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We propose a relation between the η invariant on a manifold with boundary, the η invariants of edge 
states, and the η invariant in an infinite volume limit. With the example of planar fermions with bag and 
chiral bag boundary conditions we show that this relation holds whenever edge states are sufficiently 
well-localized near the boundary. As a by-product we show that the spectrum of edge modes for chiral 
bag boundary conditions is linear but bounded.
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1. Introduction

The η invariant plays an important role in Quantum Field The-
ory. It describes the parity anomaly [1–3] which leads to a Chern–
Simons term in the effective action for gauge fields and to a Hall 
type conductivity in condensed matter applications. The Jackiw–
Rebbi fermion number fractionization [4] can be also described 
through the η invariant, see [2,5].

If there are boundaries, the η invariant has specific boundary 
contributions. For example, on four-dimensional manifolds these 
contributions take a form of Chern–Simons actions on the three-
dimensional boundary manifold [6,7]. Much attention has been 
paid to the relations between η invariants in the bulk and η invari-
ants in effective boundary theories. Important results in this direc-
tion were obtained [8] in the context of anomaly inflow, where an 
expression for η in terms of boundary states was derived. However, 
many problems still remain open. The boundary conditions used in 
[8] (and earlier in [9]) are non-hermitian and thus cannot be used 
for the Dirac Hamiltonians and for the problem of fermion number 
fractionization. In [10], the η invariant for local boundary condi-
tions leading to a hermitian Dirac operator were expressed through 
the anomalies in effective boundary theories. However, only mass-
less Dirac operators do not admitting any boundary states were 
considered in the work [10]. (For completeness, we also mention a 
work [11] which considered domain walls rather than boundaries.)

The purpose of this work is to derive the relations between the 
η invariant on a manifold with boundary and the boundary (edge) 
modes in theories with hermitian Dirac operators.
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Let us give some main definitions. For more details we refer 
the reader to [12]. Let H be a hermitian Dirac type operator on 
a smooth manifold M, dimM = n, with a smooth boundary ∂M
with eigenvalues λ. The η function of this operator is defined as

η(s, H) =
∑
λ>0

λ−s −
∑
λ<0

(−λ)−s, (1)

where s is a complex parameter. The sum in (1) is convergent if 
�s is large enough and defines a meromorphic function in the 
whole complex plane. The η(0, H) measures the spectral asym-
metry of H . Note that zero eigenvalues of H are not included 
in (1). The Atiyah–Patodi–Singer η invariant is defined as ηH =
1
2 (η(0, H) + dim Ker(H)). This invariant jumps by ±1 whenever 
an eigenvalue crosses the origin. The exponentiated η invariant 
E(H) = exp(−2π iηH ) is smooth.

Let t be a positive real parameter. Then, there is an asymptotic 
expansion at t → +0 of the heat kernel

Tr
(
Q exp(−tH2)

)
=

∞∑
k=0

t
k−n
2 ak(Q , H2) (2)

for any smooth matrix-valued function Q . The heat kernel coef-
ficients are very well studied in the literature, see e.g. [13]. Let 
δH be a variation of H . We assume that δH is a matrix-valued 
function rather than a differential operator. If due to this variation 
no eigenvalue passes through 0, the corresponding variation of the 
η(0, H) reads [3,14,15]

δη(0, H) = − 2√
π
an−1(δH, H2). (3)

This formula will be our main technical tool. We will study exclu-
sively the perturbative (smooth) contributions to η(0, H). This is 
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equivalent to saying that we will be interested in the logarithm of 
the exponentiated η invariant.

The heat kernel expansion and the formula (3) are valid pro-
vided the boundary conditions are strongly elliptic. Without dis-
cussing this requirement in detail, we just mention that all bound-
ary conditions used in this work are strongly elliptic. Let us also 
note that (3) can be used for arbitrary smooth variations on com-
pact manifolds while on noncompact manifolds the variations have 
to be localized and thus cannot change the asymptotic behavior of 
background fields.

We are going to argue that in some situations η(0) can be rep-
resented as a sum of a bulk part and a contribution of boundary 
states. It is not easy to separate the bulk and boundary contribu-
tions in general, especially since in many cases η(0) is topological 
and may be presented as a volume integral of a topological density 
as well as a surface integral. To make this separation transparent, 
we propose the following scheme. Consider a Dirac type operator 
on Rn such that all background fields entering this operator are lo-
calized near the origin. (Example: a gauge field with field strength 
rapidly decaying away of the origin). We introduce a spherical 
boundary Sn−1 of a radius r and impose some boundary condi-
tions. We expect that if r is sufficiently large the η invariant on the 
ball splits into two parts, one being the η invariant for Rn with-
out boundaries while the other part is given by contribution of the 
edge states. The edge states are the eigenstates of Dirac Hamilto-
nian which decay exponentially fast as functions of the distance 
from the boundary. The decay rate has to be sufficiently fast to 
ensure localization of the states in a small neighborhood of the 
boundary.

In this paper, we check the proposed relation between η func-
tions with the simplest yet nontrivial example of planar fermions 
in an external magnetic field. In the next Section, we consider bag 
boundary conditions, we show that the edge states are localized 
near the boundary, and we confirm the relation. In Section 3, we 
generalize boundary conditions to the chiral bag boundary con-
ditions. We demonstrate that the edge states have a non-Dirac 
spectrum which is linear but bounded. Besides, near the thresh-
old the edge states are not localized leading to a violations of the 
relation between η functions.

2. Bag boundary conditions

Consider a plane R2 pierced by a perpendicular magnetic field. 
We assume that this field has a finite flux and is concentrated 
somewhere near the origin. The Dirac Hamiltonian for fermions 
confined to the plane reads

H = α j(i∂ j − eA j) − βm, (4)

where α j and β are hermitian 2 × 2 matrices satisfying

tr
(
αkα jβ

)
= −2iεkj, α jαk + αkα j = 2g jk, (5)

with ε jk and g jk being the Levi-Civita tensor and the metric tensor, 
respectively. Besides, βα j + α jβ = 0 and β2 = 1.

The famous Niemi–Semenoff [2] result for infinite plane is

η(0, H) = − e

4π

m

|m|
∫

R2

d2xε jk F jk . (6)

Let us consider a disk Dr of radius r centered at the origin. Let 
n be a unit inward pointing normal to the boundary ∂Dr = S1r , θ
be a coordinate on S1r , and 

√
hdθ = rdθ be the induced integration 

measure. We introduce

ηr(0, H) := e

2π

m

|m|
∫
1

dθ
√
h A jε

n j (7)
Sr

2

so that

η(0, H) = lim
r→∞ηr(0, H). (8)

We stress that ηr is not an η function of any operator.
Let us compute the η function for HDr which is H restricted to 

Dr with boundary conditions

�−ψ |S1r = 0 (9)

with

�± = 1
2 (1± iεβαn), (10)

where ε = ±1. We also define

χ := �+ − �−, �± = 1

2
(1± χ). (11)

The boundary conditions (9), (10) are known under the name of 
bag boundary conditions [16,17] in the physics literature and un-
der the name of Clifford boundary conditions in Mathematics [18]. 
For these conditions, the normal component of fermion current, 
ψ†αnψ , vanishes at all point of the boundary, so that H is selfad-
joint.

For any Dirac type operator H on a two-dimensional manifold 
M with bag boundary conditions on ∂M

a1(Q , H2) = 1

8
√

π

∫
∂M

dθ
√
h tr (Q χ). (12)

By specifying H = HDr , Q = δHDr = −eα jδA j and using the for-
mula (3) for n = 2, we obtain

δη(0, HDr ) = εe

2π

∫

S1r

dθ
√
h δA jε

n j, (13)

which is integrated to

η(0, HDr ) = εe

2π

∫

S1r

dθ
√
h A jε

n j . (14)

Let us analyse the edge states. We fix the gauge An = 0 near 
the boundary and consider an auxiliary eigenvalue problem

Ĥϕ = λϕ (15)

on R+ where the operator Ĥ is constructed from H in the follow-
ing way. Let e‖ be a unit vector tangential to the boundary, so that (
α‖)2 = 1 with α‖ := e‖

jα
j . The corresponding coordinate on the 

circle is x‖ = rθ . The function ϕ is assumed to be an eigenfunction 
of i∂‖ − eA‖ with an eigenvalue ξ . At large r, the extrinsic curva-
ture of the boundary is negligible. Thus, the eigenvalue problem 
(15) reads

iαn(∂n + q(λ,m, ξ))ϕ = 0, (16)

q(λ,m, ξ) = −iαn(α‖ξ − βm − λ) . (17)

ϕ depends on a single coordinate xn and satisfies the boundary 
condition

�−ϕ(xn = 0) = 0 . (18)

Edge states correspond to

ϕ → 0 at xn → ∞, (19)

which means that the eigenspace of q(λ, m, ξ) corresponding to 
a positive eigenvalue should coincide with the kernel of �− . To 
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resolve this condition, let us take a particular representation of α j

and β ,

β =
(
1 0
0 −1

)
, αn =

(
0 1
1 0

)
, α‖ =

(
0 i
−i 0

)
. (20)

With this choice, εn‖ = +1.
We have,

q(λ,m, ξ) =
( −ξ i(λ −m)

i(λ +m) ξ

)
. (21)

The eigenvalues of this matrix are ±μ with μ = √
ξ2 − λ2 +m2

while(−ξ + √
ξ2 − λ2 +m2

i(λ +m)

)
(22)

is an eigenvector corresponding to the positive eigenvalue of 
q(λ, m, ξ).

The kernel of the projector

�− = 1

2

(
1 −iε
iε 1

)
(23)

is spanned by the vector(−1
iε

)
. (24)

The vectors (22) and (24) define the same linear subspace iff
m

|m| = −ε and λ = εξ . (25)

The first equation in (25) defines the boundary condition when 
edge state exist, while the second one gives the spectrum of Dirac 
Hamiltonian H on these modes. Thus we conclude that the restric-
tion of H to edge states reads

Hb = ε(i∂‖ − eA‖). (26)

The dependence of edge states on xn is defined by the positive 
eigenvalue of q. Due to the second conditions in (25), this eigen-
value is μ = |m|, so that whenever edge modes exist they decay 
as e−|m|xn and are well localized relatively to r as long as |m|r is 
sufficiently large.

The boundary Hamiltonian Hb is a one-dimensional Dirac type 
operator. The variation of η(0, Hb) can be calculated by using (3)
for n = 1,

δη(0, Hb) = − 2√
π
a0(δHb, H

2
b) = − 2√

π

1√
4π

∫

S1r

dx‖ δHb

= eε

π

∫

S1r

dx‖δA‖ = εe

π

∫

S1r

dθ
√
h δAθ ε

nθ . (27)

The variation (27) is integrated to

η(0, Hb) = εe

π

∫

S1r

dθ
√
h Aθ ε

nθ . (28)

If m/|m| = ε there are no boundary states and the expressions 
ηr(0, H) coincides with η(0, HDr ). If m/|m| = −ε the two η func-
tions have opposite signs but their difference is compensated by 
the contribution of boundary modes (28). In general,

η(0, HDr ) = ηr(0, H) + η(0, Hb). (29)
3

The second term on the right-hand side of (29) is zero if there are 
no boundary modes. At r → ∞, this is exactly the relation which 
has been announced in the Introduction. We stress again that in 
(29) we relate smooth parts of the η functions. In other words, our 
claim is that variations of both parts agree as long as eigenvalues 
do not cross the origin.

3. More general boundary conditions

A natural generalization of the boundary conditions considered 
in the previous Section consists in the modification of χ in (11) as

χ = iεβeτβαn, (30)

with τ being a real parameter. These conditions are the chiral 
bag boundary conditions [19] (modulo the replacement of a Dirac 
Hamiltonian by a Euclidean Dirac operator). For chiral bag bound-
ary conditions, the normal component of fermion current van-
ishes and H is selfadjoint. Moreover, these boundary conditions 
are strongly elliptic [20] so that the heat kernel expansion (2) ex-
ists and the formula (3) for the variation of η(0, H) is still valid. 
Although the relation (12) is not hold for χ given in (30), it has 
been demonstrated [21] that the smooth part of η(0, HDr ) does 
not depend on τ . Therefore, Eq. (14) can still be used. All what re-
mains is to analyse the edge states. The calculations are similar to 
that of the previous Section, so that we do not give details here.

The edge states exist if

−ε(λ sinh(τ ) +m cosh(τ )) ≥ 0 (31)

while the dispersion relation is given by

λ = εξ

cosh(τ )
−m tanh(τ ). (32)

We see, that the spectrum of boundary Hamiltonian given by (32)
is linear, but edge states exist for any signs of ε and m, while the 
spectrum is bounded either above or below.

For Eq. (29) to hold, η(0, Hb) must vanish when m and ε are of 
the same sign. We are not aware of any method of computations of 
η invariants for operators with the spectrum restricted as in (31). 
If we neglect this restriction for a while, Hb = ε(cosh(τ ))−1(i∂‖ −
eA‖) − m tanh(τ ). This is an operator of Dirac type which can be 
treated along the same lines as the boundary Hamiltonian in the 
previous Section. One thus obtains a non-zero value of η(0, Hb)

which depends on A‖ and m. It is hard to conceive that imposing 
the restriction (31) (which make the spectrum even more asym-
metric) can kill the spectral asymmetry. In fact, Eq. (29) does 
not need to hold for chiral bag boundary conditions. The positive 
eigenvalue of q which defines the decay rate of edge states reads 
|λ sinh(τ ) + m cosh(τ )|. Near the threshold of the spectrum (31)
the decay rate is very small, so that the edge modes are not well 
localized.

4. Conclusions and discussion

In this paper, we have shown with two examples that η(0, H)

can be represented as a sum of a bulk part and a contribution 
from the edge states whenever the latter ones are localized in 
a sufficiently small neighborhood of the boundary. This gives a 
new interpretation of the classical result [2] and opens an avenue 
for future research. A rigorous demonstration of this relation for 
generic Dirac operators is a complicated problem in Mathematics, 
which we are going to address in the near future.

As a by-product we derived the spectrum of edge modes for 
chiral bag boundary conditions. This spectrum reminds us of the 
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Fermi arc boundary states in Weyl semimetals [22] which also oc-
cupy a bounded region in the momentum space and points out to 
new physical applications.

In this work we focused on two-dimensional fermions. An ex-
tension to higher dimensions is rather straightforward though the 
computations may become somewhat more involved. In the case 
of magnetic monopoles in three dimensions considered in [5,23], 
for example, the surface contribution (7) should become the mag-
netic flux corrected by vacuum values of the Higgs fields while 
instead of (6) one should get an integral of corresponding topolog-
ical density. For more complicated configurations in odd dimen-
sions also non-topological terms not reducible to surface integrals 
may appear. However, such terms should contribute equally to the 
η invariant in the infinite space and to that on a manifold with 
boundary in the r → ∞ limit.

Including non-perturbative contributions to the η invariant in 
our approach is more tricky. It requires the knowledge of zero 
modes of Dirac operators in the infinite space, on the regularized 
manifold with a boundary, and in the effective boundary theory. 
This is a global information. Thus the heat trace asymptotics used 
in the present work are not going to help much. They should be 
used in combination with other methods like, e.g., the one pro-
posed in [8].

Our results may be applied to calculations of fermion fraction-
ization in the presence of solitons. This quantity is usually a func-
tion of asymptotic values of background fields (though there is an 
exception [24]) so that the formula (3) is not applicable. Having an 
expression for charge fractionization through η functions on com-
pact manifolds may simplify the calculations.

Finally, we would like to mention some publications which 
treated spectral properties and anomalies of Dirac operator and 
with bag [25–28], chiral bag [29] and even some other boundary 
conditions [30,31]. The setup used in these papers was quite dif-
ferent from ours.
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