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1 Introduction

Recently it has been demonstrated in [1], following earlier work in [2], that the conditions
induced by the gravitino Killing spinor equation (KSE) on the (Killing spinor) form bilin-
ears of any supergravity theory, which may include higher curvature corrections, can be
organised as a TCFH. This means that there is a connection DF which depends on the
fluxes, F , of the theory such that

DFXΩ = iXP +X ∧Q , (1.1)
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for any vector field X on the spacetime, where Ω is spanned by the form bilinears and
P and Q are multiforms which depend on Ω and F . The TCFH connection DF may
not be form degree preserving. A consequence of (1.1) is that Ω satisfies a generalisation
of the conformal Killing-Yano (CKY) equation1 with respect to DF . Killing-Yano (KY)
forms have played a crucial role in the integrability of geodesic flows of several black
hole spacetimes, beginning with the Kerr black hole in [3–5], as well as other classical
field equations on curved backgrounds; for some selected publications see [6–11] and the
reviews [12, 13]. For additional applications of CKY, KY and CCKY forms see e.g. [14–18].
Moreover, it has been demonstrated in [19] that spinning particle probes [20] propagating
on backgrounds equipped with a KY form admit (hidden) symmetries generated by the
form. This raises the possibility that, as a consequence of TCFH, the form bilinears of
supersymmetric backgrounds may be associated with the (hidden) symmetries of certain
probes whose actions may include couplings associated with the supergravity fields. Thus,
there may be an interplay between TCFHs and probe conservation laws.

The construction of the TCFH for 11-dimensional, IIA and IIB supergravities on
generic supersymmetric backgrounds can be found in [21, 22]. Similar results have been
obtained in some lower dimensional supergravity theories [23]. In all cases, it has been
demonstrated that there are supersymmetric backgrounds whose form bilinears generate
symmetries for suitably chosen probe actions, i.e. it has been found that the invariance con-
ditions of the probe actions match those associated with the TCFH on the form bilinears.
Moreover the TCFHs of all 11-dimensional and IIB AdS backgrounds have been presented
in [24, 25]. An investigation of the relation between TCFHs and invariance conditions for
probes has also been presented for AdS backgrounds yielding similar results.

The purpose of this paper is to present the TCFH on the internal spaces of all warped
AdS backgrounds of (massive) IIA supergravity [26]. In addition some of their properties
are explored which include the reduced holonomy of the minimal connection for generic
supersymmetric backgrounds. Next we investigate the question on whether some of the
form bilinears generate symmetries for spinning particles propagating on such backgrounds.
It is demonstrated that this is the case for a class of AdS backgrounds constructed using
ansatze that include the near horizon geometries of some IIA intersecting brane configura-
tions. This work completes the construction of TCFHs for all AdS backgrounds of type II
supergravities in 10- and 11-dimensions.

This paper has been organised as follows. In sections 2, 3 and 4, the TCFH of warped
IIA AdSk, k = 2, 3, 4 backgrounds are presented. This includes also the investigation of
some of the properties of the TCFH connections, such as their holonomy. In section 5,
the TCFH of warped IIA AdSk, k = 5, 6, 7, backgrounds are given. In section 6, we
present some explicit examples where the TCFH generates symmetries for spinning particles
propagating on the internal space of AdS2 and AdS3 backgrounds, and in section 7 we give
our conclusions.

1The standard CKY equation reads ∇Xω = iXdω− 1
n−k+1X∧δω, where ∇ is the Levi-Civita connection

and ω a k-form. If ω is co-closed, δω = 0, then ω is a KY form. If ω is closed, dω = 0, then ω is a closed
CKY (CCKY) form. The Hodge dual of a KY form is a CCKY form and vice-versa.
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2 The TCFH of warped AdS2 backgrounds

The approach that we shall follow below to construct the TCFHs on the internal spaces
of all warped AdS backgrounds of massive IIA supergravity is based on the solution of
the KSEs of the theory presented in [27, 28]. In these works the KSEs of the theory
are integrated over the AdS subspace of warped AdS backgrounds without any additional
assumptions on the form of the Killing spinors. Then the remaining independent KSEs on
the internal space of the AdS backgrounds are identified. A similar procedure is used for
the field equations of the theory. The main advantage of this method is that it does not
involve additional assumptions, such as a certain factorisation of Killing spinors, and so it
is general. For a comparison of the different methods to solve the KSEs of warped AdS
backgrounds see [29].

2.1 Fields and Killing spinors

Let Φ be the dilaton, and G, H, F be the 4-, 3- and 2-form field strengths of (massive) IIA
supergravity, respectively. The bosonic fields of a warped AdS2 background, AdS2×wM8,
with internal space M8 can be expressed as follows

g = 2 e+e− + g(M8) , G = e+ ∧ e− ∧X + Y , H = e+ ∧ e− ∧W + Z ,

F = N e+ ∧ e− + P , S = meΦ , Φ = Φ ,
(2.1)

where Φ is a function on M8, Φ ∈ C∞(M8), g(M8) is a metric on the internal space
M8, and N ∈ C∞(M8), W ∈ Ω1(M8), X,P ∈ Ω2(M8), Z ∈ Ω3(M8) and Y ∈ Ω4(M8).
For simplicity, we have denoted the spacetime dilaton and its restriction on M8 with the
same symbol. Moreover, m is a constant2 that is non-zero in massive IIA and vanishes in
standard IIA supergravity. We have also introduced the pseudo-orthonormal (co-)frame

e+ = du , e− = dr − 2rA−1dA− 1
2r

2`−2A−2du , ei = eiJdy
J , (2.2)

on AdS2 ×w M8, where A ∈ C∞(M8) is the warp factor, ei is an orthonormal frame on
M8 that depends only on the coordinates y of M8, g(M8) = δijeiej , and ` is the radius
of AdS2. Moreover (u, r) are the remaining coordinates of the spacetime. It can be seen
after a coordinate transformation that the spacetime metric g can be put into the standard
warped form g = A2g`(AdS2) + g(M8), where g`(AdS2) is the standard metric on AdS2
with radius `.

The KSEs of massive IIA supergravity for warped AdS2 backgrounds have been inte-
grated over the (u, r) coordinates in [27, 28]. In such a case, the Killing spinors can be
expressed as ε = ε(u, r, η±), where η± are spinors that depend only on the coordinates of
M8 and satisfy Γ±η± = 0, where the gamma matrices (Γ+,Γ−,Γi) are taken with respect
to the frame (2.2). The precise expression for ε in terms of u, r and η±, which can be found
in [28], is not essential in what follows and so it will not be presented here. Furthermore,

2Viewing m as a field and in the presence of D8-brane sources, m can be taken as piecewise constant.
The same applies in the description of other AdS backgrounds but we shall not elaborate on this below.

– 3 –



J
H
E
P
0
7
(
2
0
2
3
)
0
5
7

the conditions that gravitino KSE imposes on η± along M8 are

D(±)
m η± = 0 , (2.3)

where

D(±)
m η± =∇mη± ±

1
2A
−1∂mAη± ∓

1
16

/XΓmη± + 1
8 · 4!

/Y Γmη± + 1
8SΓmη±

+ Γ11

(
∓1

4Wmη± + 1
8
/Zmη± ±

1
8NΓmη± −

1
16
/PΓmη±

)
,

(2.4)

is the supercovariant connection3 on M8, m = 1, . . . , 8 and ∇ is the spin connection
associated with the metric g(M8). These are clearly parallel transport equations for η±.
The Killing spinors η± satisfy additional conditions [28] arising from the dilatino KSE of
massive IIA supergravity. But these additional conditions are not essential for the TCFH
below and so we shall not describe them here. However, they will be used later when we
discuss examples and some aspects of them will be summarised there.

2.2 The TCFH on M8

It has been demonstrated in [1] that the conditions imposed on the Killing spinor bilinears
by the gravitino KSE of any supergravity theory can be organised as a TCFH. Here we
shall focus on the TCFH associated with the form bilinears on M8 constructed from the
Killing spinors η± satisfying the KSEs (2.3). Given two such Killing spinors ηr± and ηs±,
one can define the k-form bilinears

φrs± = 1
k!
〈
ηr±,Γi1...ikη

s
±
〉

ei1 ∧· · ·∧eik , φ̃rs± = 1
k!
〈
ηr±,Γi1...ikΓ11η

s
±
〉

ei1 ∧· · ·∧eik , (2.5)

where 〈·, ·〉 denotes the spin-invariant inner product on M8 for which the spacelike gamma
matrices are Hermitian while the time-like ones are anti-Hermitian.

Because of the reality condition on η±, which follows from that of IIA Killing spinors,
the form bilinears are either symmetric or skew-symmetric on the exchange of ηr and ηs.
A basis in the space of form bilinears4 on M8, up to Hodge duality,5 which are symmetric
in the exchange of Killing spinors is

f rs± =
〈
ηr±, η

s
±
〉
, f̃ rs± =

〈
ηr±,Γ11η

s
±
〉
, krs± =

〈
ηr±,Γiηs±

〉
ei ,

π̃rs± = 1
3!
〈
ηr±,ΓijkΓ11η

s
±
〉

ei ∧ ej ∧ ek, ζrs± = 1
4!
〈
ηr±,Γi1...i4ηs±

〉
ei1 ∧ · · · ∧ ei4 .

(2.6)
To find the TCFH associated to the above form bilinears note that

∇mφ±rsi1...ik =
〈
∇mηr±,Γi1...ikη

s
±
〉

+
〈
ηr±,Γi1...ik∇mη

s
±
〉
, (2.7)

3We use the conventions of [27, 28]. In particular if α is a k-form on M8, then /α = αj1...jk Γji...jk and
/αi

= αij1...jk−1 Γji...jk−1 .
4Note that the form bilinears constructed from η+ and η− spinors vanish.
5Our Hodge duality conventions are ?ωm1...mn−p = 1

p!ωq1...qpε
q1...qp

m1...mn−p , where ω is a p-form on a
n-dimensional Riemannian manifold Mn with orientation chosen as ε12...n = 1.
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and similarly for φ̃±rs. Then using the KSEs (2.3), one can replace in the right-hand-
side of the above equation the derivatives on the spinors in term of a Clifford algebra
element constructed from the fluxes of the theory. After some extensive Clifford algebra
computation, one can demonstrate that the right-hand-side can always be organised as a
TCFH.

In particular, the TCFH of the form bilinears (2.6), with respect to the minimal con-
nection6 DF is

DFmf± :=∇mf±

= ∓A−1∂mAf± ∓
1
4Xmpk±

p ± 1
4!

?Ympqrπ̃±
pqr

− 1
4Sk±m ±

1
2Wmf̃± −

1
8Ppqπ̃±

pq
m ,

(2.8)

DFmf̃± :=∇mf̃±

= ∓A−1∂mA f̃± ∓
1
8Xpqπ̃±

pq
m −

1
4!Ympqrπ̃±

pqr

± 1
2Wmf± ∓

1
4Nk±m −

1
4Pmpk±

p ,

(2.9)

DFmk±i :=∇mk±i + 1
12Ympqrζ±

pqr
i + 1

4Zmpqπ̃±
pq
i

= ∓A−1∂mAk±i ∓
1
8Xpqζ±

pq
mi ∓

1
4Xmif± −

1
4 · 4!δmiYp1...p4ζ±

p1...p4

+ 1
12Y[m|pqr|ζ±

pqr
i] −

1
4δmiSf± ±

1
4δmiNf̃± ∓

1
4 · 4!

?Pmip1...p4ζ±
p1...p4

+ 1
4Pmif̃± ,

(2.10)

DFmπ̃±ijk :=∇mπ̃±ijk + 1
4
?Xm[ij|pqr|ζ±

pqr
k] ±

3
4
?Ym[i|pq|ζ±

pq
jk] ±

3
4
?Zm[ij|pq|π̃±

pq
k]

− 3
2Zm[ijk±k] −

1
2Pmpζ±

p
ijk

= ∓A−1∂mA π̃±ijk ±
3
4δm[iXjk]f̃± −

1
32δm[i

?Xjk]p1...p4ζ±
p1...p4

+ 1
6
?X[mij|pqr|ζ±

pqr
k] ±

1
4
?Ymijkf± + 1

4Ymijkf̃± ±
1
4δm[i

?Yj|pqr|ζ±
pqr

k]

± 3
4
?Y[mi|pq|ζ±

pq
jk] ±

1
4 · 4!

?Smijkp1...p4ζ±
p1...p4 ± 1

4δm[i
?Zjk]pqrπ̃±

pqr

± ?Z[mij|pqr|π̃±
pq
k] ±

1
4Nζ±mijk + 3

8δm[i|Ppq|ζ±
pq
jk] − P[m|p|ζ±

p
ijk]

− 3
4δm[iPjk]f± ,

(2.11)

6See [1] for the definition.

– 5 –



J
H
E
P
0
7
(
2
0
2
3
)
0
5
7

DFmζ±i1...i4 :=∇mζ±i1...i4 − ?Xm[i1i2i3|pq|π̃±
pq
i4] − 2Ym[i1i2i3k±i4] ± 3 ?Ym[i1i2|p|π̃±

p
i3i4]

+ 1
2 · 4!Wmεi1...i4

j1...j4ζ±j1...j4 ±
3
2
?Zm[i1i2|pq|ζ±

pq
i3i4] + 2Pm[i1 π̃±i2i3i4]

= ∓A−1∂mAζ±i1...i4 ± 3δm[i1Xi2i3k±i4] −
1
6δm[i1

?Xi2i3i4]pqrπ̃±
pqr

− 5
8
?X[mi1i2i3|pq|π̃±

pq
i4] − δm[i1Yi2i3i4]pk±

p − 5
4Y[mi1i2i3k±i4]

± 5
2
?Y[mi1i2|p|π̃±

p
i3i4] ∓

3
2δm[i1

?Yi2i3|pq|π̃±
pq
i4] ±

1
24

?Smi1...i4pqrπ̃±
pqr

± δm[i1
?Zi2i3|pqr|ζ±

pqr
i4] ±

5
2
?Z[mi1i2|pq|ζ±

pq
i3i4] ∓Nδm[i1 π̃±i2i3i4]

∓ 1
4
?Pmi1...i4pk±

p + 3δm[i1Pi2|p|π̃±
p
i3i4] + 5

2P[mi1 π̃±i2i3i4] ,

(2.12)

where for simplicity we have suppressed the r, s indices on the form bilinears that label the
different Killing spinors. It is clear that the above conditions on the form bilinears are of
the form of a TCFH as in (1.1).

A basis in the space of form bilinears on M8, up to Hodge duality, which are skew-
symmetric in the exchange of ηr and ηs is the following

k̃rs± =
〈
ηr±,ΓiΓ11η

s
±
〉

ei , ωrs± = 1
2
〈
ηr±,Γijηs±

〉
ei ∧ ej ,

ω̃rs± = 1
2
〈
ηr±,ΓijΓ11η

s
±
〉

ei ∧ ej , πrs± = 1
3!
〈
ηr±,Γijkηs±

〉
ei ∧ ej ∧ ek .

(2.13)

The associated TCFH with respect to the minimal connection, DF , is given by

DFmk̃±i :=∇mk̃±i ±
1
2Xmpω̃±

p
i + 1

4Zmpqπ±
pq
i −

1
2Pmpω±

p
i

= ∓A−1∂mA k̃±i ∓
1
8δmiXpqω̃±

pq ± 1
2X[m|p|ω̃±

p
i]

∓ 1
8
?Ymipqω±

pq − 1
8Ymipqω̃±

pq − 1
4Sω̃±mi

± 1
4Nω±mi + 1

8δmiPpqω±
pq − 1

2P[m|p|ω±
p
i] ,

(2.14)

DFmω±ij :=∇mω±ij ±
1
2Xmpπ±

p
ij + 1

2Ym[i|pq|π±
pq
j] ∓

1
2Wmω̃±ij

+ Zm[i|p|ω̃±
p
j] + Pm[ik̃±j]

= ∓A−1∂mAω±ij ∓
1
4δm[iX|pq|π±

pq
j] ±

3
4X[m|p|π±

p
ij]

∓ 1
4
?Ymijpk̃±

p + 1
12δm[iYj]pqrπ±

pqr + 3
8Y[mi|pq|π±

pq
j]

− 1
4Sπ±mij ∓

1
2Nδm[ik̃±j] ±

1
4!

?Pmijpqrπ±
pqr

+ 1
2δm[iPj]pk̃±

p + 3
4P[mik̃±j] ,

(2.15)
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DFmω̃±ij :=∇mω̃±ij ±Xm[ik̃±j] ∓
1
2
?Ym[i|pq|π±

pq
j] ∓

1
2Wmω±ij

+ Zm[i|p|ω±
p
j] + 1

2Pmpπ±
p
ij

= ∓A−1∂mA ω̃±ij + 1
4!

?Xmijpqrπ±
pqr ± 1

2δm[iXj]pk̃±
p ± 3

4X[mik̃±j]

∓ 1
12δm[i

?Yj]pqrπ±
pqr ∓ 3

8
?Y[mi|pq|π±

pq
j] + 1

4Ymijpk̃±
p

− 1
2Sδm[ik̃±j] ∓

1
4Nπ±mij −

1
4δm[iP|pq|π±

pq
j] + 3

4P[m|p|π±
p
ij] ,

(2.16)

DFmπ±ijk :=∇mπ±ijk ±
3
2Xm[iω±jk] −

3
2Ym[ij|p|ω±

p
k] ∓

3
2
?Ym[ij|p|ω̃±

p
k]

± 3
4
?Zm[ij|pq|π±

pq
k] −

3
2Zm[ij k̃±k] −

3
2Pm[iω̃±jk]

= ∓A−1∂mAπ±ijk −
1
8
?Xmijkpqω̃±

pq ± 3
2δm[iXj|p|ω±

p
k] ±

3
2X[miω±jk]

+ 3
8δm[iYjk]pqω±

pq − Y[mij|p|ω±
p
k] ±

3
8δm[i

?Yjk]pqω̃±
pq ∓ ?Y[mij|p|ω̃±

p
k]

− 3
4Sδm[iω±jk] ±

1
4δm[i

?Zjk]pqrπ±
pqr ± ?Z[mij|pq|π±

pq
k] ±

3
4Nδm[iω̃±jk]

± 1
8
?Pmijkpqω±

pq − 3
2δm[iPj|p|ω̃±

p
k] −

3
2P[miω̃±jk] ,

(2.17)

where for simplicity we have suppressed the r, s indices on the form bilinears that label
the different Killing spinors. Again the above conditions on the form bilinears have been
organised as those of a TCFH in (1.1).

As it is apparent from the analysis above, the domain of the minimal TCFH connection
DF can be identified with Ω∗(M8). This is the span of φ and the Hodge dual of φ̃ form
bilinears.7 This domain factorises into the space of symmetric form bilinears, (2.6) and
the space of skew-symmetric form bilinears, (2.13). This can be understood as follows.
The spinors η± can be viewed as Majorana spin(8) spinors. The product of two Majorana
spin(8) representations, ∆16, decomposes as

⊗2 ∆16 = Λ∗(R8) , (2.18)

and so the space of form bilinears spans all forms over M8, where ⊕4
k=0Λk(R8) is associ-

ated with the span of φ form bilinears while ⊕8
k=5Λk(R8) is associated with the span of

the Hodge duals of the φ̃ form bilinears. Indeed, we note that dim(⊗2∆16) = 24 · 24 =
dim(Λ∗(R8)). Thus DF acts on the space of all forms on M8. However, we see that
the minimal TCFH connection preserves the subspaces of form bilinears that are sym-
metric and skew-symmetric in the exchange of the two Killing spinors respectively, i.e. it
preserves the symmetrised S2(∆16) and skew-symmetrised Λ2(∆16) subspaces of ⊗2∆16.
Therefore, the reduced holonomy of DF will be contained within the connected component8

7Note that ζ and ζ̃ are Hodge duals and so only ζ is chosen to belong in the basis.
8The reduced holonomy of a connection is by definition connected. So from now on when we refer to a

group in the context of reduced holonomy we shall consider only its connected component even if this is
not explicitly mentioned.
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of GL(136)×GL(120). However, the reduced holonomy of the minimal TCFH connection
reduces further to GL(134) × GL(120) as it acts with partial derivatives on the scalars f
and f̃ and so their contribution to the holonomy is trivial.

3 The TCFH of warped AdS3 backgrounds

3.1 Fields and Killing spinors

The bosonic fields of warped AdS3 backgrounds, AdS3 ×w M7, with internal space M7 of
massive IIA supergravity can be expressed as

g = 2 e+e− + (ez)2 + g(M7) , G = e+ ∧ e− ∧ ez ∧X + Y ,

H = W e+ ∧ e− ∧ ez + Z , F = F , S = meΦ , Φ = Φ ,
(3.1)

where m is a constant, g(M7) is a metric on M7, Φ,W ∈ C∞(M7), X ∈ Ω1(M7), F ∈
Ω2(M7), Z ∈ Ω3(M7) and Y ∈ Ω4(M7). Note that the Bianchi identities imply that either
S = 0 orW = 0. From now on, to simplify the notation, whenever a form field strength has
non-vanishing components only along the internal space, the components along the internal
space will be denoted with the same symbol as the spacetime field, e.g. as in F = F in (3.1).
Further,

e+ = du, e− = dr − 2
`
rdz − 2rA−1dA, ez = Adz , ei = eiJdy

J , (3.2)

is a pseudo-orthonormal frame on AdS3 ×w M7 with g(M7) = δijeiej , where y are the
coordinates of the internal space and (u, r, z) are the remaining coordinates of spacetime.
After a coordinate transformation, the spacetime metric takes the standard warped form
g = A2g`(AdS3)+g(M7) with warp factor A, A ∈ C∞(M7), where g`(AdS3) is the standard
metric on AdS3 of radius `.

As in the previous case, the KSEs of warped AdS3 backgrounds can be integrated
over the coordinates (u, r, z), see [28]. The Killing spinors can be written schematically as
ε = ε(u, r, z, σ±, τ±), where the spinors σ± and τ± depend only on the coordinates of M7

and satisfy Γ±σ± = Γ±τ± = 0. Moreover, the gravitino KSE implies that D(±)
m χ± = 0,

where

D(±)
m =∇m ±

1
2A
−1∂mA + 1

8
/ZmΓ11 + 1

8SΓm

+ 1
16
/FΓmΓ11 + 1

192
/Y Γm ±

1
8
/XΓzm ,

(3.3)

is the supercovariant derivative along the internal space M7, m = 1, . . . , 7, ∇ is the spin
connection associated with the metric g(M7) and χ± stands for either σ± or τ±.

The Killing spinors χ± satisfy two algebraic KSEs [28] in addition to the gravitino KSE
along M7. One of these is induced by the dilatino KSE of massive IIA supergravity. The
other arises during the integration of the gravitino KSE of massive IIA supergravity over
the z spacetime coordinate. We shall not describe these here as they are not essential for
the description of the TCFH on M7. However, they are necessary for the correct counting
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of Killing spinors in the examples that follow and a brief mention will be made where it is
needed.

For warped AdS3 backgrounds, the σ± and τ± spinors are independent, i.e. there is
no a priori Clifford algebra operation that relates the σ± solutions of the KSEs to the τ±
ones. A well known consequence of this is that the symmetry superalgebra of warped AdS3
backgrounds factorises into a left and right sector that commute with each other. As we
shall mention later, this is no longer the case for warped AdSk, k > 3, backgrounds where
the σ± and τ± Killing spinors are related with Clifford algebra operations.

3.2 The TCFH on M7

Given Killing spinors χr± and χs±, the form bilinears on M7 can be constructed as for
AdS2 backgrounds in (2.5) with η± replaced with χ±. However there are differences. One
is that now ei is an orthonormal frame on M7 instead on M8 as was the case for AdS2
backgrounds. The other is that one can also insert in addition to Γ11 the gamma matrix
Γz in the form bilinears. Again, the reality condition on χ± implies that the form bilinears
are either symmetric or skew-symmetric in the exchange of χr± and χs±.

A basis in the space of form bilinears9 onM7, up to Hodge duality, which are symmetric
in the exchange of Killing spinors χr± and χs± is

f rs± =
〈
χr±, χ

s
±
〉
, f̃ rs± =

〈
χr±,Γ11χ

s
±
〉
, f̂ rs± =

〈
χr±,Γzχs±

〉
,

krs± =
〈
χr±,Γiχs±

〉
ei, ω̊rs± = 1

2
〈
χr±,ΓijzΓ11χ

s
±
〉

ei ∧ ej ,

π̃rs± = 1
3!
〈
χr±,ΓijkΓ11χ

s
±
〉

ei ∧ ej ∧ ek, π̂rs± = 1
3!
〈
χr±,Γijkzχs±

〉
ei ∧ ej ∧ ek,

π̊rs± = 1
3!
〈
χr±,ΓijkzΓ11χ

s
±
〉

ei ∧ ej ∧ ek .

(3.4)

The computation of the TCFH follows the steps described in section 2.2. In particular the
TCFH expressed in terms of the minimal connection, DF , is

DFmf± :=∇mf±

= ∓A−1∂mAf± −
1
4Sk±m −

1
8Fpqπ̃±

pq
m ±

1
8
?Ympqω̊±

pq ± 1
4Xmf̂± ,

(3.5)

DFmf̃± :=∇mf̃±

= ∓A−1∂mA f̃± −
1
4Fmpk±

p − 1
4!Ympqrπ̃±

pqr ∓ 1
4Xpω̊±

p
m ,

(3.6)

DFmf̂± :=∇mf̂±

= ∓A−1∂mA f̂± −
1
4Zmpqω̊±

pq + 1
8Fpqπ̊±

pq
m −

1
4!Ympqrπ̂±

pqr ± 1
4Xmf± ,

(3.7)

9The TCFHs associated with the form bilinears constructed from the pairs (σ+, τ+) and (σ+, σ+) (and
(σ−, τ−) and (σ−, σ−)) are identical as the supercovariant connection (3.3) on σ± is identical to that on τ±.
So it is sufficient to consider only the TCFHs of the form bilinears constructed from the pairs (σ+, σ+) and
(σ−, σ−).
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DFmk±i :=∇mk±i + 1
4Zmpqπ̃±

pq
i ∓

1
4
?Ympqπ̊±

pq
i

= ∓A−1∂mAk±i −
1
4δmiSf± ∓

1
4!

?Fmipqrπ̂±
pqr + 1

4Fmif̃±

∓ 1
4!δmi

?Ypqrπ̊±
pqr ∓ 1

4
?Y[m|pq|π̊±

pq
i] ±

1
4Xpπ̂±

p
mi ,

(3.8)

DFmω̊±ij :=∇mω̊±ij ∓
1
2
?Zm[i|pq|π̃±

pq
j] −

1
2Fmpπ̂±

p
ij + 1

2Ym[i|pq|π̊±
pq
j]

= ∓A−1∂mA ω̊±ij ∓
1
6δm[i

?Zj]pqrπ̃±
pqr ∓ 3

4
?Z[mi|pq|π̃±

pq
j]

+ 1
2Zmij f̂± −

1
4Sπ̊±mij + 1

4δm[i|Fpq|π̂±
pq
j]

− 3
4F[m|p|π̂±

p
ij] + 1

12δm[iYj]pqrπ̊±
pqr + 3

8Y[mi|pq|π̊±
pq
j]

± 1
4
?Ymijf± + 1

4!
?Xmijpqrπ̂±

pqr ∓ 1
2δm[iXj]f̃± ,

(3.9)

DFmπ̃±ijk :=∇mπ̃±ijk ∓
3
2
?Zm[ij|p|ω̊±

p
k] −

3
2Zm[ijk±k] ±

3
4
?Fm[ij|pq|π̊±

pq
k]

± 3
2
?Ym[i|p|π̂±

p
jk] ±

1
2Xmπ̊±ijk

= ∓A−1∂mA π̃±ijk ∓ 2 ?Z[mij|p|ω̊±
p
k] ±

3
4δm[i

?Zjk]pqω̊±
pq

± 1
4!

?Smijkpqrπ̂±
pqr ± 1

8δm[i
?Fjk]pqrπ̊±

pqr ± 1
2
?F[mij|pq|π̊±

pq
k]

− 3
4δm[iFjk]f± ∓

3
4δm[i

?Yj|pq|π̂±
pq
k] ±

3
2
?Y[mi|p|π̂±

p
jk]

+ 1
4Ymijkf̃± ±X[mπ̊±ijk] ±

3
4δm[i|Xp|π̊±

p
jk] ,

(3.10)

DFmπ̂±ijk :=∇mπ̂±ijk + 3
2Zm[i|p|π̊±

p
jk] + 3

2Fm[iω̊±jk] ∓
3
2
?Ym[i|p|π̃±

p
jk]

= ∓A−1∂mA π̂±ijk ∓
1
4!

?Smijkpqrπ̃±
pqr ± 1

4
?Fmijkpk±

p

+ 3
2F[miω̊±jk] + 3

2δm[iFj|p|ω̊±
p
k] ±

3
4δm[i

?Yj|pq|π̃±
pq
k] ∓

3
2
?Y[mi|p|π̃±

p
jk]

+ 1
4Ymijkf̂± −

1
8
?Xmijkpqω̊±

pq ± 3
2δm[iXjk±k] ,

(3.11)

DFmπ̊±ijk :=∇mπ̊±ijk + 3
2Zm[i|p|π̂±

p
jk] ±

3
4
?Fm[ij|pq|π̃±

pq
k] −

3
2Ym[ij|p|ω̊±

p
k]

∓ 3
2
?Ym[ijk±k] ±

1
2Xmπ̃±ijk

= ∓A−1∂mA π̊±ijk −
3
4Sδm[iω̊±jk] + 3

4δm[iFjk]f̂± ±
1
8δm[i

?Fjk]pqrπ̃±
pqr

± 1
2
?F[mij|pq|π̃±

pq
k] + 3

8δm[iYjk]pqω̊±
pq − Y[mij|p|ω̊±

p
k] ∓

3
4δm[i

?Yjk]pk±
p

∓ ?Y[mijk±k] ±X[mπ̃±ijk] ±
3
4δm[i|Xp|π̃±

p
jk] ,

(3.12)
where for simplicity we have suppressed the r, s indices on the form bilinears that label the
different Killing spinors.
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Similarly a basis in the space of Killing spinor bilinears of AdS3 ×w M7, up to Hodge
duality, which are skew-symmetric in the exchange of Killing spinors is

f̊ rs± =
〈
χr±,ΓzΓ11χ

s
±
〉
, k̃rs± =

〈
χr±,ΓiΓ11χ

s
±
〉

ei, k̂rs± =
〈
χr±,Γizχs±

〉
ei ,

k̊rs± =
〈
χr±,ΓizΓ11χ

s
±
〉

ei , ωrs± = 1
2
〈
χr±,Γijχs±

〉
ei ∧ ej ,

ω̃rs± = 1
2
〈
χr±,ΓijΓ11χ

s
±
〉

ei ∧ ej , ω̂rs± = 1
2
〈
χr±,Γijzχs±

〉
ei ∧ ej ,

πrs± = 1
3!
〈
χr±,Γijkχs±

〉
ei ∧ ej ∧ ek .

(3.13)
The associated TCFH on M7 with respect to the minimal connection, DF , reads

DFmf̊± :=∇mf̊±

= ∓A−1∂mA f̊± −
1
4Zmpqω̂±

pq − 1
4Sk̊±m

+ 1
4Fmpk̂±

p ∓ 1
8
?Ympqω±

pq ∓ 1
4Xpω̃±

p
m ,

(3.14)

DFmk̃±i :=∇mk̃±i −
1
2Fmpω±

p
i ±

1
2Xmk̊±i

= ∓A−1∂mA k̃±i −
1
4Zmpqπ±

pq
i −

1
4Sω̃±mi + 1

8δmiFpqω±
pq

− 1
2F[m|p|ω±

p
i] ∓

1
4
?Ymipk̂±

p − 1
8Ymipqω̃±

pq ± 1
4δmiXpk̊±

p

± 1
2X[mk̊±i] ,

(3.15)

DFmk̂±i :=∇mk̂±i

= ∓A−1∂mA k̂±i −
1
2Zmipk̊±

p − 1
4Sω̂±mi ∓

1
4!

?Fmipqrπ±
pqr − 1

4Fmif̊±

± 1
4
?Ymipk̃±

p − 1
8Ymipqω̂±

pq ± 1
4Xpπ±

p
mi ,

(3.16)

DFmk̊±i :=∇mk̊±i + 1
2Fmpω̂±

p
i ±

1
4
?Ympqπ±

pq
i ±

1
2Xmk̃±i

= ∓A−1∂mA k̊±i −
1
2Zmipk̂±

p − 1
4Sδmif̊± −

1
8δmiFpqω̂±

pq

+ 1
2F[m|p|ω̂±

p
i] ±

1
4!δmi

?Ypqrπ±
pqr ± 1

4
?Y[m|pq|π±

pq
i]

± 1
4δmiXpk̃±

p ± 1
2X[mk̃±i] ,

(3.17)

DFmω±ij :=∇mω±ij + Zm[i|p|ω̃±
p
j] + Fm[ik̃±j] + 1

2Ym[i|pq|π±
pq
j] ∓

1
2Xmω̂±ij

= ∓A−1∂mAω±ij −
1
4Sπ±mij ±

1
8
?Fmijpqω̂±

pq

+ 1
2δm[iFj]pk̃±

p + 3
4F[mik̃±j] + 1

12δm[iYj]pqrπ±
pqr

+ 3
8Y[mi|pq|π±

pq
j] ∓

1
4
?Ymij f̊± ∓

1
2δm[iX|p|ω̂±

p
j]

∓ 3
4X[mω̂±ij] ,

(3.18)
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DFmω̃±ij :=∇mω̃±ij + Zm[i|p|ω±
p
j] + 1

2Fmpπ±
p
ij ± ?Ym[i|p|ω̂±

p
j]

= ∓A−1∂mA ω̃±ij −
1
2Sδm[ik̃±j] −

1
4δm[iF|pq|π±

pq
j]

+ 3
4F[m|p|π±

p
ij] ∓

1
4δm[i

?Yj]pqω̂±
pq ± 3

4
?Y[mi|p|ω̂±

p
j] + 1

4Ymijpk̃±
p

− 1
4!

?Xmijpqrπ±
pqr ∓ 1

2δm[iXj]f̊± ,

(3.19)

DFmω̂±ij :=∇mω̂±ij ∓
1
2
?Zm[i|pq|π±

pq
j] − Fm[i̊k±j] ∓ ?Ym[i|p|ω̃±

p
j] ∓

1
2Xmω±ij

= ∓A−1∂mA ω̂±ij ∓
1
6δm[i

?Zj]pqrπ±
pqr ∓ 3

4
?Z[mi|pq|π±

pq
j]

+ 1
2Zmij f̊± −

1
2Sδm[ik̂±j] ±

1
8
?Fmijpqω±

pq − 1
2δm[iFj]pk̊±

p

− 3
4F[mi̊k±j] + 1

4Ymijpk̂±
p ± 1

4δm[i
?Yj]pqω̃±

pq ∓ 3
4
?Y[mi|p|ω̃±

p
j]

∓ 1
2δm[iX|p|ω±

p
j] ∓

3
4X[mω±ij] ,

(3.20)

DFmπ±ijk :=∇mπ±ijk ∓
3
2
?Zm[ij|p|ω̂±

p
k] −

3
2Zm[ij k̃±k] −

3
2Fm[iω̃±jk]

− 3
2Ym[ij|p|ω±

p
k] ±

3
2
?Ym[ij k̊±k]

= ∓A−1∂mAπ±ijk ±
3
4δm[i

?Zjk]pqω̂±
pq ∓ 2 ?Z[mij|p|ω̂±

p
k]

− 3
4Sδm[iω±jk] ±

1
4
?Fmijkpk̂±

p − 3
2δm[iFj|p|ω̃±

p
k] −

3
2F[miω̃±jk]

+ 3
8δm[iYjk]pqω±

pq − Y[mij|p|ω±
p
k] ±

3
4δm[i

?Yjk]pk̊±
p ± ?Y[mij k̊±k]

+ 1
8
?Xmijkpqω̃±

pq ± 3
2δm[iXj k̂±k] ,

(3.21)

where, again, for simplicity we have suppressed the r, s indices on the form bilinears.10

Upon using Hodge duality on M7, the domain of DF can be identified with Ω∗(M7)⊕
Ω∗(M7). Moreover it is clear from the TCFH above that the domain of DF factorises
into the space of symmetric form bilinears, (3.4), and the space of skew-symmetric form
bilinears, (3.13). To understand this observe that the 16-dimensional Majorana representa-
tion, ∆16, of spin(8) decomposes under spin(7) into a sum of two 8-dimensional Majorana
representations, ∆8. In turn the product of two ∆16 viewed as representations of spin(7)
decompose as

⊗2 ∆16 = Λ∗(R7)⊕ Λ∗(R7) . (3.22)

Indeed, we note that dim(⊗2∆16) = 24 ·24 = 2 dim(Λ∗(R7)). However, we see that the mini-
mal TCFH connection preserves the symmetrised S2(∆16) and skew-symmetrised Λ2(∆16)
subspaces of ⊗2∆16. Therefore, the reduced holonomy of DF will be contained within
GL(136)×GL(120). However, the reduced holonomy of the minimal TCFH connection re-

10From now on, we shall always suppress the r, s indices on the form bilinears that label the different
Killing spinors in all the TCFHs below.
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duces further to a subgroup of GL(133)×SO(7)×GL(112) as it acts with partial derivatives
on the scalars f , f̃ , f̂ and f̊ , and with the Levi-Civita connection on k̂.

4 The TCFH of warped AdS4 backgrounds

4.1 Fields and Killing spinors

As in the previous cases, the bosonic fields of warped AdS4 backgrounds, AdS4 ×w M6,
with internal space M6 of massive IIA supergravity can be expressed as

g = 2 e+e− + (ez)2 + (ex)2 + g(M6) , G = X e+ ∧ e− ∧ ez ∧ ex + Y ,

H = H , F = F , S = meΦ , Φ = Φ , (4.1)

where g(M6) is a metric on M6, m is a constant, Φ, X ∈ C∞(M6), F ∈ Ω2(M6), H ∈
Ω3(M6) and Y ∈ Ω4(M6). Further,

e+ = du, e− = dr − r2
`
dz − 2rA−1dA , ez = Adz , ex = Aez/`dx , ei = eiJdy

J ,

(4.2)
is a pseudo-orthonormal frame on AdS4 ×w M6 with g(M6) = δijeiej , where y are the
coordinates ofM6 and (u, r, z, x) are the remaining coordinates of spacetime. As in previous
cases after a coordinate transformation the spacetime metric g can be put into standard
warped form g = A2g`(AdS4) + g(M6), where A is the warp factor, A ∈ C∞(M6), and
g`(AdS4) is the standard metric on AdS4 with radius `.

Integrating the KSEs of massive IIA supergravity along the coordinates (u, r, z, x), one
finds that the Killing spinors can be expressed as ε = ε(u, r, z, x, σ±, τ±), where σ± and
τ± are spinors that depend only on the coordinates of M6 and Γ±σ± = Γ±τ± = 0 [28].
Furthermore, the gravitino KSE restricts σ± and τ± along M6 as D(±)

m χ± = 0, where χ±
stands for either σ± or τ± and

D(±)
m = ∇m ±

1
2A
−1∂mA+ 1

8
/HmΓ11 + 1

8SΓm + 1
16
/FΓmΓ11 + 1

192
/Y Γm ∓

1
8XΓzxm , (4.3)

with ∇m, m = 1, . . . , 6, the spin connection of g(M6). The Killing spinors satisfy two ad-
ditional algebraic KSEs. One is associated to the dilatino KSE of massive IIA supergravity
and the other arises as a consequence of the integration of the gravitino KSE over z. Both
are essential for identifying the Killing spinors of an AdS4 background but they do not
contribute in the computation of TCFH on M6. As a result, they will not be summarised
here.

Unlike for warped AdS3 backgrounds, the σ± and τ± Killing spinors are related by
a Clifford algebra operation. In particular, if σ± is a Killing spinor, then Γzxσ± is a τ±
Killing spinor, i.e. it solves all three Killing spinor equations that the τ± Killing spinors
satisfy [28]. Using this, one can demonstrate that the Killing spinors of AdS4 backgrounds
come in multiples of four.

– 13 –



J
H
E
P
0
7
(
2
0
2
3
)
0
5
7

4.2 The TCFH of M6

The computation of the TCFH of warped AdS4 backgrounds is similar to that of warped
AdS2 and AdS3 cases that have already been described in some detail. Because of this we
shall be brief. A basis in the space of Killing spinor form bilinears11 on M6, up to Hodge
duality, which are symmetric in the exchange of Killing spinors χr± and χs± is

f rs± =
〈
χr±, χ

s
±
〉
, f̃ rs± =

〈
χr±,Γ11χ

s
±
〉
, krs± =

〈
χr±,Γiχs±

〉
ei ,

k̊rs± =
〈
χr±,ΓizxΓ11χ

s
±
〉

ei , ω̂rs± = 1
2
〈
χr±,Γijzxχs±

〉
ei ∧ ej ,

ω̊rs± = 1
2
〈
χr±,ΓijzxΓ11χ

s
±
〉

ei ∧ ej , π̃rs± = 1
3!
〈
χr±,ΓijkΓ11χ

s
±
〉

ei ∧ ej ∧ ek ,

(4.4)

where again χ± stands for either σ± or τ±. After some computation, the TCFH is

DFmf± :=∇mf±

= ∓A−1∂mAf± −
1
4Sk±m −

1
8Fpqπ̃±

pq
m ∓

1
4
?Ympk̊±

p ,
(4.5)

DFmf̃± :=∇mf̃±

= ∓A−1∂mA f̃± −
1
4Fmpk±

p − 1
4!Ympqrπ̃±

pqr ∓ 1
4Xk̊±m ,

(4.6)

DFmk±i :=∇mk±i + 1
4Hmpqπ̃±

pq
i ∓

1
2
?Ympω̊±

p
i

= ∓A−1∂mAk±i −
1
4δmiSf± ±

1
8
?Fmipqω̂±

pq + 1
4Fmif̃±

± 1
8δmi

?Ypqω̊±
pq ∓ 1

2
?Y[m|p|ω̊±

p
i] ∓

1
4Xω̂±mi ,

(4.7)

DFmk̊±i :=∇mk̊±i ∓
1
4
?Hmpqπ̃±

pq
i −

1
2Fmpω̂±

p
i

= ∓A−1∂mA k̊±i ∓
1
12δmi

?Hpqrπ̃±
pqr ∓ 1

2
?H[m|pq|π̃±

pq
i]

− 1
4Sω̊±mi + 1

8δmiFpqω̂±
pq − 1

2F[m|p|ω̂±
p
i]

∓ 1
4
?Ymif± −

1
8Ymipqω̊±

pq ± 1
4Xδmif̃± ,

(4.8)

DFmω̂±ij :=∇mω̂±ij +Hm[i|p|ω̊±
p
j] + Fm[i̊k±j] ∓

1
2
?Ympπ̃±

p
ij

= ∓A−1∂mA ω̂±ij ∓
1
24

?Smijpqrπ̃±
pqr ± 1

4
?Fmijpk±

p

+ 1
2δm[iFj]pk̊±

p + 3
4F[mi̊k±j] ∓

3
4
?Y[m|p|π̃±

p
ij]

± 1
4δm[i

?Y|pq|π̃±
pq
j] ±

1
2Xδm[ik±j] ,

(4.9)

11We could have considered a more general class of bilinears like for example those that contain either a
single insertion of Γz or a single insertion of Γx, i.e. 〈χr

±,Γzχ
s
±〉 and 〈χr

±,Γxχ
s
±〉 for scalars and similarly

for higher degree forms. However, the choices of form bilinears below will suffice.
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DFmω̊±ij :=∇mω̊±ij +Hm[i|p|ω̂±
p
j] ±

1
2
?Fm[i|pq|π̃±

pq
j] ∓ ?Ym[ik±j]

= ∓A−1∂mA ω̊±ij −
1
2Sδm[i̊k±j] ±

3
8
?F[mi|pq|π̃±

pq
j]

± 1
12δm[i

?Fj]pqrπ̃±
pqr ∓ 1

2δm[i
?Yj]pk±

p ∓ 3
4
?Y[mik±j]

+ 1
4Ymijpk̊±

p ± 1
4Xπ̃±mij ,

(4.10)

DFmπ̃±ijk :=∇mπ̃±ijk ∓
3
2
?Hm[ij k̊±k] −

3
2Hm[ijk±k] ±

3
2
?Fm[ij|p|ω̊±

p
k]

∓ 3
2
?Ym[iω̂±jk]

= ∓A−1∂mA π̃±ijk ∓
3
2δm[i

?Hjk]pk̊±
p ∓ 2 ?H[mij k̊±k] ∓

1
8
?Smijkpqω̂±

pq

− 3
4δm[iFjk]f± ∓

3
8δm[i

?Fjk]pqω̊±
pq ± ?F[mij|p|ω̊±

p
k] ∓

3
2δm[i

?Yj|p|ω̂±
p
k]

∓ 3
2
?Y[miω̂±jk] + 1

4Ymijkf̃± ∓
3
4Xδm[iω̊±jk] ,

(4.11)

where DF is the minimal connection.

Similarly, a basis in the space of form bilinears on M6, up to Hodge duality, which are
skew-symmetric in the exchange of Killing spinors χr± and χs± is

f̂ rs± =
〈
χr±,Γzxχs±

〉
, f̊ rs± =

〈
χr±,ΓzxΓ11χ

s
±
〉
,

k̂rs± =
〈
χr±,Γizxχs±

〉
ei , k̃rs± =

〈
χr±,ΓiΓ11χ

s
±
〉

ei ,

ωrs± = 1
2
〈
χr±,Γijχs±

〉
ei ∧ ej , ω̃rs± = 1

2
〈
χr±,ΓijΓ11χ

s
±
〉

ei ∧ ej ,

πrs± = 1
3!
〈
χr±,Γijkχs±

〉
ei ∧ ej ∧ ek .

(4.12)

The associated TCFH is

DFmf̂± :=∇mf̂±

= ∓A−1∂mA f̂± −
1
4Sk̂±m ∓

1
4!

?Fmpqrπ±
pqr ± 1

4
?Ympk̃±

p ,
(4.13)

DFmf̊± :=∇mf̊±

= ∓A−1∂mA f̊± −
1
4Fmpk̂±

p ± 1
8
?Ypqπ±

pq
m ±

1
4Xk̃±m ,

(4.14)

DFmk̃±i :=∇mk̃±i + 1
4Hmpqπ±

pq
i −

1
2Fmpω±

p
i

= ∓A−1∂mA k̃±i −
1
4Sω±mi + 1

8δmiFpqω±
pq − 1

2F[m|p|ω±
p
i]

± 1
4
?Ymif̂± −

1
8Ymipqω̃±

pq ∓ 1
4Xδmif̊± ,

(4.15)
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DFmk̂±i :=∇mk̂±i ∓
1
4
?Hmpqπ±

pq
i ±

1
2
?Ympω̃±

p
i

= ∓A−1∂mA k̂±i ∓
1
12δmi

?Hpqrπ±
pqr ∓ 1

2
?H[m|pq|π±

pq
i]

− 1
4Sδmif̂± ∓

1
8
?Fmipqω±

pq + 1
4Fmif̊± ∓

1
8δmi

?Ypqω̃±
pq

± 1
2
?Y[m|p|ω̃±

p
i] ±

1
4Xω±mi ,

(4.16)

DFmω±ij :=∇mω±ij +Hm[i|p|ω̃±
p
j] + Fm[ik̃±j] + 1

2Ym[i|pq|π±
pq
j]

= ∓A−1∂mAω±ij −
1
4Sπ±mij ∓

1
4
?Fmijpk̂±

p + 1
2δm[iFj]pk̃±

p

+ 3
4F[mik̃±j] + 1

12δm[iYj]pqrπ±
pqr + 3

8Y[mi|pq|π±
pq
j] ∓

1
2Xδm[ik̂±j] ,

(4.17)

DFmω̃±ij :=∇mω̃±ij +Hm[i|p|ω±
p
j] + 1

2Fmpπ±
p
ij ± ?Ym[ik̂±j]

= ∓A−1∂mA ω̃±ij −
1
2Sδm[ik̃±j] −

1
4δm[iF|pq|π±

pq
j]

+ 3
4F[m|p|π±

p
ij] ±

1
2δm[i

?Yj]pk̂±
p ± 3

4
?Y[mik̂±j]

+ 1
4Ymijpk̃±

p − 1
4!

?Xmijpqrπ±
pqr ,

(4.18)

DFmπ±ijk :=∇mπ±ijk ∓
3
2
?Hm[ij k̂±k] −

3
2Hm[ij k̃±k] −

3
2Fm[iω̃±jk] −

3
2Ym[ij|p|ω±

p
k]

= ∓A−1∂mAπ±ijk ∓
3
2δm[i

?Hjk]pk̂±
p ∓ 2 ?H[mij k̂±k] −

3
4Sδm[iω±jk]

∓ 1
4
?Fmijkf̂± −

3
2δm[iFj|p|ω̃±

p
k] −

3
2F[miω̃±jk] + 3

8δm[iYjk]pqω±
pq

− Y[mij|p|ω±
p
k] ∓

3
4δm[i

?Yjk]f̊± + 1
8
?Xmijkpqω̃±

pq ,

(4.19)

where, again, DF is the minimal connection.
The domain that the minimal TCFH connection DF acts factorises into the space of

symmetric form bilinears, (4.4), and the space of skew-symmetric form bilinears, (4.12)
in the exchange of the two Killing spinors χr± and χs±. A direct counting of dimensions
reveals that the reduced holonomy of DF must be contained in GL(64) × GL(64). But
as DF acts trivially on the scalars f , f̃ , f̂ and f̊ , its reduced holonomy is contained in
GL(62)×GL(62).

5 The TCFH of warped AdSn, n ≥ 5, backgrounds

5.1 Fields and Killing spinors

The bosonic fields of warped AdSn, AdSn ×w M10−n, n ≥ 5, backgrounds with internal
space M10−n of (massive) IIA backgrounds can be written as follows

g = 2 e+e− + (ez)2 +
n−3∑
a=1

(ea)2 + g(M10−n) ,

G = G, H = H, F = F, S = meΦ, Φ = Φ ,

(5.1)
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where g(M10−n) is a metric onM10−n, m is a constant, Φ ∈ C∞(M10−n), F ∈ Ω2(M10−n),
H ∈ Ω3(M10−n) and G ∈ Ω4(M10−n). For sufficiently large n, some of the fluxes may
vanish; for example G vanishes for n ≥ 7. Further,

e+ = du, e− = dr − 2
`
rdz − 2rA−1dA, ez = Adz , ea = Aez/`dxa , ei = eiJdy

J ,

(5.2)
is a pseudo-orthonormal frame on AdSn ×w M10−n with g(M10−n) = δijeiej , where y are
coordinates on M10−n and (u, r, z, xa) are the remaining coordinates of the spacetime. As
in previous cases, A ∈ C∞(M10−n) is the warp factor and after a coordinate transformation
the spacetime metric g can be written in the usual warped form involving the standard
metric on AdSn of radius `.

Again the Killing spinors of these backgrounds can be expressed as ε = ε(u, r, z, xa, σ±,
τ±), where σ± and τ± depend only on the coordinates ofM10−n and Γ±σ± = Γ±τ± = 0 [28].
Furthermore, the gravitino KSE along M10−n requires that D(±)

m χ± = 0 with

D(±)
m = ∇m ±

1
2A
−1∂mA+ 1

8
/HmΓ11 + 1

8SΓm + 1
16
/FΓmΓ11 + 1

192
/GΓm , (5.3)

where ∇m, m = 1, . . . , 10−n, is the spin connection of g(M10−n) and χ± stands for either
σ± or τ±.

TCFH of warped AdSn backgrounds will be stated below for each n, 5 ≤ n ≤ 7. As
the computation is similar to those that have already been described in previous cases, we
shall simply state the results.

5.2 The TCFH of warped AdS5 backgrounds

A basis in the space of form bilinears12 on M5, up to Hodge duality, which are symmetric
in the exchange of Killing spinors χr± and χs± is

f rs± =
〈
χr±, χ

s
±
〉
, f̃ rs± =

〈
χr±,Γ11χ

s
±
〉
, f̊ rs± =

〈
χr±,Γzx1x2Γ11χ

s
±
〉
,

krs± =
〈
χr±,Γiχs±

〉
ei , k̂rs± =

〈
χr±,Γizx1x2χ

s
±
〉

ei ,

k̊rs± =
〈
χr±,Γizx1x2Γ11χ

s
±
〉

ei , ω̂rs± = 1
2
〈
χr±,Γijzx1x2χ

s
±
〉

ei ∧ ej .

(5.4)

The TCFH is

DFmf± :=∇mf±

= ∓A−1∂mAf± −
1
4Sk±m ±

1
8
?Fmpqω̂±

pq ∓ 1
4
?Gmf̊± ,

(5.5)

DFmf̃± :=∇mf̃±

= ∓A−1∂mA f̃± −
1
4Fmpk±

p ± 1
4
?Gpω̂±

p
m ,

(5.6)

DFmf̊± :=∇mf̊±

= ∓A−1∂mA f̊± −
1
4Hmpqω̂±

pq − 1
4Sk̊±m + 1

4Fmpk̂±
p ∓ 1

4
?Gmf± ,

(5.7)

12As for warped AdS4 backgrounds a more general class of form bilinears can be considered but the
choices below for all AdSn, n ≥ 5, backgrounds will suffice.
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DFmk±i :=∇mk±i ∓
1
2
?Hmpω̂±

p
i ±

1
2
?Gmk̊±i

= ∓A−1∂mAk±i ∓ ?H[m|p|ω̂±
p
i] ±

1
4δmi

?Hpqω̂±
pq − 1

4δmiSf±

± 1
4
?Fmipk̂±

p + 1
4Fmif̃± ±

1
4δmi

?Gpk̊±
p ± 1

2
?G[mk̊±i] ,

(5.8)

DFmk̂±i :=∇mk̂±i

= ∓A−1∂mA k̂±i −
1
2Hmipk̊±

p − 1
4Sω̂±mi ∓

1
4
?Fmipk±

p

− 1
4Fmif̊± −

1
8Gmipqω̂±

pq ,

(5.9)

DFmk̊±i :=∇mk̊±i + 1
2Fmpω̂±

p
i ±

1
2
?Gmk±i

= ∓A−1∂mA k̊±i −
1
2Hmipk̂±

p − 1
4δmiSf̊± −

1
8δmiFpqω̂±

pq

+ 1
2F[m|p|ω̂±

p
i] ±

1
4δmi

?Gpk±
p ± 1

2
?G[mk±i] ,

(5.10)

DFmω̂±ij :=∇mω̂±ij ∓ ?Hm[ik±j] − Fm[i̊k±j]

= ∓A−1∂mA ω̂±ij ∓ δm[i
?Hj]pk±

p ∓ 3
2
?H[mik±j]

+ 1
2Hmij f̊± −

1
2Sδm[ik̂±j] ±

1
4
?Fmijf± −

1
2δm[iFj]pk̊±

p

− 3
4F[mi̊k±j] ±

1
2δm[i

?Gj]f̃± + 1
4Gmijpk̂±

p ,

(5.11)

where ∇ is the frame connection of g(M5).
A basis in the space of form bilinears on M5, up to Hodge duality, which are skew-

symmetric in the exchange of χr and χs is

f̂ rs± =
〈
χr±,Γzx1x2χ

s
±
〉
, k̃rs± =

〈
χr±,ΓiΓ11χ

s
±
〉

ei ,

ωrs± = 1
2
〈
χr±,Γijχs±

〉
ei ∧ ej , ω̃rs± = 1

2
〈
χr±,ΓijΓ11χ

s
±
〉

ei ∧ ej ,

ω̊rs± = 1
2
〈
χr±,Γijzx1x2Γ11χ

s
±
〉

ei ∧ ej .

(5.12)

The TCFH is

DFmf̂± :=∇mf̂±

= ∓A−1∂mA f̂± −
1
4Hmpqω̊±

pq ∓ 1
8
?Fmpqω±

pq ± 1
4
?Gpω̃±

p
m ,

(5.13)

DFmk̃±i :=∇mk̃±i ∓
1
2
?Hmpω̊±

p
i −

1
2Fmpω±

p
i

= ∓A−1∂mA k̃±i ±
1
4δmi

?Hpqω̊±
pq ∓ ?H[m|p|ω̊±

p
i]

− 1
4Sω̃±mi + 1

8δmiFpqω±
pq − 1

2F[m|p|ω±
p
i] −

1
8Gmipqω̃±

pq ,

(5.14)
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DFmω±ij :=∇mω±ij +Hm[i|p|ω̃±
p
j] + Fm[ik̃±j] ±

1
2
?Gmω̊±ij

= ∓A−1∂mAω±ij ±
1
8
?Smijpqω̊±

pq ∓ 1
4
?Fmij f̂± + 1

2δm[iFj]pk̃±
p

+ 3
4F[mik̃±j] ±

1
2δm[i

?G|p|ω̊±
p
j] ±

3
4
?G[mω̊±ij] ,

(5.15)

DFmω̃±ij :=∇mω̃±ij +Hm[i|p|ω±
p
j] ± ?Fm[i|p|ω̊±

p
j]

= ∓A−1∂mA ω̃±ij −
1
2Sδm[ik̃±j] ∓

1
4δm[i

?Fj]pqω̊±
pq

± 3
4
?F[mi|p|ω̊±

p
j] ±

1
2δm[i

?Gj]f̊± + 1
4Gmijpk̃±

p ,

(5.16)

DFmω̊±ij :=∇mω̊±ij ∓ ?Hm[ik̃±j] ∓ ?Fm[i|p|ω̃±
p
j] ±

1
2
?Gmω±ij

= ∓A−1∂mA ω̊±ij ∓ δm[i
?Hj]pk̃±

p ∓ 3
2
?H[mik̃±j] + 1

2Hmij f̂±

± 1
8
?Smijpqω±

pq ± 1
4δm[i

?Fj]pqω̃±
pq ∓ 3

4
?F[mi|p|ω̃±

p
j]

± 1
2δm[i

?G|p|ω±
p
j] ±

3
4
?G[mω±ij] .

(5.17)

As the domain of the TCFH minimal connection, DF , factorises on the symmetric and
skew-symmetric form bilinears under the exchange of χr± and χs± and after taking into
account the details of the action of DF on the forms, one concludes that the reduced
holonomy of DF is included in GL(20)× SO(5)×GL(35).

5.3 The TCFH of warped AdS6 backgrounds

A basis in the space of form bilinears on M4, up to Hodge duality, which are symmetric in
the exchange of χr± and χs± is

f rs± =
〈
χr±, χ

s
±
〉
, f̃ rs± =

〈
χr±,Γ11χ

s
±
〉
, f̂ rs± =

〈
χr±,Γzx1x2x3χ

s
±
〉
,

f̊ rs± =
〈
χr±,Γzx1x2x3Γ11χ

s
±
〉
, krs± =

〈
χr±,Γiχs±

〉
ei , k̂rs± =

〈
χr±,Γizx1x2x3χ

s
±
〉

ei .
(5.18)

The TCFH is

DFmf± :=∇mf±

=∓A−1∂mAf± −
1
4Sk±m ∓

1
4
?Fmpk̂±

p ,
(5.19)

DFmf̃± :=∇mf̃±

=∓A−1∂mA f̃± −
1
4Fmpk±

p ± 1
4
?Gk̂±m ,

(5.20)

DFmf̂± :=∇mf̂±

=∓A−1∂mA f̂± −
1
4Sk̂±m ∓

1
4
?Fmpk±

p ,
(5.21)

DFmf̊± :=∇mf̊±

=∓A−1∂mA f̊± −
1
4Fmpk̂±

p ± 1
4
?Gk±m ,

(5.22)
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DFmk±i :=∇mk±i ∓
1
2
?Hmk̂±i

=∓A−1∂mAk±i ∓
1
2δmi

?Hpk̂±
p ∓ ?H[mk̂±i] −

1
4δmiSf±

∓ 1
4
?Fmif̂± + 1

4Fmif̃± ∓
1
4δmi

?Gf̊± ,

(5.23)

DFmk̂±i :=∇mk̂±i ∓
1
2
?Hmk±i

=∓A−1∂mA k̂±i ∓
1
2δmi

?Hpk±
p ∓ ?H[mk±i] −

1
4δmiSf̂±

∓ 1
4
?Fmif± + 1

4Fmif̊± ∓
1
4δmi

?Gf̃ ,

(5.24)

where ∇ is the spin connection of g(M4).
A basis in the space of form bilinears on M4, up to Hodge duality, which are skew-

symmetric in the exchange of χr± and χs± is

k̃rs± =
〈
χr±,ΓiΓ11χ

s
±
〉

ei , k̊rs± =
〈
χr±,Γizx1x2x3Γ11χ

s
±
〉

ei ,

ωrs± = 1
2
〈
χr±,Γijχs±

〉
ei ∧ ej , ω̃rs± = 1

2
〈
χr±,ΓijΓ11χ

s
±
〉

ei ∧ ej .
(5.25)

The TCFH is

DFmk̃±i :=∇mk̃±i ±
1
2
?Hmk̊±i −

1
2Fmpω±

p
i

=∓A−1∂mA k̃±i ±
1
2δmi

?Hpk̊±
p ± ?H[mk̊±i] −

1
4Sω±mi

+ 1
8δmiFpqω±

pq − 1
2F[m|p|ω±

p
i] −

1
8Gmipqω̃±

pq ,

(5.26)

DFmk̊±i :=∇mk̊±i ±
1
2
?Hmk̃±i ±

1
2
?Fmpω̃±

p
i

=∓A−1∂mA k̊±i ±
1
2δmi

?Hpk̃±
p ± ?H[mk̃±i] ∓

1
8
?Smipqω±

pq

∓ 1
8δmi

?Fpqω̃±
pq ± 1

2
?F[m|p|ω̃±

p
i] ∓

1
4
?Gω±mi ,

(5.27)

DFmω±ij :=∇mω±ij +Hm[i|p|ω̃±
p
j] + Fm[ik̃±j]

=∓A−1∂mAω±ij ∓
1
4
?Smijpk̊±

p + 1
2δm[iFj]pk̃±

p

+ 3
4F[mik̃±j] ±

1
2
?Gδm[i̊k±j] ,

(5.28)

DFmω̃±ij :=∇mω̃±ij +Hm[i|p|ω±
p
j] ± ?Fm[i̊k±j]

=∓A−1∂mA ω̃±ij −
1
2Sδm[ik̃±j] ±

1
2δm[i

?Fj]pk̊±
p

± 3
4
?F[mi̊k±j] + 1

4Gmijpk̃±
p .

(5.29)

Notice that the minimal TCFH connection, DF , acts on the form bilinears k± + k̂± and
k± − k̂± as a connection gauging a scale symmetry of the type k ± k̂ → s±1(k ± k̂),
s ∈ R − {0}. Therefore the reduced holonomy of the minimal TCFH connection, DF , is
included in SO(5)×GL(1)×GL(20).
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5.4 The TCFH of warped AdS7 backgrounds

A basis in the space of form bilinears on M3, up to Hodge duality, which are symmetric in
the exchange of χr± and χs± is

f rs± =
〈
χr±, χ

s
±
〉
, f̃ rs± =

〈
χr±,Γ11χ

s
±
〉
, f̂ rs± =

〈
χr±,Γzx1...x4χ

s
±
〉
,

krs± =
〈
χr±,Γiχs±

〉
ei .

(5.30)

The TCFH is
DFmf± :=∇mf±

=∓A−1∂mAf± −
1
4Sk±m ∓

1
4
?Fmf̂± ,

(5.31)

DFmf̃± :=∇mf̃±

=∓A−1∂mA f̃± −
1
4Fmpk±

p ,
(5.32)

DFmf̂± :=∇mf̂±

=∓A−1∂mA f̂± ±
1
2
?Hk±m ∓

1
4
?Fmf± ,

(5.33)

DFmk±i :=∇mk±i

=∓A−1∂mAk±i ∓
1
2δmi

?Hf̂± −
1
4δmiSf± + 1

4Fmif̃± ,
(5.34)

where ∇ is the spin connection of g(M3).
A basis in the space of form bilinears of M3, up to Hodge duality, which are skew-

symmetric in the exchange of χr± and χs± is

f̊ rs± =
〈
χr±,Γzx1...x4Γ11χ

s
±
〉
, k̃rs± =

〈
χr±,ΓiΓ11χ

s
±
〉

ei,
k̂rs± =

〈
χr±,Γizx1...x4χ

s
±
〉

ei, k̊rs± =
〈
χr±,Γizx1...x4Γ11χ

s
±
〉

ei ,
(5.35)

The TCFH is
DFmf̊± :=∇mf̊±

=∓A−1∂mA f̊± ±
1
2
?Hk̃±m −

1
4 k̊±m + 1

4Fmpk̂±
p ,

(5.36)

DFmk̃±i :=∇mk̃±i ∓
1
2
?Fmk̊±i

=∓A−1∂mA k̃±i ∓
1
2
?Hδmif̊± ∓

1
4
?Smipk̂±

p

∓ 1
4δmi

?Fpk̊±
p ∓ 1

2
?F[mk̊±i] ,

(5.37)

DFmk̂±i :=∇mk̂±i

=∓A−1∂mA k̂±i −
1
2Hmipk̊±

p ± 1
4
?Smipk̃±

p − 1
4Fmif̊± ,

(5.38)

DFmk̊±i :=∇mk̊±i ∓
1
2
?Fmk̃±i

=∓A−1∂mA k̊±i −
1
2Hmipk̂±

p − 1
4Sδmif̊±

∓ 1
4δmi

?Fpk̃±
p ∓ 1

2
?F[mk̃±i] .

(5.39)
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As in the previous AdS6 case, observe that the minimal TCFH connection, DF , acts on
k̃ ± k̊ like gauging an additional gauge symmetry. Therefore the reduced holonomy of the
minimal TCFH connection, DF , is included in SO(3)× SO(3)×GL(1).

6 Symmetries of probes, AdS backgrounds and TCFHs

6.1 Probes and symmetries

The dynamics of relativistic and spinning particles propagating on warped AdS back-
grounds, AdSn×wM10−n, have been investigated in detail in [24]. Here we shall summarise
some key properties of the dynamics of spinning particles which are relevant for the exam-
ples that we shall present below. As we shall consider examples for which the warp factor
is constant, the action of spinning particles propagating on the spacetime factorises to an
action on AdSn and an action on the internal space M10−n. The latter can be written as

AM = − i2

∫
dt dθ γIJDy

I∂ty
J , (6.1)

where y = y(t, θ) is a worldline superfield, (t, θ) are the worldline coordinates, γ is the
internal space metric and D2 = i∂t. Of course if M10−n is the product of two or more
other manifolds, then the action AM factorises further into actions associated to each
manifold in the product.

It turns out that the infinitesimal variation

δyI = ε αIJ1...Jm−1Dy
J1 · · ·DyJm−1 , (6.2)

associated with a m-form α on M10−n is a (hidden) symmetry of AM , iff α is a (standard)
KY form, where ε is an infinitesimal parameter. Below we shall present several examples
of IIA AdS backgrounds where KY forms arise as a consequence of the TCFH on their
internal spaces. In this way, we shall provide a link between TCFHs and conservation laws
of probes propagating on such backgrounds.

6.2 Examples of TCFH and KY forms

There are many IIA AdS backgrounds that we can consider, see e.g. [26, 30–37]. As
the aim is to provide some examples of backgrounds for which the TCFHs give rise to
symmetries for spinning particle probes, we shall not be comprehensive and instead focus
on AdS backgrounds that arise as near horizon geometries of intersecting branes [38–40],
see also [41]. In the analysis that follows, we shall present an ansatz which includes the near
horizon geometry of intersecting branes under consideration and proceed to demonstrate
that the associated TCFH gives rise to KY forms on the internal space. In turn these
generate symmetries for spinning particle probes and so demonstrate a relation between
TCFHs and probe symmetries.

The formulae for the reduced field equations and KSEs on the internal space of a
warped AdS background that we shall use to construct the AdS solutions suitable for our
purposes can be found in [28]. As it has already been mentioned, these have been obtained
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after suitably solving the field equations and KSEs of the theory over the AdS subspace
and identifying the remaining equations on the internal space of these backgrounds. Here
we shall typically quote the relevant parts of these equations — for the derivation and the
full expressions of these equations the reader should consult the original reference.

6.2.1 An AdS3 solution from a fundamental string on a NS5 brane

An example of an AdS3 solution arises as the near horizon geometry of a fundamental
string on a NS5-brane background. This configuration has played a prominent role in a
microscopic string theory counting of entropy for extreme black holes [42, 43]. An ansatz
which includes such a solution is

g = g`(AdS3) + g(R4) + g(S3) , H = p dvol`(AdS3) + q dvol(S3) , (6.3)

the dilaton is constant, Φ = const, and the rest of the fields are set to zero, where g`(AdS3)
(g(S3)) and dvol`(AdS3) (dvol(S3)) are the standard metric and associated volume form of
AdS3 (S3) of radius ` (unit radius), respectively, g(R4) is the Euclidean metric of R4 and
p, q ∈ R. From here on we shall adopt the same conventions for the AdSn (Sk) metric and
volume form in all the examples below — g(Rm) will always denote the Euclidean metric
on Rm. Note that R4 can be replaced with any Ricci flat manifold, like for example K3,
but the choice of R4 suffices for the purpose of this example. Moreover as the warp factor
A is constant and the radius ` of AdS3 has been kept arbitrary, without loss of generality,
we have set A = 1. Furthermore, the radius of S3 has been set to 1 after possibly an overall
rescaling of the spacetime metric and H.

To find a solution based on the ansatz (6.3), one has to determine p, q and ` after
solving the field and KSEs on the R4×S3 internal space. As the IIA 4-form flux vanishes,
one has that X = Y = 0. Moreover a direct comparison of (3.1) with (6.3) reveals that
p = W and Z = q dvol(S3) .

To determine the remaining constants q and `, one first considers the field equation of
the dilaton Φ,

∇2Φ = − 1
12Z

2 + 1
2W

2 ≡ 0 , (6.4)

which implies that q2 = W 2 = p2. Next, the Einstein field equations along the S3 directions
and the field equation of the warp factor

RS
3

αβ = 1
4ZαγδZ

γδ
β ≡ 2 δαβ ,

∇2 logA = − 2
`2

+ 1
2W

2 ≡ 0 ,
(6.5)

respectively yield p2 = W 2 = 4 and ` = 1, i.e. the AdS3 and S3 subspaces have the same
radius and p, q = ±2.

Turning attention to the KSEs, and focusing for simplicity on those on σ+, the dilatino
KSE, A(+)σ+ = 0, with

A(+) = 1
12
/ZΓ11 −

1
2WΓzΓ11 , (6.6)
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gives the condition Γ(3)Γzσ+ = −σ+ provided we choose13 p = q, where Γ(3) is the product
of the three gamma matrices along the orthonormal directions tangent to the three sphere.
The additional algebraic KSE, Ξ+σ+ = 0, which can be found in [28] with

Ξ+ = − 1
2` + 1

4WΓ11 , (6.7)

that arises from the integration of the gravitino KSE along the z direction, results in the
condition Γ11σ+ = σ+, where we have chosen p = 2. Therefore, we find that σ+ is a
spacetime chiral spinor. The solution with p = −2 can be investigated in a similar way to
that for p = 2.

The gravitino KSE (3.3) along R4 shows that the Killing spinors σ+ satisfy the condi-
tion ∇R4

i σ+ = 0 and so do not depend on the coordinates of R4. Furthermore, the gravitino
KSE along S3 can be written as:

∇S3
α σ+ + 1

2ΓαΓzσ+ = 0 , (6.8)

where we have made use of the conditions Γ(3)Γzσ+ = −σ+ and Γ11σ+ = σ+. This does not
impose further constraints on σ+. Therefore the only conditions on σ+ are Γ(3)Γzσ+ = −σ+
and Γ11σ+ = σ+ and so σ+ has 4 independent components. A similar analysis of the KSEs
on σ− and τ± spinors yields another 12 independent Killing spinors and so the solution
preserves 1/2 of supersymmetry as expected. Note that if R4 is replaced by K3 or any
other 4-dimensional hyper-Kähler manifold Q4 and the orientation of Q4 is chosen to be
compatible with the conditions Γ(3)Γzσ+ = −σ+ and Γ11σ+ = σ+, the solution will again
preserve 1/2 of supersymmetry. The spinors σ± and τ± will be covariantly constant with
respect to the spin connection of the hyper-Kähler metric on X4.

A consequence of (6.8) is that the bilinears

(krs± )α = 〈σr±,Γασs±〉 , (ωrs± )αβ = 〈σr±,Γαβσs±〉 , (πrs± )αβγ = 〈σr±,Γαβγσs±〉, (6.9)

are CCKY forms on S3, while the bilinears

(k̂rs± )α = 〈σr±,ΓαΓzσs±〉 , (ω̂rs± )αβ = 〈σr±,ΓαβΓzσs±〉 , (π̂rs± )αβγ = 〈σr±,ΓαβγΓzσs±〉, (6.10)

are KY forms on S3. The latter generate symmetries for spinning particle actions on S3.

6.2.2 An AdS2 solution from intersecting D2- and D4-branes

An ansatz which includes the near horizon geometry of two D2- and two D4-branes inter-
secting on a 0-brane is

g = g`(AdS2) + g(S2) + g(R2) + g(R4) ,
G = dvol`(AdS2) ∧ α+ dvol(S2) ∧ β ,

(6.11)

with constant dilaton Φ and all other remaining fields set to zero, where ` is the radius of
AdS2 and α and β are constant 2-forms on R4.

13The treatment of p = −q case follows from that of p = q in a straightforward manner.
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Assuming that R4 = R〈(e3, e4, e5, e6)〉, there is an SO(4) transformation such that the
form α can be written as α = p e3 ∧ e4 + q e5 ∧ e6. The isotropy group SO(2) × SO(2) of
α can then be used to choose β without loss of generality as

β = r e3 ∧ e4 + s e5 ∧ e6 + a e3 ∧ e5 + b e4 ∧ e6 + c e4 ∧ e5 , (6.12)

where all components of α and β are constants in R.
The Einstein equations along R4 (with the two indices distinct) imply that cr = cs =

cb = ca = 0. Thus if c 6= 0, r = s = b = a = 0. Then the remaining Einstein equations
along R4 give that p = q = 0. Finally, the dilatino KSE for the ansatz (6.11) is(

−1
8
/X + 1

4 · 4!
/Y

)
η+ = 0 , (6.13)

and gives c = 0. Therefore all fluxes vanish for this case, so to proceed we take c = 0.
Setting c = 0, the dilatino KSE as well as the gravitino KSE along R4 can be written

for the fluxes (6.11) as(
− p+ qI1 + Γ(2)(−r + sI1)− aI2 − bI1I2

)
η+ = 0 ,(

− p+ qI1 + Γ(2)(−r + sI1)− aI2 − bI1I2
)
Γµη+ = 0 , µ = 3, 4, 5, 6 (6.14)

where I1 = Γ3456, I2 = Γ(2)Γ45, Γ(2) is the product of two gamma matrices along or-
thonormal directions tangent to S2 and we have taken η+ to be constant along R4. Sep-
arating the Hertmitian and anti-Hermitian components of the above equations and using
that I1Γµ = −ΓµI1 as well as the commutation relations of Γµ with I2, one finds that
r, s = 0 and

(qI1 + p)η+ = 0 , (bI1 − a)η+ = 0 , (aI2 + p)η+ = 0 . (6.15)

These can be solved by restricting η+ to the eigenspaces of I1 and I2. In turn, one finds
that p, q, a, b are proportional to each other with proportionality factor of a sign. Therefore
in all cases, a2 = b2 = p2 = q2. A similar analysis holds for the η− Killing spinors. As each
eigenspace of I1 and I2 on either η+ or η− has dimension 4, there are 8 Killing spinors that
solve the above KSEs.

After using that S2 has radius 1, the Einstein equation along S2 reveals that a2 = 1.
In turn the field equation for the warp factor A gives ` = 1. Therefore AdS2 and S2 have
the same radius. All the remaining field equations are satisfied.

As the gravitino KSE along R2 is satisfied, it remains to explore the gravito KSE along
S2. This can be written as

∇S2
α η+ + p

2Γ34Γαη+ = 0 . (6.16)

This does not impose any additional conditions on η+ and the same applies for the cor-
responding equation on η−. Therefore the solution preserves 1/4 of supersymmetry. It
follows from this that the 1- and 2-form bilinears along S2 and their duals are either KY
or CCKY forms. There are several KY forms. For example, one can easily show that
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(krs± )α = 〈ηr±,Γαηs±〉 and (ǩrs± )α = 〈ηr±,ΓαΓ12η
s
±〉 are KY forms. The KY forms generate

symmetries for spinning particles propagating on the internal space of these backgrounds.
The background can be generalised somewhat by replacing R4 with any other 4-

dimensional hyper-Kähler manifold Q4. In such a case, X and Y are chosen as

X = prλr , Y = dvol(S2) ∧ arλr , (6.17)

where λ are the 3 Kähler forms of Q4 associated with the hyper-complex structure and pr

and ar are constant 3-vectors. Under a frame SO(4) rotation both pr and ar transform as
SO(3) vectors. Moreover, the field equation for the magnetic component of the 3-form field
strength implies that δrspras = 0, i.e. they are orthogonal. In such a case, there is an SO(4)
rotation such that prλr = α with p2 = q2 and arλr = β as in (6.12) with r = s = c = 0
and a2 = b2. Moreover the relative signs in the equalities p = ±q and a = ±b should
be chosen such that α and β have the same self-duality properties on Q4. After that the
previous analysis on R4 can be repeated to solve both KSEs and field equations yielding a
new solution preserving again 1/4 of supersymmetry. The identification of the KY forms
on S2 can be done as for Q4 = R4.

6.2.3 AdS3 solutions from intersecting D2- and D4-branes

An ansatz that includes the near horizon geometry AdS2 of a D2- and a D4-brane inter-
secting on a 1-brane is

g = g`(AdS3) + g(S3) + g(R4) , G = dvol`(AdS3) ∧ α+ dvol(S3) ∧ β , (6.18)

with constant dilaton Φ and all other remaining fields set to zero, where ` is the radius of
AdS3 and α and β are constant 1-forms on R4.

First notice that the field equation for the magnetic component of the NS 3-form
implies that α∧β = 0 and so α and β are co-linear, i.e. they are proportional and so write
β = pα. Next the dilatino KSE on σ+ and the algebraic KSE Ξ+σ+ = 0 imply that(

Γ(3)Γz + 1
p

)
σ+ = 0 ,

(1
`

+ /α

)
σ+ = 0 , (6.19)

where Γ(3) is the product of three gamma matrices along orthonormal tangent directions of
S3, i.e. the Clifford algebra element associated to dvol`(AdS3). The dilaton field equation
gives p = ±1 and so α2 = β2. Moreover the warp factor field equation yields α2 = 4`−2.

Turning to the Einstein equation along S3, one finds that

RS
3

αβ = 2
`2
δαβ . (6.20)

As S3 has unit radius, one concludes that ` = 1 and so α2 = β2 = 4. Therefore AdS3
and S3 have the same radius. Furthermore, one can verify that all the remaining field
equations and KSEs are satisfied apart from the gravitino KSE along S3. This can be
written using (6.19) as (

∇S3
γ + 1

4Γz/αΓγ
)
σ+ = 0 , (6.21)
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and gives no additional conditions on σ+. A similar analysis holds for the remaining Killing
spinors σ− and τ±. As a result, the solution preserves 1/2 of supersymmetry.

To proceed one can consider the bilinears as in (6.10) and (6.9) and proceed to demon-
strate that these and their Hodge duals on S3 are either KY or CCKY forms. The former
generate symmetries for spinning probes on S3. In particular k±, ?ω± and π± are KY
forms on S3.

6.2.4 AdS2 solutions from intersecting D2-branes and fundamental strings

An ansatz that includes the near horizon geometry of two D2-branes and a fundamental
string intersecting on a 0-brane is

g = g`(AdS2) + g(S3) + g(R5) ,
G = dvol`(AdS2) ∧X , H = dvol`(AdS2) ∧W , (6.22)

with constant dilaton Φ and all other remaining fields set to zero, where X and W are a
2-form and 1-form on R5, respectively.

The field equation for the magnetic part of the 2-form field strength implies that
iWX = 0. The dilaton field equation gives W 2 = 1/4 X2 and the warp factor field
equations can be expressed as W 2 = `−2.

Taking R5 = R〈(e1, e2, . . . , e5)〉, there is a SO(5) transformation, up to a possible
relabelling of the basis, such that X = λ1 e1∧e2 +λ2 e3∧e4 and λ1, λ2 ∈ R. Next if either
λ1 or λ2 vanish together with iWX = 0, one can show that the gravitino KSE on η+ along
R5 becomes inconsistent. Therefore from now on, we take λ1, λ2 6= 0 and as iWX = 0, we
have W = p e5. Using this, the dilatino KSE yields(1

2λ1 −
1
2λ2Γ1234 + pΓ12Γ11Γ5

)
η+ = 0 . (6.23)

This together with the gravitino KSE along R5 imply that

(λ2Γ1234 + λ1)η+ = 0 , (pΓ12Γ11Γ5 + λ1)η+ = 0 . (6.24)

As a result λ2
1 = λ2

2 = p2 = W 2.
Restricting the Einstein equation along S3, which has unit radius, yields λ2

1 = 4. The
warp factor field equation in turn gives ` = 1/2. Therefore the AdS2 subspace has half the
radius of the internal space S3. It remains to explore the gravitino KSE along S3. This
can be rewritten as (

∇S3
α + 1

4λ1Γ12Γα
)
η+ = 0 . (6.25)

This does not impose any additional conditions on η+. A similar analysis can be carried
out for the η− Killing spinors. As a result the solution preserves 1/4 of supersymmetry as
a consequence of the conditions (6.24) on η+ and the analogous conditions on η−.

There are several form bilinears that one can consider on S3 like for example those
in (6.10) and (6.9) and their duals on S3. All of them are either KY or CCKY as a
consequence of (6.25). In particular, k±, ?ω± and π± are KY forms and so generate
symmetries for spinning particles propagating on S3.
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7 Concluding remarks

We have presented all the TCFHs of massive IIA warped AdS backgrounds. In particular
we have shown that the form bilinears of supersymmetric AdS backgrounds satisfy a gen-
eralisation of CKY equation with respect to the TCFH connection. In addition we have
explored some of the properties of the minimal TCFH connection like its reduced holon-
omy. Furthermore we have investigated the question on whether the TCFHs give rise to
hidden symmetries for probes propagating on the internal space of AdS backgrounds. For
this we presented some examples of AdS backgrounds, namely those arising as near horizon
geometries of intersecting IIA branes, and demonstrated that some of their form bilinears
are KY forms. As a result they generate symmetries for spinning particles propagating
on the internal space of such backgrounds. This work, together with those in [24, 25],
completes the investigation of TCFHs of all warped AdS backgrounds of type II theories
in 10 and 11 dimensions.

The extent of the interplay between TCFHs and symmetries of probes propagating on
supersymmetric background remains open. There are certainly many examples of back-
grounds that the TCFH conditions coincide with those required for the invariance of probe
actions under transformations generated by the form bilinears. For example in the het-
erotic and common sector cases, all form bilinears generate symmetries for certain string
and particle probes. However for generic type II theories, the relation between TCFH and
probe symmetries can only be revealed on a case by case basis after exploring separately
the geometric properties of each background. The difficulties lie both in the lack of classi-
fication of supersymmetric backgrounds in type II theories and the plethora of probes [44]
that one can consider. A more systematic investigation will require developments both
in the understanding the supersymmetric backgrounds of type II theories as well a better
handle on probe actions and their symmetries.
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