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γZ-exchange contributions in low-energy parity-violating ep scattering
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In this work, the γ Z-exchange contributions in the low-energy elastic parity-violating ep scattering are
discussed with the approximation me = 0. By expanding the γ pp and Z pp interactions on the momentum
of photon and considering both the leading-order and the next-to-leading order interactions, we calculate
the amplitudes of the γ Z-exchange diagrams. After performing the loop integral, we expand the results
in the low energy limit, and obtain the analytic expressions for the amplitudes. Numerical comparisons show
that the analytic expressions are very close to the full results over a large region. We investigate the power
behaviors of these contributions and find that some are enhanced by a kinematic factor in the low energy limit.
Additionally, in some cases, the imaginary parts of the contributions from the next-to-leading-order interactions
are at the same order as those from the leading-order interactions. Furthermore, the corresponding contributions
to the physical observable quantity APV are also discussed. Combining all the properties together, we conclude
that these analytic expressions describe the leading-order contributions of all γ Z-exchange helicity amplitudes
in the region with αe � Q/MN ∼ δ/M2

N � 1, where αe is the fine structure constant, MN is the mass of proton,
Q and δ are the small quantities related to the momentum transfer and the center-of-mass energy.

DOI: 10.1103/PhysRevC.108.035501

I. INTRODUCTION

The parity-violating effects in the elastic ep scattering pro-
vide the way to extract the weak charge of proton QW and the
weak form factors of the proton F (Z pp)

1,2,3 . Typically, the mea-
surement of the parity-violating asymmetry, defined as APV ≡
(σ+ − σ−)/(σ+ + σ−), is used to extract these quantities
[1–7]. To extract these physical quantities precisely, the virtual
radiative and the real radiative corrections should be estimated
carefully. Among the virtual radiative corrections, the contri-
butions from the γ Z exchange are particularly distinct, as their
effects cannot be absorbed by certain constants even when the
momentum transfer is fixed. In the literature, several methods
have been employed to estimate the γ Z-exchange contri-
butions to APV. These include traditional calculation with
zero energy approximation [8], hadronic model [9], general
partonic distributions (GPDs) [10], and dispersion relations
(DRs) method [11,12].

In this work, we discuss the γ Z-exchange contributions
from a different perspective. We use the low-energy γ pp and
Z pp interactions, which are expanded on the momentum to
the leading-order (LO) and the next-to-leading-order (NLO),
to calculate the γ Z-exchange amplitudes. A similar method
has been used to discuss the two-photon-exchange (TPE)
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contributions in elastic ep and μp scattering [13]. In this work,
we provide the analytic expressions for the γ Z-exchange con-
tributions at the amplitude level in the low energy limit. These
expressions reveal several interesting properties, which are not
readily apparent in the direct numerical results or the conven-
tional estimation of the γ Z-exchange contributions to APV.

The paper is organized as follows. In Sec. II, at first
we take the γ pp and Z pp interactions in the low energy
limit as examples to write down the γ Z-exchange ampli-
tudes and express the amplitudes as linear sums of some
general invariant amplitudes. Then we discuss our approach
to calculate the corresponding coefficients of the invariant
amplitudes. The relations between the invariant amplitudes
and the helicity amplitudes in the center-of-mass frame are
also given. In Sec. III, we give the analytic expressions for
the γ Z-exchange contributions to the coefficients and helicity
amplitudes in the low energy limit. For comparison, the cor-
responding contributions to the physical quantity APV are also
given. In Sec. IV, we present the numeric comparison between
the analytic results and the full numeric results. In Sec. V,
we discuss the power behavior of these contributions and ex-
plore certain properties of the results when other interactions
are considered as inputs. Finally, in Secs. VI and VII, we
apply the obtained results to the upcoming P2 experiment and
provide a concise summary, respectively.

II. BASIC FORMULAS

A. γZ-exchange contributions in ep → ep at low energy

For the elastic ep scattering, the parity-conserving diagram
in the LO of the coupling constant is shown as Fig. 1(a)
where we label the momenta of the incoming electron, the
incoming proton, the outgoing electron, and the outgoing
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(a) (b)

FIG. 1. The tree diagrams for ep → ep: (a) represents the one-photon-exchange diagram and (b) represents the one-Z-exchange diagram.

proton as p1,2,3,4, respectively. The parity-violating con-
tribution in the LO of coupling constant is from the
one-Z-exchange diagram, as shown in Fig. 1(b). When one
goes beyond the tree level, the radiative corrections should
be considered. Among all the virtual radiative corrections,
the contributions from γ Z exchange and WW exchange play
special roles since their contributions are not only dependent
on the momentum transfer but also dependent on the center-
of-mass energy. The contributions from WW exchange [8] can
be well estimated since their contributions are dominated in
the region where the two W bosons’ momenta are large, while
the contributions from γ Z exchange are much different. In
this work, we limit our discussion in the low energy limit
where the momentum transfer goes to zero and the center-
of-mass energy goes to the minimum physical value at fixed
momentum transfer. In this limit, a naive picture is that only
the interactions with the LO and the NLO of the momenta
give the main contributions. This argument has been used to
estimate the TPE contributions in ep, μp scattering [13]. In
this work, we take the similar assumption to discuss the low
energy behaviors of the γ Z-exchange contributions at first,
and then go back check their validity.

Naively, for the γ Z-exchange contributions in the low
energy limit, only the elastic intermediate state gives the con-
tributions, which can be described by the diagrams shown in
Fig. 2. Generally, the interactions between the vector bosons
and the proton depend on the momentum transfer. In the liter-
ature, form factors are commonly introduced to describe the
structure of the proton. At low energy scales, the form factors
can be expanded order by order in terms of the momentum
transfer. The LO and the NLO interactions can be expressed
as follows:

�μ
γ ee = −ieγ μ, �

μ
Zee = −i

[
ḡV

e γ μ + ḡA
eγ

μγ5
]
,

�
μ
γ pp,0 = ieF1γ

μ, �
μ
γ pp,1 = ieF2

iσμν

2MN
qν,

�
μ
Z pp,0 = −i[ḡ1γ

μ + ḡ3γ
μγ 5], �

μ
Z pp,1 = −iḡ2

iσμν

2MN
qν

(1)

with

ḡV,A
e = − e

4 sin θw cos θw
gV,A

e ,

ḡ1,2,3 = − e

4 sin θw cos θw
g1,2,3, (2)

where θw is the Weinberg angle, gV
e = −1, gA

e = 1 − 4 sin2 θw

are the coupling constants in the standard model, F1,2 are the
coupling constants of the γ pp interactions in the low energy
limit, g1,2,3 are the normalized coupling constants of Z pp
interactions in the low energy limit, q is the momentum of
the incoming boson, the label 0 refers to the LO interactions
which are not dependent on the boson’s momentum, and the
label 1 refers to the NLO interactions which are proportion to
the boson’s momentum.

Using these interactions, the corresponding amplitudes for
γ Z-exchange diagrams can be expressed as follows:

M(a)
i j = −iμ̄2ε

∫
dd l

(2π )d
ū3�

ν
γ eeSe(p3 + l )

×�
μ
Zeeu1ū4�

ω
γ pp, j (p4, p4 − l )Sp(p4 − l )

×�
ρ
Z pp,i(p4 − l, p2)u2Dγ

νω(l )DZ
μρ (p1 − p3 − l ),

M(b)
i j = −iμ̄2ε

∫
dd l

(2π )d
ū3�

ν
γ eeSe(p3 + l )

×�
μ
Zeeu1ū4�

ρ
Z pp,i(p4, p2 + l )Sp(p2 + l )

×�ω
γ pp, j (p2 + l, p2)u2Dγ

νω(l )DZ
μρ (p1 − p3 − l ),

M(c)
i j = −iμ̄2ε

∫
dd l

(2π )d
ū3�

ν
ZeeSe(p1 − l )

×�μ
γ eeu1ū4�

ω
Z pp,i(p4, p2 + l )Sp(p2 + l )

×�
ρ
γ pp, j (p2 + l, p2)u2Dγ

νω(l )DZ
μρ (p1 − p3 − l ),

M(d )
i j = −iμ̄2ε

∫
dd l

(2π )d
ū3�

ν
ZeeSe(p1 − l )�μ

γ eeu1ū4

×�
ρ
γ pp, j (p4, p4 − l )Sp(p4 − l )�ω

Z pp,i(p4 − l, p2)u2

× Dγ
νω(l )DZ

μρ (p1 − p3 − l ), (3)

where ūi, ui are the short writing of the spinors
ū(pi, si ), u(pi, si ) with corresponding masse mi, respectively,
l is the momentum of the photon, i and j refer to the
order of the momentum in the vertices �γ pp and �Z pp,
μ̄ is the renormalization scale and ε = 4 − d with d
the dimension. In the naive picture, the label i j = 00
corresponds to the LO contribution, while i j = 01 and
i j = 10 correspond. Additionally, i j = 22 corresponds to
the next-to-next-leading-order (NNLO) contribution. In
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(a) (b)

(c) (d)

FIG. 2. The γ Z-exchange diagrams of ep → ep: (a,c) represent the box diagrams and (b,d) represent the crossed-box diagrams.

practical calculations, we consider all of these contributions
for comparison.

In practical calculations, the package FeynCalc10.0 [14] is
used to deal with Dirac matrix, the PackageX3.0 [15] is used
to do the loop integration and the the package LoopTools [16]
is used for cross-check.

B. The scheme to handle γ5 in d dimension and the general
invariant amplitudes

To calculate the amplitudes M(a,b,c,d )
i j using the dimension

regularization, one must select a scheme to handle the Dirac
matrix γ5 in d dimension. This differs slightly from similar
calculation in the parity-conserving ep scattering, where, in
principle, there is no γ5 at the amplitude level in the latter
case. In our practical calculation, we choose the NDR scheme
in FeynCalc [14] to handle γ5.

In the NDR scheme, there is an ambiguous definition for
the trace of a matrix with an odd number of γ5 matrices.
To avoid this ambiguity in the calculation, we separate the
full amplitude into a parity conserved (PC) part and a parity
violated (PV) part. We then further separate the PV part as
follows:

M(a+b+c+d )
γ Z ≡ MPC

γ Z + MPV
γ Z ,

MPV
γ Z ≡ ḡA

eMV
γ Z + ḡV

e MA
γ Z . (4)

Since our focus is on the PV part of the amplitude, we
will only discuss the amplitudes MV

γ Z and MA
γ Z in the

following. After making the approximation of me = 0, where
me represents the mass of electron, the amplitudes MV,A

γ Z can

be expressed as follows:

MV
γ Z ≡

3∑
i=1

FV
γ Z,iPV

i ≡
3∑

i=1

2∑
j=1

2∑
k=1

CV
γ Z,i jkFj ḡkPV

i ,

MA
γ Z ≡

3∑
i=1

FA
γ Z,iPA

i ≡
3∑

i=1

2∑
j=1

CA
γ Z,i j3Fjḡ3PA

i , (5)

where the general invariant amplitudes PV
i and PA

i are
chosen as

PV
1 ≡ [ū3γμγ5u1][ū4γ

μu2],

PV
2 ≡ 1

Q
[ū3γμγ5u1][ū4iσμνqνu2],

PV
3 ≡ 1

MN Q
[ū3 � Pγ5u1][ū4 �Ku2],

PA
1 ≡ [ū3γ

μu1][ū4γμγ5u2],

PA
2 ≡ 1

Q
[ū3γ

μu1][ū4γμ �Kγ5u2],

PA
3 ≡ 1

MN Q
[ū3 � Pu1][ū4 �Kγ5u2] (6)

with P = p2 + p4, K = p1 + p3, Q2 = −q2, q = p4 − p2 =
p1 − p3, and MN the mass of proton.

This separation differs slightly from the form used in the
references, where typically only three invariant amplitudes
are chosen [11]. As we have argued earlier, the purpose of
this separation is to avoid the ambiguous definition of γ5 in
d dimensions. With these definitions, the calculation of the
coefficients CV

γ Z,i jk and CA
γ Z,i j3 now involves only even powers

of γ5.
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Similarly, we separate the amplitude for one-Z exchange,
MZ , as

MZ ≡ MPC
Z + MPV

Z ,

MPV
Z ≡ ḡA

eMV
Z + ḡV

e MA
Z ,

MX
Z ≡

3∑
i=1

FX
Z,iPX

i (7)

with X = V or A, respectively.

C. Calculation of CV
γZ,i jk and CA

γZ,i jk

To calculate the coefficients CV
γ Z,i jk and CA

γ Z,i jk , one can
solve the following system of algebraic equations in d dimen-
sions:∑

helicity

MV
γ ZT V ∗

n =
∑

helicity

3∑
i=1

FV
γ Z,iPV

i T V ∗
n

=
∑

helicity

3∑
i=1

2∑
j=1

2∑
k=1

CV
γ Z,i jkFj ḡkMV

i T V ∗
n ,

∑
helicity

MA
γ ZT V ∗

n =
∑

helicity

3∑
i=1

FA
γ Z,iPA

i T A∗
n

=
∑

helicity

3∑
i=1

2∑
j=1

CA
γ Z,i j3Fjḡ3MA

i T A∗
n , (8)

where T V
n and T A

n can be directly chosen as PV
n and PA

n ,
respectively.

After calculating the following matrix in d-dimension:

DX
i j ≡

∑
helicity

PX
i PX∗

j , (9)

the coefficients FX
γ Z,i can be expressed as

FX
γ Z,i =

∑
j

[(DX )−1]i j

∑
helicity

MX
γ ZP∗

j . (10)

Once FX γ Z, i is known, the corresponding coefficients
Cγ Z, i jkX can be directly obtained.

The expressions of DX
i j in d dimensions are a little complex,

so we do not list them here.

D. From general invariant amplitudes to helicity amplitudes

In some cases, the physical meaning of the general in-
variant amplitudes and their coefficients may not be clear, as
the behaviors of the coefficients CX

γ Z,i jk can include certain
kinematic effects. Conversely, the physical meaning of the
helicity amplitudes is much clearer.

After performing some simple calculations, one can ob-
serve the following properties in the center-of-mass frame:

M+−±±,PV
Y = M−+±±,PV

Y = 0,

M++++,PV,
Y = −M−−−−,PV

Y ,

M+++−,PV
Y = −M++−+,PV

Y = −M−−+−,PV
Y = M−−−+,PV

Y ,

M++−−,PV
Y = −M−−++,PV

Y , (11)

TABLE I. The expressions for the invariant amplitudes with spe-
cial helicities P±±±±,X

i in the center-of-mass frame.

i 1 2 3

P++++,V
i − ab

ν+Q2 −4MN Q − c2

MN Q

P+++−,V
i

2cMN Q
ν+Q2 −c 2c

P++−−,V
i − c2

ν+Q2 0 − c2

MN Q

P++++,A
i − ab+8M2

N Q2

ν+Q2 0 − c2

MN Q

M+++−,A
i − 2cMN Q

ν+Q2 −c 0

M++−−,A
i

c2

ν+Q2 0 c2

MN Q

where the index Y refers to either Z or γ Z , and the indexes
such as + + ++ correspond to the helicities of the incoming
electron, the outgoing electron, the incoming proton, and the
outgoing proton, respectively.

The helicity amplitudes can be expressed as follows:

M±±±±,X
Y =

∑
i

FX
Y,iP±±±±,X

i . (12)

In Table I, we present the expressions for P±±±±,X
i in the

center-of-mass frame, where the momenta are chosen as

pμ
1 = (Ec, 0, 0, Ec ),

pμ
2 = (√

M2
N + E2

c , 0, 0,−Ec
)
,

pμ
3 = (Ec, Ec sin θc, 0, Ec cos θc), (13)

and some variables are defined as

s ≡ (p1 + p2)2,

ν ≡ 2s − 2M2
N − Q2,

a ≡ ν + Q2 + 2MN Q,

b ≡ ν + Q2 − 2MN Q,

c ≡
√

ν2 − 4M2
N Q2 − Q4. (14)

Using these expressions, the helicity amplitudes M±±±±,X
γ Z

can be expressed as direct linear combinations of the
coefficients CX

γ Z,i jk . For instance, we have the following
relationship:

M++++,V
γ Z = − ab

ν + Q2
FV

γ Z,1 − 4MN QFV
γ Z,2 − c2

MN Q
FV

γ Z,3

= −
2∑

j=1

2∑
k=1

[
ab

ν + Q2
CV

γ Z,1 jk + 4MN QCV
γ Z,2 jk

+ c2

MN Q
CV

γ Z,3 jk

]
Fjḡk . (15)
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III. EXPRESSIONS IN THE LOW ENERGY LIMIT

In this section, we firstly present the analytical expressions
for CV,A

γ Z,i jk in the low-energy limit. Then, we provide the an-
alytical expressions for the corresponding corrections to the
helicity amplitudes and the experimental measurement APV.
These analytic expressions clearly demonstrate the power-law
behavior of the corrections in a transparent manner. Fur-
thermore, they can be utilized to estimate the γ Z-exchange
corrections for all feasible future measurements, particularly

at low values of Q and E , assuming knowledge of the low-
energy constants.

A. CX
γZ,i jk when Q2 → 0 and ν → νmin

Before discussing the properties of the coefficients CX
γ Z,i jk

in the low energy limit, for comparison, we list the expressions
of FX

Z,i as

Re
[
FV

Z,1

] = − ḡ1

M2
Z

, Re
[
FV

Z,2

] = − ḡ2

M2
Z

Q

2MN
, Re

[
FV

Z,3

] = 0,

Re
[
FA

Z,1

] = − ḡ3

M2
Z

, Re
[
FA

Z,2

] = 0, Re
[
FA

Z,3

] = 0. (16)

Physically, when Q2 is fixed, the physical ν has a minimum
value given by

νphs � νmin = Q
√

4M2
N + Q2. (17)

To calculate CX
γ Z,i jk in the low energy limit, we expand them

at Q → 0 and δ ≡ ν − νmin → 0 independently after the loop
integration. This approach differs slightly from the usual dis-
cussion where Q → 0 and Ee → 0 are used, with Ee the
energy of initial electron in the laboratory frame. The reason
for not expanding the results in terms of Q and Ee is that when
Q is fixed, Ee actually has a minimum value given by

Ee � Emin = νmin + Q2

4MN
. (18)

This implies that Q → 0 and Ee → 0 are not completely in-
dependent for the physical process.

In practical calculations, the expansion of CX
γ Z,i jk on Q

and δ should be done independently. This means that the
expansion is valid for any δ/Q ratio. The final expressions
for the nonzero LO contributions CX,LO

γ Z,i jk are presented in the
Appendix A.

We would like to mention that the contributions which are
only dependent on Q but not dependent on δ, have the similar
behaviors with the radiative corrections to the vertexes �μ

γ pp

and �
μ
Z pp. This means that these contributions can be absorbed

into certain constants at fixed Q. However, the most significant
characteristic of the γ Z-exchange contributions lies in their
dependence on δ at a fixed Q.

B. Helicity amplitudes when Q2 → 0 and ν → νmin

Since the physical meaning of the helicity amplitudes is
much more definite than that of the coefficients, we provide
the expressions for the helicity amplitudes in the low-energy
limit in this subsection.

At the tree level, the helicity amplitudes due to the one-Z-
exchange can be separated as

M±±±±,V
Z ≡

2∑
k=1

M±±±±,V
Z,k ḡk ḡA

e ,

M±±±±,A
Z ≡ M±±±±,A

Z,3 ḡ3ḡV
e . (19)

After expanding M±±±±,X
Z,k on Q and δ independently, the

nonzero LO contributions M±±±±,X,LO
Z,k are expressed as

Table II with

h = 1

M2
Z (2MN Q + δ)

,

z =
√

(4MN Q + δ)δ. (20)

Similarly, the helicity amplitudes due to the γ Z exchange can
be separated as

M±±±±,V
γ Z ≡

∑
jk

M±±±±,V
γ Z, jk Fj ḡk ḡA

e ,

M±±±±,A
γ Z ≡

∑
j

M±±±±,A
γ Z, j3 Fjḡ3ḡV

e . (21)

We would like to mention that in order to obtain the correct
expressions for the nonzero LO contributions M±±±±,X,LO

γ Z, jk ,

one should not directly substitute CX,LO
γ Z,i jk into Eq. (12). The

reason for this is that there are cancellations between the
contributions from different CX,LO

γ Z,i jk at the LO in certain spe-
cific cases. Therefor, to obtain the correct expressions for the
nonzero LO contributions M±±±±,X,LO

γ Z, jk , one should substitute

CX
γ Z,i jk into Eq. (12), and then expand M±±±±,X

γ Z, jk as Q → 0
and δ → 0. The existence of these cancellations also suggests
that the helicity amplitudes reflect the physical properties in a
more definite manner.

The final expressions for the nonzero LO contributions
M±±±±,X,LO

γ Z, jk are presented in Appendix B.

TABLE II. The expressions for M±±±±,X,LO
Z,k in the center-of-

mass frame.

Hs + + ++ + + +− + + −−

MHs,V,LO
Z,1 hz2 −2hzMN Q hz2

MHs,V,LO
Z,2 2h(2MN Q + δ)Q2 −hz (2MN Q+δ)Q

2MN
0

MHs,A,LO
Z,3 h(8M2

N Q2 + z2) 2hzMN Q −hz2
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C. APV when Q2 → 0 and ν → νmin

After obtaining the coefficients CX
γ Z,i jk or

Mγ Z, jk±±±±,X , the γ Z-exchange contributions to all
related physical quantities can be determined. In this
subsection, we discuss the γ Z-exchange contributions to
the physical measurement APV which is defined as

APV ≡
∑

helicity(M+M+∗ − M−M−∗)∑
helicity(M+M+∗ + M−M−∗)

, (22)

where M+,− are the helicity amplitudes in the laboratory
frame with the helicity of the incoming electron being ±,
respectively.

At the tree level, where only the contributions from the
one-photon exchange and the one-Z exchange diagrams are
considered, the corresponding Aγ⊗Z

PV can be expressed as

Aγ⊗Z
PV = 1

e2σ

[
2∑

i=1

2∑
k=1

AV
Z,ikFiḡk ḡA

e +
2∑

i=1

AA
Z,i3Fiḡ3ḡV

e

]
,

(23)

where

σ = 4F 2
1 M2

N

(
ν2 − 4M2

N Q2 + Q4)
+ F 2

2 Q2
(
ν2 + 4M2

N Q2 − Q4
) + 16F1F2M2

N Q4

→ 4F 2
1 M2

N z2 (24)

and

AV
Z,11 = − 8

M2
Z

M2
N Q2

(
ν2 − 4M2

N Q2 + Q4
)

→ − 4

M2
Z

MN Q2(4MN Q + δ)(2MNδ + Q3),

AV
Z,12 = − 16

M2
Z

M2
N Q6,

AV
Z,21 = − 16

M2
Z

M2
N Q6,

AV
Z,22 = − 2

M2
Z

Q4
(
ν2 + 4M2

N Q2 − Q4
)

→ − 2

M2
Z

Q4
(
8M2

N Q2 + z2
)
,

AA
Z,13 = − 16

M2
Z

M2
N Q4ν → − 16

M2
Z

M2
N Q4(2MN Q + δ),

AA
Z,23 = − 16

M2
Z

M2
N Q4ν → − 16

M2
Z

M2
N Q4(2MN Q + δ).

(25)

When considering the interference between the one-
photon exchange diagram and γ Z-exchange diagrams, the

corresponding Aγ⊗γ Z
PV is expressed as

Aγ⊗γ Z
PV = 1

e2σ

(
3∑

i=1

NV
i Re

[
FV

γ Z,i

]
ḡA

e +
3∑

i=1

N A
i Re

[
FA

γ Z,i

]
ḡV

e

)

= 1

e2σ

⎛⎝ 3∑
i=1

2∑
j=1

2∑
k=1

NV
i Re

[
CV

γ Z,i jk

]
F γ Z

j ḡk ḡA
e

+
3∑

i=1

2∑
j=1

N A
i Re

[
CA

γ Z,i j3

]
F γ Z

j ḡ3ḡV
e

⎞⎠ (26)

with

NV
1 = 8M2

N Q2
[(

ν2 − 4M2
N Q2 + Q4

)
F1 + 2Q4F2

]
,

NV
2 = 4MN Q

[
8M2

N Q4F1 + Q2
(
ν2 + 4M2

N Q2 − Q4
)
F2

]
,

NV
3 = 8MN Qν

(
ν2 − 4M2

N Q2 − Q4)F1,

N A
1 = 16M2

N Q4ν(F1 + F2),

N A
2 = 4MN Q3

[
8M2

N Q2F1 + (
ν2 + 4M2

N Q2 − Q4
)
F2

]
,

N A
3 = 8MN Q3(ν2 − 4M2

N Q2 − Q4)(F1 + F2), (27)

where we have used the indexes γ and γ Z in Fi to indicate
the source of the coupling constants, although their numerical
values are equal. For instance, F γ

1 represents the coupling
constant from the one-photon exchange diagram, while F γ Z

1
represents the coupling constant from the γ Z-exchange
diagram.

After substituting CX
γ Z,i jk into the expression, one can ex-

press Aγ⊗γ Z
PV as

Aγ⊗γ Z
PV ≡ 1

e2σ

⎧⎨⎩
2∑

i=1

2∑
j=1

2∑
k=1

Re
[
AV

γ Z,i jk

]
F γ

i F γ Z
j ḡk ḡA

e

+
2∑

i=1

2∑
j=1

Re[AA
γ Z,i j3]F γ

i F γ Z
j ḡ3ḡV

e

⎫⎬⎭
≡ GFt

4
√

2παe

[
�A

γ Z + �V
γ Z

]
, (28)

where GF = παe/(
√

2M2
Z sin2 θw cos2 θw) is the Fermi con-

stant, αe = e2/4π is the fine structure constant, and t = −Q2.
Similar to M±±±±,X

γ Z, jk , to obtain the nonzero LO contributions

AX,LO
γ Z,i jk , one should substitute CX

γ Z,i jk into the expressions and
then expand them in terms of Q and δ around 0. The final
expressions for the nonzero LO contributions AX,LO

γ Z,i jk are pre-
sented in Appendix C.

IV. NUMERICAL PROPERTIES

Before discussing the analytic properties, we perform a
numerical comparison between the nonzero LO contributions
and the full contributions for different values of Q in the
range (0.05, 0.1, 0.2, 0.5) GeV and for different values of δ

in the range [0, 1] GeV2. We find that the two results are
very similar across all these regions. In Figs. 3 and 4, we
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FIG. 3. Comparison between Re[M++++,V,LO
γ Z,11 ] and Re[M++++,V

γ Z,11 ] at Q = 0.05, 0.1, 0.2, and 0.5 GeV, respectively.

FIG. 4. Comparison between Re[M++++,A,LO
γ Z,13 ] and Re[M++++,A

γ Z,13 ] at Q = 0.05, 0.1, 0.2, and 0.5 GeV, respectively.
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TABLE III. The power behaviors of the contributions Re[FV
Z,i],

Re[FA
Z,i], Re[CV

γ Z,i11], and Re[CA
γ Z,i13], where only the contributions

from the LO interactions are considered and the contributions from
RIR have been neglected.

Power behavior Power behavior

Re[FV
Z,1] 1 Re[CV

γ Z,111] αe
2MN Q+δ

Q2

Re[FV
Z,2] no contribution Re[CV

γ Z,211] αe
Q(2MN Q+δ)

M3
N

log
4M4

N
ν2−Q4

Re[FV
Z,3] no contribution Re[CV

γ Z,311] αe
MN
Q

Re[FA
Z,1] 1 Re[CA

γ Z,113] αe
2MN Q+δ

Q2

Re[FA
Z,2] no contribution Re[CA

γ Z,213] αe
MN
Q

Re[FA
Z,3] no contribution Re[CA

γ Z,313] αe
MN
Q

take Re[M++++,V,LO
γ Z,11 ] and Re[M++++,V,LO

γ Z,13 ] as examples to
show the numerical comparison. The comparisons clearly
demonstrate that the analytic nonzero LO expressions provide
a reliable approximation of the full result at the low energy
scale.

V. POWER BEHAVIORS IN THE LOW ENERGY LIMIT

A. Power behaviors of CX
γZ,i jk in the low energy limit

The analytic expressions for CX,LO
γ Z,i jk exhibit some intriguing

properties, with the most significant one being their power
behavior in relation to the variables Q and δ.

To illustrate the physical implications of these power be-
haviors clearly, we compare two cases in terms of their
behaviors. In the first case, we examine the power behaviors
of the contributions from one-Z exchange and γ Z exchange,
considering only the LO interactions. In the second case, we
compare the power behaviors of the imaginary parts of the
contributions from γ Z exchange, considering both the LO
interactions and the NLO interactions.

When considering only the LO interactions, the couplings
F2, g2 are zero, while F1 and g1,3 are nonzero. In this case,
all interactions are well defined within the standard model.
At the tree level, there are two nonzero PV contributions,
namely, Re[FV

Z,1] and Re[FA
Z,1], which are independent of Q

and δ. Regarding the γ Z-exchange contributions, there are
now six nonzero contributions, such as CV

γ Z,i11 and CA
γ Z,i13.

By utilizing the analytic expressions given in Eqs. (A1), (A2),
(A4), (A5), one can directly obtain the power behaviors of
these contributions at low energy.

For convenience, we present the power behaviors of
Re[FZ, iV ], Re[FZ, iA], Re[CV

γ Z,i11], and Re[CA
γ Z,i13] together

in Table III. The comparisons clearly demonstrate that, except
for Re[CV

γ Z,211], the coefficients from the γ Z-exchange con-
tributions always exhibit an enhanced factor of MN/Q for any
given δ. This implies that when Q/MN ≈ αe, the γ Z exchange
can provide contributions of comparable magnitude to the
one-Z exchange.

This enhancement is not surprising. A similar property
occurs in the pure electromagnetic system near the threshold,
where contributions from multiple-photon exchange need to
be summed. In the case of bound states governed by pure

TABLE IV. The power behaviors of the contributions Im[FV
Z,i],

Im[FA
Z,i], Im[CV

γ Z,i11], and Im[CA
γ Z,i13], where only the contributions

from the LO interactions are considered and the contributions from
IIR have been neglected.

Power behavior Power behavior

Im[FV
Z,1] no contribution Im[CV

γ Z,111] αeMax{ z2

M2
N Q2 , 1}

Im[FV
Z,2] no contribution Im[CV

γ Z,211] αe
Q

MN

Im[FV
Z,3] no contribution Im[CV

γ Z,311] αe
2MN Q+δ

MN Q

Im[FA
Z,1] no contribution Im[CA

γ Z,113] αeMax{ z2

M2
N Q2 , 1}

Im[FA
Z,2] no contribution Im[CA

γ Z,213] αe
2MN Q+δ

MN Q

Im[FA
Z,3] no contribution Im[CA

γ Z,313] αe
2MN Q+δ

MN Q

electromagnetic interactions, typically only the ladder dia-
grams are summed.

The detailed calculations demonstrate that the enhanced
factor MN/Q appears not only in the sum of box diagrams
[Fig. 2 (a+c)] but also in the sum of crossed box diagrams
[Fig. 2 (b+d)]. This is in stark contrast to the case of pure
electromagnetic interactions. In Table IV, we present the
power behaviors of Im[CV

γ Z,i11] and Im[CA
γ Z,i13]. The results

clearly demonstrate that, in the region δ � MN Q, there is
enhancement for all coefficients except Im[CV

γ Z,211], while
no enhancement is observed in other regions. This behavior
differs from that of the real parts. In literature, the imagi-
nary parts are typically used as inputs in DRs to estimate
the real parts of the γ Z-exchange contributions. Our results
highlight the importance of carefully considering the imagi-
nary parts of CV

γ Z,i jk and CA
γ Z,i jk even when considering only

the leading-order (LO) interactions, particularly in the region
where αeδ/MN Q ∼ 1.

When considering interactions beyond the LO, the effec-
tive interactions with nonzero F2 and g2 come into play. In
this case, at the low-energy scale, the corresponding radia-
tive contributions should be combined with the four-fermion
contact interactions to yield the final physical contributions.
An important characteristic is that, at the one-loop level, the
contact interactions do not alter the imaginary parts of the
γ Z-exchange contributions. This implies that the low-energy
behaviors of the imaginary parts are physical, and they can
serve as a unique means to verify the power counting rules.

In Tables V and VI, we present the power behaviors of the
ratios Im[CV

γ Z,i jk]/Im[CV
γ Z,i11] and Im[CA

γ Z,i23]/Im[CA
γ Z,i13] in

different regions. The results indicate that the naive NNLO
contributions, Im[CV

γ Z,i22], are of higher order, while the naive
NLO contributions are actually of the same order as the LO
contributions. These observations suggest that the naive power
counting rules are not preserved in certain cases.

B. Power behaviors of the helicity amplitudes

Since the helicity amplitudes directly correspond to ob-
servable physical quantities, their properties may provide a
more definite reflection of the physical meaning compared to
the coefficients CX

γ Z,i jk . In this section, we present the power
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TABLE V. The power behaviors of the ratios
Im[CV

γ Z,i jk]/Im[CV
γ Z,i11].

Power behavior δ � MN Q δ ≈ MN Q δ � MN Q

Im[CV
γ Z,112]/Im[CV

γ Z,111] 1 1 1

Im[CV
γ Z,121]/Im[CV

γ Z,111] 1 1 1

Im[CV
γ Z,122]/Im[CV

γ Z,111] Q
MN

Q
MN

δ2

M2
N

Im[CV
γ Z,212]/Im[CV

γ Z,211] 1 1 1

Im[CV
γ Z,212]/Im[CV

γ Z,211] 1 1 1

Im[CV
γ Z,222]/Im[CV

γ Z,211] O(M−2
Z ) O(M−2

Z ) O(M−2
Z )

Im[CV
γ Z,312]/Im[CV

γ Z,311] 1 1 1

Im[CV
γ Z,321]/Im[CV

γ Z,311] 1 1 1

Im[CV
γ Z,322]/Im[CV

γ Z,311] Q
MN

Q
MN

δ

M2
N

behaviors of the helicity amplitudes based on the expressions
listed in Appendix B.

In Tables VII and VIII, we present the power be-
haviors of the helicity amplitudes resulting from one-Z
exchange and γ Z exchange, considering only the LO in-
teractions. In Table IX, we list the power behaviors of the
ratios Re[Mγ Z, 1k±±±±,X ]/Re[MZ, k±±±±,X ] in different
regions, where the enhanced factors are indicated by a wavy
line. These enhancements suggest that, even when consider-
ing only the LO interactions, diagrams with higher orders
of αe should be considered and summed to obtain the cor-
rect contributions in specific regions. Directly estimating the
γ Z-exchange contributions to the helicity amplitudes through
loop integrals or dispersion relations is only valid outside
these regions. The results in Table IX clearly reveal the
availability of specific γ Z-exchange helicity amplitudes in
different regions. Combining all these regions, we find that
only in the region, where αe � Q/MN ∼ δ/M2

N � 1, all the
γ Z-exchange helicity amplitudes are applicable. Outside this
region, higher-order radiative corrections should be taken into
account.

The full physical helicity amplitudes of ep scattering are
the linear sum of the V parts and the A parts. Therefore, when
considering only the LO interactions, the corresponding ratios
of the full physical helicity amplitudes can be expressed as

Re
[
M±±±±,V

γ Z,11

]
F1g1gA

e + Re
[
M±±±±,A

γ Z,13

]
F1g3gV

e

Re
[
M±±±±,V

Z,1

]
g1gA

e + Re
[
M±±±±,A

Z,3

]
g3gV

e

.

By combining the power behaviors listed in Tables VII and
IX, one can observe that there are still enhancements for the

TABLE VI. The power behaviors of the contributions
Im[CA

γ Z,i23]/Im[CA
γ Z,i13].

Power behavior δ � MN Q δ ≈ MN Q δ � MN Q

Im[CA
γ Z,123]/Im[CA

γ Z,113] 1 1 1

Im[CA
γ Z,223]/Im[CA

γ Z,213] 1 1 1

Im[CA
γ Z,323]/Im[CA

γ Z,313] 1 1 1

TABLE VII. The power behaviors of Re[M±±±±,V
Z,1 ],

Re[M±±±±,A
Z,3 ], Re[M±±±±,V

γ Z,11 ], and Re[M±±±±,V
γ Z,13 ], where only

the LO interactions are considered and the contributions from RIR

have been neglected.

Power behavior Power behavior

Re[M++++,V
Z,1 ] hz2 Re[M++++,V

γ Z,11 ] αehMax{M2
N Q2, z2}

Re[M++++,A
Z,3 ] h(8M2

N Q2 + z2) Re[M++++,A
γ Z,13 ] αehM2

N (2MN Q + δ)

Re[M+++−,V
Z,1 ] hzMN Q Re[M+++−,V

γ Z,11 ] αehzMN Q

Re[M+++−,A
Z,3 ] hzMN Q Re[M+++−,A

γ Z,13 ] αehz MN (2MN Q+δ)
Q

Re[M++−−,V
Z,1 ] hz2 Re[M++−−,V

γ Z,11 ] αehz2

Re[M++−−,A
Z,3 ] hz2 Re[M++−−,A

γ Z,13 ] αehz2

full physical helicity amplitudes in the + + ++ and + + +−
cases when assuming g1gA

e and g3gV
e to be at the same order.

In Table X, we present the power behaviors
of the ratios Im[M±±±±,V

γ Z,i j ]/Im[M±±±±,V
γ Z,11 ] and

Im[M±±±±,A
γ Z,i j ]/Im[M±±±±,A

γ Z,13 ] in different regions. These
results show that, in the region δ � Q2 � MN Q, the
contributions from the NLO interactions, Im[M++++,V

γ Z,12 ]

and Im[M++++,V
γ Z,21 ], are even larger than the contribution from

the LO interactions, Im[M++++,V
γ Z,11 ]. Furthermore, for any δ,

the contributions from the NLO interactions, Im[M++++,A
γ Z,23 ]

or Im[M+++−,A
γ Z,23 ], are at the same order as the contributions

from the LO interactions, Im[M++++,A
γ Z,13 ] or Im[M++++,A

γ Z,23 ],
respectively. Since the imaginary parts of these contributions
cannot be canceled by contact interactions, these properties
indicate that the naive power counting rules are broken in
these cases. On the other hand, contributions involving higher
interactions, such as Im[M±±±±,V

γ Z,22 ], are much smaller and
follow the naive power counting rules.

In practical calculations, we also considered interactions
involving higher-order momentum, such as F1q2

γ (where qγ

is the momentum of the incoming photon), to examine their
behavior. We found that the imaginary parts of the corre-
sponding contributions are at higher orders. This indicates
that, although certain NLO contributions break the naive
power counting rules, the imaginary parts of contributions
M(a+b+c+d )

i j with i + j > 3 (such as the NNLO interac-
tions) can be safely neglected in the low energy limit. These

TABLE VIII. The power behaviors of Im[M±±±±,V
Z,1 ],

Im[M±±±±,A
Z,3 ], Im[M±±±±,V

γ Z,11 ], and Im[M±±±±,V
γ Z,13 ], where only

the LO interactions are considered.

Power behavior Power behavior

Im[M++++,V
Z,1 ] no contribution Im[M++++,V

γ Z,11 ] αehz2

Im[M++++,A
Z,3 ] no contribution Im[M++++,A

γ Z,13 ] αeh(8M2
N Q2 + 3z2)

Im[M+++−,V
Z,1 ] no contribution Im[M+++−,V

γ Z,11 ] αehzMN Q

Im[M+++−,A
Z,3 ] no contribution Im[M+++−,A

γ Z,13 ] αehz (3MN Q+δ)(MN Q+δ)
MN Q

Im[M++−−,V
Z,1 ] no contribution Im[M++−−,V

γ Z,11 ] αehz2

Im[M++−−,A
Z,3 ] no contribution Im[M++−−,A

γ Z,13 ] αehz2
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TABLE IX. The power behaviors of Re[M±±±±,X
γ Z,1k ]/

Re[M±±±±,X
Z,k ] in different regions, where only the LO interactions

are considered. The terms with enhanced factors are labeled by a
wavy line.

Power behaviors in
different regions δ � MN Q δ ≈ MN Q δ � MN Q

Re[M++++,V
γ Z,11 ]/Re[M++++,V

Z,1 ] αe
MN Q

δ
���

αe αe

Re[M++++,A
γ Z,13 ]/Re[M++++,A

Z,3 ] αe
MN
Q
��

αe
MN
Q
��

αe
M2

N
δ

��

Re[M+++−,V
γ Z,11 ]/Re[M+++−,V

Z,1 ] αe αe αe

Re[MA,+++−
γ Z,13 ]/Re[MA,+++−

Z,3 ] αe
MN
Q
��

αe
MN
Q
��

αe
δ

Q2
�

Re[M++−−,V
γ Z,11 ]/Re[M++−−,V

Z,1 ] αe αe αe

Re[MA,++−−
γ Z,13 ]/Re[MA,++−−

Z,3 ] αe αe αe

important observations suggest that, although the naive power
counting rules for the imaginary parts are not upheld, there are
still regular power rules governing the imaginary parts of the
contributions.

Due to these power behaviors, we conclude that in the
low-energy regions where the radiative corrections are not
strongly enhanced, the imaginary parts are reliable when both
the LO and the NLO interactions are included. This also
means that the corresponding real parts are reliable since the
real and imaginary parts obtained in our calculation obey the
DRs. The power behaviors of the imaginary parts also suggest
a systematic way to estimate the γ Z-exchange contributions
to higher orders of low energy: one can take the effective

TABLE X. The power behaviors of Im[M±±±±,X
γ Z, jk ]/

Re[M±±±±,X
γ Z,1n ] in different regions, where the contributions at

the same order are labeled by a wavy line.

Power behaviors in
different regions δ � MN Q δ ≈ MN Q δ � MN Q

Im[M++++,V
γ Z,12 ]/Im[M++++,V

γ Z,11 ] Q2

δ
�

Q
MN

δ

M2
N

Im[M++++,V
γ Z,21 ]/Im[M++++,V

γ Z,11 ] Q2

δ
�

Q
MN

δ

M2
N

Im[M++++,V
γ Z,22 ]/Im[M++++,V

γ Z,11 ] Q3

MN δ

Q2

M2
N

δ2

M4
N

Im[M++++,A
γ Z,23 ]/Im[M++++,A

γ Z,13 ] 1∼ 1∼ 1∼
Im[M+++−,V

γ Z,12 ]/Im[M+++−,V
Z,11 ] Q

MN

Q
MN

δ

M2
N

Im[M+++−,V
γ Z,21 ]/Im[M+++−,V

Z,11 ] Q
MN

Q
MN

δ

M2
N

Im[M+++−,V
γ Z,22 ]/Im[M+++−,V

Z,11 ] Q2

M2
N

Q2

M2
N

δ2

M4
N

Im[MA,+++−
γ Z,23 ]/Im[MA,+++−

Z,13 ] 1∼ 1∼ 1∼
Im[M++−−,V

γ Z,12 ]/Im[M++−−,V
Z,11 ] Q

MN

Q
MN

δ

M2
N

Im[M++−−,V
γ Z,12 ]/Im[M++−−,V

Z,11 ] Q
MN

Q
MN

δ

M2
N

Im[M++−−,V
γ Z,22 ]/Im[M++−−,V

Z,11 ] Q2

M2
N

Q2

M2
N

Q2

M2
N

Im[MA,++−−
γ Z,23 ]/Im[MA,++−−

Z,13 ] Q
MN

Q
MN

δ

M2
N

interactions with higher order momentum as inputs to obtain
the corresponding imaginary parts of the amplitudes and then
use the DRs to obtain the corresponding real parts. Such a
method can avoid the breakdown of the power counting rules
that occur in the real parts. Naturally, the cost is that some
unknown constants may be introduced to absorb the contribu-
tions from high energy.

C. Power behaviors of AV
γZ,i jk and AA

γZ,i jk

In Table XI, we present the power behaviors
of Re[AZ, 11V ], Re[AZ, 13A], Re[Aγ Z, 111V ], and
Re[Aγ Z, 113A], where only the LO interactions are
considered. The results clearly show that the γ Z-exchange
contribution Re[Aγ Z, 111V ] is always smaller than
the one-Z-exchange contribution Re[AZ, 11V ]. In the
region with δ ≈ MN Q or δ � MN Q, the γ Z-exchange
contribution Re[Aγ Z, 113A] is as large as the one-Z-exchange
contribution Re[AZ, 13A], but it is still much smaller than
the one-Z-exchange contribution Re[AZ, 11V ] in these two
regions. Combining these properties, one can conclude that
there is no additional enhancement in the γ Z-exchange
contributions to the full APV. This is very different from
the properties of γ Z-exchange contributions to the helicity
amplitudes or the coefficients.

In Table XII, we present the power behaviors
of the ratios Im[Aγ Z, i jkV ]/Im[Aγ Z, 111V ] and
Im[Aγ Z, i jkA]/Im[Aγ Z, 113A]. The results show that
only the contributions Im[Aγ Z, 123A] and Im[Aγ Z, 213A]
are at the same order as the contribution Im[Aγ Z, 113A], and
other contributions from the NLO interactions are always
smaller than those from the LO interactions. This means that
the naive power counting rules for APV are broken in some
cases, and the contributions from the NLO interactions should
be considered.

VI. APPLICATION

As an application, one can directly apply the above results
to discuss the γ Z-exchange contributions for the upcoming
P2 experiment with Q2 = 0.0045 GeV2 and Ee = 0.155 GeV.
Since the terms AV

γ Z,122 and AV
γ Z,222 contain UV divergences

and should be absorbed by certain contact terms, we neglect
them in the current analysis. By taking the IR scale μIR =
1 GeV, the finite parts of the analytical expressions for APV

give the following results:

�V,LO
γ Z (P2) = 10−4 × gA

e

σ

(
257.245F 2

1 g1 + 8.350F 2
1 g2

+ 14.711F1F2g1 + 4.099F 2
2 g1 + 4.099F2F1g2

)
,

�A,LO
γ Z (P2) = 10−4 × gV

e

σ

(
414.330F 2

1

+ 418.543F1F2 − 0.156F 2
2

)
g3, (29)

where we have used gi and gV,A
e while not ḡi and ḡV,A

e to express
the results, and the terms with 1

ε̃IR
have been neglected.
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TABLE XI. The power behaviors of Re[AV
Z,11], Re[AA

Z,13], Re[AV
γ Z,111], and Re[AA

γ Z,113], where only the LO interactions are considered.
The relative enhanced terms are labeled by a wavy line.

Power

behavior δ � Q3/MN Q3/MN � δ � MN Q δ ≈ MN Q δ � MN Q

Re[AV
Z,11] M2

N Q6 M3
N Q3δ M4

N Q4 M2
N Q2δ2

Re[AV
γ Z,111] αeM3

N Q3δ αeM3
N Q3δ αeM4

N Q4 αeM2
N Q2δ2

Re[AA
Z,13] M3

N Q5 M3
N Q5 M3

N Q5 M2
N Q4δ

Re[AA
γ Z,113] αeM3

N Q5 αeM3
N Q5 αeM4

N Q4

����
αeM2

N Q2δ2

������

For comparison, the direct numeric calculation of the full
expressions gives the following results:

�V
γ Z (P2) = 10−4 × gA

e

σ

(
230.269F 2

1 g1 + 7.582F 2
1 g2

+ 13.928F1F2g1 + 4.090F 2
2 g1 + 4.394F2F1g2

)
,

�A
γ Z (P2) = 10−4 × gV

e

σ

(
410.700F 2

1

+ 410.961F1F2 − 0.115F 2
2

)
g3. (30)

We can observe that there is about 10% difference between
�V,LO

γ Z and �V
γ Z , this is natural and acceptable, since for P2

experiment, the corresponding δ is about 0.45GeV2 which is
not a small value.

VII. CONCLUSION

In summary, the full results reveal many interesting and
important properties of the γ Z-exchange contributions at the
amplitude level, which are not evident in the contributions
to the physical quantity APV. Our findings suggest that when
Q and δ approach 0 independently, it is important to care-
fully consider the γ Z-exchange contributions. Specifically,

TABLE XII. The power behaviors of Im[AV
γ Z,i jk]/Im[AV

γ Z,111]
and Im[AA

γ Z,i jk]/Im[AA
γ Z,113] in different regions.

Power behaviors δ � MN Q δ ≈ MN Q δ � MN Q

Im[AV
γ Z,112]/Im[AV

γ Z,111] Q3

MN δ

Q2

M2
N

δ2

M4
N

Im[AV
γ Z,121]/Im[AV

γ Z,111] Q3

MN δ

Q2

M2
N

δ2

M4
N

Im[AV
γ Z,122]/Im[AV

γ Z,111] Q2

M2
N

Q2

M2
N

δ2

M4
N

Im[AV
γ Z,211]/Im[AV

γ Z,111] Q3

MN δ

Q2

M2
N

Q2

M2
N

Im[AV
γ Z,212]/Im[AV

γ Z,111] Q3

MN δ

Q2

M2
N

Q2

M2
N

Im[AV
γ Z,221]/Im[AV

γ Z,111] Q3

MN δ

Q2

M2
N

Q2

M2
N

Im[AV
γ Z,222]/Im[AV

γ Z,111] Q4

M2
N δ

Q3

M3
N

Q2δ

M4
N

Im[AA
γ Z,123]/Im[AA

γ Z,113] δ

MN Q 1 1

Im[AA
γ Z,213]/Im[AA

γ Z,113] 1 1
M2

N Q2

δ2

Im[AA
γ Z,223]/Im[AA

γ Z,113] Q
MN

Q
MN

Q2

δ

to estimate the γ Z-exchange contributions, both the LO and
NLO interactions should be included, which goes beyond the
naive power counting rules. Additionally, in the region with
αe � Q/MN ∼ δ/M2

N � 1, our results can be applied to esti-
mate the γ Z-exchange contributions to any related physical
quantities. However, outside this region, for some helicity
amplitudes, the higher-order radiative contributions should
be considered and summed. For the full physical quantity
APV, the expressions can be applied in a wider region with
(Q/MN � 1) ∩ (δ/M2

N � 1). Finally, for the imaginary parts,
although some contributions from the NLO interactions are
not suppressed by the factor Q/MN , the contributions with
more higher-order interactions are suppressed. As a result, the
corresponding real parts can be estimated order by order at
the low energy scale via the DRs, and the imaginary parts by
the effective interactions.
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APPENDIX A: EXPRESSIONS FOR CX,LO
γZ,i jk

The nonzero LO contributions, Re[CV,LO
γ Z,i jk] and Re[CA,LO

γ Z,i jk],
can be expressed as

Re
[
CV,LO

γ Z,111

] = − αe

πM2
Z

2MN Q + δ

Q2

×
[

5

4
+ 3 log

MZ

MN
+ Q2

2MN Q + δ
RIR

]
,

Re
[
CV,LO

γ Z,112

] = − αe

πM2
Z

2MN Q + δ

Q2

[
1

2
+ 2 log

MZ

MN

]
,

Re
[
CV,LO

γ Z,121

] = Re
[
CV,LO

γ Z,112],

Re
[
CV,LO

γ Z,122

] = αe

πM2
Z

2MN Q + δ

Q2

×
[

1

4
+ 9M2

Z

16M2
N

− log
MZ

MN
+ 3M2

Z

8M2
N

RUV

]
,
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Re
[
CV,LO

γ Z,211

] = − αe

πM2
Z

Q

MN

×
[

1

4
log

ν + Q2

ν − Q2
+ 2MN Q + δ

8M2
N

log
4M4

N

ν2 − Q4

]
,

Re
[
CV,LO

γ Z,212] = − αe

πM2
Z

Q

MN

×
[

1

2
π2 + 7

8
log

ν + Q2

ν − Q2
+ 1

2
RIR

]
,

Re
[
CV,LO

γ Z,221

] = αe

πM2
Z

Q

MN

×
[

1

8
log

ν + Q2

ν − Q2
− 2MN Q + δ

16M2
N

log
4M4

N

ν2 − Q4

]
,

Re
[
CV,LO

γ Z,222

] = αe

πM4
Z

Q(2MN Q + δ)

144MN

[
7 − 12 log

MZ

MN

]
,

Re
[
CV,LO

γ Z,311

] = αe

πM2
Z

MN

Q

[
5

4
+ 3 log

MZ

MN

]
,

Re
[
CV,LO

γ Z,312

] = αe

πM2
Z

MN

Q

[
1

2
+ 2 log

MZ

MN

]
,

Re
[
CV,LO

γ Z,321

] = Re
[
CV,LO

γ Z,312],

Re
[
CV,LO

γ Z,322

] = − αe

πM2
Z

MN

Q

×
[

1

4
+ 9M2

Z

16M2
N

− log
MZ

MN
+ 3M2

Z

8M2
N

RUV

]
, (A1)

and

Re
[
CA,LO

γ Z,113

] = − αe

πM2
Z

2MN Q + δ

Q2

×
[

9

4
+ 3 log

MZ

MN
+ Q2

2MN Q + δ
RIR

]
,

Re
[
CA,LO

γ Z,123

] = − αe

πM2
Z

2MN Q + δ

Q2

[
9

4
+ 3 log

MZ

MN

]
,

Re
[
CA,LO

γ Z,213

] = αe

πM2
Z

MN

Q

[
9

2
+ 6 log

MZ

MN

]
,

Re
[
CA,LO

γ Z,223

] = Re
[
CA,LO

γ Z,213

]
,

Re
[
CA,LO

γ Z,313

] = αe

πM2
Z

MN

Q

[
9

4
+ 3 log

MZ

MN

]
,

Re
[
CA,LO

γ Z,323

] = Re
[
CA,LO

γ Z,313

]
, (A2)

where αe is the fine structure constant and

RIR = log
ν + Q2

ν − Q2

(
log

4M2
N μ̄2

IR

ν2 − Q4
+ 1

ε̃IR

)
,

RUV = log
μ̄2

UV

M2
Z

+ 1

ε̃UV
,

1

ε̃IR,UV
= 1

εIR,UV
− γE + ln 4π. (A3)

We would like to mention that the nonzero NLO contributions
are also present in Re[CV,LO

γ Z,211] and Re[CV,LO
γ Z,221] due to the

small factor log ν+Q2

ν−Q2 in the LO contributions. At first glance,

the form of Re[CV,LO
γ Z,212] appears significantly different from

the other terms. However, in our practical calculations, we
have verified this form using independent numerical results
obtained from the LoopTools package, and we have found that
the two results are consistent.

The nonzero LO contributions Im[CV,LO
γ Z,i jk] and Im[CA,LO

γ Z,i jk]
are expressed as

Im
[
CV,LO

γ Z,111

] = − αe

M2
Z

[
(4MN Q + δ)δ

4M2
N Q2

− IIR

]
,

Im
[
CV,LO

γ Z,112

] = − αe

M2
Z

(2MN Q + δ)2

8M2
N Q2

,

Im
[
CV,LO

γ Z,121

] = Im
[
CV,LO

γ Z,112

]
,

Im
[
CV,LO

γ Z,122

] = − αe

M2
Z

(MN Q + δ)(2MN Q + δ)(3MN Q + δ)

16M4
N Q2

,

Im
[
CV,LO

γ Z,211

] = αe

M2
Z

Q

4MN
,

Im
[
CV,LO

γ Z,212

] = αe

M2
Z

Q

8MN
[7 + 4IIR],

Im
[
CV,LO

γ Z,221

] = − αe

M2
Z

Q

8MN
,

Im
[
CV,LO

γ Z,222

] = − αe

M4
Z

Q(2MN Q + δ)3

192M5
N

,

Im
[
CV,LO

γ Z,311

] = αe

M2
Z

2MN Q + δ

4MN Q
,

Im
[
CV,LO

γ Z,312

] = αe

M2
Z

2MN Q + δ

8MN Q
,

Im
[
CV,LO

γ Z,321

] = Im
[
CV,LO

γ Z,312

]
,

Im
[
CV,LO

γ Z,322

] = αe

M2
Z

(MN Q + δ)(3MN Q + δ)

16M3
N Q

, (A4)

and

Im
[
CA,LO

γ Z,113

] = αe

M2
Z

[
−2M2

N Q2 + 4MN Qδ + δ2

2M2
N Q2

+ IIR

]
,

Im
[
CA,LO

γ Z,123

] = − αe

M2
Z

(2MN Q + δ)2

2M2
N Q2

,

Im
[
CA,LO

γ Z,213

] = αe

M2
Z

2MN Q + δ

MN Q
,

Im
[
CA,LO

γ Z,223

] = Im
[
CA,LO

γ Z,213

]
,

Im
[
CA,LO

γ Z,313

] = αe

M2
Z

2MN Q + δ

2MN Q
,

Im
[
CA,LO

γ Z,323

] = Im
[
CA,LO

γ Z,313

]
(A5)

with

IIR ≡ 2 log
2MN μ̄IR

ν + Q2
+ 1

ε̃IR
. (A6)
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APPENDIX B: EXPRESSIONS FOR M±±±±,X,LO
γZ, jk

The nonzero LO contributions M++++,V,LO
γ Z, jk and M++++,A,LO

γ Z, j3 are expressed as

Re
[
M++++,V,LO

γ Z,11

] = αeh

4π

[(
8M2

N Q2 + z2
)(

5 + 12 log
MZ

MN

)
+ 4z2

(
π2 + log

ν + Q2

ν − Q2
+ RIR

)]
,

Re
[
M++++,V,LO

γ Z,12

] = αeh

2π

[(
8M2

N Q2 + z2
)(

1 + 4 log
MZ

MN

)
+ 4(2MN Q + δ)Q2RIR

]
,

Re
[
M++++,V,LO

γ Z,21

] = αeh

2π

(
8M2

N Q2 + z2
)(

1 + 4 log
MZ

MN

)
,

Re
[
M++++,V,LO

γ Z,22

] = − αeh

16π

(
8M2

N Q2 + z2)[4 + 9M2
Z

M2
N

− 16 log
MZ

MN
+ 6M2

Z

M2
N

RUV

]
,

Re
[
M++++,A,LO

γ Z,13

] = αeh

π

[
6M2

N (2MN Q + δ)

(
3 + 4 log

MZ

MN

)
+ (

8M2
N Q2 + z2)RIR

]
,

Re
[
M++++,A,LO

γ Z,23

] = 6αeh

π
M2

N (2MN Q + δ)

(
3 + 4 log

MZ

MN

)
, (B1)

and

Im
[
M++++,V,LO

γ Z,11

] = −αehz2[1 + IIR],

Im
[
M++++,V,LO

γ Z,12

] = −αeh
2MN Q + δ

8M2
N

[(
20M2

N Q2 − z2
) + 16M2

N Q2IIR
]
,

Im
[
M++++,V,LO

γ Z,21

] = αeh
2MN Q + δ

8M2
N

(
12M2

N Q2 + z2
)
,

Im
[
M++++,V,LO

γ Z,22

] = αeh
(2MN Q + δ)2

32M4
N

(
12M2

N Q2 + 5z2
)
,

Im
[
M++++,A,LO

γ Z,13

] = αeh
[(

8M2
N Q2 + 3z2) − (

8M2
N Q2 + z2)IIR

]
,

Im
[
M++++,A,LO

γ Z,23

] = 4αeh(2MN Q + δ)2. (B2)

The nonzero LO contributions M+++−,V,LO
γ Z, jk and M+++−,A,LO

γ Z, j3 are expressed as follows:

Re
[
M+++−,V,LO

γ Z,11

] = −αehz

2π
MN Q

[
4π2 − 5 + 4 log

M3
N (ν + Q2)

M3
Z (ν − Q2)

+ 4RIR

]
Re

[
M+++−,V,LO

γ Z,12

] = αehz

π
MN Q

[
1 + 4 log

MZ

MN
+ 2MN Q + δ

2MN
RIR

]
,

Re
[
M+++−,V,LO

γ Z,21

] = αehz

π
MN Q

[
1 + 4 log

MZ

MN

]
,

Re
[
M+++−,V,LO

γ Z,22

] = −αehz

8π
MN Q

[
4 + 9M2

Z

M2
N

− 16 log
MZ

MN
+ 6M2

Z

M2
N

RUV

]
,

Re
[
M+++−,A,LO

γ Z,13

] = −3αehz

π

MN (2MN Q + δ)

Q

[
3 + 4 log

MZ

MN
+ 2

3

Q2

2MN Q + δ
RIR

]
,

Re
[
M+++−,A,LO

γ Z,23

] = −3αehz

π

MN (2MN Q + δ)

Q

[
3 + 4 log

MZ

MN

]
, (B3)

and

Im
[
M+++−,V,LO

γ Z,11

] = 2αehzMN Q
[
1 + IIR

]
,

Im
[
M+++−,V,LO

γ Z,12

] = −αehz
(2MN Q + δ)Q

8MN
[5 + 4IIR],

Im
[
M+++−,V,LO

γ Z,21

] = 3αehz
(2MN Q + δ)Q

8MN
,
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Im
[
M+++−,V,LO

γ Z,22

] = −αehz
(2MN Q + δ)2Q

16M3
N

,

Im
[
M+++−,A,LO

γ Z,13

] = −2αehz
(3MN Q + δ)(MN Q + δ)

MN Q

[
1 − M2

N Q2

(3MN Q + δ)(MN Q + δ)
IIR

]
,

Im
[
M+++−,A,LO

γ Z,23

] = −2αehz
(2MN Q + δ)2

MN Q
. (B4)

The nonzero LO contributions M++−−,V,LO
γ Z, jk and M++−−,A,LO

γ Z, j3 are expressed as

Re
[
M++−−,V,LO

γ Z,11

] = αe

4π
hz2

[
4π2 − 5 + 4 log

M3
N (ν + Q2)

M3
Z (ν − Q2)

+ 4RIR

]
,

Re
[
M++−−,V,LO

γ Z,12

] = − αe

2π
hz2

[
1 + 4 log

MZ

MN

]
,

Re
[
M++−−,V,LO

γ Z,21

] = Re
[
M++−−,V,LO

γ Z,12

]
,

Re
[
M++−−,V,LO

γ Z,22

] = αe

16π
hz2

[
4 + 9M2

Z

M2
N

− 16 log
MZ

MN
+ 6M2

Z

M2
N

RUV

]
,

Re
[
M++−−,A,LO

γ Z,13

] = − αe

4π
hz2

[
4π2 − 9 + 4 log

M3
N (ν + Q2)

M3
Z (ν − Q2)

+ 4RIR

]
,

Re
[
M++−−,A,LO

γ Z,23

] = 3αe

4π
hz2

[
3 + 4 log

MZ

MN

]
, (B5)

and

Im
[
M++−−,V,LO

γ Z,11

] = −αehz2[1 + IIR],

Im
[
M++−−,V,LO

γ Z,12

] = −αehz2 (2MN Q + δ)

8M2
N

,

Im
[
M++−−,V,LO

γ Z,21

] = Im
[
M++−−,V,LO

γ Z,12

]
,

Im
[
M++−−,V,LO

γ Z,22

] = αehz2 (2MN Q + δ)2

32M4
N

,

Im
[
M++−−,A,LO

γ Z,13

] = −Im
[
M++−−,V,LO

γ Z,11

]
,

Im
[
M++−−,A,LO

γ Z,23

] = −Im
[
M++−−,V,LO

γ Z,12

]
. (B6)

APPENDIX C: EXPRESSIONS FOR AX,LO
γZ,i jk

The nonzero LO contributions Re[AX,LO
γ Z,i jk] are expressed as follows:

Re
[
AV,LO

γ Z,111

] = − 8αe

πM2
Z

M2
N Q2z2

[
π2 + log

ν + Q2

ν − Q2
+ RIR

]
,

Re
[
AV,LO

γ Z,112

] = − 2αe

πM2
Z

Q2

[
(2MN Q + δ)3 + 16M2

N Q2(2MN Q + δ) log
MZ

MN
+ 8M2

N Q4RIR

]
,

Re
[
AV,LO

γ Z,121

] = − 2αe

πM2
Z

Q2(2MN Q + δ)

[
(2MN Q + δ)2 + 16M2

N Q2 log
MZ

MN

]
,

Re
[
AV,LO

γ Z,122

] = αe

2πM2
Z

Q2(2MN Q + δ)

[
2
(
4M2

N + 9M2
Z

)
Q2 − 7z2 − 4

(
8M2

N Q2 + z2
)

log
MZ

MN
+ 12M2

Z Q2RUV

]
,

Re
[
AV,LO

γ Z,211

] = − 4αe

πM2
Z

M2
N Q4(2MN Q + δ)

[
5 + 12 log

MZ

MN
+ 4Q2

2MN Q + δ
RIR

]
,

Re
[
AV,LO

γ Z,212

] = − 2αe

πM2
Z

Q4

[
4M2

N (2MN Q + δ)

(
1 + 4 log

MZ

MN

)
+ (

8M2
N Q2 + z2)RIR

]
,

035501-14



γ Z-EXCHANGE CONTRIBUTIONS IN … PHYSICAL REVIEW C 108, 035501 (2023)

Re
[
AV,LO

γ Z,221

] = − 8αe

πM2
Z

M2
N Q4(2MN Q + δ)

(
1 + 4 log

MZ

MN

)
,

Re
[
AV,LO

γ Z,222

] = αe

πM2
Z

Q4(2MN Q + δ)

[
4M2

N + 9M2
Z − 16M2

N log
MZ

MN
+ 6M2

Z RUV

]
,

Re
[
AA,LO

γ Z,113

] = − 2αe

πM2
Z

M2
N Q2

[
3z2(3 + 4 log

MZ

MN
) + 8Q2(2MN Q + δ)RIR

]
,

Re
[
AA,LO

γ Z,123

] = − 6αe

πM2
Z

M2
N Q2z2(3 + 4 log

MZ

MN
),

Re
[
AA,LO

γ Z,213

] = − 16αe

πM2
Z

M2
N Q4(2MN Q + δ)

[
π2 + log

ν + Q2

ν − Q2
+ RIR

]
,

Re
[
AA,LO

γ Z,223

] = − αe

2πM2
Z

Q4

[
8M2

N Q2(3 + 10 log 2) + 2z2(−5 + 11 log 2)

+8
(
4M2

N Q2 − z2
)

log
MZ

MN
+ (

40M2
N Q2 + 11z2

)
log

M4
N

ν2 − Q4

]
. (C1)
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