Eur. Phys. J. C (2023) 83:830
https://doi.org/10.1140/epjc/s10052-023-12002-y

THE EUROPEAN ()]
PHYSICAL JOURNAL C e

updates

Regular Article - Theoretical Physics

Lorentzian wormbhole in the framework of loop quantum

cosmology

Rikpratik Sengupta'*?, Shounak Ghosh??, Mehedi Kalam'<

1 Department of Physics, Aliah University, Kolkata, West Bengal 700160, India
2 Directorate of Legal Metrology, Department of Consumer Affairs, Government of West Bengal, Malbazar, Jalpaiguri, West Bengal 735221, India

Received: 4 June 2023 / Accepted: 5 September 2023 / Published online: 21 September 2023

© The Author(s) 2023

Abstract In this paper, we construct a traversable static
Lorentzian wormhole in the effective scenario of Loop Quan-
tum Cosmology (LQC), where the field equations are mod-
ified due to the ultraviolet (UV) corrections introduced at
large space-time curvatures. A stable wormhole can be con-
structed in the effective scenario without the violation of Null
energy condition (NEC) by physical matter at the throat. The
NEC is effectively violated due to the corrections in the field
equations from LQC, resolving the Weyl curvature singu-
larity at the throat. However, the physical matter does vio-
late the Strong energy condition (SEC), suggesting the inter-
esting possibility that dark energy can be harnessed into a
wormhole. A possible explanation for this is the presence of
inherent pressure isotropy in the UV-corrected field equations
(discussed and compared to braneworld wormholes in the
discussion). No additional exotic ingredient (violating NEC)
is required, avoiding quantum instabilities. The tidal forces
at the throat do not diverge and also the throat is found to be
stable. The wormhole features an attractive geometry. LQC
can resolve both types of curvature singularities appearing
at the black hole centre and wormhole throat, without exotic
matter.

1 Introduction

Wormholes are geometrical structures which appear as a
solution to the field equations of Einstein’s General Relativ-
ity (GR). Although one of the most attractive predictions of
GR, they have not yet been detected directly by observations.
Einstein himself along with Rosen [1] visualized wormholes
as space-time bridges connecting two different space-time
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points across the universe, acting as shortcut paths of space-
time travel between them. The first rigorous mathematical
study of wormholes was performed by Fuller and Wheeler in
the early 1960s [2], a decade marking lot of the formal devel-
opments of modern GR that changed the outlook towards the
subject. However, the result obtained by them left worm-
holes to be a subject of academic interest only. In fact, the
path breaking paper of Morris and Thorne [3] in 1988 that
caused a revolution in wormhole physics was originally con-
sidered as an academic tool for better understanding of GR,
but the profound implications of the results obtained made
them write a second follow up paper on the subject in the
same year [4].

Fuller and Wheeler had found that although wormhole
geometry described by tubular shaped objects with two
openings (mouths) spreading out to be asymptotically flat
at infinitely large radial distances from the throat (narrow
region connecting the two mouths) did exist as static, spher-
ically symmetric solutions to the Einstein field equations
(EFE), realistic Schwarzschild wormholes were unstable at
the throat due to development of infinitely large gravitational
tidal forces resulting in a Weyl curvature singularity at the
throat (diverging Weyl tensor). The generation of the large
tidal forces can be understood physically from the fact that
the matter at the throat be attracted gravitationally by the two
mouths in opposite directions. The idea of Morris—Thorne
(MT) to avert this Weyl singularity was simple and elegant.
If the matter at the throat be replaced by a form of exotic grav-
itationally repulsive matter, then the tidal forces developing
at the throat can be prevented from diverging. However, one
has to pay the price that considering the energy density of
such matter always remains positive, the Null Energy Con-
dition (NEC) p 4+ p > 0 has to be violated by the matter at
the throat. Although, a violation of the Strong energy condi-
tion (SEC) p 4+ 3p > 0is an essential condition to obtain an
accelerating universe in a cosmological context and has been
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realized in inflationary and dark energy models involving
scalar fields or non-linear equation of states (EoS), violation
of the NEC is an even bigger ask and may lead to quantum
instabilities of the vacuum. This issue shall be taken up in
more details later in this paper.

Another very important factor in wormhole physics is the
radial metric potential of the static, spherically symmetric
metric known as the shape function, as it determines the
shape of the wormhole. As per the MT prescription, in order
to build a traversable wormhole that can possibly allow any
form of human traversability with limited tidal forces pre-
venting the traveller from getting ripped apart at the throat,
the shape function b(r) must satisfy a number of criteria,
given as follows: (i) the shape function at the throat radius
ro must be equal to the throat radius itself (b(rg) = ro). (ii)
For radial distances r > ro, the ratio of the shape function
at any given radial distance r to that radial distance must be
less than unity (22 < 1). (iii) The first derivative of the
shape function with respect to the radial distance r at the
throat must be less than unity (‘”;(rr) |(r =r9) < 1). The final
condition implies a minimal throat size, thereby minimizing
the amount of exotic matter required at the throat to violate
the NEC.

In order to violate any of the energy conditions, either
the matter sector or the geometry sector of the EFE has
to be modified via a modification in the matter or gravita-
tional Lagrangian. Such modifications can alter the relativis-
tic behaviour either at the ultraviolet (UV) or infrared (IR)
scales through correction terms in the EFE. The presently
observed acceleration of the universe [5,6] at low energy (IR
scale) requires a violation of at least the SEC (some mod-
els violate the NEC also). This can be sourced by modifi-
cations in the matter sector via — minimally coupled scalar
fields dubbed as the quintessence [7,8] with suitable steep
potentials, by a fluid known as Chaplygin gas [9,10] that is
described by a non-linear EoS and finds its origin in extra
dimensional theories, or a phantom fluid that is described
by a supernegative EoS with an EoS parameter < —1 [11-
13]. Alternatively, late time acceleration can also be achieved
by modifying the geometry sector [14—16]. At the UV scale
it is more useful to modify the geometry sector due to the
high energy density and large space-time curvature. The two
most acceptable effective modified scenarios in this context
are the Loop Quantum Cosmology (LQC) [17,18] and the
braneworld scenario [19,20].

Traversable wormholes have been constructed in literature
with both the approaches modifying matter [21-32] as well
as geometry [33—-44] sectors. A possibility of existence of
wormholes in certain regions of our galaxy has been explored
recently [45]. Both the UV corrected effective scenarios are
known to resolve the strong Ricci curvature singularity at
the centre of the black hole [46,47]. Also, the initial big
bang singularity is found to be resolved in the LQC sce-
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nario [17,18]. This is a key motivation behind the attempt to
construct traversable wormholes using these UV corrected
frameworks, where the Weyl curvature singularity may be
resolved at the wormhole throat to make them traversable. We
have successfully constructed traversable wormhole in the
Randall-Sundrum II (RSII) braneworld scenario [41]. The
RSII model has an inherent Z, symmetry which is absent in
LQC. It has been shown by Konoplya and Zhidenko [48] that
a fully consistent traversable wormhole can be constructed
from normal matter with coupled Maxwell and Dirac fields
in the absence of Z, symmetry at the throat in a relativis-
tic context. The LQC scenario can be realized in (3 + 1)-
dimensions and one need not be sceptical about the existence
of extra dimensions. In this paper, we attempt to construct a
traversable wormhole in the framework of LQC which is an
effective scenario that avoids the conceptual problems arising
from the quantum mechanical interpretations of the gravita-
tional system and helps to provide a much better understand-
ing of the classical singularity. We solve the modified EFE in
the LQC scenario for a spherically symmetric matter distri-
bution to obtain the wormhole shape function and also check
the validity of the NEC in the effective matter description.
The unknown model parameters are estimated by applying
the junction conditions at the wormhole surface. The com-
ponents of the tidal acceleration at the wormhole throat have
been computed and confining them to physically justifiable
values, an upper limit on the velocity of the traveller travers-
ing the wormhole is obtained. Also, a linearized stability
analysis is performed to ensure stability of the traversable
wormhole and the nature of the wormhole geometry can be
inferred from obtaining the radial acceleration. We conclude
with a discussion on the physical consequences of the results
obtained.

2 Mathematical model of the wormhole

In this section a static, spherically symmetric and traversable
wormhole model is constructed that is stable under the lin-
earized stability analysis. The validity of the NEC is checked
along with the traversability criteria computing the tidal
forces at the throat. The junction conditions have been made
use of to determine the unknown model parameters which
have been used to make the plots. The surface density and
surface pressure have also been computed. The stability anal-
ysis has been performed successfully.

2.1 Solution for the wormhole shape function

A static, spherically symmetric wormhole is described by the
line element

ds®> =" Dar* — —r2(d0? + sin®0d¢?). (1)

1 — b
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Here the radial metric potential b(r) denotes the shape func-
tion as it represents the shape of the wormhole and the tem-
poral metric potential v(r) is the redshift function of the
wormhole, which basically gives a measure of the redshift
due to the loss in energy when a particle escapes the strong
gravitational field of the wormhole due to emission from it.

The modified field equations in LQC scenario for the
wormhole metric (1) turn out to have the form

b—;:Sn,o(l—ﬁ), )
;

Pe

(1-2) (£ 1) - o mm (- 22222
r ror r Pe
3

b ! b —b 1
r r 2r r
2
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Here, the matter source is a perfect fluid having stress—
energy tensor of the form T = diag(p, —p, —p, —p).
The fluid obeys a linear EoS p(r) = wup(r). The parame-
ter p. is extremely important in LQC as it denotes the max-
imum or critical density, beyond which the energy density
cannot rise further, thus preventing the formation of a curva-
ture singularity due to diverging energy densities. However,
the curvature singularity at the throat of the wormhole is not
due to diverging energy densities but due to diverging tidal
forces in the radial and tangential directions and hence it
remains to be seen whether such a curvature singularity can
be resolved in the framework of LQC, giving rise to a stable
traversable wormhole. As we seen in the RHS of Egs. (2)-
(4), the additional terms quadratic in stress energy arise due
to the effective UV corrections to the space-time geometry
in the classical picture. The are accounted for in the matter
sector to provide an effective matter description. It is worth
noting that the effective pressures in the radial and tangen-
tial directions are identical, resulting in an inherent pressure
isotropy as contrasted to models of braneworld gravity where
the anisotropy is generated from the extra dimensional con-
tribution [41].

We have applied the equations for homogenous LQC to
the spherically symmetric spacetime. There is an issue with
the covariance in this class of models with consideration of
local physical degrees of freedom and it was first shown
by Bojowald and Brahma [49] that the covariance breaks
on extending such models beyond a background treatment.
The possible reason behind this lies in the non-Riemannian
nature of the spacetime structures involved in such a treat-
ment. On considering possible generalizations of the space-
time structures, covariance may be considered in the sense of
realizing an identical count of gauge transformations com-
pared to the classical theory with the exception of slicing

independence prevalent in Riemannian geometry [50,51].
The spacetime structure of quantum corrected black hole
geometries were studied [52] but due to certain misinter-
pretations of the quantum corrected phase space [53,54] and
asymptotic [55] behaviour, some inconsistencies were found
with the treatment [56]. A possible solution to this may
involve field redefined metric components arising from cer-
tain generators of modified hypersurface deformations lead-
ing to the applicability of line elements in specific spacetime
regions [57,58]. The most general covariant theory consid-
ering spherical symmetry have been derived at a canonical
level [59]. The modified gravitational behaviour of symmetry
reduced LQC models lack a covariant modified spherically
symmetric solution [60]. A generalized form of covariance
described by non-Riemannian geometry could be helpful.
Our wormhole model constructed in the LQC setup is an ele-
mentary one and this is one of the main limitations that we
hope to address in recent future.

The temporal metric potential is assumed to be given by
the Kuchowicz function [61]

2
el)(}’) — eBr +21nC’ (5)

where the constant parameter B has dimension of inverse
length squared while the parameter C is a dimensionless
constant. The reason behind the choice of the Kuchowicz
potential as the redshift function has been stated in the dis-
cussion section.

The energy density of the matter inside the wormhole can
be found making use of the redshift function and the consid-
ered linear EoS of the constituent matter

_ (/1,+1)Br2

p(r)=Cre 2, (6)

where C| denotes a constant of integration.

Making use of the expressions for the quantities avail-
able at hand in the modified EFE, the shape function can be
obtained and is found to be given by
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C, is another integration constant that may be determined
from the junction conditions.

The shape function is plotted along the radial distance in
Fig. 1 and it turns out to represent the shape of the wormhole
quite well. The desired properties of the shape function to
successfully describe a wormhole are also satisfied. At the
throat radius ry = 0.5 km, the shape function has an identical

value and the ratio @ is well maintained to be less than unity
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Fig. 1 Variation of the shape function with respect to r

for all radial distances within the wormhole surface greater
than the throat radius.

2.2 Validity of NEC

The geometrical modifications arising due to LQC can be
effectively expressed as modifications in the matter sector,
replacing the energy—momentum tensor of the perfect fluid
matter source by an effective energy—momentum tensor of
the form T‘ft(eff) =diag(pT, —plT —peff —peffy the
time component of which is the effective energy density
expressed as

poff — 81 <p (1 - ﬁ)) , ®)
pe

and the isotropic spatial components turn out to have the form

_ L
p!f =8x (p + %) . 9)

2

Summing up the effective energy density and effective
pressure

Peff + Deff = —

21 -
Pc

2
(u+1)Br?
e

16C1(u+1)n( _ (w+DBr? ,oc)
—— [ Cie

xe (10)

We represent a plot of the variation of the summed up
effective energy density and effective pressure along the
radial expanse of the wormhole. As we see from Fig. 2,
the sum is always a negative quantity within the wormhole
and hence the NEC is effectively violated, although we find
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Fig. 2 Variation of the NEC with respect to r

@ > —1 from the junction conditions as we shall see in the
following subsection. So, we can say that it is the effective
EoS parameter p.rs arising from UV corrections that vio-
lates NEC as perp < —1.

2.3 The junction conditions

The spacetime exterior to the wormhole surface is a vac-
uum and can be described by the Schwarzschild line element
which has the well known form

oM oM\ !
ds* = (1 - —) dr®> — <1 - —> dr?
r r

—r%(d6? + sin? 0d¢?), (11)

where M is the total mass of the wormhole.

The presence of matter at the wormhole surface leads to an
extrinsic discontinuity resulting in a non-zero surface energy
density and surface pressure. The wormhole surface behaves
like a junction between the interior of the wormhole and
the exterior Schwarzschild space-time in order to make the
wormhole space-time geodesically complete. Thus, the junc-
tion conditions due to Israel and Darmois [62,63] are appli-
cable at the wormhole surface resulting in continuity of the
metric potential across it. Though, it does not always guar-
antee a continuity of the derivative of the metric potential
across the surface. We compute the surface density and sur-
face pressure using the junction conditions.

The intrinsic surface stress energy tensor is found to have
the form S;; = diag(¥, —P, — P, — P) that can be derived
from the Lanczos equation [64-67].
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In the most general form, S;; is defined using the Lanczos
equation
) 1 . )
Sj =52 — 8hic), (12)

where discontinuity in the extrinsic curvature across the sur-
face is given by

Kij =K — K (13)

ij ij’
such that 4+ and — implies the space-times interior and exte-

rior to the wormhole surface. The second fundamental form
can be obtained from the relation

GED'S IX* ax”#

k=t | 22y 2800 (14)
/ 9&' 98/ a&' 08/
where n denotes the normal vectors of unit magnitude
defined as
1

af of |2 af
+ _ af
T T8 gxa9xB| axv (15

We consider n¥n,, = 1, while the intrinsic coordinate at the
surface of the wormhole is represented by £’ and satisfies the
parametric equation f (x“(éi)) =0.

The surface energy density can be computed to have the
form

The wormhole space-time being static, the surface density
and pressure shall vanish at the surface [31,41], the vanishing
surface density giving the boundary condition

b(r)|,—r = 2M. (18)

The matching conditions to obtain the other unknown
model parameters also appear from the junction conditions,
where gi¢lint = grtlexr and %82|;,, = 81|, . at the surface
of the wormhole r = R. So, we have three conditions in all.

We choose physically relevant values of the model param-
eters B = 0.006 km~2, p. = 0.41 m* and M = 2.496 M,
and making use of the boundary and matching conditions
we obtain the unknown model parameters as © = —0.9,
C1 = 0.4756683923 and C, = 0.150492837. These value
have been used to construct all the plots in this paper. As we
obtain u© > —1, the SEC is violated by physical matter but
not the NEC. The NEC is however violated by the effective
matter as the quadratic corrections make perr + perr < 0,

implying plerr < —1.
2.4 Tidal acceleration
The tidal acceleration experienced by the traveller at the

throat of the wormhole must have both its radial and
tangential components restricted to a reasonable value, which

1 + 1 2M
Y=—_|Ver| =— | /1-"
2nR[ ¢ }_ 2R ( R
6Re—2BR? 8nCiulp-He BgiF BR2H G G F
— 1= - - 4uCi’rQu + e # —)e2BR 4 BH)=||. a6
BoHFG 3 (u 1"7(2p + De +pc<2)e > 3 (16)

The surface pressure turns out to be given by
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where G = 2BR?+1), F = 3u—1), H = (u—1), M’ =
1 — 2M
.

is usually considered to be the acceleration due to gravity
on the earth. This shall ensure that the traveller crosses the
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wormbhole throat safely and also we can obtain an upper limit
on the velocity of the traveller while traversing the throat from
the tangential acceleration.

The tidal acceleration along the radial direction is expressed
by computing the | R,+r+| component of the Riemann tensor,
which for the wormhole metric turns out to have the form

Rl = (1 b v”+v’2 br—b
e rJl2 " 4 2rr—b) 2

The condition is satisfied by our wormhole model.

The tidal acceleration along the tangential direction is
found by computing two of the Riemann tensor components
| Rgro¢| and |Rgre,| and has the form

=< Zearth-

(19)

2 2.2 )’2 2 b
Y | Rooel + ¥y v |R0r9r|=‘ [v (b’—r>+(r—b)\/]

2r2
= 8earth» (20)

where, the y = 1+U2 represents the Lorentz factor, v being
the velocity with which the traveller traverses the wormhole
throat. It seems reasonable to approximate that the velocity
of the traveller at the throat is of the order much less than the
velocity of light v <« | implying a Lorentz factor y = 1.
Making use of the assumed redshift function and the obtained
shape function for the wormhole, the velocity of the traveller

at the throat can be limited as

v < 0.099218371./8earth,

which is a realistic limit that we obtain. The traversability of
the wormhole can thus be ensured.

2D

2.5 Linearized stability analysis

A linearized stability analysis is performed around the throat
to ensure that our wormhole model is stable at the throat
and remains traversable. For doing so, we consider the throat
radius to be a proper time function ro = x (7). This consider-
ation gives the surface density and surface pressure, having
the form

1
Y =——/f(x)+%2 (22)
2mx
and
I flx) o
P = — - 5 23
8 J/f(x) 2 23)
where the function f(x) = 1 — 24 the parameter M repre-

X
senting the wormhole mass.

The equation of motion can be obtained making use of the
energy—momentum conservation as

P24+ Vx) =0, (24)

@ Springer
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where, the effective potential V (x) is constructed from the
surface energy density, having the form

V(x) = f(x) - 2rx T ()1 (25)

A linearization is considered around the static solution
xo which we assume for the equation of motion given by
Eq. (24).

On expanding the constructed potential up to second order
around the assumed solution x( using Taylor series, one can
get

1
V(x) = V(xo) — V'(x0)(x — x0) + EV”(XO)(X — x0)’

+01[(x — x0)°], (26)

where prime implies derivative with respect to X.

For stability at the throat, the constructed effective poten-
tial must have a minimum at the throat which demands
V/(xp) = 0 and V"(Xo) > 0. The parameter § = 32 is
introduced, in terms of which we shall express the condition
for minima of the potential involving its second derivative
as an inequality. The second derivative of the potential with
respect to x can be expressed in terms of the newly introduced

parameter 8 as
V"' (x)=f"(x)=872[(E4+2P)>+ X (Z+P)(1 + 2B).
27
This provides us with the stability condition at the throat
in terms of 8 as
L&) (2 42P? -25(2 +P)

42 (Z 4+ P) 28)

B <
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Radial acceleration — r
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Fig. 4 Plot of radial component of acceleration with respect to

Using the relations for X' and P, Eq. (28) can be written
in the simplified form as

R =23 ffo 1

B < ; .
4 fo(xo fy — 2f0) 2

(29)

For the wormhole we have constructed in the LQC sce-
nario, the parameter f turns out to have the value

1027 — Dhm? + 3(—4m + 3)mr — 2r?
B 877 (—r + 2m)(—r + 3m)

(30)

We have plotted the variation of the parameter B along
xo in Fig. 3. From the stability condition obtained using the
minima of the constructed potential, the stable regions of the
wormhole have been marked as regions 1-4 in the figure.

2.6 Acceleration and nature of the wormhole

It is interesting to compute the radial component of the four-
acceleration for a static observer just outside the wormhole
as if this component is positive, it implies that the worm-
hole features an attractive geometry implying that an outward
directed radial acceleration is required on the static observer
in order to stop being pulled into the wormhole. Likewise,
if the radial component of the four acceleration is a negative
quantity, the wormhole geometry is a repulsive one, imply-
ing the necessity of an inward directed radial acceleration on
the static observer to prevent being pushed away from the
wormhole.

A test particle initially at rest has the geodesic equation in
the radial direction given by

d*r [ dr\? .
arr = hilge) =7 1)

where a” is the radial 4-acceleration.

The four-velocity of a static observer near the wormhole
is

d M v(r
=S = 7,0,0,0), (32)
dt

where T denotes proper time as in the previous subsection.

Alternatively, the four-acceleration a”* can be computed
from the four-velocity as a* = U_%U v, where the radial
component of the 4-acceleration is e;(pressed in terms of the
metric potentials as

ro V(b0
a—2<1 r). (33)

UIL

The radial component of the 4-acceleration for a static
observer for the LQC constructed wormhole is given as

. 26,723)’2 5 B2H
a =Br|l1-— B,OTFG 2uC1"tu + e * pe
C

rz‘
X (GeZB’2 + C2) BHF — 87rC1/L2pL.HeBZMb )) V2.
(34)

The variation of the radial 4-acceleration across the worm-
hole has been plotted in Fig. 4. The radial acceleration turns
to be positive for all values of r implying that the worm-
hole constructed in the LQC scenario features an attractive
geometry, requiring an outward directed radial acceleration
on the static observer to prevent from being pulled into the
wormbhole.

3 Discussions and conclusion

In this paper we have attempted to construct a traversable
wormbhole in the UV corrected framework of LQC. The clas-
sical EFE are modified by effective quadratic corrections in
stress energy in the LQC scenario in an attempt to apply the
central effects of Loop quantum gravity. Even the effective
scenario is more fundamental in understanding the spacetime
geometry and the strong curvature singularities appearing in
GR can be averted without ambiguities arising from quantum
mechanical interpretations. Solving the modified EFE for a
static, spherically symmetric metric describing a wormhole
spacetime, where the redshift function is assumed to be given
by the Kuchowicz metric function which is well behaved
in the vicinity of the wormhole and has been used to con-
struct traversable wormhole on the RSII braneworld [41]. It
is also found to work well in case of regular objects involving

@ Springer
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large space-time curvatures [68,69]. In relativistic wormhole
solutions with modifications to the source sector involving
exotic matter components, it often becomes impossible to
obtain analytical solutions unless a constant redshift function
is assumed [29,31]. This problem does not arise in the UV
corrected scenario, where we consider a radially varying red-
shift function. The matter distribution at the wormhole throat
is assumed to obey a linear EoS given by p = up. From the
modified field equations, the shape function of the wormhole
is obtained. As expected, there is a dependence on the EoS
parameter and the critical density, besides the other model
parameters. On plotting the variation of the shape function
with the radial distance, the plot turns out to represent the
shape of the wormhole quite well, where the values of the
model parameters are used as obtained from the junction
conditions for generating the plot.

A model independent kinematical constraint on black hole
bounce implying shell bounce in an untrapped region (either
inside inner horizon or outside outer horizon) has been devel-
oped [70]. Extensions of the Oppenheimer—Snyder collapse
in the form of black-to-white hole bounce have also been
studied by matching the exterior static geometry with a spa-
tially close FRW interior characterized by a bounce. A con-
sistent model of black-to-white hole bounce applying the
techniques of LQC has been constructed. So, it is established
that LQC corrections can be used to model black-white hole
bounces consistently. However, it may still be of some inter-
est to study the possibility of existence of static traversable
Lorentzian wormholes in LQC framework.

Causality should not be violated in a consistent wormhole
even if the wormhole harbors traversability [71,72]. A key
inconsistency or instability in models of traversable worm-
holes may appear from the apparent violation of causality
owing to the possibilities of faster-than-light travel or trav-
elling backwards in time. This may depend on what type of
matter finds relevance in opening up the wormhole throat
and the stability of the wormhole throat. However, the type
of static Lorentzian wormhole that we have obtained in the
LQC setup is “long” wormhole which implies a lesser trav-
elling time in the ambient space surrounding the wormhole
structure than through it and does not facilitate the forma-
tion of closed timelike curves. Moreover, the upper limit on
the velocity of the traveller trying to traverse the wormhole
experiencing tangential tidal forces within the desired limit
as obtained from our analysis is considerably smaller than
the velocity of light. Possible causality violation may lead to
instabilities both at the classical and quantum level. A lin-
earized stability analysis performed on the wormhole throat
with the effective potential formalism indicates the stability
of the throat. Also, mostimportantly we have not required any
exotic matter violating the Null Energy condition to sustain
an open wormhole throat due to the effective quantum correc-
tions appearing from LQC. So, there is no real possibility of

@ Springer

faster-than-light travel or backward time travel thus ensuring
that causality is not violated. However, a better understanding
of the spacetime structure in spherically symmetric setup in
LQC may help us establish this issue more comprehensively
in the recent future.

The validity of the NEC is checked for the effective matter
distribution. Although the physical matter at the wormhole
throat does not violate the NEC, the NEC is effectively vio-
lated due to the UV correction terms arising in the modified
EFE which are quadratic in stress energy. So, we do not
require exotic matter to construct the traversable wormhole.
The obtained value of the EoS parameter from the junction
conditions imply that the physical matter at the throat must
violate the SEC in order to make the wormhole traversable.
As discussed earlier, such matter can cause the universe to
accelerate. This leads to the interesting result that dark energy
can be harnessed into a wormhole in the framework of LQC,
such that the EoS parameter inside the throat of the worm-
hole w > —1 but p.rr < —1 due to the LQC corrections.
No additional ingredient is required in the energy budget of
the universe to construct a traversable wormhole. Moreover,
as dark energy is the dominant component of the energy bud-
get at present, so any wormhole that is formed in the present
epoch does not require its mass to be minimized as in the
standard relativistic context. More importantly, the quantum
instabilities [76] arising from physical matter violating the
NEC can be avoided. For the observed acceleration of the
universe, it is indeed required that —1.61 < p < —0.78
[73-75], but the pathologies associated with such violation
of NEC using matter sector [76] are difficult to tackle. So,
a geometric modification is also of interest at the IR scale
where (e < —1 without violation of NEC by physical
matter, but the quadratic correction term will not remain sig-
nificant at these scales due to low energy densities and some
alternative mechanism must prevail.

The tidal acceleration obtained at the throat is within desir-
able limits both in the radial and tangential directions and the
consequent upper limit obtained on the velocity of the trav-
eller traversing the wormhole throat is a realistic one. So,
any traveller trying to use the wormhole as a shortcut for
space-time travel does not get ripped apart at the throat of
the wormhole due to infinitely large tidal forces in either the
radial or tangential direction. One can think that despite the
matter at the throat not violating the NEC (as u > —1),
the tidal forces and hence the Weyl curvature tensor do not
diverge due to the effect of LQC which prevents the tidal
force from increasing beyond a certain limit, thus resolving
the singularity. This ensures the traversability of the worm-
hole. However, we can say that LQC is more effective in
resolving the strong curvature singularities that arise from
diverging energy densities, as it can do so without violating
any of the energy conditions. The reason behind this may
be that for a diverging spacetime curvature due to infinitely
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large energy densities like the initial singularity of the uni-
verse or one at the center of a Schwarzschild black hole, the
Weyl curvature vanishes rather than diverging, contrary to
the behaviour at the wormhole throat. So, these singularities
can be completely resolved in a LQC context (which has an
inherent pressure isotropy in the UV corrected EFE) without
matter violating any of the energy conditions. However, to
resolve the diverging Weyl curvature at the wormhole throat
without violating any of the energy conditions, the presence
of an inherent anisotropy in the UV-corrected EFE may play
a significant role as indicated by braneworld (which has an
inherent pressure anisotropy due to contribution of the bulk
Weyl tensor projected on the brane) wormholes, which can
be constructed from matter obeying all the energy conditions
[41].

Performing a linear stability analysis check, we can say
that the wormhole would not collapse at the throat due to
development of any instability and remains traversable. In
order to perform the check, an effective potential formal-
ism is applied, where the radius of the wormhole throat is
assumed to be a function of the proper time and an effec-
tive potential is constructed from the surface density of the
wormhole, which is in turn obtained from the junction con-
ditions at the wormhole surface. The equation of motion in
terms of this effective potential can be obtained from the
conservation of stress—energy. A parameter f is introduced
involving the surface pressure and surface density. The sta-
bility condition essentially represents a minima of the poten-
tial, obtained from the vanishing of its first derivative and the
second derivative being positive at the throat. The condition
for this minima is expressed as an inequality in terms of the
parameter § that is plotted to obtain the regions of stability as
denoted. The radial acceleration remaining positive for radial
distances within the wormhole, it can be said to feature an
attractive geometry.

Although a wormhole has not been detected yet till date,
but there is the possibility of detecting one in the recent future.
A number of suggestions have been proposed in literature to
detect one [77-82]. This can be done by studying any unex-
plained effect on the orbital motion of stars near black holes
that can harbor wormholes [83]. Also, micro-lensing effects
of wormholes have been suggested to resemble gamma ray
bursts [84]. Emission of radiation pulses remains another
interesting possibility [85]. Wormhole that are constructed
from phantom matter violating the NEC with a particular
EoS can be distinguished from black holes via the process of
quasinormal ringing [86]. If a wormhole is indeed detected
in the recent future, then detailed observational studies can
also throw light on the actual nature of the UV corrected
gravity due to the large space-time curvatures involved. For
the time being we can conclude by stating that LQC not only
resolves the curvature singularities due to diverging energy
densities, leading to non-singular bouncing black holes [87]

but also due to diverging tidal forces, leading to traversable
wormholes without any NEC violating exotic matter which
may result in quantum instabilities.
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