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Unfolding is an important procedure in particle physics experiments that corrects for detector effects and
provides differential cross section measurements that can be used for a number of downstream tasks, such
as extracting fundamental physics parameters. Traditionally, unfolding is done by discretizing the target
phase space into a finite number of bins and is limited in the number of unfolded variables. Recently, there
have been a number of proposals to perform unbinned unfolding with machine learning. However, none of
these methods (like most unfolding methods) allow for simultaneously constraining (profiling) nuisance
parameters. We propose a new machine learning-based unfolding method that results in an unbinned
differential cross section and can profile nuisance parameters. The machine learning loss function is the full
likelihood function, based on binned inputs at detector level. We first demonstrate the method with simple
Gaussian examples and then show the impact on a simulated Higgs boson cross section measurement.
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I. INTRODUCTION

One of the most common analysis goals in particle and
nuclear physics is the measurement of differential cross
sections. These quantities encode the rate at which a
particular process occurs as a function of certain observ-
ables of interest. From measured cross sections, a number
of downstream inference tasks can be performed, including
the estimation of fundamental parameters, tuning simula-
tions, and searching for physics beyond the Standard
Model. The key challenge of cross section measurements
is correcting the data for detector distortions, a process
called deconvolution or unfolding. See Refs. [1–4] for
recent reviews on unfolding and Refs. [5–7] for the most
widely used unfolding algorithms.
Until recently, all cross section measurements were

performed with histograms. In particular, the target spectra
and experimental observations were binned and the
unfolding problem is recast in the language of linear algebra.
That is, one would like to determine the signal strength,
defined as the ratio of the observed signal yield to the
theoretical prediction, for each bin based on the measure-
ments from experimental observations. This approach comes

with the limitation that the binning must be determined
beforehand. This makes it difficult to compare measure-
ments with different binning. Furthermore, the optimal
binning depends on the downstream inference task.
Modern machine learning (ML) has enabled the creation

of unfolding methods that can process unbinned data [8].
Deep generative models such as generative adversarial
networks [9–11] and variational autoencoders [12,13]
produce implicit models that represents the probability
density of the unfolded result and allow to sample from the
probability density. Methods based on normalizing flows
[14–17] allow for both sampling and density estimation. In
contrast, the classifier-based method OmniFold [18,19] iter-
atively reweights a simulated dataset. A summary of
machine learning-based unfolding methods can be found
in Ref. [8] and recent applications of these techniques (in
particular, of OmniFold) to experimental data are presented in
Refs. [20–23]. While powerful, none of these approaches
can simultaneously estimate cross sections and fit (nui-
sance) parameters. This can be a significant shortcoming
when the phase space region being probed has nontrivial
constraining power for systematic uncertainties.
Unfolding methods that can also profile have been

proposed. One possibility is to treat the cross section in
each region of particle-level phase space (i.e., in a histo-
gram bin) as a free parameter and then perform a likelihood
fit as for any set of parameters of interest and nuisance
parameters. For example, this is the setup of the simplified
template cross section (e.g., Refs. [24–27]) measurements
for Higgs boson kinematic properties. Another possibility
is fully Bayesian unfolding [28], which samples from the
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posterior probability over the cross section in each bin of
the particle-level phase space and over the nuisance
parameters. All of these methods require binning.
In this paper, we propose a new machine learning-based

unfolding method that is both unbinned at particle level and
can profile, referred to as unbinned profiled unfolding (UPU).
UPU reuses all the standard techniques used in binned
maximum likelihood unfolding and combines them with
MLmethods that allow for unbinned unfolding. Specifically,
we use the binnedmaximum likelihood at detector level as the
metric to optimize the unfolding, while the unfolding takes
unbinned particle-level simulations as inputs.
The rest of this paper is organized as follows. In Sec. II,

we describe the procedure and implementation details
of UPU. We then present simple Gaussian examples to
demonstrate the usage of UPU in Sec. III. In Sec. IV,
we apply UPU to a simulated Higgs boson cross section
measurement at the Large Hadron Collider. The conclu-
sions and outlook are then given in Sec. V.

II. UNBINNED PROFILED UNFOLDING

A. Statistical setup

UPU generalizes binned maximum likelihood unfolding
to the unbinned case. Binned maximum likelihood unfolding
can be described by the following optimization setup:

ðk̂; θ̂Þ ¼ argmaxðk;θÞ Prðmjk; θÞp0ðθÞ; ð1Þ

where m ∈ RNm is a vector representing the counts in each
of the Nm bins at detector level, k ∈ RNk is a vector
representing the counts in each of the Nk bins at particle
level (usually Nm ≥ Nk), θ are the nuisance parameters, and
p0 is the prior on θ. Our idea is to keep the structure of
Eq. (1) but replace k with an unbinned estimator of the
particle-level spectrum. Suppose that the particle-level phase
space is1RN and let2 τ½ω� ∈ RRN

parametrize the probability
density over this space for parameters ω. The goal of UPU is
then to optimize

ðω̂; θ̂Þ ¼ argmaxðω;θÞ Prðmjτ½ω�; θÞp0ðθÞ; ð2Þ

where the final result would be given by τ½ω̂�. The
challenge with the construction in Eq. (2) is that for a
given truth spectrum τ½ω�, we need to know the predicted
detector-level distribution. In the binned case, this is
readily computed by multiplying k by the response matrix
Rij ¼ Prðmeasure in bin ijtruth is bin jÞ. When the truth
are unbinned, we need the full detector response. This is
never known analytically and would be challenging to

estimate numerically with a surrogate density estimator.3

To address this challenge, we make use of the fact that
simulated events come in pairs, with a matching between
particle-level and detector-level events. Instead of esti-
mating τ directly, we use a fixed simulation (with particle-
level spectrum τ½ω0�) and then learn a reweighting
function w0½λ� to estimate the likelihood ratio between
the unfolded result and the fixed simulation at particle
level. Schematically:

ðλ̂; θ̂Þ ¼ argmaxðλ;θÞ Prðmjτ½ω0�w0½λ�; θÞp0ðθÞ; ð3Þ
where in practice, we only have samples from τ½ω0� and
w0 is a surrogate model. The number of predicted events
in a given bin i is then a sum over weights w0½λ̂�
(evaluated at particle level) for simulated events with a
detector-level value in bin i. The probability over values
m is then a product over Poisson probability mass
functions, since the bins are statistically independent.
The fact that the probability mass is known is crucial
and means that UPU does not readily generalize the case
where the detector-level phase space is also unbinned.
This is the case for OmniFold, which also uses reweighting
at particle level. In contrast to UPU, OmniFold uses an
expectation-maximization-type algorithm to iteratively
converge to the maximum likelihood estimate and does
not currently allow for mixed implicit/explicit likelihood
constraints (as is needed for nuisance parameters).

B. Machine learning approach

For particle-level features T and detector-level features
R, the main goal is to train the likelihood ratio estimator
w0ðTÞ, which reweights the simulated particle-level spec-
trum. In the absence of profiling, this corresponds to the
following loss function:

L ¼
Ynbins
i¼1

Pr

 
ni

����
XnMC

j¼1

w0ðTjÞIiðRjÞ
!
; ð4Þ

where ni is the number of observed events in bin i, nMC is the
number of simulated events, and Iið·Þ is the indicator
function that is one when · is in bin i and zero otherwise.
When w0 is parametrized as a neural network (see Sec. II C),
then the logarithm of Eq. (4) is used for training:

logL

¼
Xnbins
i¼1

"
ni log

 XnMC

j¼1

w0ðTjÞIiðRjÞ
!
−
XnMC

i¼1

w0ðTjÞIiðRjÞ
#
;

ð5Þ
1Assuming the space is suitably standardized to remove units.
2We will use ½·� to denote the parameters of the function and ð·Þ

to denote the inputs of the function, e.g., f½θ�ðxÞ is a functional in
θ and a function in x.

3Note that Eq. (2) is a probability distribution over probability
distributions so building it from the per-event detector response is
nontrivial.
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where we have dropped constants that do not affect the
optimization. Experimental nuisance parameters modify the
predicted counts in a particular bin given the particle-level
counts. We account for these effects with a second reweight-
ing function:

w1ðRjT; θÞ ¼
pθðRjTÞ
pθ0ðRjTÞ

; ð6Þ

where pθðRjTÞ is the conditional probability density of R
given T with nuisance parameters θ. Importantly,w1 does not
modify the target particle level distribution. Incorporating w1

into the log likelihood results in the full loss function:

logL¼
Xnbins
i¼1

"
ni log

 XnMC

j¼1

w0ðTjÞw1ðRjjTj;θÞIiðRjÞ
!

−
XnMC

j¼1

w0ðTjÞw1ðRjjTj;θÞIiðRjÞ
#
þ logp0ðθÞ: ð7Þ

Since w1 does not depend on the particle-level spectrum,
it can be estimated prior to the final fit and only the

parameters of w0 and the value(s) of θ are allowed to float
when optimizing Eq. (7).

C. Machine learning implementation

In our subsequent case studies, the reweighting func-
tions w0 and w1 are parametrized with neural networks.
The w0 function is only constrained to be non-negative
and so we choose it to be the exponential of a neural
network.
The pretraining of w1 requires neural conditional

reweighting [29], as a likelihood ratio in R conditioned
on T and parametrized in θ. While there are multiple ways
of approximating conditional likelihood ratios, the one we
found to be the most stable for the examples we have
studied for UPU is the product approach:

w1ðRjT; θÞ ¼
�
pθðR; TÞ
pθ0ðR; TÞ

��
pθ0ðTÞ
pθðTÞ

�
; ð8Þ

where the two terms on the right-hand side are separately
estimated and then their product is w1. For a single
feature T, a likelihood ratio between samples drawn
from a probability density p and samples drawn from a

TABLE I. Summary of Gaussian example datasets.

Data set Parameters Number of events Purpose

D1.0
sim μ ¼ 0, σ ¼ 1 and ϵ ¼ 1 200,000 Nominal simulation

Dobs μ ¼ 0.8, σ ¼ 1 and ϵ ¼ 1.2 100,000 Observed data
D�

sim μ ¼ 0, σ ¼ 1 and ϵ ¼ ð0.2; 1.8Þ 200,000 Train w1

D1.2
sim μ ¼ 0, σ ¼ 1 and ϵ ¼ 1.2 100,000 Validate w1

FIG. 1. Gaussian 2D example: the nominal detector-level spectra R (left) and R� (right) with ϵ ¼ 1 reweighted by the trained w1

conditioned at ϵ ¼ 1.2 and compared to the spectra with ϵ ¼ 1.2. The shaded band in the bottom panel represents the data statistical
uncertainty, which is estimated as 1=

ffiffiffi
n

p
, where n is the number of D1.2

sim events in a given bin.
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probability density q is estimated using the fact that
machine learning classifiers approximate monotonic trans-
formations of likelihood ratios (see, e.g., Refs. [30,31]). In
particular, we use the standard binary cross entropy loss
function

LBCE½f� ¼ −
X
Y∼p

logðfðYÞÞ −
X
Y∼q

logð1 − fðYÞÞ; ð9Þ

and then the likelihood ratio is estimated as f=ð1 − fÞ.
The last layer of the f networks are sigmoids in order to
constrain their range to be between 0 and 1. The function

f is additionally trained to be parametrized in θ by
training with pairs ðY;ΘÞ instead of just Y, where Θ is
a random variable corresponding to values θ sampled
from a prior probability distribution. We will use a
uniform prior when training the parametrized classifiers.
All neural networks are implemented using PyTorch [32]

and optimized with Adam [33] with a learning rate of 0.001
and consist of three hidden layers with 50 nodes per layer.
All intermediate layers use ReLU activation functions.
Each network is trained for 10,000 epochs with early
stopping using a patience of 10. The w1 training uses a
batch size of 100,000. The w0 network is simultaneously

FIG. 2. Gaussian 2D example: results of the w0 optimization. The nuisance parameter ϵ is optimized simultaneously with w0 with the
prior constraint set to 80%. The fitted ϵ is 1.20� 0.004. Top left: the detector-level spectrum R of the simulation template Dsim
reweighted by the trained w0 × w1, compared to the R spectrum of the observed data Dobs. Top right: the detector-level spectrum R0 of
the simulation template Dsim reweighted by the trained w0 × w1, compared to the R� spectrum of the observed data Dobs. Bottom: the
particle-level spectrum T of the simulation templateDsim reweighted by the trained w0, compared to the T spectrum of the observed data
Dobs. The shaded band in the bottom panel represents the data statistical uncertainty, which is estimated as 1=

ffiffiffi
n

p
, where n is the number

of observed events in a given bin.
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optimized with θ and uses a batch size that is the full
dataset, which corresponds to performing the fit in Eq. (7)
over all the data. All neural networks are implemented
using PyTorch [32] and optimized with Adam [33] with a
learning rate of 0.001 and consist of three hidden layers
with 50 nodes per layer. All intermediate layers use ReLU
activation functions. Each network is trained for 10,000
epochs with early stopping using a patience of 10. The w1

training uses a batch size of 100,000. The w0 network is
simultaneously optimized with θ and uses a batch size that
is the full dataset, which corresponds to performing the fit
in Eq. (7) over all the data.

III. GAUSSIAN EXAMPLE

We now demonstrate the proposed method with a simple
numerical example. Here, each dataset represents a one-
dimensional Gaussian distribution in the particle level and
a two-dimensional distribution in the detector level. The
particle-level Gaussian random variable T is described by
mean μ and standard deviation σ, while the detector-level
variables are given by

R ¼ T þ Z; ð10Þ

R� ¼ T þ Z�; ð11Þ

where Z (Z�) is a Gaussian random variable with mean
β (β�) and standard deviation ϵ (ϵ�). ϵ is considered to be
the only nuisance parameter, and β, β� are fixed to 0, and ϵ�
is fixed to 1. In this case, the nuisance parameter ϵ only has
effect on the R spectrum and the R� spectrum depends

purely on the particle-level spectrum T. This setup is thus
sensitive to both the effect of w0 and that of w1.

4

Three datasets are prepared for the full training pro-
cedure. As summarized in Table I, the first dataset D1.0

sim is
used as the nominal simulation sample, which contains
200,000 events with μ ¼ 0, σ ¼ 1, and ϵ ¼ 1. The second
data set Dobs is used as the observed data, which contains
100,000 events with μ ¼ 0.8, σ ¼ 1, and ϵ ¼ 1.2. To train
the w1 reweighter, the third dataset D�

sim, which contains
200,000 events with μ ¼ 0, σ ¼ 1, and ϵ uniformly
distributed from 0.2 to 1.8, is prepared and used as the
simulation with systematic variations. In addition, another
dataset D1.2

sim of 100,000 events with μ ¼ 0, σ ¼ 1, and
ϵ ¼ 1.2 is produced for validating the w1 reweighter. All
datasets used in the training procedure are split to 50% for
training and 50% for validating.
A w1 reweighter is trained to reweight D1.0

sim to D�
sim. The

trained w1 is tested with the nominal R and R� spectra
(D1.0

sim) reweighted to ϵ ¼ 1.2 and compared to the R and R�

spectra with ϵ ¼ 1.2. As shown in Fig. 1, the trained w1

reweighter has learned to reweight the nominal R spectrum
to match the R spectrum with ϵ at 1.2, and R� is
independent of the w1 reweighter.
Based on the trained w1 reweighter, a w0 reweighter and

the nuisance parameter ϵ are optimized simultaneously

FIG. 3. Higgs boson cross section: the nominal detector-level spectra mγγ (left) and pT
γγ (right) with ϵγ ¼ 1 reweighted by the trained

w1 conditioned at ϵγ ¼ 1.2 and compared to the spectra with ϵγ ¼ 1.2. The shaded band in the bottom panel represents the data statistical
uncertainty, which is estimated as 1=

ffiffiffi
n

p
, where n is the number of D1.2

sim events in a given bin.

4An ill-defined example is shown in Appendix A, where
the considered detector-level observable, a one-dimensional
Gaussian distribution, is not able to distinguish between effects
from particle level and effects from detector level with θ. This
limitation also exists in the standard binned maximum likelihood
unfolding, as shown in Appendix B.
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using Dsim as the simulation template with Dobs as the
observed data used in Eq. (7). The prior in the penalty term
in Eq. (7) is configured with an uncertainty of 80%. The
fitted ϵ is 1.20� 0.0045 (correct value is 1.2). As shown in
Fig. 2, the reweighted spectra match well with observed
data in both detector and particle level. For more realistic

uncertainties (so long as the simulation is close to the right
answer), the fidelity is even better.

IV. HIGGS BOSON CROSS SECTION

We now demonstrate the unfolding method in a physics
case—a Higgs boson cross section measurement. Here, we
focus on the diphoton decay channel of the Higgs boson.
The goal is then to measure the transverse momentum
spectrum of the Higgs boson pT

H using the transverse
momentum of the diphoton system pT

γγ at detector level.
The photon resolution ϵγ is considered as a nuisance

FIG. 4. Higgs boson cross section: results of the w0 optimization. The nuisance parameter ϵγ is optimized simultaneously with w0 with
the prior constraint set to 50% (orange) or fixed to 1 for comparison (red). The fitted ϵγ is 1.19� 0.007. Top left: the detector-level
spectrum mγγ of the simulation template Dsim reweighted by the trained w0 × w1, compared to the mγγ spectrum of the observed data
Dobs. Top right: the detector-level spectrum pT

γγ of the simulation template Dsim reweighted by the trained w0 × w1, compared to the pT
γγ

spectrum of the observed data Dobs. Bottom: the particle-level spectrum pT
γγ of the simulation template Dsim reweighted by the trained

w0, compared to the pT
γγ spectrum of the observed data Dobs. The shaded band in the bottom panel represents the data statistical

uncertainty, which is estimated as 1=
ffiffiffi
n

p
, where n is the number of observed events in a given bin.

5The fitted value is averaged over five different w0 reweighters
that are trained in the same way but with different random
initializations. The standard deviation of the fitted values is taken
as the error.
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parameter. In this case, the pT
γγ spectrum is minimally

affected by ϵγ. Therefore, we also consider the invariant
mass spectrum of the diphoton systemmγγ at detector level,
which is highly sensitive to ϵγ . In addition, In order to have
a large spectrum difference between different datasets
for demonstration purpose, we consider only events that
contain at least two reconstructed jets, where the leading-
order calculation would significantly differ from next-to-
leading-order calculation.
Similar to the Gaussian examples, we prepare the

following datasets:
(i) Dobs: used as the observed data.
(ii) D1.0

sim: used as the nominal simulation sample.
(iii) D1.2

sim: used as the simulation sample with a system-
atic variation.

(iv) D�
sim: simulation sample with various ϵγ values for

training the w1 reweighter.
Dobs is generated at next-to-leading order using the

POWHEGBOX program [34,35], while the rest are generated
at leading order using MadGraph5_aMC@LO v2.6.5 [36].
For all samples, the parton-level events are processed by
PYTHIA 8.235 [37,38] for the Higgs decay, the parton shower,
hadronization, and the underlying event. The detector
simulation is based on DELPHES 3.5.0 [39] with detector
response modified from the default ATLAS detector
card. For both Dobs and D1.2

sim, the photon resolution ϵ
is multiplied by a factor of 1.2. For D�

sim, the multiplier of
ϵ is uniformly scanned between 0.5 and 1.5 with
a step size of 0.01. D1.0

sim uses the default ATLAS detector
card.
Each of the spectra of particle-level pT

γγ , detector-level
pT
γγ , and detector-level mγγ is standardized to the spectrum

with a mean of 0 and a standard deviation of 1 before being
passed to the neural networks. A w1 reweighter is then
trained to reweight D1.0

sim to D�
sim. The trained w1 is tested

with the nominal detector level pT
γγ and mγγ spectra (D1.0

sim)
reweighted to ϵγ ¼ 1.2 and compared to the detector level
pT
γγ and mγγ spectra with ϵγ ¼ 1.2. As shown in Fig. 3, the

trained w1 reweighter has learned to reweight the nominal
detector level mγγ spectrum to match the detector level mγγ

spectrum with ϵγ at 1.2, and the detector level pT
γγ variable

is independent of the w1 reweighter.
The w0 reweighter and ϵ are optimized simultaneously

based on the pretrained w1 reweighter. The prior of ϵγ is
50%. The fitted ϵγ is 1.19� 0.007. As shown in Fig. 4, the
reweighted spectra match well with observed data in both
detector and particle level. This means that the observed
data pT

H spectrum is successfully unfolded with the
nuisance parameter ϵγ properly profiled. For comparison,
we also perform UPU with ϵγ fixed at 1. As shown in
Fig. 4, the unfolded pT

H spectrum in this case has a larger
nonclosure with the observed data due to the lack of
profiling.

V. CONCLUSION AND OUTLOOK

In this paper, we proposed UPU, a new ML-based
unfolding method that can process unbinned data and
profile. The method uses the binned maximum likelihood
as the figure of merit to optimize the unfolding reweighting
function w0ðtÞ, which takes unbinned particle-level spectra
as inputs. w0ðtÞ and the nuisance parameters θ are opti-
mized simultaneously, which also requires to learn a
conditional likelihood ratio w1ðt; rjθÞ that reweights the
detector-level spectra based on the profiled values of
nuisance parameters and is taken as an input for the
optimization of w0ðtÞ and θ.
In the Gaussian example, we demonstrated the optimi-

zation of w1 and the optimization of w0 and θ. The setup
considers one dimension in the particle level and two
dimensions in the detector level. The additional detector-
level observable, which does not depend on θ, breaks
the degeneracy between particle-level and detector-level
effects and thus allows for optimization of w1 and θ at the
same time.
We also applied UPU to the Higgs boson cross section

measurement. We considered one dimension at particle
level and two dimensions at detector level. With one
detector-level variable sensitive to the target particle-level
observable and one sensitive to the effect of nuisance
parameters, the data are successfully unfolded and profiled.
The impact of profiling is also demonstrated by comparing
with the result of nuisance parameter fixed to the nominal
value. This can be readily extended to higher dimensions in
either particle level or detector level, provided all particle-
level and detector-level effects are distinguishable in the
considered detector-level spectra. In the case of more than
one nuisance parameters, one can either train multiple w1

for each nuisance parameter separately or train a single w1,
which takes all nuisance parameters as inputs. As the
effects of multiple nuisance parameters are usually assumed
independent, one could take a product of individually
trained reweighters.
As with any measurement, quantifying the uncertainty is

critical to interpret UPU results. Just as in the binned case,
one can calculate the uncertainty on the nuisance param-
eters which can be determined by fixing a given parameter
to target values and then simultaneously reoptimizing w0

and the rest of the nuisance parameters. A new feature of
UPU is that the likelihood (ratio) itself is only an approxi-
mation, using neural networks as surrogate models. This is
a challenge for all machine-learning-based unfolding,
and uncertainties can be probed by comparing the results
with different simulations. Future extensions of UPU may
be able to also use machine learning to quantify these
model uncertainties as well as process unbinned data also at
detector level.
The code for this paper can be found at https://github

.com/qwerasd903/UnbinnedProfiledUnfolding, which uses
Jupyter Notebooks [40] and employs NumPy [41] for data
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manipulation and Matplotlib [42] for visualization. All of the
machine learning was performed on an NVIDIA A100
Graphical Processing Unit (GPU) and reproducing the
entire notebook takes about 13 hours. The physics data
sets are hosted on Zenodo at Ref. [43].
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APPENDIX A: GAUSSIAN EXAMPLE WITH ONE
DIMENSION AT BOTH PARTICLE AND

DETECTOR LEVELS

In this appendix, we apply UPU to the Gaussian example
where each dataset represents one-dimensional Gaussian
random variables at both the particle and detector levels.
The particle-level random variable T is described by mean
μ and standard deviation σ, while the detector-level variable
is given by

R ¼ T þ Z; ðA1Þ

where Z is a Gaussian random variable with mean β and
standard deviation ϵ.

ϵ is considered to be the only nuisance parameter, and β
is fixed to 0. Similar to the setup in Sec. III, four datasets
are prepared for the full training and validation procedure:

(i) D1.0
sim: 200,000 events with μ ¼ 0, σ ¼ 1 and ϵ ¼ 1.

(ii) Dobs: 100,000 events with μ ¼ 0.2, σ ¼ 1 and
ϵ ¼ 1.2.

(iii) D�
sim: 200,000 events with μ ¼ 0, σ ¼ 1 and ϵ

uniformly distributed from 0.2 to 1.8.
(iv) D1.2

sim: 100,000 events with μ ¼ 0, σ ¼ 1 and ϵ ¼ 1.2.

FIG. 5. Gaussian 1D example: the nominal R distribution
(ϵ ¼ 1) reweighted by the trained w1 conditioned at ϵ ¼ 1.2
and compared to R distribution with ϵ ¼ 1.2. The shaded band in
the bottom panel represents the data statistical uncertainty, which
is estimated as 1=

ffiffiffi
n

p
, where n is the number of D1.2

sim events in a
given bin.

FIG. 6. Gaussian 1D example: results of the w0 optimization.
The nuisance parameter ϵ is fixed to 1.2, and the penalty term in
Eq. (7) is set to 0. Top: the detector-level spectrum R of the
simulation template Dsim reweighted by the trained w0 × w1,
compared to the R spectrum of the observed data Dobs. Bottom:
the particle-level spectrum T of the simulation template Dsim
reweighted by the trained w0, compared to the T spectrum of the
observed data Dobs. The shaded band in the bottom panel
represents the data statistical uncertainty, which is estimated as
1=

ffiffiffi
n

p
, where n is the number of observed events in a given bin.
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A w1 reweighter is trained to reweight D1.0
sim to D�

sim. The
trained w1 is then tested with the nominal R distribution
(D1.0

sim) reweighted to ϵ ¼ 1.2 (w1ðRjT; ϵ ¼ 1.2Þ) and com-
pared to the R spectrum with ϵ ¼ 1.2 (D1.2

sim). As shown in
Fig. 5, the trained w1 reweighter has learned to reweight the
nominal R spectrum to match the R spectrum with ϵ at 1.2.
With this trained w1 reweighter, a w0 reweighter is

trained using D1.0
sim as the simulation template with Dobs

as the observed data used in Eq. (7). In the first scenario, the
nuisance parameter ϵ for the w1 reweighter is fixed to 1.2,
and the penalty term in Eq. (7) logðθÞ is set to 0 (no
constraint). As shown in Fig. 6, the w0 reweighter is able to
learn to reweight the particle-level spectrum T by matching
the detector-level spectrum R to the observed spectrum. In
the second scenario, the nuisance parameter ϵ is trained
together with the w0 reweighter. The prior in the penalty
term in Eq. (7) is set to be a Gaussian probability density
with a 80% uncertainty. As shown in Fig. 7, the trained w0

and optimized ϵ are tested. The fitted ϵ is 1.03� 0.0166

(true value is 1.2). The reweighted distribution matches
well with observed data in the detector-level spectrum but
the particle-level spectrum has a large nonclosure. This is
because of the degeneracy between the w0 and w1

reweighters in the effect on the detector-level spectrum.
In other words, detector effects can mimic changes in the

particle-level cross section, so the data cannot distinguish
between these two scenarios. This is a common issue which
also exists in the standard binned maximum likelihood
unfolding. For comparison, we also perform the standard
binned maximum likelihood unfolding. As shown in
Appendix B, the unfolded T spectrum in this case also
fails to represent the true T spectrum. An 80% uncertainty
is highly exaggerated from typical scenarios, but it clearly
illustrates the challenge of profiling and unfolding at the
same time.

APPENDIX B: BINNED MAXIMUM LIKELIHOOD
UNFOLDING WITH GAUSSIAN EXAMPLES

In this appendix, we present results of the standard
binned maximum likelihood unfolding with Gaussian
examples. The scenarios are

(i) One-dimension in both particle and detector level:
This is the same example as described in Appendix A.
The prior constraint for ϵ is set to 80%. The result is
shown in Fig. 8 with ϵ fitted to 1.08� 0.02, which
also indicates a degeneracy problem between particle
and detector levels.

(ii) One dimension in particle level and two dimensions
in detector level: This is the same example as
described in Sec. III. The prior constraint for ϵ is
set to 80%. The result is shown in Fig. 9 with ϵ fitted
to 1.19� 0.003. The degeneracy problem is re-
solved after considering an additional spectrum in
the detector level.

All the maximum likelihood fittings are per-
formed using PYHF [44,45].

FIG. 7. Gaussian 1D example: results of the w0 optimization. The nuisance parameter ϵ is optimized simultaneously with w0 and the
best-fit value is ϵ̂ ¼ 1.03� 0.016. Left: the detector-level spectrum R of the simulation template Dsim reweighted by the trained
w0 × w1, compared to the R spectrum of the observed data Dobs. Right: the particle-level spectrum T of the simulation template Dsim
reweighted by the trained w0, compared to the T spectrum of the observed dataDobs. The shaded band in the bottom panel represents the
data statistical uncertainty, which is estimated as 1=

ffiffiffi
n

p
, where n is the number of observed events in a given bin.

6The fitted value is averaged over five different w0 reweighters,
which are trained in the same way, but with different random
initializations. The standard deviation of the fitted values is taken
as the error.
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FIG. 8. Gaussian 1D example: results of the binned maximum likelihood unfolding. The prior constraint for ϵ is set to 80% and the
fitted ϵ is 1.08� 0.02. Left: the fitted detector-level spectrum R of the simulation template Dsim, compared to the R spectrum of the
observed data Dobs. Right: the unfolded particle-level spectrum T of the simulation template Dsim, compared to the T spectrum of
the observed data Dobs. The shaded band in the bottom panel represents the data statistical uncertainty, which is estimated as 1=

ffiffiffi
n

p
,

where n is the number of observed events in a given bin.
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