
J
H
E
P
0
7
(
2
0
2
3
)
0
1
9

Published for SISSA by Springer

Received: March 16, 2023
Revised: May 18, 2023

Accepted: June 10, 2023
Published: July 3, 2023

Toric 2-group anomalies via cobordism

Joe Davighi,a Nakarin Lohitsirib and Arun Debrayc,1
aPhysics Institute, University of Zurich, Switzerland
bDepartment of Mathematical Sciences, Durham University, U.K.
cDepartment of Mathematics, Purdue University, U.S.A.
E-mail: joe.davighi@physik.uzh.ch, nakarin.lohitsiri@durham.ac.uk,
adebray@purdue.edu

Abstract: 2-group symmetries arise in physics when a 0-form symmetry G[0] and a 1-form
symmetry H [1] intertwine, forming a generalised group-like structure. Specialising to the
case where both G[0] and H [1] are compact, connected, abelian groups (i.e. tori), we analyse
anomalies in such ‘toric 2-group symmetries’ using the cobordism classification. As a warm
up example, we use cobordism to study various ’t Hooft anomalies (and the phases to which
they are dual) in Maxwell theory defined on non-spin manifolds. For our main example, we
compute the 5th spin bordism group of B|G| where G is any 2-group whose 0-form and
1-form symmetry parts are both U(1), and |G| is the geometric realisation of the nerve of the
2-group G. By leveraging a variety of algebraic methods, we show that ΩSpin

5 (B|G|) ∼= Z/m
where m is the modulus of the Postnikov class for G, and we reproduce the expected physics
result for anomalies in 2-group symmetries that appear in 4d QED. Moving down two
dimensions, we recap that any (anomalous) U(1) global symmetry in 2d can be enhanced
to a toric 2-group symmetry, before showing that its associated local anomaly reduces to at
most an order 2 anomaly, when the theory is defined with a spin structure.
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1 Introduction

In quantum field theory, anomalies are loosely defined to be quantum obstructions to
symmetries. More precisely, anomalies can themselves be identified with (special classes
of) quantum field theories in one dimension higher than the original theory, via the idea of
‘anomaly inflow’.1 This modern viewpoint led to an algebraic classification of anomalies via
cobordism, which was made rigorous by Freed and Hopkins [3] following many important
works (including [4–8]). The cobordism classification includes all known anomalies afflicting
chiral symmetries of massless fermions in any number of dimensions, as well as other more
subtle anomalies that involve discrete spacetime symmetries (see e.g. [9–11]).

The cobordism group that classifies anomalies, for d spacetime dimensions and symmetry
type S,2 is the Anderson dual of bordism [3],

Hd+2
IZ (MTS) := [MTS,Σd+2IZ], (1.1)

where MTS denotes the Madsen-Tillman spectrum associated to symmetry type S, IZ
denotes the Anderson dual of the sphere spectrum (with Σd+2 denoting the d + 2-fold
suspension), and [X,Y ] denotes the homotopy classes of maps between a pair of spectra X
and Y . In fact, this cobordism classification goes beyond what we would normally think
of as ‘anomalies’ to cover all reflection positive invertible field theories (with or without
fermions) with symmetry S in d+ 1-dimensions.

To unpack the meaning and significance of the cobordism group Hd+2
IZ (MTS), it is

helpful to recall that it fits inside a defining short exact sequence [3]

Ext1
Z (πd+1(MTS),Z) ↪→ Hd+2

IZ (MTS) � Hom (πd+2(MTS),Z) , (1.2)

where πk(X) is the kth stable homotopy group of a spectrum X. For the special case
of chiral fermion anomalies in d dimensions, the invertible field theory in question is
precisely the exponentiated η-invariant [8] of Atiyah, Patodi and Singer [12–14] in dimension
d + 1. In that case, integrating the gauge-invariant anomaly polynomial Φd+2 provides
an element of the right factor Hom (πd+2(MTS),Z). Theories with Φd+2 = 0, which
are in the kernel of the right map and thus in the image of the left map, correspond
to residual ‘global anomalies’ which are thus captured by the left-factor. For theories
with symmetry type S = Spin × G, where G is the internal symmetry group, we have
that Ext1

Z (πd+1(MTS),Z) ∼= Hom
(
Tor ΩSpin

d+1 (BG),R/Z
)
classifies global anomalies, where

ΩSpin
• denotes spin bordism. A straightforward corollary is that if the group Tor ΩSpin

d+1 (BG)
vanishes there can be no global anomalies, which has been applied to various particle physics
applications in recent years [15–32].

Concurrent with this development of the cobordism classification of anomalies, in the
past decade the notion of ‘symmetry’ has been generalised beyond the action of groups on

1Mathematically, any anomalous theory in d dimensions can be described by a relative quantum field
theory [1] between an extended field theory in one dimension higher (the ‘anomaly theory’), and the trivial
extended field theory (see e.g. [2]).

2A given symmetry type S, as defined precisely in [3], includes both the spacetime symmetry and an
internal symmetry group, as we as maps between them, extended to all dimensions.
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local operators, in various exciting directions (for recent reviews, see refs. [33, 34]). This
includes the notion of p-form symmetries [35], which act not on local operators (the case
p = 0) but more generally on extended operators of dimension p. These symmetries couple
to background fields that are (p+ 1)-form gauge fields. Such higher-form symmetries are
found in a plethora of quantum field theories. The most well-known examples include a pair
of U(1) 1-form symmetries in 4d Maxwell theory, and a Z/N 1-form symmetry in 4d SU(N)
Yang-Mills theory; the latter exhibits a mixed anomaly with charge-parity symmetry when
the SU(N) θ-angle equals π, which led to new insights regarding the vacua of QCD [36].
Other important classes of generalised symmetry include non-invertible and categorical
symmetries, as well as subsystem symmetries. These shall play no role in the present paper.

Soon after the notion of p-form symmetries was formalised in [35], it was realised that
higher-form symmetries of different degrees can ‘mix’, leading to the notion of p-group
symmetry. The most down-to-earth example of this symmetry structure, which in general is
described using higher category theory (see e.g. [37]), is the notion of a 2-group symmetry
whereby a 1-form symmetry H [1] and a 0-form symmetry G[0] combine non-trivially. This
occurs, for example [38, 39], when a bunch of Wilson lines (which are charged under a
discrete 1-form centre symmetry) can be screened by a dynamical fermion (which is charged
under a 0-form flavour symmetry). 2-group symmetries were first observed, in their gauged
form, in string theory in the context of the Green-Schwarz mechanism, in which a U(1)
1-form symmetry combines non-trivially with a diffeomorphism [40–43]. Their appearance
as global symmetries in field theory was appreciated first by Sharpe [44], before many new
examples were identified in refs. [45, 46]. Further instances of 2-group symmetry have
since been discovered and analysed in 4d [38, 39, 47–49], 5d [46, 48, 50–52], and 6d [53–55]
quantum field theories. A 2-group symmetry structure has recently been studied in the
Standard Model [56], in the limit of zero Yukawa couplings.

In this paper we study how the cobordism classification of anomalies can be applied
to 2-group symmetries. As a first step, we here specialise to 2-groups for which both G[0]

and H [1] are compact, connected, abelian groups ergo tori ∼= U(1)n; we refer to such a
structure, at times, as a ‘toric 2-group’. In this case, there are 1-form and 2-form Noether
currents j(1)

G and j(2)
H associated with the 0-form and 1-form symmetries respectively, and

the non-trivial 2-group ‘mixing’ between these symmetries is reflected in a fusion rule for
these currents, schematically

j
(1)
G (x)j(1)

G (0) ∼ K(x)j(2)
H (0) + . . . , (1.3)

for a known (singular) function K(x). Toric 2-group symmetries appear, for example, in
chiral U(1) gauge theories in 4d when there are mixed ‘operator-valued’ anomalies between
global chiral symmetry currents and the gauge current [45], as well as in 3d [57] and in
hydrodynamics [58]. Toric 2-group symmetries thus naturally appear in fermionic systems,
for which anomalies can be more fruitfully analysed using cobordism (compared to purely
bosonic anomalies).

For such a toric 2-group G, we study the bordism theory of manifolds equipped with
‘tangential G-structure’. This can be defined analogously to a tangential S-structure for
ordinary symmetry type S, given now the particular 2-group G plus an appropriate form

– 2 –
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of spin structure. When the 2-group symmetry does not further mix with the spacetime
symmetry, this reduces to studying the spin bordism groups of the topological space that
classifies G-2-bundles.

Thankfully much is known about the classifying space of G-2-bundles that will be of
use to us, given the physics applications we have in mind. Quite generally, the classifying
space of a 2-group G can be computed as B|G|, where |G| is the geometric realization of the
nerve of the 2-group G viewed as a category [59, 60], which is itself a topological 1 -group —
albeit often an infinite-dimensional one. This means that Freed and Hopkins’ classification
of invertible field theories with fixed symmetry type can be applied directly, taking the
tangential structure to be Spin × |G|.

In the special case of a pure 1-form symmetry valued in an abelian group H [1] = A, this
formula for the classifying space of the corresponding 2-group reduces to B(BA), recovering
the well-known result for classifying abelian gerbes [61]. This special case, which is of
significant physical interest, has already been used in the physics literature to study 1-form
anomalies, for many examples with variously Spin, SO, and O structures in ref. [18]. An
extension of this to a pure 2-form symmetry and its anomalies in 6d gauge theories was
studied via cobordism in ref. [24].

More generally for any 2-group G, the classifying space B|G| always sits in a ‘defin-
ing fibration’

B
(
BH [1]

)
→ B|G| → BG[0] , (1.4)

which allows one to leverage the usual spectral sequence methods to compute e.g. the
cohomology and/or the (co)bordism groups of B|G|. For ‘non-trivial’ 2-groups, i.e. those
for which the fibration (1.4) is non-trivial, there is to our knowledge only a smattering
of calculations in the literature; in particular, the case B(BZ/2[1])→ B|G| → BO[0] was
studied by Wan and Wang [18] (section 4), and B(BU(1)[1]) → B|G| → BSU(2)[0] was
studied by Lee and Tachikawa [24] (appendix B.6). In this paper we extend these works
with a dedicated cobordism analysis of theories with 2-group symmetry and their anomalies.

The content of this paper is as follows. After reviewing 2-groups and their appearances
in quantum field theory in section 2, we then describe the topological spaces B|G| that
classify 2-group background fields, and show how these spaces can be computed, in section 3.
By considering appropriate tangential structures for 2-group symmetries, this then leads to
a definition of the cobordism groups relevant for describing 2-group symmetries and their
anomalies (section 3.2). We then apply this cobordism theory to study a small selection
of examples in detail, focussing on toric 2-group symmetries as an especially tractable
case. The main examples that we study in this paper are as follows. In section 4, which
is a warm up example, we study anomalies involving the pair of 1-form symmetries in
4d Maxwell theory, defined on non-spin manifolds. As well as the Z-valued ‘local’ mixed
anomaly between the two 1-form symmetries [35, 62–64], there is a trio of Z/2-valued
global anomalies (involving gravity) that only appear on non-spin manifolds; the associated
phases have been studied in [65]. In section 5 we turn to our main example of toric 2-group
symmetries, with non-trivial Postnikov class, occurring in 4d abelian chiral theories. We see,
using cobordism, how turning on the Postnikov class transmutes a Z-valued local anomaly
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into a torsion-valued global anomaly à la the Green-Schwarz mechanism — we precisely
recover the physics results derived by Córdova, Dumitrescu and Intriligator in ref. [45].
Finally, in section 6 we drop down to two dimensions, where anomalous 0-form symmetries
can be recast as 2-group symmetries by using the trivially conserved 1-form symmetry
whose 2-form current is simply the volume form [44]. Our cobordism analysis highlights
the prominent role played by spin structures; when the U(1)[0] anomaly coefficient is odd,
the Green-Schwarz mechanism cannot in fact absorb the anomaly completely but leaves a
Z/2-valued anomaly, which we identify as an anomaly in the spin structure; we also show
how this Z/2-anomaly is trivialised upon passing to Spinc bordism.3

2 Review: 2-groups and their classifying spaces

In this section we recall the notion of a 2-group G (section 2.1), and briefly reprise their
appearance as generalised symmetry structures in quantum field theory (section 2.2).

2.1 What is a 2-group?

We begin by sketching some equivalent definitions of a 2-group, for which our main reference
is ref. [60] by Baez and Stevenson. First and most concise is probably the definition of a
2-group G as a higher category. Loosely, a 2-group G is in this language a 2-category that
contains a single object, with all 1-morphisms and 2-morphisms being invertible.

(Slightly) less abstractly, a 2-group can also be described using ‘ordinary’ category
theory, without recourse to higher categories, and this can be done in two ways; either as a
groupoid in the category of groups, or as a group in the category of groupoids.4 Expanding
on the former viewpoint, a 2-group is itself a category whose objects form a group G̃[0],
and whose morphisms also form a group, where the latter can be written as a semi-direct
product between G̃[0] and another group H̃ [1], viz.

Obj(G) = G̃[0], Mor(G) = H̃ [1] o G̃[0], (2.1)

such that all the various maps involved in the definition of a groupoid are continuous group
homomorphisms (see section 3 of [60]). We will usually be interested in situations where
both G̃[0] and H̃ [1] are Lie groups.

This definition involving a pair of groups (G̃[0], H̃ [1]) is closely related to yet another,
somewhat more practical, definition of a 2-group as a topological crossed module. The data
specifying a topological crossed module consists of a quadruplet

G = (G̃[0], H̃ [1], t, α), (2.2)

where G̃[0] and H̃ [1] can be identified with the groups that appear in (2.1), and t : H̃ [1] → G̃[0],
α : G̃[0] → Aut(H̃ [1]) are continuous homomorphisms such that the pair of conditions

t (α(g)(h)) = gt(h)g−1, α(t(h))(h′) = hh′h−1 (2.3)
3These examples emphasize that bordism computations are useful tools for keeping track of such subtle

mod 2 effects, by automatically encoding various characteristic classes’ normalisation that can differ in spin
vs. non-spin theories — for example, the class c2

1 is even on a spin manifold but needn’t be on a non-spin one.
4It will be implicitly assumed that all groups and groupoids discussed carry a topology.
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hold ∀g ∈ G̃[0], h, h′ ∈ H̃ [1], which can be thought of as equivariance conditions on the
maps. To define a 2-group from this data, one takes the group of objects Obj(G) = G̃[0]

and the group of morphisms Mor(G) = H̃ [1] o G̃[0], where the semi-direct product is defined
using the map α as (h, g) · (h′, g′) = (hα(g)(h′), gg′), and the various source, target, and
composition maps from Mor(G), as well as identity maps from Obj(G), are defined using
simple formulae (for which we refer the interested reader to section 3 of [60].)

We can tie together this circle of definitions by linking this final crossed module
definition of G to the first definition of G as a 2-category; in that picture, G̃[0] is the group
of 1-morphisms, and H̃ [1] is the group of 2-morphisms from the identity 1-morphism to all
other 1-morphisms [66]. When G̃[0] and H̃ [1] are both Lie, and when the maps t and α are
both smooth, G is a Lie 2-group.

The final description of a 2-group G that we just gave, as a topological crossed module,
is still of somewhat limited use in physics because the groups G̃[0] and H̃ [1] are not preserved
under equivalence of 2-groups as 2-categories. Moreover, a physical system with a 2-group
symmetry (possibly with associated background fields) is only sensitive to the equivalence
class of the 2-group at long distance, not the 2-group itself, as described by Kapustin and
Thorngren [66]. It is therefore more convenient to work with equivalence classes of 2-groups
from the beginning, which we describe next.

An equivalence class of 2-groups, with a particular 2-group G = (G̃[0], H̃ [1], t, α) above
as a representative, can also be described by a quadruplet (G[0], H [1], α, β) where [66]

G[0] := coker t, H [1] := ker t. (2.4)

The homomorphism α : G[0] → Aut(H [1]) is so named because it descends from the
homomorphism α : G[0] → Aut(H [1]). The new component is the so-called Postnikov class

β ∈ H3
(
BG[0];H [1]

)
. (2.5)

More precisely, two crossed modules G = (G̃[0], H̃ [1], t, α) and G′ = (G̃′[0], H̃ ′[1], t′, α′) are
said to be equivalent when G̃′[0] ∼= G̃[0], H̃ ′[1] ∼= H̃ [1] and there are homomorphisms (not
necessarily isomorphisms) h : H̃ [1] → H̃ ′[1] and g : G̃[0] → G̃′[0] that makes the diagram

1 H [1] H̃ [1] G̃[0] G[0] 1

1 H ′[1] H̃ ′[1] G̃′[0] G′[0] 1

h

t

g

t′

(2.6)

of two exact sequences commutative and compatible with the actions of G̃[0] on H̃ [1] and G̃′[0]

on H̃ ′[1]. These equivalence classes are classified by the group cohomology H3(G[0], H [1]) [67],
which is isomorphic to the ordinary cohomology H3(BG[0];H [1]).

For completeness, we also define the notion of 2-group homomorphisms, in terms
of ordinary group homomorphisms between different elements of the associated crossed
modules [60]. Represent two 2-groups G and G′ by crossed modules (G̃[0], H̃ [1], t, α) and
(G̃′[0], H̃ ′[1], t′, α′). A 2-group homomorphism f : G → G′, which is a functor such that
f : Obj(G) → Obj(G′) and f : Mor(G) → Mor(G′) are continuous homomorphisms of

– 5 –
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topological groups, can be represented by a pair of maps h : H̃ [1] → H̃ ′[1] and g : G̃[0] → G̃′[0]

such that the diagram
H̃ [1] G̃[0]

H̃ ′[1] G̃′[0]

t

h g

t′

(2.7)

is commutative and that h, g are compatible with α, α′:

h(α(a)(b)) = α′(g(a))h(b), (2.8)

for all a ∈ G̃[0], b ∈ H̃ [1].

2.2 2-group symmetries in quantum field theory

Physically, an equivalence class G = (G[0], H [1], α, β) of 2-groups describes a symmetry
structure appearing in quantum field theories which have both a 0-form symmetry group
G[0] and a 1-form symmetry group H [1]. When the two symmetries are not independent,
the Postnikov class β of the corresponding 2-group symmetry is non-trivial, and the 0-form
and 1-form parts cannot be analysed in isolation.

While we will eventually specialise to the case of toric 2-groups in the bulk of this
paper, we first recap how 2-groups appear in field theory more broadly. It is convenient to
distinguish two broad categories of 2-groups which in general have different physical origin:

1. A continuous 2-group G is one with a continuous 1-form symmetry group H [1]. This
class of 2-groups arises in field theory when, for example, the gauge transformation
law for the 1-form symmetry background gauge field is modified so that there is no
operator-valued ’t Hooft anomaly involving the background gauge field for the 0-form
symmetry, in an analogue of the Green-Schwarz mechanism for global symmetries [45].
The 0-form symmetry can here be abelian or non-abelian, connected or disconnected,
and compact or non-compact. In this paper we focus our attention on the special case
where both the 0-form and 1-form symmetry are connected, compact, and abelian
groups, which we refer to as a ‘toric 2-group’.

2. A discrete 2-group G is one with a discrete 1-form symmetry group H [1]. This class
of 2-group symmetries arises in gauge theories when the gauge Wilson lines, which
are charged objects under the 1-form symmetry H [1], are not completely screened in
the presence of the background gauge field for the 0-form symmetry group G[0]. The
local operator O that screens the gauge Wilson lines when the 0-form background
gauge field is turned off is also charged under the 0-form symmetry. Hence, when the
background gauge field of G[0] is turned on, O transmutes a gauge Wilson line into a
flavour Wilson line [39, 46, 47].

3 Cobordism with 2-group structure

In this section we describe the background gauge fields on associated principal G-2-bundles
which play an important role in field theories with 2-group symmetries. We focus on
describing the topological spaces B|G| that classify these background fields, and show

– 6 –
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how to calculate such classifying spaces in elementary examples, before introducing the
cobordism groups that are central to this paper in section 3.2.

3.1 Background fields and their classifying spaces

A theory with a 2-group symmetry G can be coupled to a background gauge field (which
a physicist might wish to decompose into components of an ordinary 1-form gauge field
and a 2-form gauge field),5 which is a connection on a principal G-2-bundle in the sense
defined in [59].

Mathematically, Bartels moreover shows that such 2-bundles over a manifold X are
classified by the Čech cohomology group Ȟ1(X,G) with coefficients valued in the 2-group
G. Baez and Stevenson prove [60] that there is a bijection

Ȟ1(X,G) ∼= [X,B|G|], (3.1)

where [A,B] denotes the set of homotopy classes of maps from A to B, and |G| is the
geometric realization of the nerve NG of the 2-group G when viewed as a groupoid as
in (2.1). The nerve NG of the category G with Obj(G) = G and Mor(G) = H oG is a set
of simplices that we can construct out of these objects and morphisms — we will see some
explicit examples shortly.

Quantum field theories with 2-group symmetry G are thus defined on spacetime
manifolds X equipped with maps to B|G|, just as a theory with an ordinary symmetry G
is defined on spacetimes equipped with maps to BG.

3.1.1 Elementary examples of B|G|

Since the classifying space B|G| will play a central role in what follows, we pause to
better acquaint the reader with B|G| and how it can be computed by looking at some
simple examples. The calculations in this subsection are purely pedagogical — readers
who are familiar with (or not interested in) such constructions might wish to skip ahead to
section 3.1.2.

Pure 0-form symmetries. In the case that there is no 1-form symmetry, and the 2-group
symmetry simply defines an ordinary 0-form symmetry G, we expect to recover the usual
classifying space ofG. In this case, the 2-group corresponds to the quadruplet G = (G, 0, 0, 0),
to use the topological crossed module notation, and indeed B|(G, 0, 0, 0)| = BG. To see this
from the nerve construction, we first view G as a category, which is very simple in this case:
Obj(G) = G with only identity morphisms at each element. So there are no non-degenerate
n-simplices when n > 0, while the set of 0-simplices is G. Hence, the geometric realisation
of the nerve |G| is simply the group G itself, and its classifying space is BG, as claimed.

Pure 1-form symmetries. The case of a ‘pure 1-form symmetry’, in which there is no
0-form symmetry at all, corresponds to 2-groups of the form G = (0, H, 0, 0) =: H [1], where

5A more explicit description of the background fields will be sketched in section 5 where we discuss the
2-group symmetries appearing in 4d abelian chiral gauge theory.
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H is the (abelian) 1-form symmetry group. The corresponding classifying space is [59]

B|H[1]| = B(BH), (3.2)

which we often denote simply B2H, which coincides with the well-known classifying space
of an abelian gerbe [61]. For example, when H = U(1), B|H[1]| is an Eilenberg-Maclane
space K(Z, 3).

An example: pure Z/2 1-form symmetry. For an explicit example that illustrates
how to actually calculate the geometric realization of the nerve of such a G = H[1], we
consider the simplest case where H = Z/2. Viewing this as a category as in (2.1), we have
that Obj(Z/2[1]) consists of only one element because G is the trivial group, denoted simply
by •, while the group Mor(Z/2[1]) is just isomorphic to H = Z/2. Diagrammatically, this
structure can be represented as

• −11 .

The nerve of Z/2[1] is then a simplicial set NZ/2[1] built out of these objects and morphisms,
whose low dimensional components are given as follows.

(NZ/2[1])0 = {•} (0-simplex)

(NZ/2[1])1 =
{
• −1−−→ •

}
(1-simplex)

(NZ/2[1])2 =
{
• −1−−→ • −1−−→ •

}
(2-simplex)

etc.

This is enough information for us to work out the CW complex cell structure for its
geometric realisation, which recall is the topological space that we denote |Z/2[1]|. The
0-cell is just a point. The 1-cell comes from the union of the 0-cell and an interval, with the

gluing rule given by the 1-simplex • −1 i.e. identifying both ends of the interval with

the 0-cell. Hence, the 1-cell has the topology of a 1-sphere S1. Similarly, the form of the
2-simplex, written more suggestively as

• •
−1

−1

,

tells us that the 2-cell is constructed by identifying the 1-cell S1 as the boundary of a
2-ball, with antipodal points on the boundary identified. This gives the topology of the
2-dimensional real projective space RP 2. Building inductively in this way, one can show
that |Z/2[1]| is topologically RP∞. On the other hand, we know that this is the same as
the classifying space of Z/2, i.e. |Z/2[1]| ∼= BZ/2. Therefore, the classifying space of the
Z/2 1-form symmetry bundle is B|Z/2[1]| ∼= B2Z/2.

This argument can be generalised to any 2-group of the form H[1] = (0, H, 0, 0). For
any group H, it is proven that the geometrisation of the nerve |H[1]| is the topological
space BH [68], and the classifying space of H[1]-2-bundles is thus B2H, coinciding with
the known classification of H-gerbes when H is abelian.
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2-groups with a trivial map. Moving up in complexity, let us now consider a 2-group
with both the constituent 1-groups G̃ and H̃ being non-trivial, but with at least one of the
maps in the crossed module definition being trivial. To wit, consider a particular 2-group
G = (G̃, H̃, t, α), written using the notation of (2.2), where the map α : G̃ → Aut(H̃) is
trivial i.e. α(g) is the identity automorphism for any g ∈ G̃.

An example: G̃ = Z/2 and H̃ = Z/2. Probably the simplest example of a 2-group of
this kind is one where G̃ and H̃ are both Z/2. Since Aut(H̃) ∼= Aut(Z/2) is trivial, α is
automatically trivial. If G̃ and H̃ do not interact at all, meaning that the map t is also
trivial (the module is ‘uncrossed’), then the 2-group factorises as a product of a 0-form and
a 1-form symmetry:

|G| ∼= Z/2×BZ/2,

whose classifying space is just BZ/2×B2Z/2.
Since t : H̃ → G̃ must be a homomorphism, the only other option for t is the identity

map t : −1 7→ −1. Setting G = (Z/2,Z/2, id, 0), then as a category Obj(G) ∼= Z/2 and
Mor(G) = G×H ∼= Z/2×Z/2, whose action can be fully captured in the following diagram:

−1 1(1,−1)

(−1,−1)

(1,1)

(−1,1)

Since the morphisms shown in the diagram are all the morphisms in this category, we can
identify the morphisms (1, 1) and (1,−1) as the identity morphisms at the objects 1 and
−1, respectively.

The components of the nerve NG in low dimensions are given by

NG0 = {•−1, •1}

NG1 =
{
•−1

(−1,−1)−−−−−→ •1, •1
(−1,1)−−−−→ •−1

}
NG2 = {•−1 → •1 → •−1, •1 → •−1 → •1}

From these data, it is easy to see that the 0-cell is just a pair of points, the 1-cell is a circle

S1, •−1 •1

(−1,−1)

(−1,1)

, and the 2-cell is a 2-sphere S2, constructed by joining •−1 •1

and •1 •−1 as two “hemispheres”, with the 1-cell at the equator. Continuing ad

infinitum we obtain |G| ∼= S∞. But the infinite sphere is contractible, which means it is
homotopy equivalent to a point. Hence, the classifying space for G must be trivial.

This result should not be a surprise because the crossed module under consideration,
namely G = (Z/2,Z/2, t, 0) with t an isomorphism, is equivalent to the trivial 2-group
because both G[0] = coker t and H [1] = ker t are trivial!
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3.1.2 General B|G| as a fibration

Our discussion so far has been mostly pedagogical; the idea was to acquaint the reader
with some basic computations of the classsifying spaces of 2-groups. Thankfully, more
powerful tools are available to us for the computations that we will be interested in. First
and foremost, for any 2-group G there is a fibration6

B(BH [1]) B|G|

BG[0]

. (3.3)

Note that, because the 1-form symmetry H [1] is always an abelian group, BH [1] is itself
a (topological) group, and so B(BH [1]) can be defined using the ordinary definition of
the classifying space of a group. We will see in the next subsection that this fibration is
sufficient for our purpose of anomaly classification.

3.2 Cobordism description of 2-group anomalies

In order to classify anomalies associated to a 2-group G via cobordism, most of the structure
contained in G as a 2-group can be discarded. As discussed in the previous subsection, G-2-
bundles are classified by the topological space B|G|, where |G| is the geometric realization
of the nerve (henceforth just ‘the nerve’) of G, regardless of other information contained
in G. Thus, we can use the nerve |G|, itself a topological group, to define a tangential
structure on spacetime just as we would for an ordinary 0-form symmetry. For instance, if
we are interested in a fermionic theory with internal 2-group symmetry G (with no mixing
with the spacetime symmetry), we can take the symmetry type to be7

S = Spin× |G| . (3.4)

Directly applying Freed-Hopkins’ classification [3] of invertible, reflection-positive field
theories to this symmetry type, suggests that the cobordism group

Hd+2
IZ (MT (Spin× |G|) ∼= TorsΩSpin

d+1 (B|G|)×Hom
(
ΩSpin
d+2 (B|G|),Z

)
(3.5)

correctly classifies anomalies in d-dimensional fermionic theories with the 2-group symmetry
G. Our detection of anomaly theories is therefore distilled into computing the spin bordism
groups of B|G|, for which we can use the same methods as for an ordinary symmetry.

In particular, our general strategy will be to build up the spin bordism groups of B|G|
by using the ‘defining fibration’ described above, B2H [1] → B|G| → BG[0], as follows. We
first use the Serre spectral sequence (SSS) [70] to compute the cohomology of B|G| from the
fibration. Then, one can use this newly computed cohomology to compute the spin bordism
groups of B|G|, for example via the Adams spectral sequence (ASS) [71]. Alternatively, we

6The extensions encoded in (3.3) are in fact classified by H3
SM (G[0], H [1]) [69], the Segal-Mitchison group

cohomology in degree 3 (a degree that usually classifies 2-step extensions).
7If we do not require a spin structure, we could use SO instead of Spin in defining the symmetry type S

— as we do in section 4.
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can convert the result to homology using the universal coefficient theorem, and use it as an
input of the Atiyah-Hirzebruch spectral sequence (AHSS) [72]

E2
p,q = Hp(B|G|; ΩSpin

q (pt)) . (3.6)

for another fibration pt→ B|G| → B|G|. Kapustin and Thorngren already used the SSS
associated to (3.3) in [66] to compute the cohomology of B|G|. Moreover, this approach
has been used to calculate bordism groups relevant to 2-group symmetries with non-trivial
Postnikov class; Wan and Wang did so using the ASS in ref. [18], while Lee and Tachikawa
used the AHSS in ref. [24]. We usually adopt the AHSS-based approach in this paper.

4 Maxwell revisited

As a (rather lengthy) warm-up example, let us discuss Maxwell theory. We consider a 4d
U(1) gauge theory without matter, and variants thereof in which we couple the action to
various TQFTs without changing the underlying symmetry structure. The action for vanilla
Maxwell theory is

SMaxwell = − 1
4e2

∫
M4

da ∧ ?da , (4.1)

where a denotes the dynamical U(1) gauge field and ? denotes the Hodge dual, assuming a
metric g on M4.

This theory has two U(1) 1-form global symmetries [35], referred to as ‘electric’ and
‘magnetic’ 1-form symmetries. Since each is associated with a continuous group, one can
write down the corresponding conserved 2-form currents, which are

je = 2
e2da, jm = ?

da
2π . (4.2)

The former is conserved (d ? je = 0) by Maxwell’s equations d ? da = 0, and the latter by
d2 = 0 (and using ?? = 1).8

It was already observed in [35] that there is a mixed ’t Hooft anomaly between the
two 1-form symmetries, which is a local anomaly that can be represented by an anomaly
polynomial dBe∧dBm, where Be and Bm are background 2-form gauge fields for the electric
and magnetic 1-form symmetries respectively. This kind of anomaly and its consequences
concerning various quantum numbers are discussed in refs. [63, 64] (see also [62]). In ref. [65],
a variety of 5d SPT phases that have Maxwell-like theories on the 4d boundary, protected
by electric and magnetic 1-form symmetries, were derived. Here we show how these results
are simply captured by the cobordism classification.

4.1 Cobordism classification of 1-form anomalies

Maxwell theory has two global U(1) 1-form symmetries, and no 0-form global symmetries.
The classifying space of this global symmetry structure G is that of an abelian H-gerbe

8For Maxwell theory in d dimensions, je is always a 2-form current and so the electric symmetry is
always 1-form, while jm is more generally a (d − 2)-form, and so the magnetic symmetry is generally a
(d− 3)-form symmetry.
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with H = U(1)e ×U(1)m. From (3.2),

B|G| = B2U(1)e ×B2U(1)m . (4.3)

Since there are no fermions, we do not need a spin structure, and so can define pure Maxwell
theory on any smooth, orientable 4d spacetime manifold.9 The 5d invertible field theories
with this symmetry type are therefore classified by the generalised cohomology group

Hom
(
Tor ΩSO

5 (B|G|),R/Z
)
↪→ H6

IZ (MT (SO× |G|)) � Hom
(
ΩSO

6 (B|G|),Z
)
, (4.4)

where this sequence splits, but not canonically. In terms of anomaly theories, the factor on
the right of this SES captures local anomalies, and the factor on the left captures global
anomalies; the abelian group that detects all anomalies is isomorphic to the direct product
of the two.

Local anomalies. In appendix B.1 we compute that ΩSO
6
(
(B2U(1))2) = Z, and so

Hom
(
ΩSO

6 (B2U(1)e ×B2U(1)m),Z
)
∼= Z , (4.5)

corresponding to the integral of the degree-6 anomaly polynomial dBe∪dBm on a generator
of ΩSO

6
(
(B2U(1))2). This detects the local mixed ’t Hooft anomaly between the two 1-form

symmetries discussed in [35].

Global anomalies. In appendix B.1 we also compute that ΩSO
5
(
(B2U(1))2) = (Z/2)3.

Thus, the group classifying global anomalies is

Hom
(
Tor ΩSO

5 (B2U(1)×B2U(1)),R/Z
)
∼= (Z/2)3 . (4.6)

In terms of characteristic classes, these three factors of Z/2 correspond to

w2 ∪ w3, w2 ∪ τe, w2 ∪ τm,

where w2,3 denote the second and third Stiefel-Whitney classes of the tangent bundle, and
τe,m is a unique generator of H3(B2U(1)e,m;Z/2) (cf. eq. (A.1)) which can be thought of as
a mod 2 reduction of an integral cohomology class represented by dBe,m

2π .

4.2 Phases of non-spin Maxwell theory

The w2w3 invariant corresponds to a global gravitational anomaly seen on non-spin manifolds,
related to that in [11]. The w2τe,m bordism invariants correspond loosely to ’t Hooft
anomalies for each of the 1-form symmetries, that prevents them from being gauged on
certain (non-spin) gravitational backgrounds. We discuss these in more detail next.

9We do not account for any time-reversal symmetry, that would enable us to pass from oriented to
unoriented bordism.
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The w2 ∪ τe phase. To see the global anomaly that is captured by the w2 ∪ τe,10 we
must go beyond the vanilla Maxwell theory described by (4.1), and couple 4d Maxwell to a
topological term. The modified action is

S = − 1
4e2

∫
M4

da ∧ ?da+ πi
∫
M4

w2(TM4) ∪ ρ2

[da
2π

]
Z

= SMaxwell + πi
∫
M4

w2(TM4) ∪ c1,
(4.7)

where [·]Z denotes an integral cohomology class and ρ2 is mod 2 reduction, and where we
shall write c1 for both the first Chern class of the U(1) gauge bundle and its mod 2 reduction.
The topological term couples a background magnetic 2-form gauge field to the Z/2 part of
the magnetic 1-form symmetry, and then equates it to the second Stiefel-Whitney class of
the tangent bundle. The electric 1-form symmetry shifting a 7→ a+ λ, where λ is a closed
1-form, remains intact.

This theory describes fermionic-monopole electrodynamics; the topological term
∫
w2∪c1

forces all monopoles to become fermionic [73, 74]. To see this, following [11], consider adding
a magnetic monopole via an ’t Hooft line operator of charge 1 along ` ⊂M4 that we excise
from M4 with the boundary condition that

∫
S2
`
c1 = 1 on a small 2-sphere S2

` around `. The
theory is now defined on the complement M ′4 of ` in the presence of the ’t Hooft operator,
which is a manifold with boundary ∂M ′4 ∼= S2

` × `. For the integral
∫
M ′4

w2(TM ′4) ∪ c1 to
make sense on a manifold with boundary, we need a trivialisation of the integrand on ∂M ′4.11

Now, since c1 is non-trivial on S2
` due to the non-zero monopole charge, we have to trivialise

the w2(TM ′4) factor. A trivialisation of the second Stiefel-Whitney class is nothing but a
spin structure. Since there is a unique spin structure on S2, a spin structure on S2

` × ` is
the same as a spin structure along `. Therefore, to define the additional phase, we must
choose a spin structure along the monopole worldline: the monopole is a fermion.

In order to see the ’t Hooft anomaly afflicting U(1)e, we now couple the theory to a
background electric 2-form gauge field Be, and promote the 1-form U(1)e global symmetry
transformation above to a ‘local’ transformation by relaxing the condition that the 1-form
parameter λ has to be closed. In fact, λ does not strictly need to be a 1-form on M4 — more
precisely, we now consider shifting the gauge field a by any connection λ. For a connection
λ with non-zero curvature dλ, the action (4.7) shifts under a 7→ a+ λ, by

δS = πi
∫
M4

w2 ∪ ρ2

[dλ
2π

]
Z
, (4.8)

10For simplicity, we consider the case where the 1-form symmetry is electric. The corresponding story for
the magnetic 1-form symmetry can be obtained by applying the electric-magnetic duality.

11This is because for an n-manifold with boundary M ′, the fundamental homology class [M ′] is in
Hn(M ′, ∂M ′). The integration of a cohomology class on M ′ is in fact a pairing between a cohomology class
and the fundamental class [M ′], so when we write

∫
M′ c for a cohomology class c ∈ Hn(M ′), we need to first

find a class in Hn(M ′, ∂M ′) that “corresponds” to c to make sense of the pairing. This is always possible
because the long exact sequence in cohomology

. . .→ Hn−1(∂M ′)→ Hn(M ′, ∂M ′)→ Hn(M ′)→ 0

implies that any class c ∈ Hn(M ′) can always be lifted to a class C ∈ Hn(M ′, ∂M ′). The choice of this lift
is the choice of trivialisation of c on ∂M ′.
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which encodes the ’t Hooft anomaly associated with certain ‘large 2-form gauge transforma-
tions’, and on certain gravitational backgrounds.

For example, takeM4 to be CP 2. As usual, we can parametrize CP 2 with three complex
coordinates z1, z2, and z3, such that

∑3
i=1 z

∗
i zi = 1 and with the equivalence zi ∼ eiαzi for

α ∈ R/Z. Define the 2-form ω := i
2∂∂ log(z2

1 + z2
2), which is just the volume form on the

S2 ∼= CP 1 ⊂ CP 2 submanifold defined by z3 = 0. Its cohomology class [ω]Z can be taken
as a generator for H2(CP 2;Z), and likewise a := ρ2[ω]Z can be taken as a generator for
H2(CP 2;Z/2). We also have that w2(TCP 2) = a. If we shift a by a connection λ with[

dλ
2π

]
Z

= [nω]Z = n[ω]Z, the shift in the action is

δS = πi〈[M4], a2〉 = nπi (4.9)

where 〈·, ·〉 here denotes the pairing between mod 2 homology and cohomology, thus realising
the Z/2-valued global anomaly for odd values of n.

As usual, there is a dual description of this anomaly in terms of the 5d SPT phase that
captures it via inflow to the 4d boundary. If M4 were nullbordant, the phase would here be
SSPT = πi

∫
X w2 ∪ τe where recall τe = ρ2

[
dBe
2π

]
Z
, for a 5-manifold X such that ∂X = M4

and to which the background fields are extended. To see this, first note that one could
cancel the anomalous shift (4.8) by adding a ‘counter-term’ Sct. = −πi

∫
M4

ŵ2 ∧ Be
2π where

ŵ2 is a closed 2-form constructed from w2,12 recalling that the gauge transformation for Be
is Be 7→ Be + dλ. However, this ‘4d action’ is not properly quantised. (It is ‘half-quantised’,
precisely because there is a Z/2 anomaly.) One must instead write it as the 5d action
Sct. = −πi

∫
X w2 ∪ τe. Thus the fermionic-monopole electrodynamics has exactly the right

anomaly to be a boundary state of the SPT phase given by SSPT = πi
∫
X w2 ∪ τe (see also

ref. [65]).13

Bordism generator for the w2 ∪ τe anomaly. Of course, it is important to note that
CP 2 is not nullbordant in ΩSO

4 , given the signature σ = 1 is a 4d bordism invariant. Given
we saw the anomaly explicitly on CP 2, one cannot in fact realise it via the counterterm
Sct. = −πi

∫
X w2 ∪ τe because there is no 5-manifold X bounded by M4. But as is well-

known [75], the phase of the partition function Z on such a non-nullbordant manifold suffers
from an ambiguity, since it can always be shifted by a choice of generalised theta angle, i.e.
a coupling to a non-trivial TQFT corresponding to an element in Hom(ΩSO

4 (·),R/Z). Thus,
one can fix argZ[M4, Be] = θ0 to a reference phase, and then argZ is uniquely defined on
any other 4-manifold (M ′4, B′e) that is bordant to (M4, Be).

This phase can be calculated by constructing a 5d mapping torus X̃ by taking a
cylinder that interpolates between (M4, Be) and (M ′4, B′e), and gluing its ends to make a

12To construct ŵ2, first note that there is an integral lift W2 ∈ H2(M4;Z) of w2 ∈ H2(M4;Z/2) because
w3 = 0 for any orientable 4-manifold. (One sees this from the long exact sequence in cohomology associated
to the coefficient sequence 0→ Z ×2−−→ Z ρ2−→ Z/2→ 0, for which the Bockstein connecting homomorphism
β : H2(·;Z/2)→ H3(·;Z) : w2 7→ β(w2) where ρ2β(w2) = w3). Next, given the integral class W2, construct
any complex line bundle over M4 with c1 = W2, and take ŵ2 to be the curvature 2-form of that bundle.

13This mixed anomaly can also be interpreted as a remnant of the mixed anomaly between the electric
and magnetic 1-form symmetry when only the Z/2 subgroup of the electric 1-form symmetry is coupled to a
background field w2.
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Pure electrodynamics

mixed U(1)
[1]
e × U(1)

[1]
m anomaly

i
∫
M6

τe ∪ τm

Fermionic probe charge

mixed U(1)
[1]
m × grav anomaly

πi
∫
M5

w2 ∪ τm

Fermionic probe monopole

mixed U(1)
[1]
e × grav anomaly

πi
∫
M5

w2 ∪ τe

All-fermion electrodynamics
Gravitational anomaly

πi
∫
M5

w2 ∪ w3

H6
IZ(MT (SO×G)) ∼= Z×(Z/2)3,

for B|G| = B2U(1) × B2U(1)

+πi
∫
w2 ∪ cdual1

+πi
∫
w2 ∪ cdual1

+πi
∫
w2 ∪ c1

+πi
∫
w2 ∪ c1

Figure 1. A map of the four possible ’t Hooft anomalies that can afflict a 4d theory with a pair of
U(1) 1-form global symmetries, defined on orientable manifolds without a spin structure. Each ’t
Hooft anomaly corresponds to a factor in the cobordism group H6

IZ
∼= Z× (Z/2)3, and is exhibited

by Maxwell theory on its own (top, corresponding to the local Z-valued anomaly) or coupled to a
particular TQFT (left, bottom, and right, corresponding to the trio of global Z/2-valued anomalies).
The red arrows illustrate the relations between these four theories. For the global anomalies, these
versions of 4d electromagnetism can also be realised as the boundary theories for 5d SPT phases.

closed 5-manifold. This X̃ will be a representative of the generator of the Z/2 factor in
ΩSO

5 ((B2U(1))2) that we have claimed is dual to w2 ∪ τe.
In more detail, take M4 = CP 2 and let B0

e denote any reference choice of background
2-form gauge field for the electric 1-form symmetry on M4. Next take the product manifold
CP 2 × [0, 2π] with a product metric. Over the interval I = [0, 2π] one implements (for
example linearly) the ‘large’ 2-form gauge transformation Be 7→ B′e := Be + nω, n ∈ Z.14

Since Be and B′e are gauge-equivalent, the manifold CP 2 × [0, 2π] can be glued at 0 and 2π
to make a closed 5-manifold with U(1)-2-bundle:

X̃ := S1 × CP 2, Be(θ, zi) = B0
e + t

2πnω, (4.10)

where t ∈ I.
To verify that this mapping torus can be taken as a generator of the bordism group

ΩSO
5
(
(B2U(1))2), it is enough to evaluate the bordism invariant ‘anomaly theory’ w2∪ τe on

[X̃] and find a non-trivial value for the phase. Physically, evaluating 〈w2∪ τe, [X̃]〉 computes
the phase accrued by the partition function on (Σ, Be) upon undergoing the 2-form gauge
transformation Be → B′e. Doing the computation, we have that τe =

[
dt
2π

]
∪ [nω] = y∪nx ∈

H3(X̃;Z/2), where x is the non-trivial element of H2(X̃;Z/2) obtained by pulling back a
along the projection X̃ → CP 2, and y is the non-trivial element of H2(X̃;Z/2) obtained
by pulling back the generator of H1(S1;Z/2) along X̃ → S1. For n odd, we have that
τe = y∪x, the unique non-trivial element of H3(X̃;Z/2). Thus w2∪ τe = x2y ∈ H5(X̃;Z/2)

14We refer to this as a ‘large’ gauge transformation because the gauge parameter nω is closed but not
exact, having a ‘winding number’ of n.
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for n odd, and so the anomaly theory evaluates to 1 mod 2 on this mapping torus, while it
is trivial for n even.

The w2 ∪τm phase. An identical account can be given for the magnetic 1-form symmetry,
if one replaces the topological coupling πi

∫
w2 ∪ c1 in (4.7) by πi

∫
w2 ∪ cdual

1 , where cdual
1

denotes the first Chern class of the electromagnetic dual of the gauge field. In that case,
the 4d theory suffers from a ’t Hooft anomaly afflicting the magnetic 1-form symmetry,
which obstructs U(1)m[1] from being gauged on non-spin manifolds such as CP 2. The 5d
anomaly theory is

∫
M5

w2 ∪ τm.
Physically, this same anomaly can be understood from a different perspective. Suppose

one couples vanilla Maxwell theory (4.1) to a charge-1 fermion, defined on all orientable
4-manifolds using a Spinc structure. The electric 1-form symmetry is explicitly broken, but
one can still probe anomalies involving the magnetic 1-form symmetry and the gravitational
background. The magnetic 1-form symmetry remains intact, even though we effectively
have a ‘charge-1

2 ’ monopole due to the constraint c1 = w2 mod 2
2 that follows the definition

of Spinc, because this monopole is not dynamical but rather acts as a constraint on the field
configurations that are summed in the path integral. The symmetry type is now Spinc×Gm,
with B|Gm| = B2U(1)m, for which the cobordism group H6

IZ(MT (Spinc ×Gm)) ∼= Z/2×
Z2.15 Of course, all the anomalies involving the electric 1-form symmetry are absent, as
is the w2w3 anomaly because the Spinc requirement trivialises w3, but the w2 ∪ τm global
anomaly remains.

The w2 ∪ w3 phase. The final Z/2-valued global anomaly that is detected by (4.6)
corresponds to the 5d SPT phase

∫
M5

w2 ∪ w3. To exhibit this anomaly, one starts from
vanilla Maxwell theory and couples w2(TM4) as a background gauge field to both the
electric and magnetic U(1) 1-form symmetries. This SPT phase is purely gravitational and
has been extensively analysed in the literature. Its boundary states include the theory of
all-fermion electrodynamics [11, 76] and a fermionic theory with an emergent SU(2) gauge
symmetry [11].

4.3 Scalar QED and 1-form anomaly interplay

Now let us couple Maxwell theory, defined as before with an SO structure, to a charge-2 boson.
This coupling to matter breaks the electric 1-form symmetry down to a discrete remnant,

U(1)e[1]→ Z/2e[1] , (4.11)

while the full U(1)m[1] magnetic 1-form symmetry is preserved. This version of scalar QED
therefore furnishes us with two global 1-form symmetries, one discrete and one continuous,
and no 0-form symmetries. The classifying space of the global symmetry G′ is therefore

B|G′| = B2Z/2e ×B2U(1)m , (4.12)
15The two factors of Z arise simply because we have included the ‘U(1) gauge symmetry’ in our definition

of the symmetry type, because it is now entangled with the spacetime symmetry. If one computed the
reduced Spinc bordism these factors would go, leaving only the Z/2-valued w2 ∪ τm ’t Hooft anomaly for
the magnetic 1-form symmetry.
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and the 5d invertible field theories with this symmetry type are classified by the sequence (4.4)
but with |G| replaced by |G′|. In appendix B.2 we compute the relevant bordism groups to
stitch together this generalised cohomology group.

Local anomalies. We compute from appendix B.2 that

Hom
(
ΩSO

6 (B2Z/2e ×B2U(1)m),Z
)

= 0 , (4.13)

and so there are no local anomalies; clearly, the mixed local ’t Hooft anomaly ‘dBe ∪ dBm’
can no longer be realised now that one of the 1-form symmetries is broken to a discrete
group, because the associated 2-form gauge field now has zero curvature.

Global anomalies. On the other hand, we find that ΩSO
5
(
B2Z/2×B2U(1)

)
= (Z/2)4.

The group classifying global anomalies is now

Hom
(
Tor ΩSO

5 (B2Z/2e ×B2U(1)m),R/Z
)
∼= (Z/2)4 , (4.14)

and we notice that there is an extra factor of Z/2 corresponding to an extra global anomaly.
At the level of characteristic classes, we can represent these four global anomalies in terms
of products of Stiefel-Whitney classes and cohomology classes of H•(B2U(1)×B2Z/2;Z/2)
that are in degree-5. There are five of them in total:

w2 ∪ w3, w2 ∪ τm, w2 ∪ Sq1u2, u2 ∪ τm, Sq2 Sq1u2,

where u2 is the unique generator of H2(B2Z/2;Z/2) (see appendix A.1). However, once
pulled back to an orientable 5-manifold X, Wu’s relation [77] tells us that Sq2 Sq1u2 =
w2(TX) ∪ Sq1u2, so it is not an independent bordism invariant, and we end up with four
invariants, as expected from the bordism group computation.

The anomaly interplay. Given an appropriate map π between two spectra MTH and
MTH ′, there is an induced pullback map between the corresponding cobordism theories,
π∗ : Hd+2

IZ (MTH ′)→ Hd+2
IZ (MTH), that can be used to relate anomalies between the two

theories. This idea of ‘anomaly interplay’ has recently been used, for example, to relate
local anomalies in 4d U(2) gauge theory to Witten’s SU(2) anomaly [78], to study anomalies
in Z/k symmetries in 2d [79, 80] with applications to bootstrapping conformal field theories,
and to derive anomalies in non-abelian finite group symmetries in 4d [31]. Physically, the
idea of ‘pulling back anomalies’ from one symmetry to another is not new, but goes back to
Elitzur and Nair’s analysis of global anomalies [81], following Witten [82]. In all these cases
the symmetry type takes the form {Spin or SO} ×G[0], where G[0] is a 0-form symmetry.
In that case, a map of spectra π is induced by any group homomorphism π : G→ G′.

In the present case, where we have theories with 1-form global symmetries, it is straight-
forward to adapt this notion of anomaly interplay (which is just pullback in cobordism).
Again, the crucial fact we use is that the nerves associated with the 1-form symmetries are
themselves just ordinary (topological) groups, between which we can define group homo-
morphisms. Letting π : Z/2 → U(1) : (1,−1) → (1, eiπ) denote the subgroup embedding,
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there is an associated map between symmetry types, π : SO × |G′| → SO × |G| and an
induced pullback map between the cobordism theories,

π∗ : H6
IZ(MT (SO× |G′|)) −→ H6

IZ(MT (SO× |G|)) . (4.15)

Note that, since H•IZ is a contravariant functor, the map between anomaly theories goes in
the opposite direction to the subgroup embedding that we started with. Moreover, there is
a pullback diagram for the whole short exact sequence characterizing H6

IZ, which encodes
the notion of ‘anomaly interplay’:

0 −−−−→ (Z/2)4 −−−−→ (Z/2)4 −−−−→ 0 −−−−→ 0x π∗
x x

0 −−−−→ (Z/2)3 −−−−→ (Z/2)3 × Z −−−−→ Z −−−−→ 0 .

(4.16)

This anomaly interplay diagram can be used to track ’t Hooft anomalies in the 1-form
global symmetries, through the ‘integrating in’ of a charge-2 boson.

Since all the generators of the cobordism groups can be represented by characteristic
classes, we can represent the pullback π∗ by its action on the characteristic classes. The
non-trivial action of π∗ is encoded in

π∗ : τe ∪ τm 7→ u2 ∪ τm, (4.17)
w2 ∪ τe 7→ w2 ∪ Sq1u2. (4.18)

Trivially, π∗ maps w2 ∪ τm and w2 ∪ w3 to themselves.
The most interesting pullback relation is eq. (4.17), which says that a Z-valued local

anomaly pulls back to a Z/2-valued global anomaly. This is somewhat analogous to the
interplay studied in [23, 78] between U(2) local anomalies and SU(2) global anomalies for
4d 0-form symmetries, where the maps there corresponded to pulling back exponentiated
η-invariants.

To see how the interplay works in this example involving 1-form symmetries, which
is arguably simpler than the story for chiral fermion anomalies, we follow the general
methodology set out in ref. [23]. To wit, we start with a 5-manifold M5 representative of a
class in ΩSO

5 (B2Z/2e ×B2U(1)m) that is dual to u2τm (i.e. on which u2τm evaluates to 1
mod 2). We choose

M5 = S2
e × S2

m × S1
θ , (4.19)

equipped with a Z/2 background 2-bundle that has support only on S2
e , and a U(1)m

background 2-bundle that has support only on S2
m × S1

θ . Specifically, the Z/2 2-form
connection has non-trivial 2-holonomy round S2

e , viz
∫
S2
e
u2 = 1 mod 2. The U(1)m 2-form

connection Bm on S2
m × S1

θ can be written Bm = B0
m + θ

2πkωm, k ∈ Z, where ωm is the
volume form on S2

m such that
∫
S2
m
ωm = 1, B0

m is any connection on the S2
m factor, and

θ ∈ [0, 2π) parametrizes S1
θ . The important thing is the flux relation∫
S2
m×S1

θ

dBm = k

∫
S1
θ

dθ

2π

∫
S2
m

ωm = k . (4.20)
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Recalling τm = [dBm/2π]Z, integrating gives 〈x2 ∪ τm, [M5]〉 = k mod 2. When k is odd,
M5 is not nullbordant, and the background fields cannot be simultaneously extended to
any 6-manifold that M5 bounds.

Now, to show that this global anomaly is the pullback under π∗ of the local anomaly
τe ∪ τm, we simply use the subgroup embedding π : Z/2 → U(1) to embed the Z/2
2-connection in an U(1) 2-connection Be. One can take

Be = n

2ωe, n ∈ 2Z + 1,
∫
S2
e

ωe = 1. (4.21)

The 5-manifold (4.19) equipped with these structures Be and Bm can be regarded as the
pushforward in bordism of the M5 that we started with, π∗M5. This is nullbordant in
ΩSO

5 (B2U(1)e × B2U(1)m); it can be realised as the boundary of a six-manifold M6 =
D3
e × S2

m × S1
θ , where D3

e is one half of a 3-sphere S3 that is bounded by S2
e , to which the

electric 2-form connection (4.21) can now be extended with
∫
S3

dBe
2π = 2n.16 Using Stokes’

theorem, we thus have∫
S2
e×S2

m×S1
θ

Be
2π ∧

dBm
2π =

∫
D3
e

dBe
2π

∫
S2
m×S1

θ

dBm
2π = nk , (4.22)

obtaining the same phase from τeτm as we did from u2τm.
On the other hand, we only need to see that the characteristic class τe reduces to the

class Sq1u2 when we restrict to a flat 2-bundle with mod 2 2-holonomy, in order to show
that w2∪ τe pulls back to w2∪ Sq1u2. To see this most clearly, it is best to use the language
of cochains instead of differential forms. By identifying U(1) with R/Z, we represent the
U(1) 2-form gauge field Be by a real 2-cochain be. If the gauge field is flat, δbe must be
trivial as a cochain valued in R/Z. In other words, δbe is an integral 3-cochain, whose
cohomology class can be identified with τe. To use this flat U(1) 2-cochain to describe a
Z/2 2-form gauge field, we further impose that it must have mod 2 2-holonomy, i.e. be must
be half-integral-valued, not just any real cochain. Then b̃e := 2be is an integral cochain
whose mod 2 reduction defines a cohomology class in H2(M5;Z/2) that coincides with u2.
As Sq1u2 = β2(u2), where β2 is the Bockstein homomorphism in the long exact sequence
for cohomology

. . .→ Hn(M5;Z/2)→ Hn(M5;Z/4)→ Hn(M5;Z/2) β2−→ Hn+1(M5;Z/2)→ . . .

induced by the short exact sequence 0 → Z/2 → Z/4 → Z/2 → 0, it can be represented
by the mod 2 reduction of 1

2δb̃e. But this is exactly the same as δbe which represents τe.
Therefore, the mod 2 reduction of τe is Sq1u2 when we embed the Z/2 1-form symmetry
inside the U(1) 1-form symmetry.

There will be no further examples of anomaly interplay in the present paper; in
particular, we do not consider any examples with non-trivially fibred 2-groups (although
see footnote 28 for some comments along these lines).

16We emphasize that Be is no longer a flat connection when extended into the S3 bulk, even though it
restricts to a flat connection on the boundary of D3

e .
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5 QED anomalies revisited

The Maxwell examples in the previous section exhibited only 1-form global symmetries. In
this section, we move on to theories with both 0-form and 1-form global symmetries that
are fused together in a non-trivial 2-group structure.

Quantum electrodynamics (QED) in 4d with certain fermion content furnishes us with
such a theory. Here both the 0-form and 1-form symmetry groups are U(1), and the 2-group
structure is non-trivial when there is a mixed ’t Hooft anomaly between the global and
gauged 0-form U(1) currents, as was discovered in [45]. There is a further possible ’t Hooft
anomaly in the 2-group structure that comes from the usual cubic U(1) anomaly for the
0-form symmetry, but, rather than being a Z-valued local anomaly, the 2-group structure
transmutes this cubic anomaly to a discrete, Z/m-valued global anomaly [45], with m given
by the modulus of the integral Postnikov class of the 2-group. After reviewing the physics
arguments for these statements, we derive them from the cobordism perspective. Our
spectral sequence calculations reproduce the order of the finite Z/m anomaly.

5.1 From the physics perspective

Consider a system of Weyl fermions coupled to a U(1)a gauge group with dynamical gauge
field a. Assuming that a fermion with unit charge is present, the electric 1-form symmetry
is broken completely. This leaves only the magnetic U(1)[1] 1-form symmetry, with 2-form
current jm = ? f

2π as in (4.2), where f = da. Given enough Weyl fermions, one can find a
global U(1)[0] 0-form symmetry that does not suffer from the ABJ anomaly. It is possible,
however, that upon coupling a background gauge field A to this global 0-form symmetry,
there is an operator-valued mixed anomaly that is captured by the anomaly polynomial term

Φ6 ⊃
κ

16π3 f ∧ F ∧ F , (5.1)

where F = dA is the field strength for the background gauge field A. It describes, via
the usual descent procedure, the shift in the effective action under the background gauge
transformation A 7→ A+ dλ(0), with λ(0) a 2π-periodic scalar, by

δS = iκ
2

∫
M4

λ(0) f ∧ F
4π2 . (5.2)

It was realised in ref. [45] that we should not interpret this term as an anomaly, but rather
as a non-trivial 2-group structure.

To see why this is the case, we first couple a 2-form background gauge field B(2), which
satisfies the usual normalisation condition∫

M3

dB(2)

2π ∈ Z (5.3)

on closed 3-manifolds, to the magnetic 1-form symmetry via the coupling

Scoupling = i
2π

∫
M4

f ∧B(2). (5.4)
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Then the potential anomaly (5.2) can be cancelled by modifying the background gauge trans-
formation for B(2) from an ordinary 1-form gauge transformation B(2) 7→ B(2) + dλ(1), that
is independent of the 0-form gauge transformation of A, to a 2-group gauge transformation

A 7→ A+ dλ(0), B(2) 7→ B(2) + dλ(1) + κ̂

2πλ
(0)F, (5.5)

provided that we identify κ̂ with −κ/2.17 Here the gauge transformation parameter λ(1) is
a properly normalised U(1) gauge field.

This modified transformation mixes the magnetic U(1)[1] 1-form symmetry with the
U(1)[0] 0-form symmetry, and encodes the 2-group structure at the level of the background
fields. In our quadruplet notation, the 2-group is

G = (U(1),U(1), 0, κ̂), (5.6)

with the Postnikov class κ̂ ∈ H3(BU(1);U(1))∼=Z, where we use the fact thatH3(BU(1);U(1))
with continuous U(1) coefficients is isomorphic to H4(BU(1);Z) ∼= Z via the universal
coefficient theorem. The nerve of such a 2-group is the extension

|G| = U(1)[0] ×κ̂ U(1)[1]. (5.7)

The non-trivial 2-group structure can also be seen without turning on the background gauge
fields explicitly. If we write j for the 1-form current associated with U(1)[0], then the Ward
identity takes the non-trivial form

∂µjµ(x)jν(y) = κ̂

2π∂
λδ(4)(x− y)jmνλ(y) , (5.8)

where jmνλ are the components of the magnetic 2-form current jm. This Ward identity shows
how the 0-form and 1-form currents are fused, realising eq. (1.3).

The 2-group symmetry U(1)[0] ×κ̂ U(1)[1] can still suffer from an ’t Hooft anomaly.
Recall that, when κ̂ = 0, the anomaly polynomial for our system of Weyl fermions is

Φ6 = A3
6 c1(F )3 − Amixed

24 p1(R)c1(F ), (5.9)

where c1(F ) = F/2π is the first Chern class of the U(1)[0] bundle, and p1(R) = 1
8π2TrR∧R

is the first Pontryagin class of the tangent bundle, where R is the curvature 2-form.
Before we continue, it is important to discuss the role of these anomaly coefficients in
the (co)bordism context, still for the case κ̂ = 0. Naïvely, one might think that the cubic
anomaly coefficient A3 and the mixed U(1)-gravitational anomaly coefficient Amixed are
the two integers that classify anomalies according to cobordism, i.e. that A3 and Amixed
can be chosen as generators of the group Hom

(
ΩSpin

6 (BU(1)) ,Z
)
∼= Z× Z. However, this

is not the correct identification because A3 and Amixed are not quite independent. It can
be shown that

α1 := c1(F )3 and α2 := c1(F )
6

(
c1(F )2 − 1

4p1(R)
)

(5.10)

17This is well-defined because it can be shown that κ is always even.
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are independent integral cohomology classes.18 In terms of these basis generators, we can
write Φ6 as

Φ6 = 1
6 (A3 −Amixed)α1 +Amixedα2. (5.11)

Again, by the Atiyah-Singer index theorem, Φ6 must be integral. Since α1 and α2 are integral
basis generators, we can deduce that the two integers (r, s) that label Hom

(
ΩSpin

6 (BU(1)) ,Z
)

are
(r, s) =

(1
6 (A3 −Amixed) ,Amixed

)
. (5.12)

Continuing, let’s switch the Postnikov class κ̂ back on, and couple the background
2-form gauge field B(2) to the U(1)[1] 1-form symmetry. We are free to add a Green-Schwarz
counter-term

SGS = in

2π

∫
M4

B(2) ∧ F, n ∈ Z (5.13)

to the action. Under the 2-group transformation (5.5), the effective action shifts if the
anomaly coefficients A3 and Amixed are non-zero, by

δS = iA3 + 6nκ̂
6

∫
M4

λ(0)F ∧ F
4π2 − iAmixed

24

∫
M4

λ(0)p1(R). (5.14)

Since one may choose the counterterm coefficient n to be any integer, one sees that A3
is only well-defined modulo 6κ̂ [45]. It follows that the integer r = 1

6 (A3 −Amixed) that
we claim classifies the anomaly is not really valued in Z, being well-defined only modulo
|κ̂|. This corresponds to a global anomaly in the 2-group symmetry, that is valued in the
cyclic group

Z/m, m = |κ̂|. (5.15)

We emphasize that, even though A3 is well-defined modulo 6κ̂ (as was derived in [45]), the
discrete group that classifies the global anomaly has order |κ̂| (and not 6|κ̂|). The mixed
gravitational anomaly remains a Z-valued local anomaly.

5.2 From the bordism perspective

In this section we show how the ’t Hooft anomalies afflicting the 2-group global symmetry,
that we have just described, can be precisely understood using cobordism. To do so, we
need to compute the generalised cohomology groups

H6
IZ (MT (Spin× |G|)) , |G| = U(1)(1)[0] ×κ̂ U(1)(1)[1] , (5.16)

which are built from ΩSpin
5 (B|G|) and ΩSpin

6 (B|G|), for each value of the Postnikov class
κ̂. These abelian groups detect and classify all possible anomalies for this 2-group symme-
try type.

To compute these bordism groups, we follow the general strategy outlined in section 3.2.
We first apply the cohomological Serre spectral sequence to the fibration

K(Z, 3)→ B|G| → K(Z, 2) (5.17)
18That α1 is integral is evident from the definition of c1(F ). To see that α2 is integral, we observe

that it is the anomaly polynomial for a Weyl fermion with charge +1, and then apply the Atiyah-Singer
index theorem.
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Figure 2. Fourth and fifth pages of the Serre spectral sequence to compute the integral cohomology
of the fibration K(Z, 3)→ B|G| → K(Z, 2).

to calculate the cohomology of B|G| in relevant low degrees. Then we will convert the result
into homology groups, which are fed into the Atiyah-Hirzebruch spectral sequence for the
fibration pt→ B|G| → B|G|, for which the second page is E2

p,q = Hp

(
B|G|; ΩSpin

q (pt)
)
, to

compute the spin bordism.
So, to begin, the E2 page of the cohomological Serre spectral sequence for the fibra-

tion (5.17) is given by
Ep,q2 = Hp(K(Z, 2);Hq(K(Z, 3);Z)

)
. (5.18)

Using H•(K(Z, 3);Z) ∼= {Z, 0, 0,Z, 0, 0,Z/2, 0,Z/3,Z/2, . . .}, given in table 3 of
appendix A.1, we can construct the E2 page as shown in the left-hand side of figure 2. In
fact, what is shown there is the E4 page, since the entries are sparse enough that there are
no non-trivial differentials in the region we are interested in until page E4.

The differentials α, β, and γ shown on the left-hand diagram of figure 2 are linear in
the Postnikov class κ̂ ∈ Z (see the appendix of ref. [66]). More precisely, we write

H3(K(Z, 3);Z) ∼= Hom(Z[1],Z) ∼= Z

using the universal coefficient theorem and the fact that K(Z, 3) = B2U(1)[1] = B3Z[1].
Here, we include the superscript to emphasise that this Z comes from our U(1) 1-form
symmetry part. From this, we can write the entry E0,3

4 in the Serre spectral sequence as
Hom(Z[1],Z). Then, the differential α is given by ‘contraction’ (adopting the terminology
of [66]) with the Postnikov class

α : Hom(Z[1],Z)→ H4(BU(1)[0];Z)
x 7→ x ◦ κ̂

(5.19)

where we make use of the fact that the Postnikov class is a cohomology class

κ̂ ∈ H3(BU(1)[0],U(1)[1]) ∼= H4(BU(1)[0];Z[1]) .
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Similar arguments apply for the differentials β and γ. Thus, α, β, and γ map 1 to ±κ̂,
resulting in the E5 page as shown, where m := |κ̂|. We can then read off the integral
cohomology groups to be

H•(B|G|;Z) ∼= {Z, 0,Z, 0,Z/m, 0, e(Z/2,Z/m), 0, e(Z/6,Z/m), . . .} (5.20)

where the notation e(A,B) denotes an extension of A by B, viz. a group that fits in the
short exact sequence B ↪→ e(A,B) � A. We compute the mod 2 cohomology by the same
method in appendix A.2.

Heuristically, one can also argue for the form of α and β as follows (cf. appendix B.6
of ref. [24]). Let us start with a representative of a generator of the cohomology group
H3(K(Z, 3),Z) ∼= Z, and ask what it becomes when K(Z, 3) is the fibre of B|G|. Given the
normalisation condition (5.3), the 3-form

h̃ := dB(2)/2π (5.21)

represents the generator of H3(K(Z, 3);Z) ∼= Z. This is true when K(Z, 3) stands on its
own. However, when we pass to the 2-group G and take K(Z, 3) to be the fibre of B|G|,
then h̃ is not gauge-invariant under (5.5) for a general Postnikov class, and cannot be a
representative of any cohomology class for B|G|. We can remedy this by modifying the
definition of h̃ to

h := h̃− κ̂

2πA ∧ F. (5.22)

The trade off is that the gauge-invariant h is no longer closed; instead

dh = − κ̂

4π2F ∧ F = −κ̂c1 ∪ c1, (5.23)

where c1 := F
2π is the first Chern class of the U(1)(1)[0] bundle, and c1 ∪ c1 can be taken

as the generator of H4(K(Z, 2);Z). The 2-group relation (5.23) implies that both the
differentials α and β in figure 2 map 1 to −κ̂.19

From this cohomological starting point, we can proceed to compute the spin bordism
groups. We find it is helpful to split the discussion into the cases where m is even or odd,
for which the bordism group calculations are tackled using different tricks. As a warm up,
we first consider the simplest case where m is zero, corresponding to a 0-form and 1-form
symmetry that do not mix.

5.2.1 Zero Postnikov class

We first consider the trivial toric 2-group where B|G| is a simply a product space K(Z, 2)×
K(Z, 3). As B|G| is a product, we can use the Künneth theorem to determine the homology
groups of K(Z, 2)×K(Z, 3) from the homology groups of each factor, given by eq. (A.2)
and table 3 in appendix A.1. We obtain

H•(K(Z, 2)×K(Z, 3);Z) ∼= {Z, 0,Z,Z,Z,Z× Z/2,Z,Z× Z/6,Z× Z/2, . . .} (5.24)

and construct the second page of the AHSS as shown in figure 3, with non-trivial differentials
on the E2 page indicated by coloured arrows.

19The extra minus sign comes from the convention used to define the Postnikov class.
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Figure 3. The E2 and E3 pages for the Atiyah-Hirzebruch spectral sequence for ΩSpin
• (K(Z, 2)×

K(Z, 3)).

The differentials on the zeroth and the first rows are the composition S̃q2 ◦ ρ2 and S̃q2,
respectively, where ρ2 is reduction modulo 2. To compute the action of these differentials,
we need to know how the Steenrod squares act on the mod 2 cohomology ring of the product
K(Z, 2)×K(Z, 3). From the mod 2 cohomology rings of K(Z, 2) and K(Z, 3) given by (A.3)
and (A.4), we obtain

H•(K(Z, 2)×K(Z, 3);Z/2) ∼= Z/2[c1, τ3, Sq2τ3, Sq4 Sq2τ3, . . .], (5.25)

where c1 and τ3 are the unique generators in degree 2 and 3, respectively. In our diagram,
the red maps correspond to Sq2c1 = c2

1, the blue maps to Sq2τ3 being a generator of
H•(K(Z, 3);Z/2), and the magenta maps to Sq2(c1τ3) = c2

1τ3. The differential depicted in
the E3 page from E3

7,0 in the diagram must be non-trivial by comparing ΩSpin
6 (K(Z, 2)×

K(Z, 3)) with the result computed with the Adams spectral sequence. We can then read off
the bordism groups in lower degrees, which we collect below in table 1. We piece together
the cobordism group

H6
IZ(MT (Spin×U(1)×BU(1))) ∼= Z× Z, (5.26)

which classifies anomalies for this symmetry type. The pair of Z-valued local anomalies
just corrresponds to the usual cubic c3

1 and mixed gravitational c1p1 anomalies associated
with the U(1) 0-form symmetry. The presence of the 1-form symmetry here plays no role in
anomaly cancellation for this dimension.

5.2.2 Even Postnikov class

Now we turn to the case where m = |κ̂| is a non-zero even integer. Continuing from
the cohomology calculation above, summarised in eq. (5.20), there are two options for
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Figure 4. The E2 page of the AHSS for the fibration pt→ B|G| → B|G| when G is the 2-group
U(1)[0] ×κ̂ U(1)[1] with m := |κ̂| even.

the extension e(Z/2,Z/m); either the trivial extension Z/2× Z/m or the non-trivial one
e(Z/2,Z/m) ∼= Z/(2m), which are non-isomorphic. By comparing the mod 2 cohomology
calculated from applying the universal coefficient theorem to (5.20) and the one calculated
directly from the Serre spectral sequence, one can show that the correct extension is the
direct product Z/2× Z/m. The integral homology for B|G| is then

H• (B|G|;Z) ∼= {Z, 0,Z,Z/m, 0,Z/m× Z/2, 0, e(Z/6,Z/m), . . .} (5.27)

and the mod 2 homology is

H•(B|G|;Z/2) ∼= {Z/2, 0,Z/2,Z/2,Z/2,Z/2× Z/2, . . .} , (5.28)

The E2 page of the AHSS is then given by figure 4. We observe that there are non-vanishing
differentials already on the E2 page (which will not be the case when we turn to the case of
odd m). These non-trivial E2 differentials make the spectral sequence easier to compute,
as follows.

The differentials α and β on the second page are duals S̃q2 of the Steenrod square
Sq2, while the differential γ is a mod 2 reduction followed by the dual of Sq2 [83]. The
Steenrod square dual to β sends a unique generator in H2(B|G|;Z/2) to a unique generator
in H4(B|G|;Z/2) (cf. appendix A.2), so β must be the non-trivial map from Z/2 to Z/2,
killing off both factors. Similarly, the Steenrod square dual to α acts on the unique generator
of H3(B|G|;Z/2) that comes from the generator τ3 ∈ H3(K(Z, 3);Z/2) of the fibre, which
we will also label by τ3. The image is a generator of H5(B|G|;Z/2) that comes from Sq2τ3 of
H5(K(Z, 3);Z/2). It generates the Z/2 factor in the mod 2 cohomology that is a reduction
from the Z/2 factor in the integral cohomology, and not the Z/m factor since it is the Z/2
factor that arise from the fibre’s contribution. Therefore, both α and γ must be non-trivial,
with ker γ ∼= Z/m, as indicated in the E3 page in figure 4.
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i 0 1 2 3 4 5 6
ΩSpin
i (B|G|), κ̂ 6= 0 Z Z/2 Z× Z/2 Z/(2|κ̂|) Z Z/|κ̂| Z× Tors

ΩSpin
i (B|G|), κ̂ = 0 Z Z/2 Z× Z/2 Z Z× Z Z Z× Z× Tors

Table 1. Spin bordism groups for the twisted 2-group symmetry G = U(1)[0] ×κ̂ U(1)[1]. Here, Tors
denotes an undetermined pure torsion part. For comparison, we also include the bordism groups in
the case κ̂ = 0, which corresponds to a direct product of 0-form and 1-form symmetries. One can thus
see how, for both 2d and 4d quantum field theories, local anomalies in the untwisted case morph into
global anomalies when the Postnikov class κ̂ is turned on, thanks to a Green-Schwarz-like mechanism.

Before continuing, we pause here to emphasize the importance of using (spin) cobor-
dism, rather than just cohomology, to study ’t Hooft anomalies in these theories. At
the level of cohomology, the existence of a non-trivial Z/2-valued cohomology class
Sq2τ3 ∈ H5(K(Z, 3);Z/2) might suggest there is a non-trivial SPT phase on 5-manifolds
M5, or equivalently a non-trivial anomaly theory for the corresponding 4d theory, with
partition function

Z = exp
(
πi
∫
M5

Sq2τ3

)
, (5.29)

where Sq2τ3 is pulled back to M5. But, one can use Wu’s relation to trade the Steenrod
square operation for a Stiefel-Whitney class [77], viz.

Z = exp
(
πi
∫
M5

w2(TM5) ∪ τ3

)
. (5.30)

If we now restrict to M5 being a spin manifold, then w2(TM5) is trivial and we immediately
learn that this SPT phase is trivial. Of course, this ‘trivialisation’ of the SPT phase
corresponding to the cohomology class in H5(K(Z, 3);Z/2) is automatically captured by
the spectral sequence computation for spin bordism, by the non-triviality of the map γ on
turning from the second to the third page of the AHSS.

Continuing with the bordism computation, we now find that the entries in the range
p + q ≤ 5 stabilise on this E3 page, whence we can read off the spin bordism groups for
2-group symmetry G = U(1)[0] ×κ̂ U(1)[1] with even Postnikov class κ̂ up to degree-5, which
are listed in table 1. There is still an undetermined group extension in ΩSpin

3 (B|G|) but
we will argue from the physics point of view in section 6 that it must be the non-trivial
extension Z/(2m). In summary, our results are those given in table 1.

5.2.3 Odd Postnikov class

We now turn to the case where m is odd, for which the spin bordism computation turns out
to be rather more difficult, technically. Firstly, when m is odd, the extension e(Z/2,Z/m)
is unambiguously Z/m× Z/2 (which is, for odd m, isomorphic to Z/(2m)). The integral
homology of B|G| is as written in eq. (5.27), and the mod 2 homology groups are now

H• (B|G|;Z/2) ∼= {Z/2, 0,Z/2, 0, 0,Z/2, . . .} (5.31)
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Figure 5. The E3 page of the AHSS for the fibration pt→ B|G| → B|G| when G is the 2-group
U(1)[0] ×κ̂ U(1)[1] with m := |κ̂| odd.

by the universal coefficient theorem. Now we feed these results into the AHSS for the trivial
point fibration pt → B|G| → B|G|. The E2 has no non-trivial differentials in the range
of interest.

The E3 page is shown in figure 5, with a single potentially non-trivial differential in the
range of interest, d3 : E3

5,0 → E3
2,2. If this differential were trivial, then ΩSpin

5 (B|G|) would
equal Z/m×Z/2, and ΩSpin

4 (B|G|) would equal Z×Z/2. The factor of Z/m in ΩSpin
5 (B|G|)

would correspond to the global anomaly that we described in the previous section, which
we know to be valued in Z/m as in (5.15). The extra factor of Z/2 would presumably
correspond to a further global anomaly that we have not seen so far by physics arguments.
On the other hand, if this differential were the non-trivial map, then ΩSpin

5 (B|G|) would
equal Z/m, agreeing precisely with the physics account, and ΩSpin

4 (B|G|) would just equal Z.
It turns out that this all-important d3 differential is non-trivial. But being a differential

on the third page, there are no straightforwardly-applicable formulae (analogous to the
formulae in terms of Steenrod squares that are available on the second page) that we can
use to compute it directly. Indeed, our usual AHSS plus ASS techniques are not sufficient
to constrain this differential. This differential can nonetheless be evaluated using different
arguments,20 which we present in appendix C. The gist of the argument is as follows.

The central character is a long exact sequence in bordism groups,21 analogous to the
Gysin long exact sequence in ordinary homology, of the form

· · · → ΩSpin
d (S(V ))→ ΩSpin

d (B|G|)→ ΩSpin
d−2 ((B|G|)V−2)→ ΩSpin

d (S(V ))→ . . . (5.32)
20We are very grateful to Arun Debray for sharing this ingenious argument to compute this differential.

Appendix C is written by Arun Debray.
21See appendix E of ref. [32] for a related theorem. The proof of the theorem used in this paper, and that

of ref. [32], will appear in future work [84].
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Here V → B|G| is the pullback bundle (which is rank 2) of the tautological line bundle
L→ BU(1)[0] along the quotient map q : B|G| → BU(1)[0], S(V )→ B|G| is the associated
sphere bundle of V , and (B|G|)V−2 is the Thom spectrum of the virtual bundle. This long
exact sequence in bordism is extremely powerful: by proving that the groups ΩSpin

5 (S(V ))
and ΩSpin

3 ((B|G|)V−2) both lack free and 2-torsion summands, one learns that the group
ΩSpin

5 (B|G|) in the middle, which is our bordism group of interest, also lacks 2-torsion. The
Z/2 factor discussed above is therefore absent (from which we learn that it must be killed
by the differential d3 which is therefore non-trivial).

Putting things together, we can thus extract all the spin bordism groups for 2-group
symmetry G = U(1)[0] ×κ̂ U(1)[1], with odd Postnikov class κ̂, up to degree-5.

5.2.4 The free part

When m is non-trivial, regardless of its parity, we can also show that the free part of
ΩSpin

6 (B|G|) is given by Z coming from the entry Er2,4. First, observe that the free part
of the ΩSpin

6 (B|G|), if there is one at all, can only come from this entry as any other
entry from the diagonal p + q = 6 is either trivial or pure torsion. Next, we need to
show that E∞2,4 is non-trivial. The only differential that could kill it along the way is
d5 : E5

7,0 → E5
2,4. But this differential must be trivial because E5

7,0 is pure torsion (as E2
7,0,

given by H7(B|G|;Z) ∼= e(Z/6,Z/m) in (5.27), is pure torsion), and Hom(G,Z) = 0 if G is
pure torsion. Therefore, there is one free factor in the diagonal E∞p,q with p+ q = 6, and
we obtain

Hom
(
ΩSpin

6 (B|G|),Z
)
∼= Z. (5.33)

From these results, we piece together the cobordism group that classifies anomalies for
this global 2-group symmetry, valid for even and odd m 6= 0:

H6
IZ (MT (Spin× |G|)) ∼= Z/m× Z . (5.34)

In terms of the anomaly coefficients, the space of anomaly theories is classified by

(r, s) =
(1

6 (A3 −Amixed) mod m,Amixed

)
∈ Z/m× Z , m = |κ̂| , (5.35)

in agreement with the results of the previous subsection. To reiterate, the local anomaly
associated with c3

1 (i.e. whose coefficient is the sum of U(1)(1)[0] charges cubed) becomes a
global anomaly when the 0-form and 1-form symmetries are fused into a 2-group defined so
that the mixed ’t Hooft anomaly (∼ f ∧ F ∧ F ) vanishes. The mixed gravitational anomaly
associated with p1c1 remains a Z-valued local anomaly.

The result for the spin bordism group in degree-3 in table 1 is also interesting, implying
the presence of an novel global anomaly structure for the corresponding symmetry in two
dimensions. We discuss this from a physics perspective in section 6.

6 Abelian 2-group enhancement in two dimensions

In this section, we consider 2d avatars of the 4d 2-group anomalies that we have been
discussing. In this lower-dimensional version we will find some interesting differences.
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In section 5.2, we computed the spin bordism groups for the 2-group symmetry G =
U(1)[0] ×κ̂ U(1)[1]. In particular, we obtained

ΩSpin
3 (B|G|) ∼= Z/(2m)

where m = |κ̂|. With the fourth bordism group given by Z, we can put things together to
get the cobordism group

H4
IZ (M (Spin×G)) ∼= Z/(2m)× Z . (6.1)

This is similar to the result for H6
IZ that was pertinent to anomalies in 4d, except for the

fact that the global anomaly is here ‘twice as fine’ as the Z/m anomaly in 4d.22 That
extra division by 2 will correspond to a subtle new global anomaly associated with the spin
structure, which will be our main interest in this section.

Before we discuss the global Z/(2m) anomaly in more depth, let us first discuss the
physics interpretation of a 2-group symmetry G in two dimensions, which is rather different
to the 4d case. Recall that in 4d, the 1-form symmetry U(1)[1] was identified with the
magnetic 1-form symmetry, with 2-form current proportional to ?f . But in general d ≥ 3
spacetime dimensions, the magnetic symmetry is a (d− 3)-form symmetry, and so there is
no such symmetry in 2d. There is, however, a trivially conserved ‘1-form symmetry’ U(1)[1]

top
whose 2-form current is simply jtop = vol2, the volume form. This symmetry does not act
on any line operators in the theory and so one should not think of it as a physical 1-form
symmetry — but it will play a role in what follows.

Now suppose there is a global 0-form symmetry G[0] with background gauge field A
with curvature F . If we first cancel the pure gravitational anomaly by adding neutral
fermions, the local anomalies in G[0] are captured by the degree-4 anomaly polynomial

Φ4 = TrR

(
F ∧ F

8π2

)
. (6.2)

The usual ’t Hooftian interpretation of Φ4 6= 0 would be that, if one tries to gauge G[0], the
anomaly ‘breaks’ the symmetry G[0] in the quantum theory. However, Sharpe re-interprets
Φ4 6= 0 as indicating a weaker 2-group symmetry structure in the 2d quantum theory [44],
corresponding to the extension BU(1) ↪→ G � G[0]. In other words, in 2d one can invoke
the auxiliary U(1) 1-form symmetry to trade an anomaly in a 0-form symmetry for a
2-group structure. This is of course just a simpler version of the 4d situation described in
section 5.1, in which a mixed ’t Hooft anomaly corresponding to a term ∼ f ∧ F ∧ F ⊃ Φ6
was re-interpreted as signalling a weaker 2-group symmetry.

But in this section we will see that, in the case that one needs a spin structure to
define the field theory, it is not always possible to completely absorb the ’t Hooft anomaly
associated with Φ4 by a well-defined 2-group structure. Rather, there can be a residual
Z/2-valued anomaly left over, which one should interpret as an ’t Hooft anomaly in the
2-group symmetry itself.

22The Z-valued local anomaly here is simply the gravitational anomaly associated with − 1
24p1(R)TrR1 ⊂

Φ4 in the degree-4 anomaly polynomial, which can always be cancelled by adding neutral fermions and so
plays no further role in our discussion.
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6.1 ‘Spin structure anomalies’ in two dimensions

To see how this works, let us now be more precise and set G[0] = U(1)[0]. Letting {qi} denote
the U(1)[0] charges of a set of (say, left-handed) chiral fermions, the anomaly polynomial is

Φ4 = 1
2A2 c1 ∪ c1 , A2 :=

∑
i

q2
i , (6.3)

where c1 = F/2π is the first Chern class of the U(1)[0] bundle. By inflow, one can use the
associated Chern-Simons form I3 = A2

8π2A ∧ F to compute the variation of the effective
action under the background gauge transformation A→ A+ dλ(0),

δS0 = −iA2
4π

∫
M2

λ(0)F . (6.4)

Now, let us try to implement the philosophy above, and trivialise this anomaly by promoting
U(1)[0] to a 2-group global symmetry by fusing with U(1)[1]

top. We turn on a background
2-form gauge field B(2) that couples to the trivially conserved current jtop = vol2, via the
coupling

Scoupling = i
∫
M2

?jtopB
(2) = i

∫
M2

B(2), (6.5)

because ?vol2 = 1.
We consider the U(1)[0] and U(1)[1]

top symmetries to be fused via the toric 2-group
structure G = U(1)[0] ×κ̂ U(1)(1)[1]

top, where κ̂ ∈ Z is the Postnikov class. This prescribes
the by-now-familiar transformation (5.5) on the background gauge fields, under which

δScoupling = i κ̂2π

∫
M2

λ(0)F . (6.6)

We see that the local anomaly associated with the F ∧F term in Φ4 is completely removed iff

κ̂ = A2
2 . (6.7)

But, since the Postnikov class κ̂ is neccessarily integral, this is possible only when A2 is an
even integer. Thus, there is an order 2 anomaly remaining when A2 is odd.

This chimes perfectly with our computation of the bordism group ΩSpin
3 (B|G|) in

section 5.2, that we quoted at the beginning of this section, which implies that there is in
general a mod 2|κ̂| global anomaly. If one imagines fixing the 2-group structure, in other
words fixing an integer κ̂, then one can vary the fermion content and ask whether there is a
global ’t Hooft anomaly for the 2-group G. We can think of the coupling term (6.5) as a
Green-Schwarz counterterm, which effectively shifts the anomaly coefficient by

A2 → A2 + 2nκ̂ , n ∈ Z, (6.8)

and so the residual anomaly is clearly

A2 mod 2m, m = |κ̂|. (6.9)

This is the Z/(2m)-valued global anomaly in the 2-group symmetry that is detected by
ΩSpin

3 (B|G|). Even if we choose the minimal value for κ̂, a mod 2 anomaly persists iff∑
i

q2
i = 1 mod 2 =⇒ No = 1 mod 2 , (6.10)

where No is the number of fermions with odd U(1)[0] charges.
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One can offer a different perspective on this anomaly by thinking about a generator
for ΩSpin

3 (B|G|), which makes it more transparent how this mod 2 anomaly is related to
the requirement of a spin structure. If we look back at the AHSS in figure 5, we see
that the factor of Z/2 that ends up in ΩSpin

3 (B|G|) comes from the E2
2,1 element, which

stabilizes straight away from the E2 page. Since E2
2,1 = H2

(
B|G|; ΩSpin

1 (pt)
)
, this suggests

a generator for this Z/2 factor can be taken to be a mapping torus

M3 = S2 × S1, (6.11)

with c1(F ) ∈ 2Z + 1 on the S2 factor, corresponding to an odd-charged monopole, and
the non-bounding spin structure on the S1, corresponding to a non-trivial element of
ΩSpin

1 (pt) ∼= Z/2. This would suggest that the transformation by (−1)F , which counts
fermion zero modes, is anomalous on S2 with an odd-charged monopole configuration for
the background gauge field.23

We can of course see this from an elementary calculation. For our set of left-handed
chiral fermions with charges {qi}, the index of the Dirac operator on S2, which recall is
Ind(i /D2) = nL − nR the number of (LH minus RH) zero modes of the Dirac operator, is
equal to

Ind(i /D2) =
∫
S2

Φ2 =
∫
S2

TrR

(
F

2π

)
= c1(F )

∑
i

qi (6.12)

by the 2d Atiyah-Singer index theorem. Thus, the total number of zero modes N := nL+nR,
which is congruent to nL − nR mod 2, satisfies

N = c1(F )
∑
i

qi mod 2 . (6.13)

Choosing c1(F ) to be odd on S2, as we are free to do, we see that (−1)F , which counts
these zero modes, flips the sign of the partition function when∑

i

qi = 1 mod 2 =⇒ No = 1 mod 2. (6.14)

For such fermion content, the 2-group symmetry and (−1)F are therefore equivalently
anomalous. (From the 2-group perspective, the anomalous transformation corresponds
simply to the element eiπ ∈ U(1)[0].24)

23We do not believe, however, that this anomaly can be detected from the torus (in this case, just a circle)
Hilbert space, using the methods set out in ref. [85]. This is because a system with one Weyl fermion with
unit U(1) charge (together with a Weyl fermion of opposite chirality to cancel the gravitational anomaly)
will have an even number of Majorana zero modes, which allows construction of a Z/2-graded Hilbert space
even in the sector twisted by −1 ∈ U(1). (The failure to construct a Z/2-graded Hilbert space is one sign of
anomalies involving the spin structure, as studied in [85].)

24The existence of this global Z/2-valued anomaly, despite the fact the anomalous U(1) gauge transforma-
tion is clearly connected to the identity, further evidences the fact that global anomalies do not require the
existence of ‘large gauge transformations’ captured by, say, πd(G) (when restricting the spacetime topology
to be a sphere). This disagreement between homotopy- and bordism-based criteria for global anomalies was
discussed in ref. [25]. In this case, the global anomaly arises because an otherwise local anomaly is only
incompletely dealt with by the Green-Schwarz mechanism.
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This should be contrasted with the situation in four dimensions that we examined in
section 5.1. In that case, the corresponding formula for the number of fermion zero modes,
on say M4 = S4, is Ind(i /D4) = 1

2c
2
1
∑
i q

2
i . But, for a spin 4-manifold, the Atiyah-Singer

index theorem implies that c2
1 is an even integer, and moreover cancelling the local mixed

gravitational anomaly =⇒
∑
i qi = 0 =⇒

∑
i q

2
i = 0 mod 2. The index and therefore the

number of zero modes is then necessarily even, meaning there is no analogous anomaly in
(−1)F . This is why the spin bordism calculation exposes ‘only’ a mod |κ̂| anomaly in the
4d case, but the finer mod 2|κ̂| in 2d.25

Example: the 3-4-5-0 model. To furnish an explicit example of a theory featuring
this irremovable anomaly, we consider the so-called “3-4-5-0 model”; that is, a U(1) gauge
theory in 2d with two left-moving Weyl fermions ψ1, ψ2 with charges 3 and 4, and two
right-moving Weyl fermions χ1, χ2 with charges 5 and 0. The theory is free of both gauge
and gravitational anomalies, and so we can ask about its global symmetries. There is a
somewhat trivial U(1)χ2 global symmetry rotating the neutral fermion χ2 (with charge 1).
Naïvely, there are two further U(1) global symmetries, call them U(1)1 and U(1)2, that act
on the remaining fermions, whose charges Q1 and Q2 can be chosen independently in one
basis as follows:

Field Qgauge Q1 Q2
ψ1 3 3 1
ψ2 4 4 3
χ1 5 5 3

One immediately sees that Q1 coincides with the gauge charge. Thus, the U(1)1 transfor-
mation can be undone by a gauge transformation. Thus, the correct global symmetry is a
product U(1)2 ×U(1)χ2 with charges given by:

Field Qgauge Q2 Qχ2

ψ1 3 1 0
ψ2 4 3 0
χ1 5 3 0
χ2 0 0 1

The corresponding ’t Hooft anomaly for each U(1) factor of the global symmetry is odd
as desired.

6.2 Non-spin generalisation

We have argued that the order 2 anomaly just described, for a 2d theory with 2-group
symmetry G = U(1)[0] ×κ̂ U(1)[1], is intrinsically related to the requirement of a spin
structure and the use of spin bordism. More broadly, all the 2-group anomalies that we

25A more mundane way to understand this difference is therefore simply as a consequence of the normali-
sation of the various characteristic classes on spin manifolds of the relevant dimension.
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i 0 1 2 3 4 5 6
ΩSpinc
i (pt) Z 0 Z 0 Z2 0 Z2

ΩSpinc
i (B|G|) Z 0 Z2 Z/|κ̂| Z3 e(Z/2|κ̂|,Z/|κ̂|) Z4

Table 2. Spinc bordism groups for a point [86], and for 2-group symmetry G = U(1)[0] ×κ̂ U(1)[1].

E2 page

0 1 2 3 4 5 6

0

1
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4

5

6

Z

0

Z

0
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0
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0

0

0

0

0

0

0

Z

0

Z

0

Z2

0

Z2

Z/m

0

Z/m

0

(Z/m)2

0

(Z/m)2

0

0

0

0

0

0

0

Z/m×Z/2

0

Z/m×Z/2

0

∗

∗

0

0

∗

∗

Figure 6. The E2 page of the AHSS for spinc bordism, for the fibration pt → B|G| → B|G|,
where G is the 2-group U(1)[0] ×κ̂ U(1)[1] with m := |κ̂|. Up to the p+ q = 6 diagonal there are no
non-vanishing differentials whatsoever, and the entries shown in this region stabilize to the last page.

study are sensitive to the full choice of tangential structure — this is especially the case
when computing the order of a finite global anomaly.

To develop this idea further, we consider a theory defined with the same 2-group
structure, but now using a Spinc structure. Recall that in d dimensions the group Spinc(d)
is [Spin(d)×U(1)]/Z/2, defined by identifying the element (−1)F ∈ Spin(d) with the order
2 element of a U(1) symmetry, that we here take to be an auxiliary global symmetry
used to define spinors; using a Spinc rather than a Spin structure allows us to define our
fermionic theory on non-spin manifolds (indeed, all orientable manifolds up to and including
dimension 4 admit a Spinc structure).

Having already computed the integral homology (5.27) of B|G| in section 5.2, and
using the well-known result for the Spinc-bordism groups of a point [86] (see the first row
in table 2), it is straightforward to use the AHSS

E2
p,q = Hp(B|G|; ΩSpinc

q (pt)
)

=⇒ ΩSpinc
q (B|G|) (6.15)

to compute the Spinc bordism groups of interest. The E2 page is shown in figure 6. Things
could not be much simpler; in the region of interest, all differentials are vanishing and all
the elements on E2 up to the p+ q = 6 diagonal stabilize to the last page. The bordism
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groups are recorded in the second row of table 2. There is an extension problem that we
cannot resolve using the AHSS for Ω5, but it is not relevant to our discussion here.

It is curious that ΩSpinc
3 (B|G|) ∼= Z/m compared to ΩSpin

3 (B|G|) ∼= Z/(2m). One might
naïvely expect the same classification because the anomaly coefficient A2 is shifted by 2nκ̂ for
any n ∈ Z from the 2-group transformation of the Green-Schwarz counter-term in

∫
M2

B(2).
The puzzle can be resolved by correctly identifying the four integers in ΩSpinc

4 (BU(1)) ∼= Z4

that properly classify all perturbative anomalies, before turning on the 2-group structure.
Let F be the field strength for the background gauge field of the U(1) 0-form global

symmetry as before, and let G denote the field strength associated to the Spinc connection.26

Consider N left-moving fermions with charges {qi} under the ordinary U(1) global symmetry
and with charges {gi} under the Spinc connection. There is no constraint on the qi, but
the gi must all be odd integers. The anomaly polynomial associated to this matter content
is given by

Φ4 = 1
2

N∑
i=1

q2
i c1(F )2 +

N∑
i=1

giqic1(F )c1(G) + 1
2

N∑
i=1

g2
i c1(G)2 −N p1(R)

24 , (6.16)

where p1(R) is the first Pontryagin class of the tangent bundle. The four anomaly coefficients
that accompany each term in Φ4 are not strictly independent from one another, so they
cannot be taken as labels for each factor of Z in ΩSpin

4 (BU(1)).
To extract a set of correct integer labels, we first choose an integral basis for the

anomaly polynomial in terms of linear combinations of c1(F )2, c1(F )c1(G), c1(G)2, and
p1(R). One option is

α1 = c1(F )2, α2 = 1
2c1(F 2) + c1(F )c1(G), α3 = 1

2c1(G)2 − p1(R)
24 , α4 = p1(R)

3 .

(6.17)
We know that α4 is integral because

∫
M4

p1(R)/3 is just the signature ofM4 which is integral
(and takes a minimal value of 1, e.g. on M4 = CP 2) for any orientable 4-manifold M4. To
see the integrality of α3, we apply the Atiyah-Singer index theorem for a Spinc connection
coupled to a single left-moving fermion with q = 0 and g = 1. Next, applying the same
index theorem to a single left-moving fermion with q = 1 and g = 1 tells us that α2 is an
integer. Finally, the class α1 is integral by definition, and indeed it takes a minimal value
of 1. To see this, take M4 = CP 2 with F such that

∫
F/2π = 1 on a CP 1 subspace. Hence

c1(F ) is the generator x of H2(CP 2;Z), so c1(F )2 = x2 = 1 ∈ H4(CP 2;Z) generates the
top cohomology, which evaluates to 1 on the fundamental class [CP 2].

In terms of these basis elements, the anomaly polynomial can be written as Φ4 =∑4
i=1 niαi, where the variables ni are

n1 = 1
2

N∑
i=1

qi(qi − gi), n2 =
N∑
i=1

qigi, n3 =
N∑
i=1

g2
i , n4 = 1

8

N∑
i=1

(g2
i − 1), (6.18)

and our arguments above tell us that each ni must be an integer. This is clearly the case
for n2 and n3. To see that n1 is an integer, recall that gi are all odd. So when qi is odd,

26We use the convention for Spinc connections, typical in the physics literature (see e.g. [87]), whereby 2G
corresponds to a properly normalised U(1) connection, and G itself can be ‘half-integral’.
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(qi − gi) is even, and vice versa. So their product must be even. Similarly, to see that n4 is
an integer, we observe that gi − 1 and gi + 1 are both even and differ by 2, so one of them
must be divisible by 4. Hence their product is divisible by 8.

When we turn the 2-group structure back on, the shift in anomaly coefficients induced
by the Green-Schwarz S ⊃ in

∫
M2

B(2) counter-term amounts to a shift

n1 7→ n1 + nκ̂. (6.19)

It is now obvious that the local anomaly labelled by the integer n1 is truncated down to
a mod |κ̂| anomaly. If one first takes care to cancel the anomalies involving the Spinc
connection, which amounts to choosing charges {gi} such that n2, n3, and n4 vanish, then
we find that the 2-group structure can indeed be used to completely capture the remaining
’t Hooft anomaly in the ordinary U(1)(0) 0-form global symmetry, in the sense proposed by
Sharpe [44]. This should be contrasted with the residual order 2 anomaly (6.7) that cannot
be cancelled in this way for the theory defined with a spin structure.27

7 Conclusion and outlook

In this paper, we explored anomalies in 2-group global symmetries G in field theories in
d = 4 and d = 2 dimensions using the cobordism classification. We compute the bordism
groups ΩH

d+1(B|G|) and ΩH
d+2(B|G|) of the classifying space B|G| of the nerve of G, with

the tangential structure H = SO or Spin. The torsion part of the former group gives us the
global anomaly while the free part of the latter gives the perturbative anomaly. Throughout
the work, we focus on 2-groups G whose 0-form and 1-form symmetry parts are compact,
connected abelian groups ergo tori, which we refer to as ‘toric 2-groups’.

As a warm-up example, we first looked at Maxwell’s theory in 4d, on a general orientable
manifold (not necessarily spin). The 2-group symmetry in this theory contains only the
1-form symmetry part, being a product of the U(1) electric 1-form symmetry and the U(1)
magnetic 1-form symmetry. The familiar mixed anomaly [35] between these two U(1) factor
can be given in terms of a bordism invariant in the free part of Ω6. There are also three
global anomalies, probed by the torsion subgroup of Ω5, which can only be seen on non-spin
manifolds and can be interpreted as mixed anomalies between the 1-form symmetries and
gravity. We also studied anomalies when one of the U(1) factor breaks explicitly to its
cyclic subgroup due to the presence of a charged scalar, and related them to anomalies in
pure Maxwell’s theory via anomaly interplay.

When both the 0-form and 1-form symmetry constituents of G are U(1), with the
Postnikov class given by κ̂ ∈ Z, we used a variety of techniques to prove that the relevant
spin bordism groups are

ΩSpin
5 (B|G|) ∼= Z/|κ̂|, Hom

(
ΩSpin

6 (B|G|),Z
)
∼= Z . (7.1)

27At the level of (6.7), in the Spinc case we can think of the charges qi for the ordinary U(1)(0) 0-form
symmetry as being ‘twisted’ by the Spinc charges {gi}, which are necessarily non-zero. This makes the
‘effective’ anomaly coefficient 2n1, analogous to A2 appearing in (6.7), be always even.
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The free part of the sixth bordism group signals the existence of a perturbative anomaly in
4d, which is just the mixed anomaly between the U(1) 0-form symmetry and gravity. On the
other hand, the perturbative cubic anomaly for U(1) 0-form symmetry that would be there
were κ̂ to vanish now transmutes into a discrete global anomaly captured by the torsion
part of the 5th bordism group. These cobordism computations are in perfect agreement
with the physics argument put forward by Córdova, Dumitrescu, and Intriligator [45].

We next discussed the fate of anomalies for a U(1) 0-form symmetry in 2d, for both
spin and non-spin manifolds. We revisited the construction, originally due to Sharpe [44],
whereby this 0-form symmetry is enhanced to a 2-group symmetry by mixing it with a
U(1) 1-form symmetry whose current is given by the top form on the underlying manifold.
When the anomaly coefficient A2 for the pure U(1) anomaly is even, we found that, by
choosing the Postnikov class of the enhanced 2-group to be κ̂ = A2/2, the anomaly can be
fully absorbed away. On the other hand, in the presence of the spin structure, when A2 is
odd and restricting to spin-manifolds, the most one can do is reduce the anomaly down to
an order 2 discrete anomaly, that we intrepret as an anomaly in the spin structure.

There are many future directions to pursue that are natural extensions of this work.
One obvious alley is to look at more general classes of 2-group beyond our ‘toric’ assumption,
e.g. 2-groups whose 0-form symmetry is a non-abelian Lie group, and/or 2-groups whose
0-form or 1-form symmetry is a finite group [39, 46, 47, 49–52, 54, 55, 88]. One can
rigorously analyse anomalies in these 2-group symmetries using the cobordism classification.
Doing so involves an extension of the mathematical machinery developed in this paper, and
would offer a non-trivial check on other methods of seeing the anomalies that have been
explored recently in the literature [89]. One can also study how these anomalies relate to
the anomalies studied in this paper through a generalised version of anomaly interplay.28

Another avenue to pursue concerns a higher-dimensional generalisation of the 2d 2-
groups discussed in section 6, as follows. We saw that one can cancel (almost) all pure
U(1) anomalies in 2d by enhancing the U(1) 0-form symmetry to a 2-group by making
use of the top-form U(1) current. One then wonders whether there is an analogous story
for ‘top-group’ symmetry structures in higher dimensions, e.g. 4-group symmetry in 4d, in
which a ‘topological 3-form symmetry’ with j4 = vol4 is fused with the ordinary 0-form
symmetry to kill the cubic anomaly. Moreover, the remnant order 2 anomaly in the 2d case
is a direct result of the non-trivial role played by the spin structure. It remains to be seen
whether such an interplay between ‘top-group’ symmetries and spin-structure anomalies
persists in higher dimensions.

For all these anomalies, there is of course a dual interpretation concerning symmetry
protected topological (SPT) phases of matter that are protected by these generalised

28A version of anomaly interplay valid for theories with 2-group symmetry can be sketched as follows.
In principle, one ought to start by defining a smooth 2-homorphism between a pair of 2-groups G and G′,
which would induce a map between the corresponding bordism spectra. But our description of tangential
structures in section 3.2 suggests a shortcut: it is good enough to start with an ordinary (1-)homomorphism
between the topological groups π : |G| → |G′|, discarding all information not captured by the nerves. This
induces a map between cobordism groups going the other way. These ideas will be developed in future work.
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symmetry types, which are rigorously classified by cobordism. Furthermore, it is conceivable
that by extending the bordism computations to more generalised symmetries one could
uncover novel anomalies/phases, and suggest corresponding new constraints on the dynamics
of theories with such symmetry.
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A Additional cohomology computations

In this appendix, we collect results and computations for various cohomology groups.

A.1 Cohomology groups of Eilenberg-Maclane spaces

In this subsection, we collect classic results for cohomology groups of various Eilenberg-
Maclane spaces K(G,n). The mod 2 cohomology results below are obtained by Serre in
the classic paper [90].

K(Z/2, 2). The mod 2 cohomology ring of an Eilenberg-Maclane space B2Z/2 = K(Z/2, 2)
is given by

H•(K(Z/2, 2);Z/2) ∼= Z/2[u2, Sq1u2, Sq2 Sq1u2, . . . , Sq2k Sq2k−1
. . . Sq2 Sq1u2, . . .],

(A.1)
where u2 is the unique generator in H2.

K(Z, 2). The classifying space BU(1) of U(1) is a K(Z, 2) space. We have

H•(K(Z, 2);Z) = H•(BU(1);Z) ∼= Z[c1], (A.2)

where c1 is the unique generator in H2 called the universal first Chern class. The mod 2
version is given simply by

H•(K(Z, 2);Z/2) ∼= Z/2[c1], (A.3)

where c1 is now the mod 2 reduction of the universal first Chern class. The action of the
Steenrod squares are given by Sq1c1 = 0, Sq2c1 = c2

1 which follows directly from the
axioms.
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n 0 1 2 3 4 5 6 7 8
Hn(K(Z, 3);Z) Z 0 0 Z 0 0 Z/2 0 Z/3

Table 3. Integral cohomology groups up to degree 8 of K(Z, 3).

n 0 1 2 3 4 5 6
Hn(B|G|;Z/2), κ̂ odd Z/2 0 Z/2 0 0 Z/2 Z/2
Hn(B|G|;Z/2), κ̂ even Z/2 0 Z/2 Z/2 Z/2 Z/2× Z/2 Z/2× Z/2

Table 4. The mod 2 cohomology groups of B|G| where G is the 2-group U(1)[0] ×κ̂ U(1)[1] with the
Postnikov class κ̂.

K(Z, 3). The mod 2 cohomology ring of an Eilenberg-Maclane space K(Z, 3) is given by

H• (K(Z, 3);Z/2) ∼= Z/2[τ3, Sq2τ3, Sq4Sq2τ3, Sq8Sq4Sq2τ3, . . .], (A.4)

where τ3 is the unique generator in H3(K(Z, 3);Z/2).
Integral cohomology groups of K(Z, 3) can be obtained by applying the universal

coefficient theorem to the homology groups computed in ref. [91]. The resulting cohomology
groups are shown in table 3 below.

A.2 Mod 2 cohomology ring of the classifying space of an abelian 2-group

In this subsection, we use the Serre spectral sequence to calculate the mod 2 cohomlogy
ring of B|G| when G is the abelian 2-group U(1)[0] ×κ̂ U(1)[1] studied in section 5.2 with
the Postnikov class κ̂.

The cohomological Serre spectral sequence induced by the fibration K(Z, 3)→ B|G| →
K(Z, 2) is

Ep,q2 = Hp (K(Z, 2);Hq (K(Z, 3);Z/2))⇒ Hp+q (B|G|;Z/2) . (A.5)

The entries on the E2 page can be computed from the results given in section A.1. There is
no non-trivial differentials on the E2 or E3 pages in the range of degrees we are interested in,
and the E2 entries in this range propagate to the E4 page, shown in figure 7. As explained
in section 5.2, the differentials α and β on the E4 page are given by contraction with the
Postnikov class κ̂. Thus, they are non-trivial if and only if κ̂ is odd. In this case, the
resulting E5 page is shown on the right-hand side of figure 7. When κ̂ is even, the entries
stabilise already on the The entries in the range of interest stabilise on this page. On the
other hand, when κ̂ is even, the entries stabilise already on the E4 page. In either case, we
can read off the mod 2 cohomology groups to be

On the pages of the Serre spectral sequence, there are non-trivial Sq2 actions on the
mod 2 cohomology rings of the fibre K(Z, 3) and the base K(Z, 2) that converge to Sq2

actions on H• (B|G|;Z/2) (Theorem 6.15 of [92]). In particular, in the even κ̂ case, we have

Sq2 : H2 (B|G|;Z/2)→ H4 (B|G|;Z/2)
c1 7→ c2

1
(A.6)
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Figure 7. The Serre spectral sequence for the mod 2 cohomology for B|G| when G = U(1)[0] ×κ̂
U(1)[1] with an odd Postnikov class κ̂.

and

Sq2 : H3 (B|G|;Z/2)→ H5 (B|G|;Z/2)
τ3 7→ Sq2τ3

(A.7)

where c1, τ3, c2
1, and Sq2τ3, are now taken to be the unique generators for H i(B|G|;Z/2),

i = 2, 3, 4, 5, respectively.

B Additional bordism calculations

B.1 Maxwell

Here we compute the bordism groups for the symmetry type

H = SO×G, B|G| = B2U(1)e ×B2U(1)m , (B.1)

relevant to ‘free Maxwell theory’, i.e. U(1) gauge group with no dynamical matter, which
has intact electric and magnetic U(1) 1-form global symmetries, discussed in section 4. Since
U(1) ∼= S1 ∼= BZ, the classifying space for a U(1)(1) 1-form symmetry B2U(1) ∼= K(Z, 3) is
an Eilenberg-Maclane space whose cohomology is known. Using the Künneth theorem we
find the integral homology of B|G| = B2U(1) × B2U(1), as recorded in table 5. We also
need the oriented bordism groups of a point [93], which are recorded in table 6.

We next write down the AHSS for oriented bordism associated to the trivial fibration
of |G| by a point, for which the second page is given by

E2
p,q = Hp

(
(B2U(1))2; ΩSO

q (pt)
)
. (B.2)

This is shown in figure 8.
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i 0 1 2 3 4 5 6 7
Hi(K(Z, 3);Z) Z 0 0 Z 0 Z/2 0 Z/3
Hi(K(Z, 3);Z/2) Z/2 0 0 Z/2 0 Z/2 Z/2 0
Hi((B2U(1))2;Z) Z 0 0 Z2 0 (Z/2)2 Z (Z/3)2

Hi((B2U(1))2;Z/2) Z/2 0 0 (Z/2)2 0 (Z/2)2 (Z/2)3 0

Table 5. Integral and mod 2 homology groups of (B2U(1))2 = (K(Z, 3))2, relevant to Maxwell
theory.

i 0 1 2 3 4 5 6 7 8
ΩSO
i (pt) Z 0 0 0 Z Z/2 0 0 Z2

Table 6. Oriented bordism groups for a point [93].

E2 page
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Figure 8. The second page of the AHSS for ΩSO
•
(
(B2U(1))2).

We want to read off the fifth and sixth bordism groups, which receive contributions
from the p + q = 5 (blue) and p + q = 6 (orange) diagonals respectively. For the sixth
bordism group, there is a single factor E2

6,0 = Z to consider. The only possible differential
is d5 : E5

6,0 → E5
0,5
∼= Z/2, whose kernel is obviously isomorphic to Z, meaning that

E∞6,0 = Z. Thus,
ΩSO

6

(
(B2U(1))2

)
= Z . (B.3)

For the fifth bordism group, the E2
5,0 = (Z/2)2 element stabilizes to the last page, because
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i 0 1 2 3 4 5 6
ΩSO
i

(
(B2U(1)(1))2) Z 0 0 Z2 Z (Z/2)3 Z

Table 7. Oriented bordism groups up to degree 6, for a pair of U(1) 1-form symmetries.

i 0 1 2 3 4 5 6 7
Hi(B2Z/2;Z) Z 0 Z/2 0 Z/4 Z/2 Z/2 Z/2
Hi(B2Z/2;Z/2) Z/2 0 Z/2 Z/2 Z/2 (Z/2)2 (Z/2)2 (Z/2)2

Hi(B2Z/2×B2U(1);Z) Z 0 Z/2 Z Z/4 (Z/2)3 Z/2 (Z/2)2×Z/3×Z/4

Hi(B2Z/2×B2U(1);Z/2) Z/2 0 Z/2 (Z/2)2 Z/2 (Z/2)4 (Z/2)4 (Z/2)4

Table 8. Integral and mod 2 homology groups of B2Z/2 and B2Z/2×B2U(1). Recall the homology
of B2U(1) is recorded in the first two lines of table 5.

the only possible differential is d4 : E4
5,0 → E4

0,4 : Z/2 7→ Z which is therefore the zero
map. For the E2

0,5 element, it is again the d5 : E5
6,0 → E5

0,5 map that is important. We
can in fact deduce that this differential must be zero simply because it hits the zeroth
column which records the bordism groups of a point, and since there is a canonical split
ΩSO
• (X) ∼= ΩSO

• (pt) ⊕ Ω̃SO
• (X) for X connected, where the second factor is the reduced

bordism of X, the E0,5 factor must stabilize to the last page.29 This also makes it obvious
that there can be no non-trivial extension, and so we can read off

ΩSO
5

(
(B2U(1))2

)
= (Z/2)3 . (B.4)

It is easy to read off the lower-degree bordism groups too, and we summarize the results in
table 7.

B.2 Scalar QED with charge-2 boson

Next we compute the bordism groups for

H = SO×G′, B|G′| = B2Z/2e ×B2U(1)m , (B.5)

relevant to QED with a charge-2 boson, which has the effect of breaking the U(1)e 1-form
symmetry down to a discrete Z/2e subgroup. Using the Künneth theorem we find the
integral homology of B2Z/2×B2U(1), as recorded in table 8.

We next write down the AHSS for oriented bordism associated to the trivial fibration
pt → B2Z/2 × B2U(1) → B2Z/2 × B2U(1), for which the second page is given by (see
figure 9),

E2
p,q = Hp

(
B2Z/2×B2U(1); ΩSO

q (pt)
)
. (B.6)

We want to read off Ω5 and Ω6 from the stabilization of elements on the p + q = 5 and
p + q = 6 diagonals respectively. For the fifth bordism group, very similar arguments
to those of B.1 tell us that E∞5,0 = (Z/2)3 and E∞0,5 = Z/2, and the canonical split
ΩSO
• (X) ∼= ΩSO

• (pt)⊕ Ω̃SO
• (X) again tells us that the extension problem is trivial, giving:

ΩSO
5

(
B2Z/2×B2U(1)

)
= (Z/2)4 . (B.7)

29Equivalently, we could have used the AHSS for reduced bordism to get the same result.
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Figure 9. The second page of the AHSS for ΩSO
•
(
B2Z/2×B2U(1)

)
.

For Ω6, there is a potentially non-vanishing differential on the fifth page, d5 : E7,0 → E2,5 :
(Z/2)2 × Z/3× Z/4 7→ Z/2. Without knowing this differential, one cannot read off Ω6 —
the most we can conclude is that it equals Z/2, Z/4, or Z/2× Z/2. In any case, we have
that ΩSO

6
(
B2Z/2×B2U(1)

)
is pure torsion, which is all that’s relevant for discussing the

corresponding anomalies in 4d.

C Computation of a key differential

This appendix is written by Arun Debray.
In this appendix, we finish the computation from section 5.2.3, showing that if G is a

2-group with 0- and 1-form parts both U(1) and k-invariant equal to m times the generator
of H4(BU(1);Z) ∼= Z, where m is odd, then ΩSpin

5 (B|G|) ∼= Z/m. After the calculation
in section 5.2.3, the only ambiguity is in the 2-torsion, which could be either 0 or Z/2,
depending on the value of a d3 in the Atiyah-Hirzebruch spectral sequence in figure 5. This
differential resisted several of our standard techniques to address it, as did an analogous
differential in the Adams spectral sequence computing the 2-completion of ΩSpin

5 (B|G|).
Here we finish the computation of the 2-torsion subgroup of ΩSpin

5 (B|G|) in a different
way, resolving the differentials only implicitly. Specifically, we fit ΩSpin

• (B|G|) into a long
exact sequence (C.2) and compute enough other terms in the long exact sequence to
determine ΩSpin

5 (B|G|). This long exact sequence is a version of the Gysin sequence for
spin bordism, and one of its homomorphisms has a geometric interpretation as a Smith
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homomorphism, a map between bordism groups defined by sending a manifold M to a
smooth representative of the Poincaré dual to a characteristic class of M . The general
version of (C.2) was written down in [32] to study Smith homomorphisms and their
applications to anomalies of quantum field theories; see there and [94, 95] for more on Smith
homomorphisms and their role in physics.

Theorem C.1 ([32]). Let V → X be a vector bundle of rank r over a CW complex X,
π : S(V ) → X be the sphere bundle of V , XV−r be the Thom spectrum of the rank-zero
virtual vector bundle V − Rr, and E• be a generalised homology theory. Then there is a
long exact sequence

· · · −→ En(S(V )) π∗−→ En(X) ψ−→ En−r(XV−r) −→ En−1(S(V )) −→ . . . (C.1)

The map ψ is the Smith homomorphism, but we will not need that fact; see [32] for more
information.

Proof. We will show that the Thom space Th(X,V ) of V is the homotopy cofibre of π, so
there is the Puppe long exact sequence · · · → En(S(V )) → En(X) → Ẽn(Th(X,V )) →
En−1(S(V ))→ · · · . Once this is established, (C.1) follows: XV−r ' Σ−rΣ∞+ Th(X,V ), and
Σ∞+ induces an isomorphism for any generalised homology theory and Σ−r shifts generalised
homology down in grading by r, yielding (C.1).30

The homotopy cofibre of an inclusion A ↪→ X of CW complexes such that the image of
A is a union of cells is the quotient X/A; in general, one can compute the homotopy cofibre
of a map f : A→ X between CW complexes by changing f and X by a homotopy so that
f is indeed a cellular inclusion. For π : S(V )→ X from the theorem statement, replace π
with the inclusion i : S(V ) ↪→ D(V ) of S(V ) into the disc bundle D(V ) of V → X; the map
π′ : D(V )→ X is a homotopy equivalence and π′ ◦ i = π, and the CW structures on X and
the standard CW structure on Dn can be used to put CW structures on S(V ) and D(V )
such that the image of i is a union of cells. Thus the homotopy cofibre of π : S(V )→ V is
the quotient D(V )/S(V ), which is by definition Th(X,V ).

We are interested in E• = ΩSpin
• , and specifically in 2-torsion. To avoid worrying about

torsion for other primes, we localise at 2, meaning we tensor with the ring Z(2) of rational
numbers whose denominators in lowest terms are odd. If A is a finitely generated abelian
group, so that A is a direct sum of a free abelian group Zr and cyclic groups Z/peii of
prime-power order, localising at 2 has the effect of replacing Zr with (Z(2))r, preserving
all 2ei-torsion, and sending all odd-prime-power torsion to zero. Since we are trying to
determine the 2-torsion subgroup of ΩSpin

5 (B|G|), which is a finitely generated abelian
group, we lose no relevant information by localising at 2. Moreover, since Z(2) is a flat ring,
tensoring with Z(2) preserves long exact sequences (i.e. 2-localisation is exact), so we can
still apply (C.1) after 2-localising.

30The long exact sequence (C.1), and indeed this whole appendix, could have been done with Th(X,V ),
but once we apply bordism, it is conceptually helpful to replace Th(X,V ) by XV−r — Ω̃Spin

k (Th(X,V ))
is a bordism group of (k − r)-dimensional manifolds, and ΩSpin

k (XV−r) is a bordism group of k-manifolds.
The degree shift must occur somewhere, and we believe our choice is clearest.
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For any 2-group H, the classifying space B|H| has a CW structure (e.g. because it is the
geometric realization of a simplicial space), so we can invoke Theorem C.1 for X = B|G|.
Quotienting G by its 1-form symmetry defines a map to the 0-form part of G, which on
classifying spaces induces a map q : B|G| → BU(1). Let V → B|G| be the pullback of
the tautological complex line bundle L→ BU(1) by q. Then Theorem C.1, together with
exactness of 2-localisation, gives us a long exact sequence

· · · → ΩSpin
5 (S(V ))⊗ Z(2) → ΩSpin

5 (B|G|)⊗ Z(2) → ΩSpin
3 ((B|G|)V−2)⊗ Z(2) → . . . (C.2)

We will show in Theorem C.3 that ΩSpin
5 (S(V ))⊗ Z(2) and ΩSpin

3 ((B|G|)V−2)⊗ Z(2) both
vanish; exactness then implies ΩSpin

5 (B|G|)⊗ Z(2) = 0 as well, meaning ΩSpin
5 (B|G|) has no

2-torsion, which is what we want to prove in this appendix.
Before doing so, we first need to figure out what S(V ) is:

Lemma C.2. The sphere bundle S(V ) is homotopy equivalent to K(Z, 3), and this homotopy
equivalence identifies the bundle map S(V )→ B|G| with the map K(Z, 3)→ B|G| given by
inclusion of the 1-form U(1) symmetry.

Proof. Let q : B|G| → BU(1) be the classifying map for V . Then the sphere bundle of V is
the pullback of the sphere bundle of the tautological line bundle L→ BU(1), i.e. there is a
homotopy pullback square

S(V ) S(L)

B|G| BU(1)q

(C.3)

The sphere bundle of a complex line bundle is the associated principal U(1)-bundle; for
L→ BU(1), this is the tautological bundle EU(1)→ BU(1), meaning S(L) is contractible.
In general, a homotopy pullback in which one of the two legs is contractible is the homotopy
fibre (denoted hofib(–)) of the other leg, meaning the map S(V )→ B|G| can be identified
with the canonical map hofib(q)→ B|G|. Recall that q arose from a short exact sequence
of topological groups

1 −→ G
i−→ H

p−→ K −→ 1 (C.4)

by applying the classifying space functor; specifically, G = |U(1)[1]|, H = |G|, and K = U(1),
and q = Bp. The classifying space functor turns short exact sequences of groups into fibre
sequences of spaces, meaning that for (C.4) the homotopy fibre of Bp is homotopy equivalent
to BG, and this homotopy equivalence identifies the canonical map hofib(Bp)→ BH with
Bi : BG→ BH . For our specific choices of G, H , and K, this tells us that up to homotopy
equivalence, the map S(V )→ B|G| is the map B|U(1)[1]| ' K(Z, 3)→ B|G| as claimed in
the theorem statement.

Lemma C.3. ΩSpin
5 (K(Z, 3))⊗ Z(2) and ΩSpin

3 ((B|G|)V−2)⊗ Z(2) both vanish.

Proof. We check both of these using the Adams spectral sequence; the relevant differentials
and extension questions are trivial for degree reasons, so these computations are straightfor-
ward analogues of Beaudry and Campbell’s computations in ref. [96]. We direct the reader
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Figure 10. Left: the A(1)-module structure on H•(K(Z, 3);Z/2) in degrees 6 and below. Right:
the E2 = E∞-page of the Adams spectral sequence computing the 2-completion of ΩSpin

• (K(Z, 3)).
There is nothing in topological degree 5, so the 2-completion of ΩSpin

5 (K(Z, 3)) vanishes.

to [96] for more on our proof strategy and notation. The Adams spectral sequence computes
2-completed spin bordism, not 2-localised spin bordism, but because ΩSpin

5 (K(Z, 3)) and
ΩSpin

3 ((B|G|)V−2) are finitely generated abelian groups, this distinction is not important: the
2-localisation of a finitely generated abelian group A vanishes if and only if the 2-completion
of A vanishes, if and only if A lacks both free and 2-torsion summands.

ForK(Z, 3), we need as input the A(1)-module structure on H•(K(Z, 3);Z/2) in degrees
6 and below. This was computed by Serre [90, section 10]: H•(K(Z, 3);Z/2) is a polynomial
algebra on generators τ3 in degree 3, Sq2τ3 in degree 5, and other generators in degrees
too high to matter to us. Using this, one can compute that if Qdenotes the A(1)-module
A(1)/(Sq1, Sq2Sq3), then there is an isomorphism of A(1)-modules

H•(K(Z, 3);Z/2) ∼= Z/2⊕ Σ3 Q

⊕ P, (C.5)

where P is concentrated in degrees 7 and above, hence is irrelevant for our computation.
We draw this decomposition in figure 10, left. Liulevicius [97, Theorem 3] computes
ExtA(1)(Z/2) and Beaudry-Campbell [96, figure 29] compute ExtA(1)(

Q), so we can draw
the E2-page of the Adams spectral sequence in figure 10, right. The E2-page vanishes in
topological degree 5, i.e. for t− s = 5, so the E∞-page must also vanish in that degree, and
we conclude ΩSpin

5 (K(Z, 3))⊗ Z(2) = 0.
For (B|G|)V−2, using the description of the A(1)-module structure on H•(B|G|;Z/2) in

low degrees from section A.2 and the way Stiefel-Whitney classes twist the Steenrod squares
of a Thom spectrum (see [96, section 3.3]), we obtain an isomorphism of A(1)-modules

H•((B|G|)V−2;Z/2) ∼= Cη ⊕ P ′, (C.6)

where Cη := Σ−2H̃•(CP2;Z/2) and P ′ is concentrated in degrees 5 and above, hence is
irrelevant to our computation. We draw this isomorphism in figure 11, left. ExtA(1)(Cη) is
computed in [96, Example 4.5.6 and figure 22], so we can draw the E2-page of the Adams
spectral sequence in figure 11, right. The E2-page is empty in topological degree 3, so the
E∞-page is also empty, and we conclude ΩSpin

3 ((B|G|)V−2)⊗ Z(2) = 0.
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Figure 11. Left: the A(1)-module structure on H•((B|G|)V−2;Z/2) in degrees 4 and below, where
V is the complex line bundle associated to the map q : B|G| → BU(1) given by quotienting G by
its 1-form symmetry. Right: the E2 = E∞-page of the Adams spectral sequence computing the
2-completion of ΩSpin

• ((B|G|)V−2). There is nothing in topological degree 3, so the 2-completion of
ΩSpin

3 ((B|G|)V−2) vanishes.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.

References

[1] D.S. Freed and C. Teleman, Relative quantum field theory, Commun. Math. Phys. 326 (2014)
459 [arXiv:1212.1692] [INSPIRE].

[2] D.S. Freed, Anomalies and Invertible Field Theories, Proc. Symp. Pure Math. 88 (2014) 25
[arXiv:1404.7224] [INSPIRE].

[3] D.S. Freed and M.J. Hopkins, Reflection positivity and invertible topological phases, Geom.
Topol. 25 (2021) 1165 [arXiv:1604.06527] [INSPIRE].

[4] E. Witten, Global Gravitational Anomalies, Commun. Math. Phys. 100 (1985) 197 [INSPIRE].

[5] X.-Z. Dai and D.S. Freed, eta invariants and determinant lines, J. Math. Phys. 35 (1994) 5155
[hep-th/9405012] [INSPIRE].

[6] A. Kapustin, R. Thorngren, A. Turzillo and Z. Wang, Fermionic Symmetry Protected
Topological Phases and Cobordisms, JHEP 12 (2015) 052 [arXiv:1406.7329] [INSPIRE].

[7] E. Witten, Fermion Path Integrals And Topological Phases, Rev. Mod. Phys. 88 (2016) 035001
[arXiv:1508.04715] [INSPIRE].

[8] E. Witten and K. Yonekura, Anomaly Inflow and the η-Invariant, in the proceedings of the
The Shoucheng Zhang Memorial Workshop, Stanford U.S.A., May 2–4 (2019)
[arXiv:1909.08775] [INSPIRE].

[9] Y. Tachikawa and K. Yonekura, Why are fractional charges of orientifolds compatible with
Dirac quantization?, SciPost Phys. 7 (2019) 058 [arXiv:1805.02772] [INSPIRE].

[10] E. Witten, The “Parity” Anomaly On An Unorientable Manifold, Phys. Rev. B 94 (2016)
195150 [arXiv:1605.02391] [INSPIRE].

[11] J. Wang, X.-G. Wen and E. Witten, A New SU(2) Anomaly, J. Math. Phys. 60 (2019) 052301
[arXiv:1810.00844] [INSPIRE].

– 47 –

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/s00220-013-1880-1
https://doi.org/10.1007/s00220-013-1880-1
https://arxiv.org/abs/1212.1692
https://inspirehep.net/literature/1206350
https://doi.org/10.1090/pspum/088/01462
https://arxiv.org/abs/1404.7224
https://inspirehep.net/literature/1293040
https://doi.org/10.2140/gt.2021.25.1165
https://doi.org/10.2140/gt.2021.25.1165
https://arxiv.org/abs/1604.06527
https://inspirehep.net/literature/1451661
https://doi.org/10.1007/BF01212448
https://inspirehep.net/literature/213126
https://doi.org/10.1063/1.530747
https://arxiv.org/abs/hep-th/9405012
https://inspirehep.net/literature/373218
https://doi.org/10.1007/JHEP12(2015)052
https://arxiv.org/abs/1406.7329
https://inspirehep.net/literature/1303929
https://doi.org/10.1103/RevModPhys.88.035001
https://arxiv.org/abs/1508.04715
https://inspirehep.net/literature/1388530
https://arxiv.org/abs/1909.08775
https://inspirehep.net/literature/1755070
https://doi.org/10.21468/SciPostPhys.7.5.058
https://arxiv.org/abs/1805.02772
https://inspirehep.net/literature/1672182
https://doi.org/10.1103/PhysRevB.94.195150
https://doi.org/10.1103/PhysRevB.94.195150
https://arxiv.org/abs/1605.02391
https://inspirehep.net/literature/1456828
https://doi.org/10.1063/1.5082852
https://arxiv.org/abs/1810.00844
https://inspirehep.net/literature/1696543


J
H
E
P
0
7
(
2
0
2
3
)
0
1
9

[12] M.F. Atiyah, V.K. Patodi and I.M. Singer, Spectral asymmetry and Riemannian geometry I,
Math. Proc. Cambridge Phil. Soc. 77 (1975) 43 [INSPIRE].

[13] M.F. Atiyah, V.K. Patodi and I.M. Singer, Spectral asymmetry and Riemannian geometry II,
Math. Proc. Cambridge Phil. Soc. 78 (1976) 405 [INSPIRE].

[14] M.F. Atiyah, V.K. Patodi and I.M. Singer, Spectral asymmetry and Riemannian geometry. III,
Math. Proc. Cambridge Phil. Soc. 79 (1976) 71 [INSPIRE].

[15] D.S. Freed, Pions and Generalized Cohomology, J. Diff. Geom. 80 (2008) 45
[hep-th/0607134] [INSPIRE].

[16] I. García-Etxebarria et al., 8d gauge anomalies and the topological Green-Schwarz mechanism,
JHEP 11 (2017) 177 [arXiv:1710.04218] [INSPIRE].

[17] I. García-Etxebarria and M. Montero, Dai-Freed anomalies in particle physics, JHEP 08
(2019) 003 [arXiv:1808.00009] [INSPIRE].

[18] Z. Wan and J. Wang, Higher anomalies, higher symmetries, and cobordisms I: classification of
higher-symmetry-protected topological states and their boundary fermionic/bosonic anomalies
via a generalized cobordism theory, Ann. Math. Sci. Appl. 4 (2019) 107 [arXiv:1812.11967]
[INSPIRE].

[19] N. Seiberg, Y. Tachikawa and K. Yonekura, Anomalies of Duality Groups and Extended
Conformal Manifolds, PTEP 2018 (2018) 073B04 [arXiv:1803.07366] [INSPIRE].

[20] C.-T. Hsieh, Y. Tachikawa and K. Yonekura, Anomaly of the Electromagnetic Duality of
Maxwell Theory, Phys. Rev. Lett. 123 (2019) 161601 [arXiv:1905.08943] [INSPIRE].

[21] J. Davighi, B. Gripaios and N. Lohitsiri, Global anomalies in the Standard Model(s) and
Beyond, JHEP 07 (2020) 232 [arXiv:1910.11277] [INSPIRE].

[22] Z. Wan and J. Wang, Beyond Standard Models and Grand Unifications: Anomalies,
Topological Terms, and Dynamical Constraints via Cobordisms, JHEP 07 (2020) 062
[arXiv:1910.14668] [INSPIRE].

[23] J. Davighi and N. Lohitsiri, The algebra of anomaly interplay, SciPost Phys. 10 (2021) 074
[arXiv:2011.10102] [INSPIRE].

[24] Y. Lee and Y. Tachikawa, Some comments on 6D global gauge anomalies, PTEP 2021 (2021)
08B103 [arXiv:2012.11622] [INSPIRE].

[25] J. Davighi and N. Lohitsiri, Omega vs. pi, and 6d anomaly cancellation, JHEP 05 (2021) 267
[arXiv:2012.11693] [INSPIRE].

[26] A. Debray, M. Dierigl, J.J. Heckman and M. Montero, The anomaly that was not meant IIB,
arXiv:2107.14227 [DOI:10.1002/prop.202100168] [INSPIRE].

[27] J. Davighi and J. Tooby-Smith, Electroweak flavour unification, JHEP 09 (2022) 193
[arXiv:2201.07245] [INSPIRE].

[28] J. Davighi, G. Isidori and M. Pesut, Electroweak-flavour and quark-lepton unification: a family
non-universal path, JHEP 04 (2023) 030 [arXiv:2212.06163] [INSPIRE].

[29] J. Wang, Z. Wan and Y.-Z. You, Proton stability: From the standard model to beyond grand
unification, Phys. Rev. D 106 (2022) 025016 [arXiv:2204.08393] [INSPIRE].

[30] Y. Lee and K. Yonekura, Global anomalies in 8d supergravity, JHEP 07 (2022) 125
[arXiv:2203.12631] [INSPIRE].

– 48 –

https://doi.org/10.1017/S0305004100049410
https://inspirehep.net/literature/107096
https://doi.org/10.1017/S0305004100051872
https://inspirehep.net/literature/117832
https://doi.org/10.1017/S0305004100052105
https://inspirehep.net/literature/163192
https://doi.org/10.4310/jdg/1217361066
https://arxiv.org/abs/hep-th/0607134
https://inspirehep.net/literature/722052
https://doi.org/10.1007/JHEP11(2017)177
https://arxiv.org/abs/1710.04218
https://inspirehep.net/literature/1630494
https://doi.org/10.1007/JHEP08(2019)003
https://doi.org/10.1007/JHEP08(2019)003
https://arxiv.org/abs/1808.00009
https://inspirehep.net/literature/1684688
https://doi.org/10.4310/AMSA.2019.v4.n2.a2
https://arxiv.org/abs/1812.11967
https://inspirehep.net/literature/1711843
https://doi.org/10.1093/ptep/pty069
https://arxiv.org/abs/1803.07366
https://inspirehep.net/literature/1663290
https://doi.org/10.1103/PhysRevLett.123.161601
https://arxiv.org/abs/1905.08943
https://inspirehep.net/literature/1736243
https://doi.org/10.1007/JHEP07(2020)232
https://arxiv.org/abs/1910.11277
https://inspirehep.net/literature/1760751
https://doi.org/10.1007/JHEP07(2020)062
https://arxiv.org/abs/1910.14668
https://inspirehep.net/literature/1762416
https://doi.org/10.21468/SciPostPhys.10.3.074
https://arxiv.org/abs/2011.10102
https://inspirehep.net/literature/1831944
https://doi.org/10.1093/ptep/ptab015
https://doi.org/10.1093/ptep/ptab015
https://arxiv.org/abs/2012.11622
https://inspirehep.net/literature/1837830
https://doi.org/10.1007/JHEP05(2021)267
https://arxiv.org/abs/2012.11693
https://inspirehep.net/literature/1837836
https://arxiv.org/abs/2107.14227
https://doi.org/10.1002/prop.202100168
https://inspirehep.net/literature/1895233
https://doi.org/10.1007/JHEP09(2022)193
https://arxiv.org/abs/2201.07245
https://inspirehep.net/literature/2012991
https://doi.org/10.1007/JHEP04(2023)030
https://arxiv.org/abs/2212.06163
https://inspirehep.net/literature/2613878
https://doi.org/10.1103/PhysRevD.106.025016
https://arxiv.org/abs/2204.08393
https://inspirehep.net/literature/2068385
https://doi.org/10.1007/JHEP07(2022)125
https://arxiv.org/abs/2203.12631
https://inspirehep.net/literature/2057987


J
H
E
P
0
7
(
2
0
2
3
)
0
1
9

[31] J. Davighi, B. Gripaios and N. Lohitsiri, Anomalies of non-Abelian finite groups via cobordism,
JHEP 09 (2022) 147 [arXiv:2207.10700] [INSPIRE].

[32] A. Debray, M. Dierigl, J.J. Heckman and M. Montero, The Chronicles of IIBordia: Dualities,
Bordisms, and the Swampland, arXiv:2302.00007 [INSPIRE].

[33] C. Cordova, T.T. Dumitrescu, K. Intriligator and S.-H. Shao, Snowmass White Paper:
Generalized Symmetries in Quantum Field Theory and Beyond, in the proceedings of the
Snowmass 2021, Seattle U.S.A., July 17–26 (2022) [arXiv:2205.09545] [INSPIRE].

[34] I. Bah et al., A Panorama Of Physical Mathematics c. 2022, arXiv:2211.04467 [INSPIRE].

[35] D. Gaiotto, A. Kapustin, N. Seiberg and B. Willett, Generalized Global Symmetries, JHEP 02
(2015) 172 [arXiv:1412.5148] [INSPIRE].

[36] D. Gaiotto, A. Kapustin, Z. Komargodski and N. Seiberg, Theta, Time Reversal, and
Temperature, JHEP 05 (2017) 091 [arXiv:1703.00501] [INSPIRE].

[37] B. Gripaios, O. Randal-Williams and J. Tooby-Smith, Generalized symmetries of topological
field theories, JHEP 03 (2023) 087 [arXiv:2209.13524] [INSPIRE].

[38] P.-S. Hsin and H.T. Lam, Discrete theta angles, symmetries and anomalies, SciPost Phys. 10
(2021) 032 [arXiv:2007.05915] [INSPIRE].

[39] Y. Lee, K. Ohmori and Y. Tachikawa, Matching higher symmetries across Intriligator-Seiberg
duality, JHEP 10 (2021) 114 [arXiv:2108.05369] [INSPIRE].

[40] J.C. Baez, A.S. Crans, D. Stevenson and U. Schreiber, From loop groups to 2-groups,
math/0504123 [INSPIRE].

[41] H. Sati, U. Schreiber and J. Stasheff, Differential twisted String and Fivebrane structures,
Commun. Math. Phys. 315 (2012) 169 [arXiv:0910.4001] [INSPIRE].

[42] D. Fiorenza, U. Schreiber and J. Stasheff, Čech cocycles for differential characteristic classes:
an ∞-Lie theoretic construction, Adv. Theor. Math. Phys. 16 (2012) 149 [arXiv:1011.4735]
[INSPIRE].

[43] D. Fiorenza, H. Sati and U. Schreiber, Multiple M5-branes, String 2-connections, and 7d
nonabelian Chern-Simons theory, Adv. Theor. Math. Phys. 18 (2014) 229 [arXiv:1201.5277]
[INSPIRE].

[44] E. Sharpe, Notes on generalized global symmetries in QFT, Fortsch. Phys. 63 (2015) 659
[arXiv:1508.04770] [INSPIRE].

[45] C. Córdova, T.T. Dumitrescu and K. Intriligator, Exploring 2-Group Global Symmetries,
JHEP 02 (2019) 184 [arXiv:1802.04790] [INSPIRE].

[46] F. Benini, C. Córdova and P.-S. Hsin, On 2-Group Global Symmetries and their Anomalies,
JHEP 03 (2019) 118 [arXiv:1803.09336] [INSPIRE].

[47] L. Bhardwaj, 2-Group symmetries in class S, SciPost Phys. 12 (2022) 152
[arXiv:2107.06816] [INSPIRE].

[48] M. Cvetič, J.J. Heckman, M. Hübner and E. Torres, 0-form, 1-form, and 2-group symmetries
via cutting and gluing of orbifolds, Phys. Rev. D 106 (2022) 106003 [arXiv:2203.10102]
[INSPIRE].

[49] F. Carta, S. Giacomelli, N. Mekareeya and A. Mininno, A tale of 2-groups: Dp(USp(2N))
theories, arXiv:2208.11130 [INSPIRE].

– 49 –

https://doi.org/10.1007/JHEP09(2022)147
https://arxiv.org/abs/2207.10700
https://inspirehep.net/literature/2121046
https://arxiv.org/abs/2302.00007
https://inspirehep.net/literature/2628796
https://arxiv.org/abs/2205.09545
https://inspirehep.net/literature/2085224
https://arxiv.org/abs/2211.04467
https://inspirehep.net/literature/2178153
https://doi.org/10.1007/JHEP02(2015)172
https://doi.org/10.1007/JHEP02(2015)172
https://arxiv.org/abs/1412.5148
https://inspirehep.net/literature/1334564
https://doi.org/10.1007/JHEP05(2017)091
https://arxiv.org/abs/1703.00501
https://inspirehep.net/literature/1515698
https://doi.org/10.1007/JHEP03(2023)087
https://arxiv.org/abs/2209.13524
https://inspirehep.net/literature/2157271
https://doi.org/10.21468/SciPostPhys.10.2.032
https://doi.org/10.21468/SciPostPhys.10.2.032
https://arxiv.org/abs/2007.05915
https://inspirehep.net/literature/1806596
https://doi.org/10.1007/JHEP10(2021)114
https://arxiv.org/abs/2108.05369
https://inspirehep.net/literature/1904054
https://arxiv.org/abs/math/0504123
https://inspirehep.net/literature/681091
https://doi.org/10.1007/s00220-012-1510-3
https://arxiv.org/abs/0910.4001
https://inspirehep.net/literature/834748
https://doi.org/10.4310/ATMP.2012.v16.n1.a5
https://arxiv.org/abs/1011.4735
https://inspirehep.net/literature/878346
https://doi.org/10.4310/ATMP.2014.v18.n2.a1
https://arxiv.org/abs/1201.5277
https://inspirehep.net/literature/1085887
https://doi.org/10.1002/prop.201500048
https://arxiv.org/abs/1508.04770
https://inspirehep.net/literature/1388750
https://doi.org/10.1007/JHEP02(2019)184
https://arxiv.org/abs/1802.04790
https://inspirehep.net/literature/1654854
https://doi.org/10.1007/JHEP03(2019)118
https://arxiv.org/abs/1803.09336
https://inspirehep.net/literature/1664368
https://doi.org/10.21468/SciPostPhys.12.5.152
https://arxiv.org/abs/2107.06816
https://inspirehep.net/literature/1883946
https://doi.org/10.1103/PhysRevD.106.106003
https://arxiv.org/abs/2203.10102
https://inspirehep.net/literature/2055761
https://arxiv.org/abs/2208.11130
https://inspirehep.net/literature/2141317


J
H
E
P
0
7
(
2
0
2
3
)
0
1
9

[50] F. Apruzzi, S. Schafer-Nameki, L. Bhardwaj and J. Oh, The Global Form of Flavor
Symmetries and 2-Group Symmetries in 5d SCFTs, SciPost Phys. 13 (2022) 024
[arXiv:2105.08724] [INSPIRE].

[51] M. Del Zotto et al., Higher symmetries of 5D orbifold SCFTs, Phys. Rev. D 106 (2022)
046010 [arXiv:2201.08372] [INSPIRE].

[52] M. Del Zotto, I. García Etxebarria and S. Schafer-Nameki, 2-Group Symmetries and
M-Theory, SciPost Phys. 13 (2022) 105 [arXiv:2203.10097] [INSPIRE].

[53] C. Cordova, T.T. Dumitrescu and K. Intriligator, 2-Group Global Symmetries and Anomalies
in Six-Dimensional Quantum Field Theories, JHEP 04 (2021) 252 [arXiv:2009.00138]
[INSPIRE].

[54] M. Del Zotto and K. Ohmori, 2-Group Symmetries of 6D Little String Theories and T-Duality,
Annales Henri Poincare 22 (2021) 2451 [arXiv:2009.03489] [INSPIRE].

[55] F. Apruzzi, L. Bhardwaj, D.S.W. Gould and S. Schafer-Nameki, 2-Group symmetries and their
classification in 6d, SciPost Phys. 12 (2022) 098 [arXiv:2110.14647] [INSPIRE].

[56] C. Cordova and S. Koren, Higher Flavor Symmetries in the Standard Model,
arXiv:2212.13193 [INSPIRE].

[57] J.A. Damia, R. Argurio and L. Tizzano, Continuous Generalized Symmetries in Three
Dimensions, JHEP 23 (2023) 164 [arXiv:2206.14093] [INSPIRE].

[58] N. Iqbal and N. Poovuttikul, 2-group global symmetries, hydrodynamics and holography,
arXiv:2010.00320 [INSPIRE].

[59] T.K. Bartels, Higher gauge theory: 2-bundles, University of California, Riverside (2006).

[60] J.C. Baez and D. Stevenson, The Classifying Space of a Topological 2-Group,
arXiv:0801.3843.

[61] J.-L. Brylinski, Loop Spaces, Characteristic Classes and Geometric Quantization, Birkhäuser
Boston (1993) [DOI].

[62] C. Wang and T. Senthil, Time-Reversal Symmetric U(1)(1) Quantum Spin Liquids, Phys. Rev.
X 6 (2016) 011034 [arXiv:1505.03520] [INSPIRE].

[63] P.-S. Hsin and A. Turzillo, Symmetry-enriched quantum spin liquids in (3 + 1)d, JHEP 09
(2020) 022 [arXiv:1904.11550] [INSPIRE].

[64] T.D. Brennan, C. Cordova and T.T. Dumitrescu, Line Defect Quantum Numbers & Anomalies,
arXiv:2206.15401 [INSPIRE].

[65] C.-M. Jian, X.-C. Wu, Y. Xu and C. Xu, Physics of symmetry protected topological phases
involving higher symmetries and its applications, Phys. Rev. B 103 (2021) 064426
[arXiv:2009.00023] [INSPIRE].

[66] A. Kapustin and R. Thorngren, Higher symmetry and gapped phases of gauge theories,
arXiv:1309.4721 [INSPIRE].

[67] K.S. Brown, Cohomology of Groups, Springer (1982) [DOI:10.1007/978-1-4684-9327-6].

[68] G. Segal, Classifying spaces and spectral sequences, Publ. Math. IHES 34 (1968) 105.

[69] C.J. Schommer-Pries, Central extensions of smooth 2-groups and a finite-dimensional string
2-group, Geom. Topol. 15 (2011) 609 [INSPIRE].

[70] J.-P. Serre, Homologie Singuliere Des Espaces Fibres, Annals Math. 54 (1951) 425.

– 50 –

https://doi.org/10.21468/SciPostPhys.13.2.024
https://arxiv.org/abs/2105.08724
https://inspirehep.net/literature/1864154
https://doi.org/10.1103/PhysRevD.106.046010
https://doi.org/10.1103/PhysRevD.106.046010
https://arxiv.org/abs/2201.08372
https://inspirehep.net/literature/2014191
https://doi.org/10.21468/SciPostPhys.13.5.105
https://arxiv.org/abs/2203.10097
https://inspirehep.net/literature/2055676
https://doi.org/10.1007/JHEP04(2021)252
https://arxiv.org/abs/2009.00138
https://inspirehep.net/literature/1814347
https://doi.org/10.1007/s00023-021-01018-3
https://arxiv.org/abs/2009.03489
https://inspirehep.net/literature/1815645
https://doi.org/10.21468/SciPostPhys.12.3.098
https://arxiv.org/abs/2110.14647
https://inspirehep.net/literature/1954981
https://arxiv.org/abs/2212.13193
https://inspirehep.net/literature/2618314
https://doi.org/10.1007/JHEP05(2023)164
https://arxiv.org/abs/2206.14093
https://inspirehep.net/literature/2102738
https://arxiv.org/abs/2010.00320
https://inspirehep.net/literature/1820600
https://arxiv.org/abs/0801.3843
https://doi.org/10.1007/978-0-8176-4731-5
https://doi.org/10.1103/PhysRevX.6.011034
https://doi.org/10.1103/PhysRevX.6.011034
https://arxiv.org/abs/1505.03520
https://inspirehep.net/literature/1438028
https://doi.org/10.1007/JHEP09(2020)022
https://doi.org/10.1007/JHEP09(2020)022
https://arxiv.org/abs/1904.11550
https://inspirehep.net/literature/1731574
https://arxiv.org/abs/2206.15401
https://inspirehep.net/literature/2104024
https://doi.org/10.1103/PhysRevB.103.064426
https://arxiv.org/abs/2009.00023
https://inspirehep.net/literature/1814404
https://arxiv.org/abs/1309.4721
https://inspirehep.net/literature/1254598
https://doi.org/10.1007/978-1-4684-9327-6
https://doi.org/10.1007/bf02684591
https://doi.org/10.2140/gt.2011.15.609
https://inspirehep.net/literature/1835179


J
H
E
P
0
7
(
2
0
2
3
)
0
1
9

[71] J.F. Adams, On the structure and applications of the steenrod algebra, Comment. Math. Helv.
32 (1958) 180.

[72] M.F. Atiyah and F. Hirzebruch, Vector bundles and homogeneous spaces, in Differential
Geometry American Mathematical Society (1961), p. 7–38 [DOI:10.1090/pspum/003/0139181].

[73] R. Thorngren, Framed Wilson Operators, Fermionic Strings, and Gravitational Anomaly in 4d,
JHEP 02 (2015) 152 [arXiv:1404.4385] [INSPIRE].

[74] J.P. Ang, K. Roumpedakis and S. Seifnashri, Line Operators of Gauge Theories on Non-Spin
Manifolds, JHEP 04 (2020) 087 [arXiv:1911.00589] [INSPIRE].

[75] D.S. Freed and G.W. Moore, Setting the quantum integrand of M-theory, Commun. Math.
Phys. 263 (2006) 89 [hep-th/0409135] [INSPIRE].

[76] S.M. Kravec, J. McGreevy and B. Swingle, All-fermion electrodynamics and fermion number
anomaly inflow, Phys. Rev. D 92 (2015) 085024 [arXiv:1409.8339] [INSPIRE].

[77] W.-T. Wu, Classes caractéristiques et i-carrés d’une variété, C. R. Acad. Sci. Paris 230
(1950) 508.

[78] J. Davighi and N. Lohitsiri, Anomaly interplay in U(1)(2) gauge theories, JHEP 05 (2020) 098
[arXiv:2001.07731] [INSPIRE].

[79] A. Grigoletto and P. Putrov, Spin-cobordisms, surgeries and fermionic modular bootstrap,
arXiv:2106.16247 [INSPIRE].

[80] A. Grigoletto, Anomalies of fermionic CFTs via cobordism and bootstrap, arXiv:2112.01485
[INSPIRE].

[81] S. Elitzur and V.P. Nair, Nonperturbative Anomalies in Higher Dimensions, Nucl. Phys. B
243 (1984) 205 [INSPIRE].

[82] E. Witten, Global Aspects of Current Algebra, Nucl. Phys. B 223 (1983) 422 [INSPIRE].

[83] P. Teichner, On the signature of four-manifolds with universal covering spin, Math. Ann. 295
(1993) 745 [INSPIRE].

[84] A. Debray et al., Long exact sequence in symmetry breaking: order parameter constraints,
defect anomaly matching, and higher Berry phase, to appear.

[85] D. Delmastro, D. Gaiotto and J. Gomis, Global anomalies on the Hilbert space, JHEP 11
(2021) 142 [arXiv:2101.02218] [INSPIRE].

[86] A. Bahri and P. Gilkey, The eta invariant, Pinc bordism, and equivariant Spinc bordism for
cyclic 2-groups, Pacific J. Math. 128 (1987) 1.

[87] N. Seiberg and E. Witten, Gapped Boundary Phases of Topological Insulators via Weak
Coupling, PTEP 2016 (2016) 12C101 [arXiv:1602.04251] [INSPIRE].

[88] L. Bhardwaj and D.S.W. Gould, Disconnected 0-Form and 2-Group Symmetries,
arXiv:2206.01287 [INSPIRE].

[89] L. Bhardwaj, M. Bullimore, A.E.V. Ferrari and S. Schafer-Nameki, Anomalies of Generalized
Symmetries from Solitonic Defects, arXiv:2205.15330 [INSPIRE].

[90] J.-P. Serre, Cohomologie modulo 2 des complexes d’Eilenberg-MacLane, Comment. Math. Helv.
27 (1953) 198.

[91] L. Breen, R. Mikhailov and A. Touzé, Derived functors of the divided power functors,
arXiv:1312.5676.

– 51 –

https://doi.org/10.1007/bf02564578
https://doi.org/10.1007/bf02564578
https://doi.org/10.1090/pspum/003/0139181
https://doi.org/10.1007/JHEP02(2015)152
https://arxiv.org/abs/1404.4385
https://inspirehep.net/literature/1291149
https://doi.org/10.1007/JHEP04(2020)087
https://arxiv.org/abs/1911.00589
https://inspirehep.net/literature/1762865
https://doi.org/10.1007/s00220-005-1482-7
https://doi.org/10.1007/s00220-005-1482-7
https://arxiv.org/abs/hep-th/0409135
https://inspirehep.net/literature/659197
https://doi.org/10.1103/PhysRevD.92.085024
https://arxiv.org/abs/1409.8339
https://inspirehep.net/literature/1319526
https://doi.org/10.1007/JHEP05(2020)098
https://arxiv.org/abs/2001.07731
https://inspirehep.net/literature/1776944
https://arxiv.org/abs/2106.16247
https://inspirehep.net/literature/1873391
https://arxiv.org/abs/2112.01485
https://inspirehep.net/literature/1982871
https://doi.org/10.1016/0550-3213(84)90024-5
https://doi.org/10.1016/0550-3213(84)90024-5
https://inspirehep.net/literature/199607
https://doi.org/10.1016/0550-3213(83)90063-9
https://inspirehep.net/literature/13234
https://doi.org/10.1007/BF01444915
https://doi.org/10.1007/BF01444915
https://inspirehep.net/literature/1747845
https://doi.org/10.1007/JHEP11(2021)142
https://doi.org/10.1007/JHEP11(2021)142
https://arxiv.org/abs/2101.02218
https://inspirehep.net/literature/1839679
https://doi.org/10.1093/ptep/ptw083
https://arxiv.org/abs/1602.04251
https://inspirehep.net/literature/1421670
https://arxiv.org/abs/2206.01287
https://inspirehep.net/literature/2091319
https://arxiv.org/abs/2205.15330
https://inspirehep.net/literature/2089827
https://doi.org/10.1007/bf02564562
https://doi.org/10.1007/bf02564562
https://arxiv.org/abs/1312.5676


J
H
E
P
0
7
(
2
0
2
3
)
0
1
9

[92] J. McCleary, A User's Guide to Spectral Sequences, Cambridge University Press (2000)
[DOI:10.1017/cbo9780511626289].

[93] C.T.C. Wall, Determination of the Cobordism Ring, Annals Math. 72 (1960) 292.

[94] C. Córdova, K. Ohmori, S.-H. Shao and F. Yan, Decorated Z2 symmetry defects and their
time-reversal anomalies, Phys. Rev. D 102 (2020) 045019 [arXiv:1910.14046] [INSPIRE].

[95] I. Hason, Z. Komargodski and R. Thorngren, Anomaly Matching in the Symmetry Broken
Phase: Domain Walls, CPT, and the Smith Isomorphism, SciPost Phys. 8 (2020) 062
[arXiv:1910.14039] [INSPIRE].

[96] A. Beaudry and J.A. Campbell, A guide for computing stable homotopy groups, Top. Quant.
Theor. Interact 718 (2018) 89.

[97] A.L. Liulevicius, The cohomology of a subalgebra of the Steenrod algebra, Trans. Am. Math.
Soc. 104 (1962) 443.

– 52 –

https://doi.org/10.1017/cbo9780511626289
https://doi.org/10.1103/PhysRevD.102.045019
https://arxiv.org/abs/1910.14046
https://inspirehep.net/literature/1762376
https://doi.org/10.21468/SciPostPhys.8.4.062
https://arxiv.org/abs/1910.14039
https://inspirehep.net/literature/1762373
https://doi.org/10.1090/conm/718/14476
https://doi.org/10.1090/conm/718/14476
https://doi.org/10.1090/s0002-9947-1962-0149476-9
https://doi.org/10.1090/s0002-9947-1962-0149476-9

	Introduction
	Review: 2-groups and their classifying spaces
	What is a 2-group?
	2-group symmetries in quantum field theory

	Cobordism with 2-group structure
	Background fields and their classifying spaces
	Elementary examples of B|G|
	General B|G| as a fibration

	Cobordism description of 2-group anomalies

	Maxwell revisited
	Cobordism classification of 1-form anomalies
	Phases of non-spin Maxwell theory
	Scalar QED and 1-form anomaly interplay

	QED anomalies revisited
	From the physics perspective
	From the bordism perspective
	Zero Postnikov class
	Even Postnikov class
	Odd Postnikov class
	The free part


	Abelian 2-group enhancement in two dimensions
	`Spin structure anomalies' in two dimensions
	Non-spin generalisation

	Conclusion and outlook
	Additional cohomology computations
	Cohomology groups of Eilenberg-Maclane spaces
	Mod 2 cohomology ring of the classifying space of an abelian 2-group

	Additional bordism calculations
	Maxwell
	Scalar QED with charge-2 boson

	Computation of a key differential

