameter and Q are
positive valued functions.

6 Field equations in terms of dimensionless variables:
The constant γ case

Using the same definition given in (20) the following changes
are made in the case of a constant γ

Q = −6H2 + 9γ H, (31)

x4 = 1

3
(1 + x2) , (32)

�m = 1 − x1 − x2 − 1

3
x3 (1 + x2) , (33)

we f f = −1 − 2Ḣ

3H2 = w�m − x1 − x2 − 1

3
x3 (1 − x2) .

(34)

In this case, we reach at a new set of dynamical equations
which read

dx1

dN
= −3(w + 1)x1

(
x1 + x2 − 1

)

+x3

[ x2

m
− x1

(
(w + 1)x2 + w − 2

)]
, (35)

dx2

dN
= x2

[
− x3

m
− 3(w + 1) (x1 + x2 − 1)

−x3

(
(w + 1)x2 + w − 1

)]
, (36)

Fig. 2 Phase space portraits of f (Q) = αQβ gravity for two values β = ±2 when γ is a variable. The plane (x1, x3) has been selected, because,
the two fixed points include x3 = 0 in their coordinates. Also, we used x4 = (2m + 1)/(3m) which is the fourth coordinate of Pds
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Fig. 3 Cosmological quantities of f (Q) = αQβ gravity for β = 2 when γ is not constant. We have used initial values x1i = −2.1 × 10−13,
x3i = 1.5 × 10−15 and x4i = 3 × 10−10

dx3

dN
= 1

2
x3

[
− 3

(
w (x1 + x2 − 1) + x1 + x2 + 1

)

−x3

(
(w + 1)x2 + w − 3

)]
, (37)

where, due to relation (32), the corresponding equation for
x4 is absent. Hence, we have a three dimensional phase space
for a general m parameter. The above system can be closed
by specifying m in terms of x1 and x2 (see definitions for
r and m in (20)). We proceed with three different models
including the case m = constant which corresponds to the
power-law models.

6.1 Models with f (Q) = αQβ

In the particular case of models with constant m, i.e., the
case of f (Q) = αQβ models, the number of independent
variables does reduce. In fact, the corresponding equation to
x2 is absent because of x2 = −r x1. Also, we add the con-
tribution to the ultra-relativistic matter to the field equations
by defining the related energy contribution as

�rad = κρrad

3H2F
, (38)

where the superscript “rad” stands for the ultra-relativistic
fluid. In this case, Eqs. (21) and (22) are changed to

�m = 1 + mx1 + x3

3

(
(m + 1)x1 − 1

)
− �rad , (39)

2Ḣ

3H2 = 1

3

[
(w − 1)x3 − (w + 1)x1

(
(m + 1)x3 + 3m

)

+3w
(
�rad − 1

) − �rad − 3

]
, (40)

which give

dx1

dN
= x1

(
(1 − 3w)�rad + 3(w + 1)

)

+m(1 − w) − 1

m
x3x1

+(w + 1)x2
1

(
(m + 1)x3 + 3m

)
, (41)

dx3

dN
= x3

2

[
(w + 1)x1

(
(m + 1)x3 + 3m

)

+(1 − 3w)�rad − (w − 3)x3 + 3(w − 1)

]
,

(42)
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Fig. 4 Phase space portraits of f (Q) = αQβ gravity for the case of constant γ in the x3 = 0 plane

d�rad

dN
= �rad

[
(w + 1)x1

(
(m + 1)x3 + 3m

)

−(3w − 1)
(
�rad − 1

)
− (w − 2)x3

]
. (43)

The critical points of the system (41), (42) are shown in
Table 2. Regarding the necessary criteria only solutions Qm ,
Qds and Qrad imply physical meanings with right stability
conditions; Qrad which is the corresponding point of the
ultra-relativistic fluid is always unstable. Points Qm and Qds

are unstable and stable for w > −1, respectively. Clearly,
Qa is an unstable fixed point by setting w > −1. For Qb, the
functions e1(m, w) and e2(m, w) never simultaneously get
negative real values. Therefore, Qb cannot attract trajectories
in the 3D phase space. As can be seen, relation j (w) > w

is always valid, and thus, Qc is also an unstable solution. As
a result, the only attractor of the phase space is Qds which
does exist for every value of m.

In Fig. 4 we illustrate the power of f (Q) gravity to make
a true description of the ultra-relativistic to the dark matter
transition which is followed by an everlasting accelerated
expansion phase. Figure 4 has been drawn in x3 = 0 plane
in which unphysical solutions Qa-Qc do not appear.

Figure 5 shows important cosmological quantities for
β = 2. These plots are made so that to give the present
values �m

0 ≈ 0.31 and q0 ≈ − 0.55 which are consistent
with observations [44]. We see the radiation-dark matter-
accelerated expansion sequence from the above panels of
Fig. 5.

6.2 f (Q) = ηQ + ζQσ theories of gravity

In these theories one has

m = σ

(
1

r
+ 1

)
= σ

(
1 + x1

x2

)
. (44)

Therefore, Eqs. (35)–(37) are closed by using expres-
sion (44). In this case, Eq. (37) stays unchanged while for
Eqs. (35) and (36) we have

dx1

dN
= x1

[
− 3(w + 1) (x1 + x2 − 1) − x3

(
(w − 1)x2 + w

)]

+ x2
2 x3

σ(x1 + x2)
, (45)

dx2

dN
= x2

{
x2

[
x3

(
−w − 1

σ(x1 + x2)
+ 1

)
− 3(w + 1)

]

− 3(w + 1)x1 − (w + 1) (x3 − 3)

}
. (46)

Solving the system of Eqs. (45), (46) and (37), one finds that
the de Sitter solution is the only physical one. In other words,
the underlying model does not accept a solution correspond-
ing to the dark matter dominated era. In this sense, these types
of models cannot justify the evolution of the Universe in the
first step.
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Fig. 5 Cosmological quantities of f (Q) = αQβ gravity for β = 2 in the case of constant γ . Initial values x1i = −1.8×10−16, x3i = 4.5×10−14

and �rad
i = 0.999 have been applied

Table 3 The fixed points
solutions of f (Q) = ξeχQ

gravity with constant γ

Fixed point Coordinates (x1, x2, x3) Eigenvalues �m we f f

Rds
e (0, 0, 3)

[
0, 0,− 3

2 (w − 1)
]

0 − 1

Rm (0, 0, 0)
[

3(w−1)
2 , 3(w + 1), 3(w + 1)

]
1 0

Rds
l (0, 1, 0) [−3, 0,−3(w + 1)] 0 − 1

Rds
l∗ (1 − x2, x2, 0) [−3, 0,−3(w + 1)] 0 − 1

6.3 f (Q) = ξeχQ theories of gravity

For the pure exponential models one gets m = −r =
−x2/x1. Hence, in addition to Eq. (37) one obtains the fol-
lowing equations

dx1

dN
= x1[−3(w + 1)

(
x1 + x2 − 1

)

− x3
(
(w − 1)x2 + w + 1

)], (47)

dx2

dN
= x1x3 + x2[−3(w + 1) (x1 + x2 − 1)

− x3((w − 1)x2 + w + 1)]. (48)

As can be seen the model parameters, i.e., ξ and χ are not
appeared in Eqs. (47) and (48) which signals that all possible
results are valid independent of the values of these param-

eters. The effects of the model parameters can be extracted
when one considers analytical solutions. Table 3 explains the
critical points of the system of Eqs. (37), (47) and (48) and
their stabilities.

As can be seen, Table 3 shows that besides the dark matter
solution, Rm and stable de Sitter solutions, Rds

l and Rds
l∗ (the

former is a particular case of the latter), the pure exponen-
tial models accept an unstable de Sitter point for w < 1. It
seems very interesting since these type of models may also
describe an early inflationary phase. Since, Rds

l and Rds
l∗ are

attractive fixed points for w > −1, they only correspond to
the late time accelerated expansion phase. Different panels
in Fig. 6 demonstrate the mentioned behaviors of de Sitter
points. Particularly, the evolution of the phase space coordi-
nates indicate a transition from Rds

e to Rds
l . Note that, the
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Fig. 6 Demonstration of the evolution of the Universe between early and late de Sitter eras in the f (Q) = ξeχQ gravity theories. The initial values
x1i = 7 × 10−13, x2i = 1.8 × 10−9, x3i = 2.97 and w = 0 have been set

Fig. 7 Phase space illustration of Table 3 for the initial values x1i = 7 × 10−20, x2i = 1.8 × 10−4, x3i = 2.97

smaller initial value, the less deviation of x1 from being zero
in the late times.

Also, in Fig. 7 we have drawn the phase portraits in two
and three dimensional phase spaces. The existence of two

de Sitter fixed points with right stability conditions is very
exciting since this result has been obtained without employ-
ing any extra scalar field which usually is done in inflationary
theories.
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7 Concluding remarks

In symmetric teleparallel equivalent of general relativity,
non-metricity characterises the gravity in a curvature free and
torsion free environment. We have studied a natural exten-
sion of it, the modified f (Q) theory which has been proved
to be successful in demonstrating the late time acceleration
of the Universe without assumption of dark energy. In the
present study, we have focused particularly into the cosmo-
logical side of this theory. It has been noticed that so far the
researchers only utilised the coincident gauge formulation
(considering a vanishing affine connection) while discussing
the cosmological application of f (Q) theory in a spatially
flat FLRW spacetime. This gauge choice has a serious limita-
tion, as the obtained Friedmann type equations match exactly
with those of the well-studied torsion-based f (T) theory. So
unknowingly, researchers have been reproducing the known
results masked in a new packaging, it seems.

In our current study therefore we have formulated a fresh
new f (Q) theory dynamics using a class of non-vanishing
affine connection involving a free parameter γ (t), whose
Friedmann type equations are completely aloof from f (T)

theory. We have derived the field equations, the pressure and
energy density equations for this novel construction. The
covariant divergence of the stress-energy tensor has been
derived, and in generic f (Q) models it has been displaying
non-zero components.

To analyse the complicated system, we have used the
dynamical system analysis method. To construct an inter-
related dimensionless system, we have first assumed the com-
patibility of the metric field equation with energy conser-
vation which has provided us with an additional constraint.
Two different assumptions have been studied. We firstly have
considered the theory with a general time-varying γ (t) and
then with a time-independent one. In the former case the
model f (Q) = αQβ has been investigated. A stable criti-
cal point which describes a de Sitter era and an unstable one
representing a matter dominated phase have been found. In
addition to the mentioned solutions there also exist some sta-
ble fixed points implying accelerated expansion phases with
we f f < −1/3 which cannot be connected to the matter-
dominated point in the phase space. In this regard, we have
called such solutions as isolated fixed points. Hence, a de Sit-
ter point is the only attractor of the phase space trajectories
emanating from the matter fixed point.

Next, the f (Q) gravity theory with time-independent γ

has been studied. Similar results have been obtained. As a
particular case we have considered the f (Q) = αQβ model
when both the ultra-relativistic matter and the dark matter
are present. An acceptable track of radiation-dark matter-
dark energy dominated epochs can be pictured in this model.
The models with f (Q) = ηQ + ζQσ suffer from lacking a
matter dominated solution. We have also analyzed the models

with f (Q) = ξeχQ function and found that these theories
describe the early times de Sitter era in addition to the late
times one. Accordingly, the pure exponential models justify
the transitions de Sitter-matter dominated-de Sitter eras.

In summary, f (Q) gravity theories are capable of describ-
ing de Sitter expansions both in the early and the late times
with a middle matter dominated phase, depending on the
form of f (Q) function. Within the frame of the dynamical
system, one only can inspect the model for existing desir-
able solutions. Further details including constraining model
parameters using the astronomical data should be followed
by analytically solving the field equations which is our next
program of study.
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