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We study three-dimensional quantum field theories on the interval with symmetry-preserving boundary
conditions. The physics and symmetries of the effective 2D theory in the IR are the main subjects of this
note. We focus on the (super-)Yang-Mills-Chern-Simons (YM-CS) theories with the Dirichlet boundary
conditions on both ends. We warm up with the /' =0 and A/ =1 cases flowing to the bosonic and
N = (0,1) WZW models in 2D. Then we study the 3D N/ = 2 YM-CS on the interval with the N" = (0, 2)
Dirichlet boundaries. It flows to a noncompact version of the N = (0,2) WZW. We compute its
perturbatively exact two-derivative effective action (i.e., the metric and the B-field), and speculate on the
possibility of novel nonperturbative effects. We also construct the 2D Landau-Ginzburg models flowing to

the similar sigma models.
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I. INTRODUCTION

Boundaries and defects form a rich class of observables in
quantum field theories (QFT) providing a lot of insight into
their dynamics. They are often associated with symmetries
breaking of a theory, which can be explicit and classical,
spontaneous, or due to anomalies. Such phenomena may
depend strongly on the spacetime dimensionality, especially
as far as spontaneous [1] and anomalous breaking [2—4] are
concerned, and defects facilitate interactions across dimen-
sions. They can also mix different symmetry-breaking
effects, as in the anomaly inflow mechanism [5], where
the classical and the anomalous breaking of the same
symmetry cancel each other along the boundary or the
defect. The subject of defect QFT’s is vast and goes well
beyond the scope of this note. Here we focus on its specific
corner, namely, boundaries preserving some fraction of
supersymmetry, see [6—10] for a number of examples,
including their interplay with global symmetries.

For a local theory on RP~! x R, the faraway region
is described by a D-dimensional QFT, whereas close to
the boundary we find a hybrid of the D and (D — 1)-
dimensional physics. If we introduce second parallel
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boundary, i.e., put our theory on an interval, we obtain
another interesting setup—that of the interval reduction. It is
perhaps not the first example of dimensional reduction we
learn from textbooks. However, examples of QFT on an
interval are ubiquitous in physics, both in a lab and on
theorists’ chalkboards. An extremely incomplete list of
examples includes: Condensed matter experiments, such
as those on quantum Hall effect, performed on a slab of
material [11,12]; measurement of the Casimir force between
two parallel plates [13,14], etc. In string theory, we often
construct QFTs via brane engineering [15,16], and sus-
pending a brane between two other branes is clearly an
instance of interval reduction. Another example is embed-
ding the heterotic strings into the M-theory, which accord-
ing to Horava and Witten is done via the interval reduction
of the 11D theory [17]. Topological QFTs (TFTs) on the
interval also feature prominently in the recent developments
involving symmetry TFTs [18-20]. Our own interest stems
from the applications to VOA [M,] [21], and we explain in
more detail in the companion paper [22] how the interval
reduction can help to compute it for some four-manifolds
(see also [23,24] for related brane setups).

In the UV, the interval-reduced theory looks like a
D-dimensional/(D — 1)-dimensional coupled system of the
bulk and two boundaries, while at long distances, (in the IR),
it flows to some (D — 1)-dimensional QFT. This is just like
in the usual dimensional reduction, with the exception that
signatures of the (D — 1)-dimensional physics are already
present in the UV due to the boundaries. Indeed, if the
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boundaries support some anomalies in the UV, the ’t Hooft
anomaly matching condition says that they are robust along
the RG flow and match the anomalies of the IR (D — 1)-
dimensional QFT. Such matching provides an important
constraint on the IR physics. Another remark we make is that
the patterns of symmetry breaking can change as we flow to
the (D — 1)-dimensional theory, and one can even find that
the symmetry is restored in the IR.

To be more specific, consider a D = (2 + 1)-dimen-
sional QFT reduced on an interval. Suppose the bulk theory
spontaneously breaks continuous global symmetry G via a
vev of some scalar. Further assume that the theory admits a
symmetric boundary condition, meaning that neither
explicit nor anomalous breaking of G occurs along the
boundary. What happens to the spontaneous breaking of G
in its presence? If there is only one boundary, the breaking
still occurs: Far away from the boundary we, as usual, fix
the 3d vacuum, which breaks G spontaneously. Now
consider two such parallel boundaries, i.e., put our theory
on the interval. Then it becomes macroscopically (1 + 1)-
dimensional, and the Coleman-Mermin-Wagner theorem,
under the standard assumptions on QFT (such as Wightman
axioms), rules out spontaneous symmetry breaking (SSB).
Thus in this case, the presence of two symmetric bounda-
ries “restores” G that breaks spontaneously in the original
3D theory on R>!. To exemplify consider a complex scalar
¢ with the “hat” potential V(¢) = (|¢|*> — v?)?, which of
course exhibits SSB of the U(1) global symmetry in 3D.
For the interval reduction, choose Neumann boundary
conditions on ¢, which preserve the U(1). After the
reduction we end up with the same scalar field theory in
2D, which, however, cannot break U(1) due to peculiarities
of the 2D dynamics. The interval reduction restores the
symmetry here.

The answer is not so obvious in the case of supersym-
metry, since spontaneous SUSY breaking [25-28] is pos-
sible in 2D [29,30]. It is characterized by the positive
vacuum energy, and one can easily construct examples that
spontaneously break SUSY both in 3D and after the interval
reduction to 2D. Indeed, suppose the energy density of the
SUSY breaking 3D vacuum is p > 0. After reduction on the
sufficiently large interval of size L, the 2D vacuum energy
density becomes Lp + p,, where p, captures the effects of
supersymmetric boundary, such as the contribution of
boundary degrees of freedom, the Casimir effect, etc.
Importantly, p, does not grow with L, therefore, for large
L the first term dominates and the vacuum energy density
remains positive. Thus reduction on the large interval
(equivalently, first flowing to the IR and then reducing
on the interval,) results in a SUSY-breaking 2D theory,
whenever the original theory breaks SUSY. Whether this
conclusion persists for smaller values of L is not obvious,
and it might very well happen that at some critical length
L., the theory transitions into the SUSY-preserving phase.
What happens in a given 3D theory is thus an interesting

dynamical question. For a related discussion in the 4D/3D
system see [31].

Our main focus in the following sections will be a three-
dimensional gauge theory with N =2 supersymmetry
reduced on the interval. Namely, consider the pure 3d
N = 2 super Yang-Mills with a simple gauge group G and
a Chern-Simons level k. It is believed to exhibit the
runaway behavior at k = 0 [32], it is believed to sponta-
neously break SUSY by the monopole effects for
0 < |k| < h, and it is believed to preserve SUSY for |k| >
h [33,34]. We will reduce it on the interval with the N =
(0,2) Dirichlet boundary conditions imposed on both ends
(for Neumann boundaries, see [35]). The effective two-
dimensional A = (0, 2) description, as we will argue, is a
nonlinear sigma model (NLSM) into the complexified group
Gc, with the B-field given by the Wess-Zumino (WZ)
term of level k. This is a new noncompact version of the
N = (0,2) WZW [36-40]. (For more exotic cases of the
WZW-like structures emerging from the higher-dimensional
SUSY theories, see [41,42]).

The known SUSY-breaking effects (instantons) in 2D
N = (0,2) NLSMs—given by the world sheet wrapping
holomorphic curves in the target [29,30,43]—are absent in
the Gc NLSM. This makes the IR behavior in the range
0 < |k| < h slightly mysterious, as there is a tantalizing
possibility that the SUSY is preserved on the interval (even
though it is spontaneously broken in 3D). The analysis is
also complicated by the fact that the model is noncompact
and thus lacks a normalizable vacuum for all values of k.
We will focus on the range |k| > & here, in which the model
is expected to preserve SUSY both in 3D and 2D. The case
of |k| < h will be addressed elsewhere, but we do believe
that the 2D models break SUSY in this range via the novel
vortex effects, for which the noncompactness of G¢ is
crucial. In short, for some cocharacter b: C* — G¢, one
defines a half-BPS defect by demanding that the NLSM
field ¢ behaves as

¢~z (1)

near the defect. This makes sense precisely for the com-
plexified G¢ taken as a target, and is the interval-reduced
image of the boundary monopole operator in 3D (see also
the companion paper [22]). It would be interesting to
explore such defects.

In the rest of this paper, we study the interval reduction of
gauge theory quantitatively. In particular, we compute the
(perturbatively exact) two-derivative effective action of the
2D NLSM. Such a computation is based on a new technical
trick that affords a lot of simplifications to our problem. We
start with a non-SUSY example, where we explain this trick
in detail. It consists of two steps. First go to the gauge in
which the gauge field component A, along the interval
vanishes. This necessarily modifies the boundary conditions
since the gauge field may have a nonzero Wilson line
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g(x°, x') along the interval. We would like to integrate out
the gauge field at a fixed profile of g(x). In the second step,
we notice that positive powers of the length L of the interval
only multiply higher-derivative terms in the effective 2D
action. Treating L as a parameter in the Lagrangian, we send
L — O (first subtracting the Casimir energy) to isolate the
two-derivative terms. This makes the path integral over
gauge fields rather simple, namely, Gaussian. We compute it
and find the two-derivative effective action.

This method generalizes straightforwardly to A" = 1 and
N = 2. The results are most interesting in the N = 2 case,
where we compute the nontrivial bi-invariant metric and the
B-field on G quite explicitly. We also construct the two-
dimensional Landau-Ginzburg (LG) models, which flow to
the A/ = (0,2) NLSMs into G¢ as well. We comment on
the structure of current multiplets and their relation to the
noncompactness of these theories. The LG models seem to
be dual to our interval theories perturbatively, however, at
the nonperturbative level the duality is not expected. In a
sense, they provide a distinct UV definition of the G¢
NLSM, which lacks the vortices (1) in the spectrum. A
number of conjectures and speculations are made along
the way.

II. GAUGE FIELDS ON THE INTERVAL

As a warm-up, consider a pure gauge theory on the
interval parametrized by y € [0, L] with Dirichlet boundary
conditions on both ends. The dynamical field g(x) of the
reduced theory is the holonomy along this interval. Thus
the IR theory must be NLSM into the group G. Most
cleanly this is seen in the 2D Yang-Mills theory:

1

defined on a strip R x [0, L], where R is the time direction
parametrized by 7. The Dirichlet boundary conditions:

A =0, (3)

are imposed both at y = 0 and y = L. Naturally, the group
of gauge transformations is

G=A{g(t,y):RxI->G,g(t,0) =g(t,L) =1}. (4)

The holonomy between the two boundaries is

g(t) =P exp i/LOAydy. (5)

For a fixed profile g(f), we integrate out A, to find the
effective action for g(¢). The problem is simplified by the
following trick. Let us first perform an “illegal” gauge
transformation into the gauge A, = 0. It is illegal in the
sense that it does not belong to the group G and cannot

preserve both boundary conditions A,| y=0 =0 and
At|y:L = 0. Indeed, setting A, to zero by a gauge trans-
formation amounts to solving Ay = h“ayh, or

d,h = hA,. (6)

If we choose to keep A,|,_, = 0, then (6) is supplied by the
initial condition h[,_, = 1 that yields a Cauchy problem
with the unique solution & = h,(¢,y) (this also fully fixes
gauge). Likewise preserving A,|,_;, = 0 implies another
unique solution /2, with 4,[,_, = 1. At this point, we could
subdivide our interval into patches (0, a] U [a, L), perform
the gauge transformation %4, on (0,a], and h,—along
[a,L). This will set A, =0 everywhere, preserve the
boundary conditions A;| = 0 on both ends. However, at
y = a the two patches are glued by the gauge trans-
formation ¢(). The latter is obvious because the Wilson
line connecting the two boundaries is gauge-invariant [and
must be equal to g(7)].

The location y = a of the gluing surface is arbitrary, and
we can collide it with y =L, i.e. send a — L. This is
equivalent to simply performing the gauge transformation
h, everywhere on (0,L). As a result, we obtain a single
gauge patch with the modified boundary conditions at
y = L determined by ¢(z):

Alo=0. Al =g'Wagn.  (7)
With such boundary conditions and in the gauge A, =0,
there is no remaining gauge freedom. The Yang-Mills
action becomes quadratic:

1
S = 2ez/Tr(()yAt)zdy dz. (8)

Thus A, is easily integrated out by solving the equations of
motion (EOM), while the determinant is a constant that can
be dropped (which in fact cancels against the constant
Faddeev-Popov determinant associated with A, = 0). The
classical solution is

L1 (1)ag(1), 9)

A =
L

resulting in the 1D action:

1
Sip = m/Tr(g_latQ)zdﬁ (10)
This computation is, of course, completely exact, and the
answer (10) is expected based on the G x G global
symmetry of the interval theory.

In the 3D Yang-Mills case, the analysis is quite similar,
except it cannot be performed exactly. The 2D effective
action can be computed in the two-derivative approxima-
tion, ignoring the higher-derivative corrections. We work
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on R? x I with coordinates (x°, x', y) and with the boun-
dary conditions Ag| = A| = 0. Denoting the holonomy
along I by g(x) and passing to the gauge A, = 0, we have
the analogous boundary conditions:

Ai|y:0 =0, Ai|y:L =g7'0,9, i=0,1. (11)

After rescaling the interval coordinate as y = L&, the YM
action takes the form:

1
2¢2L

Tr/dzxA]df[(agAi)z—kLz(DoAl —-0,40)%. (12)

We regard e*L = )2 as a dimensionless coupling, while L is
a dimension-length parameter. Since g(x) is dimensionless,
the expansion in powers of L is the derivative expansion of
the 2D effective action. There is a caveat: If A is a UV
momentum cutoff, the powers of L could be also compen-
sated by A, giving another dimensionless parameter LA.
The positive powers of A would signal the power-law UV
divergences, normally canceled by the UV counterterms.
However, the 3d Yang-Mills is UV finite and has no
counterterms [44—46]. Thus the power-law UV divergences
simply cannot appear in the effective action, so the positive
powers of LA are absent, and the expansion in powers of L
is indeed the derivative expansion. The possible O(L~?)
Casimir term should be subtracted by hand. Then at the
leading O(L®) order we find the two-derivative effective
action, so we drop the irrelevant higher-derivative terms
simply by setting L = 0. At this order, the microscopic
action becomes 53> [ d* xd&(0zA;)?, which has the saddle
point A; = £g710,9, so we obtain:

1
S =52 / a2 x Tr(g~19,9)°- (13)

Thus, the two-derivative effective action is exactly captured
by the principal chiral model (PCM).

Let us upgrade this analysis to also include the Chern-
Simons (CS) term:

k 2
=—T AdA +ZA3]. 14
Scs i f/{ +3 } (14)

Starting with the same boundary conditions and passing to
the gauge A, =0, we again have (11). The CS term
becomes ;- Tr [Ad,A + kSwz[g], where d,=dyg and
Swzlg] is the 2D Wess-Zumino (WZ) term generated by
the gauge transformation of the CS action in the presence of
the boundary. The full action then becomes:

1
S = Z_ﬁTr/dzxdg[(aéAi)z + L2 (DoA; = 0,4)*

kA%

Again the term L2F3, is dropped in the two-derivative
approximation. The saddle point equations in Minkowski
signature become:

aéAl = —2a)0§A0, 0§A0 = —20)0‘::141, (16)

where

ke’L kA

= =—. 17

@ 4r 4r (17)

Subject to the same boundary conditions (11), these
equations are easily solved, leading to the 2D action:

k1

~ 8rtanh w

eff
0

/ @ xTe(g0,9)° + kSwzlg).  (18)

Again, the global G x G symmetry of the interval theory
was obvious from the beginning. Since a simple compact
Lie group G has a unique, up to an overall scale, bi-
invariant metric Tr(g~'dg)?, the kinetic term in S was
bound to take this form. Only the coefficient in front of the
action is a nontrivial result of our computation.

What we obtained is, naturally, the WZW, model, which
then flows to the conformal point [47]. Of course we
expected this. Starting with a long interval, we could first
flow to the IR in 3D by dropping the irrelevant YM term,
ending up with the CS on an interval, which is known to
yield the WZW, [48].

II1. MINIMAL SUPERSYMMETRY

Before studying N = 2, let us briefly look at the N' = 1
SYM at level k also considered in [49]. The Lagrangian
consists of the same bosonic part as above, plus the action
for massive adjoint Majorana gaugini y:

. ke?
Ly=iTtyPy —~—Tryy. (19)

2
Again we pass to the gauge A, =0 and rescale y = L¢,
after which the fermion action becomes

1 , kA% o

Sp = @/dzxdéjTr {z){yzdﬁ)( ey +iLyy'Dyl|.
We impose the A = (0, 1) version of the Dirichlet boun-
dary conditions, and the interval zero mode of y is found
by solving
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2

Oey + % iy’y = 0. (20)
It is identified with a chiral (right-moving) edge mode
living either on the left or on the right boundary, depending
on the sign of k. The interval nonzero modes look from the
2D perspective like heavy fermions (with masses of order
1/L) that can only contribute higher-derivative terms in
the effective action. We thus conclude that the 2-derivative
2D effective action (18) is only slightly modified by a
chiral Fermi kinetic term (plus a superpartner of the WZ
term [36-40,49-51]).

Naturally, the 2D limit is expected to be the N = (0, 1)
WZW,, and precisely such an interval reduction was also
considered in [49]. The ’t Hooft anomaly for the boundary
G x G global symmetry is

hY hY
P= (k—7>TrF§— <k+7)TrF§, (21)

where the k contribution is from the inflow and the % is
from the boundary anomalies of fermions. Here F, and F,
are the curvatures associated to global symmetries on the
left and right boundaries. The % contribution to the
anomaly is clearly matched by the 2D Majorana-Weyl
fermions in the (0,1) G-valued scalar multiplets. The &
contribution is matched by the 2D WZ term. Such anomaly
matching agrees with the A" = (0, 1) WZW, proposal. As
was noted in [49], regardless of the sign of the anomalies,
the affine current algebras one finds in the IR must have
positive levels. This is because the model is compact (as G
is compact), so the standard unitarity constraints apply. In
particular, for k> % one finds the affine symmetry
8k—nv/2 @ 8iypvjr in the left-moving and right-moving
v

sectors at the CFT point, respectively. For k < —%-, one

finds §_j_v/2 @ §_jynv/2 in the left and right sectors,
respectively. Note that k£ & % are assumed to be integers, by
the usual parity anomaly considerations in 3D. When
|k| < %, the dynamical SUSY breaking is expected in
two dimensions [49].

Notice that here, the fate of SUSY in the 2D model
mimics what happens in the parent 3D A/ = 1 theory, which
also breaks it for |k| < - [52]. For |k| > -, the 3D theory
flows to the level-(k — % sgn(k)) CS (and is trivially gapped
for k| = %) [52,53]. At each end of the interval, one then
naturally finds bosonic level-|k — £-sgn(k)| WZW currents.
Additionally, one (and only one) of the two boundaries
contains a set of chiral adj(G)-valued fermionic edge
modes, as determined by (20). They supersymmetrize the
WZW currents on that boundary. This clearly matches the
IR physics of the N' = (0, 1) NLSM into G with the level-k
WZ term (the i /2 shift comes from the fermions). The 3D

IR physics for |k| < % is also known to be described by a

certain TQFT plus a decoupled subsector of Goldstino
modes [53,54]. The 2D limit in this case is some CFT (as
evidenced by the anomaly (21) for continuous symmetries),
which is non-SUSY and is not studied here.

IV. N =2 CASE

Our main subject is the N' = 2 YM-CS with gauge group
G atlevel k, with N = (0, 2) Dirichlet boundary conditions
imposed on the vector multiplet at both ends of the interval
(See [55] for brane realizations of such setups). Thinking of
the 3D vector as (V, S), where V is a 2D (0,2) vector and S
is a 2D (0,2) chiral [10], both valued in the gauge group
Hom(R, G), the boundary conditions eliminate V along the
boundary. The lowest component of § is

A, = A, + io, (22)

where ¢ is the real scalar in the 3D A/ = 2 vector multiplet.
Fields that remain dynamical in the IR limit are the interval
zero modes of S. In particular, the natural gauge-invariant
bosonic variable is the complexified open Wilson line:

0
g(x) =Pexp i/ A,dy. (23)
L

The 2D N = (0,2) SUSY completes this into the chiral
multiplet (roughly given by P exp [} Sdy). Thus in the IR,
we expect to find the 2D (0,2) NLSM into Gg—the
complexification of G whose Lie algebra is g = g @ C.
Furthermore, the 2D action must include a B-field given by
the WZ term at level k (plus superpartners), similar to the
bosonic case (18).

This proposal passes simple checks via anomalies. The
anomaly of global G x G symmetry can be computed from
the UV gauge theory description as:

P=—(k+h")TrF2+ (k—h")Tr F?, (24)

where F, and F, are the curvatures associated to global
symmetries of the left and right boundaries. In the NLSM
description, (g,, g,) € G x G acts according to:

(9¢:9,):9(x) = gr9(x)gr ", (25)

and to compute its perturbative anomaly, it is enough to
work locally on the target G, where the g @ g symmetry is
represented by the Killing vector fields. The contribution
—hY(Tr F2 + Tr F2) comes from the right-moving fer-
mions, and k(Tr F2 — Tr F2) is saturated by the WZ term,
confirming that the anomalies match.

The theory on R>*! is fully gapped: All particles,
including the photon, have masses proportional to the CS
level. On the interval, the gap closes, as evidenced by the
boundary ’t Hooft anomalies P computed above. The
interval zero modes in S can be identified with the edge
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modes living on one of the two boundaries of the interval
(depending on the sign of k). Let us show how the zero
mode of o comes about. In the presence of CS level, the
boundary condition on ¢ is of Robin type [10,56]:

ke?
Dy0| :EG‘ (26)
Ignoring fermions, its equation of motion (EOM) is
D*D,6 + m*c =0, (27)

where m = "2—"; If £k < 0, we find an edge mode supported
aty =0:

0 = Oegge(X) ™. (28)
and if k£ > 0, it is supported at y = L:
0 = Ouggelx)e ). (29)
In either case, the EOM reduces to
D'D;6egee(x) =0, (30)

showing that 6.4, is indeed the massless edge mode of o.
Together with the zero mode of A, and fermions, they
describe the N = (0, 2) chiral edge modes (or interval zero
modes) in S, valued in the complexified gauge group G,
making the IR NLSM noncompact.

Note that this clarifies the somewhat subtle (0,2) Dirichlet
boundary with the “wrong” sign of the CS level, previously
encountered in [57]. Such a boundary simply supports a
noncompact Ge-valued chiral edge mode S. Furthermore,
there is an obvious dual description of such boundary
conditions: We could consider A = (0, 2) Neumann boun-
dary conditions instead, coupled to the G¢-valued chiral
multiplet along the boundary. The bulk gauge field gauges,
say, the right G-action on G¢, while the left G-action
matches the boundary G symmetry of the Dirichlet boun-
dary conditions.

For completeness, we also describe chiral zero modes
responsible for the boundary anomalies of the bosonic
Maxwell 4 CS theory. Consider the EOM for the YM-CS:

d*F = <];—62>F (31)

T

Using the A;| = 0 boundary conditions and setting A; to
zero everywhere, we get the following equations:

OF;y = d0,A, =0,
o,F

YT YXxo

a_VFyxl

=mFyy,

=mF

Xoy»

(32)

2 .
where m = kziﬂ is a mass of the gauge boson. One can

rewrite them using light-cone coordinates x* = x| + x;:

9,0_A, =0,
0,0, A, = =m0, A,,
0,0_A, = ma_A,. (33)

Thus, we can see from the first equation that A, =
f(xy,y) +9(x_,y). So, the connection zero mode splits
into chiral and antichiral parts. Let us solve the equation for
the chiral part:

0,0_g = mo_g. (34)

This has the decaying solution that is written either as
g=e"gy(x_) for m<0, or g=e"EVg(x_) for
m > 0. We thus learn that go(x_) is a boundary chiral
mode. The 't Hooft anomaly for the boundary symmetry is
extracted from the OPE of the current J = d_g, with itself:

(35)

That gives rise to the usual CS anomaly k discussed earlier
in this section. By the similar argument, the antichiral mode
fo(xy) lives on the opposite boundary and gives the
opposite —k contribution to the anomaly.

A. Effective 2D action

We can repeat our exercise and derive the effective
N = (0,2) NLSM into G¢ by integrating out the gauge
multiplet on the interval. This problem becomes signifi-
cantly more cumbersome in the A = 2 case, but luckily, it
is still solvable. Another good news is that the Casimir
energy term O(L7?) is absent due to SUSY [31]. We
consider the N’ =2 YM-CS action and integrate out the
auxiliary field D, which generates the mass term for o, so
the total action is

1 1
Sym = FTr/d3x [E Fa,+ (D,0)* - 227 o

~ ke*
iy Dy =Sk + iyt o]

k 2
+ —Tr/ AdA +Z A%, (36)
4 3

where the gaugini y are Dirac spinors now. Let us perform
our favorite trick of passing to the gauge A, = 0. Before
doing so, we ought to define the complexified and real
Wilson lines, respectively:
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0 0
o(x) = Pexpi / Ady,  h(x)=Pexpi / Ady. (37)
L L

After the gauge transformation, A, vanishes and the real
(i.e., compact-valued) Wilson line becomes trivial:

h(x) = h(x)"'h(x)e = e, (38)
where e € G is the identity element. The way Wilson line
transforms reflects the fact that the gauge transformation is
trivial at y = 0 and nontrivial (and equal to h(x)~!) at

y = L. The complexified Wilson line transforms in the
same way:

L
g+ h~'ge =P exp i/ (Al +ic")dy
0
L
=P exp / (=6")dy, (39)
0

where ¢ = h~'oh, and A} =0 by definition of h. If
we define

go =P Jo ¥, (40)
then the above equations imply:
g = hg,. (41)
In this way, we arrive at the well-known polar, or Cartan,
decomposition corresponding to writing the complexified
group as
Ge =G -exp ig. (42)
It is convenient to rescale the fields according to
¢ = Lo,

w=Ly" —w=Ly" (43

where the superscript / denotes conjugation by 4. We define
y = L& as before, so that

1
s = Pe_fo Pde (44)

The global symmetries associated to the two boundaries act
on g according to:

GxG>(9r.9,):9 9r99; " (45)
This can be written in terms of & and ¢ as follows:
hi gehgr',  d > g9,.¢97" (46)

Note that ¢ only transforms under the g,.

It is again convenient to define the 2d coupling:
2 =e%L. (47)

The action now takes the following form:

| k22
S = ﬁTr/de d¢ [(aéAi)z tos (A10:A9 — AgdzA 1)

k 2\ 2
+ L*(DoA; — 01Ap)* — % <(a§¢)2 + <%> ¢2>

L oo+ il d 7
7\ W70 + il ) = =iy
+<Lz¢v-+iwyunw}—+kswzwy (48)

The strategy is as before: Perform the saddle point
analysis in the L — 0 limit and focus on the leading
contribution, as the O(L) corrections only produce
higher-derivative terms in the effective action. The terms
multiplied by the inverse powers of L must vanish in the
leading order, determining the interval zero modes for ¢
and y, . For simplicity, let us focus on the bosonic part of
the action, as the fermionic completion follows by SUSY.
Then, in the leading order, we have the path integral with

1
S = 2,12Tr/d2x df[(aéAi)z + (Dip)?

kA2

+ o (A;0:A) — AoagAl)} + kSwz[g].  (49)

subject to the zero mode condition:
k /12 2
#o=(5) (50)
2z

and the boundary conditions:

kA?
a§¢|§:o,1 = Efﬂgzo,l’ Ai‘a::O =0

Ajlemy = g7 '0;9. (51)
The equation on ¢ zero mode is solved by:

K2

¢ = p(x)ex, (52)

where ¢(x) is a real scalar in the 2d effective action. We do
not integrate over ¢(x) and simply hold it as a degree of
freedom in the effective 2d theory. On the contrary, we
integrate over the gauge field with the quadratic action:
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So = z%m / Pxde](0:4,)2 + 2i0[A;. 6
kA2
— (A B + 5 (A10eAs —A00:4) . (53)

By varying A; in this action, we obtain the saddle point
equations:

k/12 22
— 5, %At ol

kA?
62A0_——6§A1+e [

112
RA| = . [p.A]] + i <[p.0,0),

. Aoll + i€ (g 0] (54)
Let us introduce a notation
¢ = Ad,. (55)

In other words, ¢ is a (dimG) x (dimG) matrix in the
adjoint representation of g, while ¢ and A; are (dim G)-
component vectors representing elements of g. For a
moment, let us assume that ¢ is invertible—this will allow
us to solve (54) explicitly, and the answer will admit an
obvious extension to the degenerate ¢. First we perform a
simple shift:

Ay =a; — 970, (56)

Ay = ag— i~ oy, (57)

which removes the inhomogeneity:

kA?
02 Fa +2—a§ao—e‘n€¢ a; =0,

kA% 2,
52“0 + Ea:al - 6%‘:@2&0 =0.

Defining a, = a; £ a,, we obtain equations:

2
0§a+ = 0§a+—en§cpa+—0
kA2
6a —2—6§a —ené(pa =0, (58)

which are easy to solve. Subject to our boundary conditions,
we find the solutions for A, = A| £+ Ay:

A= g'o_g- - io_g | + ~ io_p, (59)
sinh [% (e% - 1)60} » ¢
sinh |22 (%5~ 1) cosh &1 e—% -1
7 | i g i
AT CICE R 7 s
sinh |25 (e — 1)
[
21 (e AP
cosh [ﬁ (eZn - 1)(p}e e —1
i, . (60)

This solution has a manifestly well-defined @ — 0O limit.

The action evaluates to 3 [ d®x L + kSwz[g], where

1 A
L==Tr(A 0A_ +A A1+ 5 T (€% —1)Tr(9,p)

kA?

1 1 2
- éTr A d¢{A [p,0_p] +A_[p,0.0)}e==,  (61)

which after tedious calculations can be put into the
following form:

Tr(97'9,9Gog™' 9,9 + 0,0G19,0
+97'9,9G10,0)1" + Tr(g7'0,9B,0,¢)e".  (62)

where 7% = 'l =1
0l —

is the 2D Minkowski metric,
-9 =1, and G,,G,,G,, B, are the (dim G) x
(dim G) matrices written in terms of @ as follows:
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+ 2 b
sinh [ 2 (e - 1) 5]
A z (5 -1)0
B =" - . (63)

For example, the first term, with (g7'dg)* = 6* being the
left-invariant one-forms, can be written as 62(Gy) 051",
where a,b = 1...dim G. Also note that the matrix ele-
ments of ¢ are ¢,” = > 4mG ¢ if. >, thatis @ is a purely
imaginary antisymmetric matrix.

To summarize, the effective action we have found
describes the N' = (0,2) WZW model into G, with the
particular choice of bi-invariant metric and the B-field
given above. The curvature of the B-field is cohomologous
to the usual three-form kf ,,.0° A 8 A 6°, which is pulled
back from the compact subgroup G C G¢. Note that this
WZW model is different from the N = (0,2) WZW
models known in the literature [36—40] (see also [58]),
which are sigma models into the compact groups admitting
complex structure.

B. Noncompactness

The main distinction, both from the known A/ = (0, 2)
and the N'=0 and N = (0,1) WZW models mentioned
earlier, is that the target G¢, which is topologically 7*G or
simply G x g, is noncompact. The NLSM into G most
certainly lacks a normalizable vacuum, which complicates
the analysis and invalidates the usual unitarity bounds
(such as positivity of the level). In noncompact bosonic
models, the normalizable ground state often exists simply
because the quantum corrections (such as zero point
fluctuations of the modes normal to the classical moduli
space) lift the flat directions. This usually does not happen
in SUSY models, and the question of existence of the
normalizable vacuum may be quite hard (see, e.g., an old
unsolved problem discussed in [59,60]). In 2D models
with (0,2) SUSY, this question is closely related to global
symmetries and their anomalies, as we will see now.

Recall that a conserved flavor symmetry current (j,, j)
must be incorporated into some sort of current multiplet. It
is fairly clear that j, must be the bottom component of a

(0,2) supertield /C,, while for j. there can be more than one
possibility. Bertolini, Melnikov, and Plesser found a useful
formulation of the flavor current multiplet (we call it the
BMP multiplet) in [61] that consists of two superfields
(K,,T). The bottom component of /C, is indeed j,, while j-
appears as the top component of Z. The superfields obey
two relations:

oK, +9dD,.,D.]T =0, D (K.,+20Z)=0, (64)
where D, and D, are the standard SUSY-covariant
derivatives. The first relation here is just the conservation
law, and the second one identifies the holomorphic current
in the Q. -cohomology.

Proposition: If the spectrum of local operators includes a
BMP current multiplet (K, Z) for a flavor symmetry with
negative anomaly coefficient, then there is no normalizable
vacuum.

Proof: By contradiction, assume that the IR CFT is
compact (i.e., has the normalizable vacuum). The flavor
symmetry enhances to the affine Kac-Moody (AKM) in the
IR, splitting into the separately conserved left and right-
moving affine currents of levels (k; , kg ). Compactness and
unitarity imply k; > 0 and kg > 0. The anomaly, which
also coincides with the level of the chiral algebra in the O, -
cohomology, can be identified with k; — kp [62]. Since it is
negative by assumption, we necessarily have kz > 0, thus
the right-moving AKM current j- is nontrivial, and so is the
IR limit of the superfield Z where it resides. The bottom
component of Z is then a nontrivial dimension-zero
operator. The latter is impossible in a compact CFT, leading
to a contradiction.

That the flavor symmetry is described by the BMP
multiplet is related to the absence of SUSY enhancement.
Any current (j, j:) can be extended to the pair of (0,2)
superfields (/C,, K:) whose bottom components are j, and
J= (such a formulation was used in [63]). In the theory with
N = (0,2) supersymmetry, one expects the higher com-
ponents of K, to vanish at the CFT point, leaving only the
left-moving current j, nontrivial. One cannot say the same
about the right-moving multiplet I_CZ, which necessarily
contains the nonzero superpartners of j:. In particular, its
dimension-% component could be a new conserved super-
current. The fact that in the BMP multiplet K. =

3

[D,.D.]T shows that the dimension-3 component is

merely a derivative of some dimension—% operator, not a
new supercurrent. The multiplet 7 is also known to
describe the N =2 AKM algebras [64,65], which can
only exist in a noncompact CFT, as we see now.

If a compact model has a symmetry described by the
BMP current multiplet, then the superfield Z, having
dimension zero, must vanish in the IR, and the symmetry
current becomes purely left-moving. In fact, it seems likely
that in models without SUSY enhancement (both compact

045016-9



MYKOLA DEDUSHENKO and MIKHAIL LITVINOV

PHYS. REV. D 108, 045016 (2023)

and noncompact), all flavor symmetries fit into the
BMP current multiplets. We do not know how to prove
this statement, so instead we formulate the following
Conjecture: Every flavor current in an N = (0, 2) theory
without SUSY enhancement fits into the BMP current
multiplet (1C.,Z). If we further find a symmetry with
negative anomaly coefficient, the proposition proved ear-
lier implies that the model is noncompact. Our G¢ sigma
model always has a symmetry with negative anomaly (24),
so according to this rule, it has no normalizable vacuum.

C. (Dual?) Landau-Ginzburg description

It turns out that the G sigma-models, at least for
classical groups, admit the Landau-Ginzburg (LG) formu-
lations. It is the simplest for G = SU(N), Gc = SL(N, C).
Let M/ be a (0,2) chiral multiplet valued in complex N x N
matrices Mat(N, C), and I" be one Fermi multiplet. An LG
model with such fields and the (0,2) superpotential

W = ul'(det M — 1), (65)

where p is a mass parameter, clearly flows to the NLSM
with the target determined by detM = 1, i.e., SL(N,C).
Such an LG model manifestly has SU(N) x SU(N) sym-
metry, under which M is the bi-fundamental and I' is
neutral. This model has k = 0, i.e., no B-field (WZ term) in
the action. An easy way to generate the B-field can be
found from the anomaly matching. Indeed, the WZ term
contributes (k, —k) to the SU(N) x SU(N) anomaly in the
IR, which can be matched in the UV by adding Fermi
multiplets A/, a=1,....k, i = 1,..., N [a bifundamental
under U(k) x SU(N)], and chiral multiplets ®;* [a bifun-
damental under SU(N) x U(k)]. Here U(k) is an auxiliary
symmetry that should be fully nonanomalous to disappear
without a trace in the IR. We modify the (0,2) super-
potential as follows:

W =ul'(det M — 1) + uTr AM®. (66)

The first term ensures that we still flow to the moduli space
det M =1, i.e., the group SL(N, C) emerges as the target.
In particular, M is a nondegenerate matrix there. The
second term tells us that the multiplets A and ® become
massive on the moduli space, with uM playing the role of
mass matrix. At low energies (or for large enough y) we can
integrate (A, ®) out. Their contribution to the anomaly is
precisely & for the left SU(N) global symmetry and —k for
the right [and no mixed or pure anomalies for U(k)]. Since
the anomaly must be saturated by something, integrating
out A and ® must indeed generate the WZ, term (plus some
effective metric and the irrelevant higher-derivative terms).
This is known to be true, and an explicit computation, at
least for G = SU(2), can be found in the literature [66]. We
thus conclude that (66) is the simplest modification of the

LG model that accounts for the WZ term. We may call it the
LG-WZW model.

Such a model clarifies some aspects of the theory
and muddies the others, as we will see in a companion
paper [22]. For example, we study the perturbative chiral
algebra, which has the structure of the affine current
algebras §;_,v @D §_;_;,v extended by the bi-modules.
Such an answer emerges perturbatively both in the
NLSM and the LG descriptions, and is also well motivated
from the 3D viewpoint.

At the nonperturbative level, however, the three per-
spectives do not obviously align. In the N' = (0,2) NLSM
description, the known nonperturbative effects come from
compact holomorphic curves [29,30,43], which are absent
in G¢. Nonetheless, the vortices (1) might generate new
nonperturbative corrections, leaving the question of non-
perturbative physics of the noncompact NLSM open-
ended. The LG model and the 3D gauge theory on the
interval provide two alternative UV completions of the G¢
NLSM. On the one hand, in the LG description, the
common belief is that the perturbative chiral algebra does
not receive any nonperturbative corrections [61,63,67-69].
On the other, the gauge theory is known to possess
boundary monopoles that nontrivially correct the boundary
VOA [57], and thus the interval VOA as well [22] (such
monopoles becomes vortices (1) in the 2D limit). It seems
that the LG model and the 3D gauge theory on the interval
provide UV definitions of the G NLSM with different
spectra of defects, and hence different nonperturbative
physics. The latter is a conjecture that will hopefully be
addressed elsewhere.

It is straightforward to write the BMP current multiplets
for the G x G global symmetry of the LG description [61].
For the left SU(N) symmetry:

. o 1 _ _
K/ = g AN k) g (MikaM/k —M/kank),
a k
. 1 _
)= _75 MM, 67
i 4 - i k ( )

and for the right SU(N):

L. 1 _ . - .
K = —E;@i 0d/, — &/, 00,)

1 o .

=3 2 (MOM = M 0M ),
.1 | _
— __ L .a

7= 4Zk:MkJM, 42}1), o, (68)

The bottom components of Z and 7 are clearly nonzero in
the IR (we do not even need the fact that the anomaly (24)
has negative coefficients). Thus such dimension-zero oper-
ators live in the noncompact sector of the model.
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For completeness, we describe LG models for other
classical groups. When G = SO(N), G¢c = SO(N, C), the
multiplets are: (1) chiral N x N matrix M;/; (2) Fermi
symmetric matrix Y;;; (3) neutral Fermi I'; (4) k funda-
mental chirals ®,;%, i = 1..N, a = 1..k; and (5) k antifun-
damental Fermi’s A,’. The superpotential is

W=pu[Tr Y(MM" —1)+T(det M — 1) + TTAM®]. (69)

Note that the role of I" here is very minor: to select
SO(N,C) as opposed to O(N,C). If we wish to work
with the O group, the Fermi multiplet I" and the corre-
sponding term in )V should be dropped.

For G = Sp(N), Gc = Sp(N, C), one fixes the sym-
plectic matrix w, such that M € G¢ obeys M wM = w.
The multiplets are (1) 2N x 2N matrix M of chirals;
(2) antisymmetric 2N x 2N Fermi matrix Q; (3) k funda-
mental chirals ®;%, i = 1...2N, a = 1...k; and (4) k anti-
fundamental Fermi’s A/, i=1.2N, a=1...k. The
superpotential is

W = u[TrQMTwM — @) + Tr AM®). (70)

In all these models, one can similarly write the BMP
multiplets for the G x G symmetry and identify the
dimension-zero operators in the noncompact sector.

V. CONCLUSIONS

In this work, using a novel computational trick, we
found explicitly the two-derivative effective action for the

3d N =2 pure YMCS theory dimensionally reduced on
an interval. This yields a noncompact 2D N = (0,2)
NLSM into the complefixied gauge group Gg, which
flows to a noncompact SCFT. We also discussed the
relation between noncompactness and the flavor current
multiplet in the theory. An alternative UV completion for
the Gc NLSM by the LG model was constructed for
classical groups G = SU(N),SO(N) and Sp(N). We
stress that in this paper we work strictly in the semi-
classical regime.

Along the way we point out and speculate on many
physical aspects of this model. Being a noncompact sigma
model in two dimensions, it is in general subtle and lacks
various nice properties that come with the normalizable
vacuum, but it is still a consistent QFT. It would be
interesting to understand the nonperturbative physics of
this model, as there are hints from 3D that it is nontrivial.
This would, in particular, address the case of small WZ
level |k| < hY that is likely to break SUSY.

In the companion paper [22], we are studying the chiral
algebra of this model, and give a more expanded motivation
connecting the problem to VOA [M,].
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