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1 Introduction and summary

The critical O(N) vector models are arguably the most thoroughly studied class of 3D Con-
formal Field Theories (CFTs). They can be described by Euclidean field theory of N scalar
fields ϕI with the quartic O(N) invariant interactions. While these CFTs do not appear to
be exactly solvable, there is a variety of approximation methods available for them, includ-
ing the 4−ϵ expansion [1] and the Conformal Bootstrap [2, 3] (for excellent reviews, old and
new, see [4–6]). Another useful tool is the 1/N expansion, which can be carried out in con-
tinuous dimension D [7, 8]. This expansion is related [9] via the AdS/CFT correspondence
to the higher-spin quantum gravity in the D + 1 dimensional Anti-de Sitter space [10, 11].

It is of obvious interest to study the O(N) models on spaces with boundaries, as
well as the closely related problem of introducing interfaces, i.e. codimension-one defects.
Research on the critical behavior in such systems dates back many years [12–16] and is
reviewed in [17]. More recent results on the various boundary universality classes (called
“special”, “ordinary”, and “extraordinary”) were obtained in [18, 19]. In particular, the
“extraordinary” critical interfaces and boundaries break the O(N) symmetry to O(N − 1).
For N > 1 and D > 3, this universality class is believed to be equivalent to the “normal”
universality class obtained via explicit symmetry breaking on the boundary [17]. While
the extraordinary universality class for boundaries or interfaces was known to exist in bulk
dimension greater than 3, it was not completely clear what happens to it for D = 3. During
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the past three years, this problem was revisited in papers [20–23]. Using a combination of
Renormalization Group (RG) analysis and 1/N expansion, they demonstrated the existence
of the 3D “extraordinary log” universality class. For boundaries, this class exists only for
N smaller than a critical value which is above 3 [20–22], but for the interfaces it appears
to exist for all N [23].

In recent papers [24–27], another approach to the surface defect was used where the
bulk was taken to have continuous dimension D. In D = 4 − ϵ, the quadratic operators
on the defect are nearly marginal, so that the defect beta function can be calculated
perturbatively. The papers [24, 25] also contain perturbative analyses in D = 6− ϵ where
the bulk O(N) model is defined by the cubic action [28]. Here the surface defects, either
ordinary or extraordinary, correspond to turning on the nearly marginal operators that are
linear in the fields. The papers [24–26] also studied the 1/N expansion in presence of a
surface defect and found that it becomes singular as D approaches 3 from above.

In this paper, we will use a different way to formulate a symmetry breaking defect via
the 4− ϵ expansion: instead of 2, we will take the defect dimension to be d = D−1 = 3− ϵ,
so that it is always of codimension 1. We will turn on cubic interactions localized on the
interface or boundary, which are nearly marginal for D = 4− ϵ. It is not hard to see that
they can preserve at most the O(N −1) symmetry, in which case they assume the form [28]

1
2λ1ϕN

N−1∑
a=1

ϕaϕa + 1
6λ2ϕ3

N . (1.1)

The explicit breaking of O(N) to O(N − 1) by the cubic terms is analogous to the explicit
breaking by the linear term on the extraordinary surface defect in D = 6−ϵ [19, 24, 25]. The
standard formulation of the normal transition in D = 4− ϵ includes such a linear term, but
we have fine-tuned it, as well as some other relevant operators, to zero. Thus, our approach
appears to describe a multicritical version of the normal (extraordinary) transition.

We will derive the beta functions for the interface coupling constants λ1 and λ2 that
include the effects of the quartic bulk interactions.1 Our analysis of interface fixed points
in D = 4− ϵ reveals the existence of real fixed points only up to a critical value of N . We
find Ncrit ≈ 7.1274, which is similar to the upper critical value Ncrit = 10 found in [24–26]
for the extraordinary surface defect. For N > 4 there are IR stable fixed points with purely
imaginary values of the cubic couplings λ1, λ2. In this case, the path integral appears to
be well defined, but the theories are not expected to be unitary. Interestingly, for the
boundary case, where the beta functions are similar to the interface ones but have different
coefficients, we find that there are real fixed points for all N . In both the interface and
the boundary cases, we find that the leading contribution to the VEV of the bulk field ϕN

arises at the two-loop level and is of order ϵ3/2.
We also consider the theories of M pairs of symplectic fermions and one real scalar

with quartic OSp(1|2M) invariant interactions in the bulk. They may be regarded as
continuations of the O(N) models to odd negative values of N , i.e. N = 1− 2M . Here we

1A codimension-one defect or boundary with the nearly marginal quartic interactions can be introduced
into the 3 − ϵ dimensional O(N) model with sextic interactions [29, 30].
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also find real fixed points for the cubic interactions localized on the interfaces or boundaries.
In the special case M = 1, we find that some fixed points preserve the OSp(1|2) symmetry
while others violate it.

This paper is organized as follows. In section 2, we define the model with cubic
interactions on an interface and compute the corresponding one-loop beta functions. In
section 3, we then study the fixed points of both free and interacting bulk theories in a
D = 4−ϵ expansion before computing in section 4 the dimensions of quadratic operators at
the fixed points. In section 5, we study the case of an interface in a model with symplectic
fermions. Then, in section 6, we compare the previous results with the case of cubic
interactions on a boundary. Finally, some exotic large N limits are discussed in appendix A.

2 Cubic interactions localized at the interface

We consider the O(N) vector model in (d+1)-dimensional Euclidean space. The coordinates
of Rd+1 are labeled by xµ = (x, y), where µ = 1, 2, · · · , d + 1, and x is a vector in Rd.
Inserting an interface with cubic interactions at y = 0, we obtain the action:

S[ϕ] =
∫

dd+1x

[1
2∂µϕI∂µϕI +

λ4
4! (ϕIϕI)2

]
+
∫

ddx
[

λ1
2 ϕN ϕaϕa + λ2

3! ϕ3
N

]
, (2.1)

where the index I is summed from 1 to N while the index a is summed from 1 to N−1. The
O(N − 1) invariant cubic interactions on the interface have the form introduced in [28]. A
reason to include the cubic interactions on the interface is that they are marginal for d = 3,
just like the quartic bulk interactions. Therefore, in d = 3 − ϵ the coupled bulk-interface
system may be studied perturbatively.2

The bulk propagator of the free theory is given by

⟨ϕI(x1)ϕJ(x2)⟩ = δIJ

∫
dd+1p

(2π)d+1
eip·x12

p2 = δIJ
Cϕ

|x12|d−1 , Cϕ =
Γ
(

d−1
2

)
4π

d+1
2

, (2.2)

where xµ
12 ≡ xµ

1 − xµ
2 . Performing Fourier transformation of the free propagator along the

interface directions yields

⟨ϕI(p1, y1)ϕJ(p2, y2)⟩ = δIJCϕ

∫
ddx1 ddx2

eip1·x1+ip2·x2(
x2

12 + y2
12
) d−1

2

= δIJ

4π
d+1

2

∫ ∞

0

ds

s
s

d−1
2 e−sy2

12

∫
ddx1 ddx2 e−sx2

12+ip1·x1+ip2·x2

= (2π)dδd(p1+p2)δIJ

4
√

π

∫ ∞

0

ds

s
3
2

e−sy2
12−

p2
1

4s

= (2π)dδd(p1+p2) δIJ
e−|p1||y12|

2|p1|
. (2.3)

2Perhaps we can also view the cubic terms on the interface as resulting from giving an expectation value
for ϕN on the interface. Then, after expanding around the vacuum where ϕN ∼ δ(y), we find the O(N − 1)
invariant localized cubic terms like those in (2.1).
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Figure 1. One-loop corrections to the cubic couplings.

By choosing y1 = 0 or y1 = y2 = 0, we obtain the free interface-to-bulk propagator in the
mixed space or free interface propagator in momentum space

KIJ(p, y) = e−|p||y|

2|p| δIJ , GIJ(p) =
δIJ

2|p| . (2.4)

2.1 One-loop renormalization

To look for fixed points, we compute β functions for all the couplings up to one loop. For
the bulk quartic coupling λ4, its β function is not affected by the interface [31]:

βλ4 = −ϵλ4 +
N + 8

3
λ2

4
(4π)2 . (2.5)

For the cubic couplings on the interface, there are two types of diagrams contributing to
their one-loop renormalization, as shown in figure 1. The diagram T only involves cubic
couplings while the diagram B involves both quartic and cubic couplings.

The one-loop corrections to λ1 and λ2 vertices are

Γ(1)
1 = −λ2

1(λ1 + λ2)IT + λ4
6 ((N + 5)λ1 + λ2) IB − δλ1 ,

Γ(1)
2 = −

(
(N − 1)λ3

1 + λ3
2

)
IT + λ4

2 ((N − 1)λ1 + 3λ2) IB − δλ2 , (2.6)

where

IT = µϵ

8

∫
ddk
(2π)d

1
|k|2|k + p| =

1
(4π)2 ϵ

+O(1) (2.7)

corresponds to the diagram T , and

IB = µϵ
∫

ddk
(2π)d

∫
R

dy

( 1
2|k|

)2
e−2(|p|+|k|)|y| = µϵ

4

∫
ddk
(2π)d

1
|k|2(|p|+ |k|) = 2

(4π)2 ϵ
+O(1)

(2.8)
corresponds to the diagram B. The evaluation of IT is based on the formula

∫
ddk
(2π)d

1
|k|2α|k + p|2β

= 1
(4π)

d
2 |p|2α+2β−d

Γ(d
2 − α)Γ(d

2 − β)Γ(α + β − d
2)

Γ(α)Γ(β)Γ(d − α − β) (2.9)
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and the evaluation of IB can be done easily after writing it as a one-dimensional integral
over |k|. In the minimal subtraction scheme, we choose the counterterms to be

δλ1 = λ4 ((N + 5)λ1 + λ2)
3(4π)2 ϵ

− λ2
1(λ1 + λ2)
(4π)2 ϵ

,

δλ2 = λ4 ((N − 1)λ1 + 3λ2)
(4π)2 ϵ

−
(
(N − 1)λ3

1 + λ3
2
)

(4π)2 ϵ
. (2.10)

Requiring µ
ϵ
2 (λ1 + δλ1) and µ

ϵ
2 (λ2 + δλ2) to be µ independent,3 we obtain the β functions

of λ1 and λ2

βλ1 = − ϵ

2λ1 −
λ2

1(λ1 + λ2)
(4π)2 + λ4 ((N + 5)λ1 + λ2)

3(4π)2 ,

βλ2 = − ϵ

2λ2 −
(
(N − 1)λ3

1 + λ3
2
)

(4π)2 + λ4 ((N − 1)λ1 + 3λ2)
(4π)2 . (2.11)

For the simplicity of notation, we make the following rescaling

g4 = λ4
(4π)2 , g1,2 = λ1,2

2π
, (2.12)

and then the β functions of these rescaled couplings can be summarized as

βg4 = −ϵg4 +
N + 8

3 g2
4 ,

βg1 = − ϵ

2g1 −
1
4 g2

1 (g1 + g2) +
1
3g4

(
(N + 5)g1 + g2

)
,

βg2 = − ϵ

2g2 −
1
4
(
(N − 1)g3

1 + g3
2

)
+ g4

(
(N − 1)g1 + 3g2

)
. (2.13)

3 Fixed points in D = 4 − ϵ

3.1 Free bulk

We first consider the fixed points with no interaction in the bulk, λ4 = 0 (this is a warm-
up to the more interesting case where we have the interacting O(N) model in the bulk,
which will be discussed in the next section). A similar model with no bulk interactions
was considered in appendix A.2 of [32], but with a boundary instead of an interface. The
one-loop beta functions are:

βg1 = − ϵ

2g1 −
1
4 g2

1 (g1 + g2) ,

βg2 = − ϵ

2g2 −
1
4
(
(N − 1)g3

1 + g3
2

)
. (3.1)

As usual for theories with cubic couplings, the solutions of the beta function equations come
in pairs: (g⋆

1, g⋆
2), (−g⋆

1,−g⋆
2). These fixed points are mapped into each other by ϕI → −ϕI ,

hence they are equivalent.
3Here we use the fact that the wavefunction renormalization of ϕI starts with λ2

4, and hence does not
contribute at the one-loop order.
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The N = 1 theory is equivalent to setting g1 = 0. Then βg2 reduces to − ϵg2
2 − g3

2
4 ,

which has two non-trivial fixed points

g⋆
2 = ±i

√
2 ϵ +O(ϵ3/2) . (3.2)

They are purely imaginary, and have the critical exponent ω = ∂βg2
∂g2

∣∣∣
g⋆

2
= ϵ. This result is

very similar to the usual bulk Yang-Lee model where a stable purely imaginary fixed point
is found in D = 6− ϵ [33].

The N = 2 case has more intricate structures. There are two pairs of non-trivial fixed
points:

(g⋆
1, g⋆

2) = (0,±i
√
2ϵ), (g⋆

1, g⋆
2) = ±(i

√
ϵ, i

√
ϵ) . (3.3)

The critical exponents4 for these two pairs of fixed points are respectively (− ϵ
2 , ϵ) and

(0, ϵ). In the first scenario, the N = 2 theory contains two decoupled copies of the N = 1
theory, at the trivial and non-trivial fixed points respectively. In the second scenario, the
N = 2 theory becomes the sum of two decoupled copies of the N = 1 theory both at the
non-trivial fixed point, because the cubic interaction is proportional to

√
2 g⋆

2
6

(
ϕ3

+ + ϕ3
−
)

with ϕ± = ϕ2±ϕ1√
2 . The critical exponent ω+ = ϵ corresponds to the slightly irrelevant cubic

operator O+ = ϕ3
+ +ϕ3

−, which has scaling dimension ∆+ = d+ω+ = 3. The other critical
component ω− = 0 corresponds to the cubic operator O− = ϕ+ϕ2

− + ϕ−ϕ2
+. It is marginal

on the interface at the one-loop order. The presence of the marginal operator is related
to the collision of a pair of purely imaginary fixed points at ∞ as N approaches 2. More
explicitly, for N = 2− δ, these fixed points go to ∞ at the rate (g⋆

1, g⋆
2) ∼ δ−

1
2 .

The scaling dimension of O− can be alternatively computed by noticing that

∆N=2
O− = ∆N=1

ϕ +∆N=1
ϕ2 (3.4)

where ∆N=1
ϕ and ∆N=1

ϕ2 denote the scaling dimensions of ϕ and ϕ2 of the N = 1 theory at
the non-trivial fixed points specified by (3.2). At the one-loop order ϕ is not renormalized,
and hence ∆N=1

ϕ = d−1
2 . For ϕ2, its anomalous dimension is computed in section 4.

More explicitly, γN=1
ϕ2 = −1

4 (g
⋆
2)

2 = ϵ
2 . Substituting this into (3.4), we obtain the scaling

dimension of O−, which indeed agrees with d + ω− = 3− ϵ.
For N > 2, the beta equations have nine solutions. One is the trivial fixed point which

is unstable. Two of them are purely imaginary with g1 = 0 and g2 = ±i
√
2ϵ, and critical

exponents (− ϵ
2 , ϵ). In this case the N − 1 scalars ϕa are completely decoupled and free,

and the scalar field ϕN has the form of the N = 1 theory. The remaining six solutions have
both couplings non-zero. We have one pair of real fixed points and two pairs of complex
conjugate fixed points. So Ncrit = 2 is the lower bound for N that admits non-trivial
real fixed points. These non-trivial real fixed points have one irrelevant and one relevant
directions. The complex fixed points have one irrelevant direction and one complex critical
exponent with positive real part.

We can analyze more precisely the solutions for both finite N and large N following
the method of [28]. We denote g1 =

√
8 ϵ x, g2 =

√
8 ϵ y and we want to solve for both x

4The critical exponents are defined as the eigenvalues of the 2 × 2 matrix
∂βgj

∂gi
evaluated at fixed points.
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and y non-zero. After some manipulation the vanishing of beta functions reduces to:

4x(x + y) + 1 = 0
−(N − 1)x3 + x2y + xy2 − y3 = 0 . (3.5)

The change of variable y = zx effectively decouples the two equations

4x2(z + 1) = −1
z3 − z2 − z + N − 1 = 0 . (3.6)

The discriminant of the cubic equation is ∆ = −(N − 2)(27N − 22) which is zero when
N = 2 and strictly negative when N > 2. For N > 2, the cubic equation thus has one real
root and two complex conjugate roots. To determine if the real root leads to real or purely
imaginary fixed points, we rewrite the cubic equation of z as (z+1)(z−1)2 = 2−N , which
immediately implies that the real solution satisfies z + 1 < 0 when N > 2. Therefore, x

and y are also real at this point. In addition, the relations (3.6) allow us to express ∂βgj

∂gi

only in terms of z at fixed points

∂βgj

∂gi
= ϵ

2(z + 1)

 z + 2 1
3z(z + 1− z2) 3z2 − (z + 1)

 , (3.7)

which leads to the following critical exponents at the one-loop level

ω+ = ϵ, ω− = (z − 1)(3z + 1)
2(z + 1) ϵ . (3.8)

The first critical exponent implies that there is always a slightly irrelevant operator O+ of
scaling dimension ∆+ = 3 for any N at all fixed points. The second critical exponent is
negative at the real fixed points since z < −1, corresponding to a relevant operator, and
complex at the complex fixed points, satisfying Re(ω−) > 0.

3.2 Interacting bulk

For the interacting theory in the bulk, we tune the quartic coupling to the usual Wilson-
Fisher fixed point in 4− ϵ dimension:

g⋆
4 = 3ϵ

N + 8 +O(ϵ2) . (3.9)

Substituting this value into the other one-loop beta functions, we find that they become

βg1 = ϵ(N + 2)
2(N + 8)g1 +

ϵ

N + 8g2 −
1
4 g2

1 (g1 + g2) ,

βg2 = ϵ(10− N)
2(N + 8) g2 +

3ϵ(N − 1)
N + 8 g1 −

1
4
(
(N − 1)g3

1 + g3
2
)

. (3.10)

This is different from the beta functions (3.1) for the case of the free bulk, and therefore
the structure of fixed points is quite different.

– 7 –
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When N = 1, this leads to the following beta function for g2

N = 1 : βg2 = ϵ

2g2 −
1
4g3

2 . (3.11)

In contrast to the free case, βg2 now has a pair of real non-trivial fixed points for the cubic
coupling g2:

g⋆
2 = ±

√
2 ϵ +O(ϵ3/2) . (3.12)

Thus, unlike in the free bulk case, the theory at the fixed point appears to be unitary.5

They have the critical exponent ω2 = −ϵ, which means that the cubic operator ϕ3 is slightly
relevant with scaling dimension ∆ϕ3 = 3− 2ϵ at these fixed points.

To solve for the fixed points for N ≥ 2, we make the same substitution as before, i.e.
g1 =

√
8 ϵ x, g2 =

√
8 ϵ y, which yields

Nx + 2(x + y) = 4(N + 8)x2(x + y),

6(N − 1)x − (N − 10)y = 4(N + 8)
(
(N − 1)x3 + y3

)
. (3.13)

From (3.13), we obtain a quartic equation of z = y
x

PN (z) ≡ 2z4 + (N + 2)z3 + (N − 10)z2 − 3(N + 2)z + (N − 1)(N − 4) = 0 , (3.14)

and x is related to z by
x2 = 1

4(N + 8)

(
N

1 + z
+ 2

)
. (3.15)

We plot the discriminant ∆(N) of the quartic polynomial PN (z) in figure 2. ∆(N) is
positive for 2 ≤ N ≤ 7, meaning that (3.14) has four different real roots in this region. It
is negative for N ≥ 8 and hence (3.14) has two real roots and two complex roots that are
conjugate of each other. Increasing N from 7 to 8, two out of the four real roots of PN (z)
collide as N approaches the critical value Ncrit ≈ 7.1274 where the discriminant vanishes,
and subsequently go off to the complex z plane.

In general, each complex z gives rise to a pair of complex fixed points, and each real
z gives rise to either a pair of real fixed points or a pair of purely imaginary fixed points,
depending on the sign of N

1+z +2, cf. (3.15). There exists another critical value N ′
crit of N ,

such that N
1+z + 2 < 0 when N > N ′

crit and N
1+z + 2 > 0 when N < N ′

crit, at some real root
z of PN (z) = 0. The critical value N ′

crit is fixed by requiring

PN ′
crit

(
−N ′

crit + 2
2

)
= 1

4N ′
crit(N ′

crit − 4)(N ′
crit + 8) = 0 . (3.16)

The relevant solution for us is N ′
crit = 4. When N approaches 4 from below, a pair of

real fixed points collide and annihilate each other, leading to a cubic marginal operator
at N = 4. After N crosses 4, the two real fixed points reappear with purely imaginary x

and y. In total, for a generic positive integer N the beta functions have nine fixed points
5One may be concerned about an instability associated with the value of ϕ running off to infinity on the

defect, but we expect it to be alleviated by the presence of the quartic potential in the bulk.
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Figure 2. The discriminant (rescaled by 10−6) of the quartic equation (3.14). It vanishes at the
critical value Ncrit ≈ 7.1274.

including the trivial one, except two special cases, i.e. N = 4 and N = 2. The former, as
just discussed, corresponds to a pair of real fixed points merging into the trivial one. In the
latter case, (3.14) has the solution z = −1, or equivalently x = −y. Plugging it into the
first line of (3.13) then yields the trivial fixed point x = y = 0. Altogether, when N = 2
or 4, there are only seven fixed points in total.

For N = 2, all the fixed points are real. For N = 3 and 4, there is a pair of purely imag-
inary fixed points, and the rest are real. For 5 ≤ N ≤ 7, there are two pairs of purely imag-
inary fixed points, and two pairs of non-trivial real fixed points. For N ≥ 8, as we discussed
above, the two pairs of real fixed points become complex, leaving only one real fixed point,
i.e. the trivial one. Our results are reminiscent of those in [24–26] where an upper bound
Ncrit = 10 was found for the existence of non-trivial real fixed points for the surface defects
breaking O(N) to O(N−1). However, the physics of our fixed points may be different: since
we have to fine-tune several relevant operators (including the quadratic ones), we seem to
have a multi-critical version of the normal (extraordinary) universality class. Altogether,
the numbers of real/imaginary/complex non-trivial fixed points for each N are summarized
in table 1. We also plot RG flows between all the real fixed points for 2 ≤ N ≤ 7 in figure 3.

These real fixed points always have at least one relevant direction which makes them
unstable. The RG flow from these fixed points typically reaches large positive or negative
values of the coupling constants so that the perturbation theory loses its validity. Since we
interpreted these fixed points as multi-critical versions of the normal universality classes,
we expect that there should be flows from them to the usual normal transitions. We leave
a study of such RG flows to future work.

For N ≥ 8 there are no real fixed points, but there are IR stable fixed points with
purely imaginary values of g1 and g2.6 For example, for N = 8 we find a pair of purely
imaginary fixed points

(g⋆
1, g⋆

2) ≈ ±i
√

ϵ (0.250457,−1.05133) (3.17)

with positive critical exponents ω+ ≈ 1.048ϵ and ω− ≈ 0.07137ϵ. While such theories are
expected to be non-unitary, the path integral is well-defined.

6Such fixed points appear when N becomes larger than 4.
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N = 2 N = 3 N = 4 5 ≤ N ≤ 7 N ≥ 8
Real 6 6 4 4 0

Imaginary 0 2 2 4 4
Complex 0 0 0 0 4

Table 1. The number of non-trivial fixed points of each type for all integer N ≥ 2 in the interface
case.
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(b) N = 3.
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(c) N = 4.
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(d) N = 5.
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(e) N = 6.
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(f) N = 7.

Figure 3. The real fixed points and RG flows in the x−y plane for 2 ≤ N ≤ 7. The black dot
denotes the trivial interface fixed points and the red dots denote the non-trivial ones.

For large N , we can develop a 1/N expansion for these stable imaginary fixed points.
More explicitly, we first solve the quartic equation PN (z) = 0. At the leading order in
the large N limit, PN (z) = 0 reduces to either Nz3 + N2 = 0 or 2z4 + Nz3 = 0. The
first case includes a pair of unstable imaginary fixed points, and two pairs of complex fixed
points, all of which have exotic large N behaviors. We will study them more carefully in
appendix A. Here we will only focus on the second case, which has a non-trivial solution
z = −N

2 . In other words, PN (z) has a solution z⋆(N) = −N
2 + · · · , where · · · denotes 1/N

corrections. We compute these corrections up to N−4:

z⋆(N) = −N

2 − 8
N2 + 112

N3 +O
(
N−4

)
. (3.18)
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Figure 4. The two-loop diagram contributing to the VEV of ϕN .

This solution leads to a pair of purely imaginary fixed points via (3.15)

x⋆(N) = ±i

( 1
N

− 3
N2

)
+O

(
N−3

)
,

y⋆(N) = ∓i

(1
2 − 3

2N
+ 35

4N2

)
+O

(
N−3

)
, (3.19)

with positive critical exponents

ω+ = ϵ

(
1 + 6

N
− 216

N2 · · ·
)

,

ω− = ϵ

(1
2 − 11

N
+ 252

N2 · · ·
)

. (3.20)

These two fixed points are thus stable in the IR.
The usual normal (extraordinary) transition in d = 3−ϵ is characterized by the vacuum

expectation value of the bulk operator behaving as ⟨ϕN (y)⟩ ∼ ϵ−1/2|y|−1 [18, 19]. At the
fixed points we have found, there is a contribution to the VEV which originates from
the two-loop diagrams with the topology shown in figure 4. We compute these diagrams
directly in position space

⟨ϕN (y0)⟩ =
λ4
6 ((N − 1)λ1 + λ2)

∫
Rd

ddx1

∫
Rd

ddx2

∫
R

dy1
C4

ϕ

(x2
1 + y2

01)
d−1

2 (x2
12 + y2

1)3 d−1
2

.

(3.21)
The integrals over x1 and x2 can be evaluated using∫

ddx 1
(x2 + y2)λ

=
π

d
2 Γ(λ − d

2)

Γ(λ) (y2)λ− d
2

. (3.22)

The remaining y1 integral is the one-dimensional version of (2.9) with α = d − 3
2 and

β = −1
2 . Altogether, we get

⟨ϕN (y0)⟩ = −
Γ
(
d − 5

2

)
Γ
(

d−1
2

)3
λ4 ((N − 1)λ1 + λ2)

1536πd+ 3
2 (d − 2)Γ

(
3d−3

2

)
|y0|2d−5

. (3.23)

As d → 3, since the Γ function factors in (3.23) have a finite limit, we find:

⟨ϕN (y0)⟩ → −λ⋆
4 ((N − 1)λ⋆

1 + λ⋆
2)

12(4π)4 |y0|
. (3.24)
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= + + + +

δ11 δ12

= + + + +

δ21 δ22

Figure 5. Matrix elements of operators O1 and O2 at one-loop order. The solid lines represent a
propagator between two fields ϕa , a = 1, . . . N − 1 while the dashed lines represent a propagator
between two fields ϕN .

However, since at our fixed points we have to fine tune the linear and quadratic couplings,
this two-loop contribution should be cancelled by a linear counterterm.7 This leads to no
VEV of ϕN .

4 Scaling dimensions of quadratic critical operators

In this section, we compute the dimensions of the two O(N − 1) invariant quadratic op-
erators O1 = ϕaϕa√

N−1 and O2 = ϕ2
N . To do so, we first compute the anomalous dimension

matrix γ for the mixing of the operators O1 and O2. The scaling dimensions will then be
given by 2∆ϕ = d−1 plus the eigenvalues of this matrix. To compute this matrix we follow
the method of [28]. We denote OR

i the renormalized operators. They can be expressed as:

OR
1 = O1 + δ11O1 + δ12O2 ,

OR
2 = O2 + δ21O1 + δ22O2 , (4.1)

where δij are counterterms. The mixing matrix is then defined by:

γij = µ∂µ

(
−δij

)
. (4.2)

We thus need to compute the counterterms δij . They are given by extracting the 1
ϵ

divergence from the graphs depicted in figure 5, corresponding to the graphs T and B

where one cubic vertex was replaced by a quadratic Oi vertex. Taking into account the
factor

√
N − 1 introduced in O1, we find for the matrix δij :

δij = µ−ϵ

ϵ

 −g2
1
4 + N+1

3 g4 −
√

N−1
4 g2

1 +
√

N−1
3 g4

−
√

N−1
4 g2

1 +
√

N−1
3 g4 −g2

2
4 + g4

 . (4.3)

We finally obtain for the mixing matrix:

γij =

 −g2
1
4 + N+1

3 g4 −
√

N−1
4 g2

1 +
√

N−1
3 g4

−
√

N−1
4 g2

1 +
√

N−1
3 g4 −g2

2
4 + g4

 . (4.4)

7We thank the referee for pointing this out.

– 12 –



J
H
E
P
1
0
(
2
0
2
3
)
0
1
7

When N = 1, γij reduces to g4 −
g2

2
4 . So the scaling dimension of ϕ2 is 2 − 7

6ϵ at the
non-trivial fixed point (3.12) of the N = 1 theory. For large N , plugging in the stable
imaginary fixed points (3.19), we obtain the following scaling dimensions

∆O− = 2− ϵ

2 − 2 ϵ

N
, ∆O+ = 2− 5ϵ

N
, (4.5)

corresponding to the operators:

O− = −N− 1
2O1 +O2 ,

O+ =
(

N
1
2 − 1

2 N− 1
2

)
O1 +O2 . (4.6)

The breaking of O(N) symmetry leads to the existence of a defect marginal operator ta,
called the tilt operator, which transforms as a vector under the O(N −1) subgroup [12, 21].
Following [21], we derive the tilt operator by performing the rotation

δωϕa = ωa ϕN , δωϕN = −
N−1∑
a=1

ωaϕa, (4.7)

where ωa is an infinitesimal O(N − 1) vector. The variation of the defect action under this
rotation should be proportional to

∫
ddx ωata, with

ta =
(

g⋆
1 − g⋆

2
2

)
ϕ2

N ϕa − g⋆
1
2

(
N−1∑
b=1

ϕbϕb

)
ϕa . (4.8)

As a simple example, let us consider the N = 2 theory with a vanishing bulk coupling.
In this case, the O(N − 1) subgroup reduces to Z2 that flips the sign of ϕ1. At the fixed
points g⋆

1 = g⋆
2 = i

√
ϵ (cf. (3.3)), the tilt operator becomes

t1 ∝ ϕ2
+ϕ− − ϕ2

−ϕ+, ϕ± ∝ ϕ2 ± ϕ1 . (4.9)

Since ϕ+ and ϕ− are decoupled at this fixed point, the tilt operator t1 should have the
same scaling dimension as the Z2 even operator O− = ϕ2

+ϕ− + ϕ2
−ϕ+, which is indeed a

marginal operator as shown in subsection 3.1.

5 Interface in a model with symplectic fermions

It is also interesting to consider continuations of the O(N) models we have considered to
negative N . The effective value of N may be reduced by replacing two of the commuting
scalar fields, ϕ1 and ϕ2, by a pair of anticommuting scalars, θ and θ̄ (the latter are also
known as symplectic fermions [34, 35]). Let us study the model with M pairs of symplectic
fermions, θα, θ̄α, α = 1, . . . M , along with one real scalar ϕ:

S[ϕ, θ] =
∫

dd+1x

[1
2∂µϕ∂µϕ+ ∂µθα∂µθ̄α + λ4

4!
(
ϕ2 + 2θαθ̄α

)2
]
+
∫

ddx
[
λ1ϕθaθ̄α + λ2

3! ϕ3
]

.

(5.1)
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The quartic bulk action has OSp(1|2M) symmetry, while the cubic interactions on the
defect have the structure used in [36, 37]. In general, the OSp(1|2M) symmetry of the
bulk theory is broken to Sp(2M) by the defect or boundary. However, M = 1 is the
special case where the interaction on the defect preserves OSp(1|2) if λ2 = 2λ1, since
1
3ϕ3 + ϕθ1θ̄1 = 1

3(ϕ
2 + 2θ1θ̄1)

3
2 . In this special case, as we will show explicitly below, there

are indeed fixed points obeying this condition, as well as other fixed points where the defect
breaks OSp(1|2) to Sp(2).

The beta functions for the theory (5.1) can be obtained from those for the theory (2.1)
by replacing N → 1− 2M , and we find:

βg4 = −ϵg4 +
g2

4
3 (9− 2M) ,

βg1 = − ϵ

2g1 −
1
4g2

1 (g1 + g2) +
g4
3 (2(3− M)g1 + g2) ,

βg2 = − ϵ

2g2 −
1
4
(
g3

2 − 2M g3
1

)
+ g4 (3g2 − 2Mg1) . (5.2)

Since at the one-loop fixed point g⋆
4 = 3ϵ/(9− 2M), to keep the quartic coupling positive,

we need to take M ≤ 4. Once g4 is positive, real cubic couplings do not seem to cause
problems for the convergence of the path integral.

In the case M = 1, the fixed point for the quartic coupling becomes:

g⋆
4 = 3ϵ

7 +O(ϵ2) . (5.3)

For the cubic couplings, we find, besides the trivial fixed point, four pairs of real fixed
points

g⋆
1 = ±

√
10 ϵ

21 , g⋆
2 = ±2

√
10 ϵ

21 ,

g⋆
1 ≈ ±0.65067

√
ϵ, g⋆

2 ≈ ±0.604968
√

ϵ ,

g⋆
1 ≈ ±0.897903

√
ϵ, g⋆

2 ≈ ∓1.9905
√

ϵ ,

g⋆
1 ≈ ±1.3832

√
ϵ, g⋆

2 ≈ ∓1.67773
√

ϵ . (5.4)

The first one preserves OSp(1|2) with g⋆
2 = 2g⋆

1. The only IR stable fixed point is the trivial
one; all other fixed points have at least one relevant direction. The corresponding critical
exponents are given by:

ω+ ≈ −0.690476ϵ, ω− ≈ −0.714286ϵ ,

ω+ ≈ 0.50253ϵ, ω− ≈ −0.434223ϵ ,

ω+ ≈ 0.352249ϵ, ω− ≈ −2.17771ϵ ,

ω+ ≈ (−0.76428− 0.600305i) ϵ, ω− = ω∗
+ . (5.5)

The fixed point with g⋆
2 = 2g⋆

1 is relevant in both directions. Two pairs of fixed points
have one relevant and one irrelevant direction. The last fixed point has complex critical
exponents with negative real part and ω+ = ω∗

−.
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For 2 ≤ M ≤ 4, all non-trivial fixed points are complex with both real and imaginary
parts non-zero. Again the only stable fixed point is the trivial one. For the complex fixed
points, the critical exponents are complex and at least one has a negative real part.

For generic M , we can analyze the fixed points using the same approach as in section 2.
We make the substitution g1 =

√
8 ϵ x, g2 =

√
8 ϵ y in the beta functions. This leads to the

following quartic equation in z = y
x :

PM (z) = 2z4 + (3− 2M)z3 − (9 + 2M)z2 + (9− 6M)z + 2M(2M + 3) = 0 , (5.6)

and x is related to z by

x2 = 1
4(9− 2M)

(1− 2M

1 + z
+ 2

)
. (5.7)

The discriminant of PM (z) is positive for 1 ≤ M ≤ 4. For M = 1 it has four real roots,
leading to the real fixed points of (5.4). For 2 ≤ M ≤ 4, PM (z) has two pairs of complex
conjugate roots, leading to complex fixed points. For M ≥ 4, the discriminant of PM (z) is
negative: PM (z) has two real roots and two complex conjugate roots. The real roots then
lead to purely imaginary fixed points.

6 Cubic interactions at the boundary

We consider the O(N) vector model in the half space y ≥ 0, with the same cubic interactions
as in section 2 inserted on the boundary y = 0. The action is given by

S[ϕ] =
∫

y≥0
dd+1x

[1
2∂µϕI∂µϕI +

λ4
4! (ϕIϕI)2

]
+
∫

ddx
[

λ1
2 ϕN ϕaϕa + λ2

3! ϕ3
N

]
. (6.1)

Imposing the Neumann boundary conditions, the free bulk propagator becomes

⟨ϕI(x1, y1)ϕJ(x2, y2)⟩B = δIJ

(
Cϕ

(x2
12 + (y1 − y2)2)

d−1
2

+ Cϕ

(x2
12 + (y1 + y2)2)

d−1
2

)
, (6.2)

where Cϕ is defined in (2.2). Performing Fourier transformations for x1 and x2, we obtain

⟨ϕI(p1, y1)ϕJ(p2, y2)⟩B = (2π)dδd(p1+p2) δIJ
e−|p1||y1−y2| + e−|p1|(y1+y2)

2|p1|
, (6.3)

from which we can easily read off the boundary-to-bulk and purely boundary propagators

K
(B)
IJ (p, y) = e−|p|y

|p| δIJ , G
(B)
IJ (p) = 1

|p| . (6.4)

Compared to the interface case, the propagators in (6.4) are larger by a factor of 2, and y is
valued in R+ instead of R. For this reason, the diagram T in figure 1 should be multiplied
by a factor of 8 because it has three boundary propagators, and the diagram B should
be twice bigger because it contains two boundary-to-bulk propagators and one y integral.

– 15 –



J
H
E
P
1
0
(
2
0
2
3
)
0
1
7

Another new feature compared to the interface case is that the field ϕI picks up a one-loop
boundary anomalous dimension from the snail diagram with the bulk vertex [15, 16, 19]:8

γϕ̂ = −(N + 2)λ4
6(4π)2 = −(N + 2)g4

6 . (6.5)

It is not hard to reproduce this result using our methods. The one-loop correction in
momentum space is

G
(1)
2 (p) = −(N + 2)λ4

6

∫
ddk
(2π)d

∫ ∞

0
dy

(
e−|p|y

|p|

)2 1 + e−2|k|y

2|k| . (6.6)

The y integral yields the sum of 1
2|k||p| and 1

2|k|(|p|+|k|) . Only the latter can contribute to
the wavefunction renormalization. Its d dimensional integral over k can be easily evaluated
in spherical coordinates, and we find

G
(1)
2 (p) = (N + 2)λ4

3(4π)2|p|
1
ϵ
+O(1) . (6.7)

Defining the wavefunction renormalization Zϕ through ϕ
(0)
I = Z

1
2
ϕ ϕI with Zϕ = 1+ δϕ, the

corresponding counterterm is then δG2(p) = − δϕ

|p| . In the minimal subtraction scheme, we
choose δϕ = (N+2)λ4

3(4π)2ϵ
, leading to the boundary anomalous dimension of ϕ

γϕ̂ = −1
2λ4∂λ4 (ϵδϕ) = −(N + 2)λ4

6(4π)2 . (6.8)

Due to the appearance of the one-loop boundary anomalous dimension, the boundary
beta functions β

(B)
gi pick up the contributions 3giγϕ̂ = − (N+2)

2 gig4. Thus, instead of the
beta functions (2.13) found for the interface, we now find

β(B)
g1 = − ϵ

2g1 − 2 g2
1 (g1 + g2) +

2
3g4

(
(N + 5)g1 + g2

)
− (N + 2)

2 g1g4 ,

β(B)
g2 = − ϵ

2g2 − 2
(
(N − 1)g3

1 + g3
2

)
+ 2g4

(
(N − 1)g1 + 3g2

)
− (N + 2)

2 g2g4 , (6.9)

where we have used the rescaling defined in (2.12).
Altogether, the one-loop β functions in this boundary theory become

βg4 = −ϵg4 +
N + 8

3 g2
4 ,

β(B)
g1 = − ϵ

2g1 − 2 g2
1 (g1 + g2) +

N + 14
6 g4g1 +

2
3g4g2 ,

β(B)
g2 = − ϵ

2g2 − 2
(
(N − 1)g3

1 + g3
2

)
+ 2(N − 1)g4g1 −

N − 10
2 g4g2 . (6.10)

8We are grateful to Simone Giombi for pointing out the importance of this one-loop effect in the boundary
case.
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If we make a further rescaling g̃1,2 =
√
8g1,2, we then get

β
(B)
g̃1 = − ϵ

2 g̃1 −
1
4 g̃2

1 (g̃1 + g̃2) +
N + 14

6 g4g̃1 +
2
3g4g̃2 ,

β
(B)
g̃2 = − ϵ

2 g̃2 −
1
4
(
(N − 1)g̃3

1 + g̃3
2

)
+ 2(N − 1)g4g̃1 −

N − 10
2 g4g̃2 . (6.11)

Now the only difference from the beta functions (2.13) in the interface theory is that the
terms linear in the bulk coupling g4 have different coefficients. The theory with a free bulk
is then the same as for the interface. In the case of an interacting bulk, the critical value
of the quartic coupling is again given by (3.9). Substituting this value into β

(B)
g̃1 and β

(B)
g̃2 ,

we find that they become

β
(B)
g̃1 = 3ϵ

N + 8 g̃1 +
2ϵ

N + 8 g̃2 −
1
4 g̃2

1 (g̃1 + g̃2) ,

β
(B)
g̃2 = (11− 2N)ϵ

N + 8 g̃2 +
6(N − 1)ϵ

N + 8 g̃1 −
1
4
(
(N − 1)g̃3

1 + g̃3
2

)
. (6.12)

For N = 1, we find two real non-trivial fixed points for the cubic couplings:

g̃⋆
2 = ±2

√
ϵ +O(ϵ3/2) , (6.13)

with critical exponent ω2 = −2ϵ. So the cubic operator ϕ3 has scaling dimension ∆ϕ3 =
3−3ϵ. For N ≥ 2, we can analyze the fixed points using the same approach as in section 2.
To briefly recap the method, we make the substitution g̃1 =

√
8 ϵ x, g̃2 =

√
8 ϵ y in the beta

functions, which leads to a quartic equation of z = y
x :

P
(B)
N (z) ≡ 2z4 + 3z3 + (2N − 11)z2 − (2N + 7)z − 3(N − 1) = 0 , (6.14)

and a simple relation between x and z

x2 = 1
2(N + 8)

( 1
z + 1 + 2

)
. (6.15)

The quartic function of z has a critical value Ncrit ≈ 2.50495, which is a zero of the
corresponding discriminant. It has another critical value N ′

crit = 5
2 , which corresponds to

the sign change of 1
z+1 + 2 at certain root of P

(B)
N (z). For N = 2, there are 6 non-trivial

fixed points, and they are all real. For 2 < N < N ′
crit, in addition to the six real fixed

points, there is also a pair of imaginary fixed points. When N crosses N ′
crit from below but

is still smaller than Ncrit, a pair of real fixed points become imaginary. In other words, in
the tiny region N ′

crit < N < Ncrit, there are 4 non-trivial real fixed points and 4 imaginary
fixed points. When N crosses Ncrit from below, the imaginary fixed points become complex.
The 4 real fixed points remain and they are all unstable: two of them have one relevant
direction, and the other two have two relevant directions. We summarize the properties of
all the non-trivial fixed points for integer N ≥ 2 in table 2. Interestingly, there are real
fixed points for all values of N ≥ 2. We also plot the RG flows between the real fixed
points for 2 ≤ N ≤ 7 in figure 6.
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N = 2 N > 2
Real 6 4

Imaginary 0 0
Complex 0 4

Table 2. The number of non-trivial fixed points of each type for all integer N ≥ 2 in the boundary
case.
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Figure 6. The real fixed points and RG flows in the boundary case for 2 ≤ N ≤ 7. The black dot
denotes the trivial fixed point and the red dots denote the non-trivial ones.

The quartic equation (6.14) has two types of large N solutions: two real solutions and
two complex solutions. This leads to two pairs of real fixed points and two pairs of complex
fixed points. The leading large N behaviors of the real fixed points are determined by the
quadratic equation 2z2 − 2z − 3 = 0. We compute the 1/N corrections up to N−2:

x⋆
1 = ±

√
5 +

√
7

2
1

N1/2 ∓

√
39059 + 8287

√
7

14
1

8N3/2 +O(N−2) ,

y⋆
1 = ∓

√
13−

√
7

2N1/2 ±

√
9379 + 137

√
7

7
3

16N3/2 +O(N−2) , (6.16)
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and

x⋆
2 = ±

√
5−

√
7

2
1

N1/2 ∓

√
39059− 8287

√
7

14
1

8N3/2 +O(N−2) ,

y⋆
2 = ∓

√
13 +

√
7

2N1/2 ±

√
9379− 137

√
7

7
3

16N3/2 +O(N−2) . (6.17)

The first pair has one relevant and one irrelevant direction, and the second pair has two
relevant directions. The corresponding critical exponents are:

ω+ = ϵ

(
4
√
2

N

(
7 + 5

√
7
)
+O(N−2)

)
,

ω− = ϵ

(
−4

√
2− 3

√
2

N

(
11 + 5

√
7
)
+O(N−2)

)
, (6.18)

and

ω+ = ϵ

(
−4

√
2

N

(
5
√
7− 7

)
+O(N−2)

)
,

ω− = ϵ

(
−4

√
2 + 3

√
2

N

(
5
√
7− 11

)
+O(N−2)

)
. (6.19)

The calculation of the VEV of ϕN is analogous to that in the interface case, and the
two-loop diagram 4 again makes the leading contribution. The result in (3.23) should be
multiplied by a factor of 8 in the boundary case, because each boundary-to-bulk propagator
contains an extra factor of 2 and the mirror image in the bulk-to-bulk propagator can be
removed by extending y1 to the whole real line. In D = 4 − ϵ the VEV is again found to
be of order ϵ3/2.

So far we have discussed the O(N) model with various positive values of N . In order to
adapt the discussion to boundaries in the OSp(1|2M) models, we can replace N by 1−2M .
For example, for M = 1, we find a special OSp(1|2) symmetric fixed point with

g⋆
2 = 2g⋆

1 = ±
√

2ϵ

3 . (6.20)

This is an unstable fixed point with two relevant directions. There are also fixed points
where the symmetry is broken to Sp(2)

g⋆
1 ≈ ±0.332179

√
ϵ, g⋆

2 ≈ ∓1.06191
√

ϵ ,

g⋆
1 ≈ ±0.434673

√
ϵ, g⋆

2 ≈ ±0.23906
√

ϵ ,

g⋆
1 ≈ ±0.793277

√
ϵ, g⋆

2 ≈ ∓0.67679
√

ϵ . (6.21)

For other values of M , there are only the fixed points that break the OSp(1|2M) symmetry
of the bulk theory down to Sp(2M).
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A Exotic large N limits

A.1 Interface with a free bulk

Let us first discuss the fixed points with λ4 = 0. We denote the solutions of z3 − z2 − z +
N − 1 = 0 (cf. (3.6)) by zα(N) with z0(N) being real and z1,2(N) being complex. The
corresponding x and y are then given by:

xα,±(N) = ±zα(N)− 1
2
√

N − 2
, yα,±(N) = ±zα(N) (zα(N)− 1)

2
√

N − 2
. (A.1)

At large N , these solutions are:

z0(N) = −N
1
3 + 1

3 − 4
9N

1
3
+ 38

81N
2
3
− 152

729N
4
3
+O(N− 5

3 ) ,

z1(N) = z2(N)∗ = e
iπ
3 N

1
3 + 1

3 + 4 e−
iπ
3

9N
1
3

− 38 e
iπ
3

81N
2
3
+ 152 e−

iπ
3

729N
4
3

+O(N− 5
3 ) . (A.2)

Since z2(N) is simply the complex conjugate of z1(N), we will only focus on z0(N) and
z1(N). Plugging them into (A.1), we obtain the corresponding fixed points

x0,± = ∓
( 1
2N

1
6
+ 1

3N
1
2
+ 2

9N
5
6
+ 43

162N
7
6

)
+O(N− 3

2 ) ,

y0,± = ±
(

N
1
6

2 + 1
6N

1
6
+ 1

3N
1
2
+ 17

162N
5
6
+ 91

486N
7
6

)
+O(N− 3

2 ) , (A.3)

and

x1,± = ±
(

e
iπ
3

2N
1
6
− 1

3N
1
2
+ 2 e−

iπ
3

9N
5
6

+ 43 e
iπ
3

162N
7
6

)
+O(N− 3

2 ),

y1,± = ∓
(

e−
iπ
3

2 N
1
6 + e

iπ
3

6N1/6 − 1
3N

1
2
+ 17 e−

iπ
3

162N
5
6
+ 91e

iπ
3

486N
7
6

)
+O(N− 3

2 ) . (A.4)

Plugging z0(N) and z1(N) into (3.8) yields the critical exponents for the real fixed points

ω− = ϵ

(
−3
2N

1
3 − 2− 8

3N
1
3
− 53

27N
2
3
− 8

3N
+O(N− 4

3 )
)

, ω+ = ϵ , (A.5)

and for the complex fixed points

ω− = ϵ

(
3 e

iπ
3

2 N
1
3 − 2 + 8 e−

iπ
3

3N
1
3

+ 53 e
iπ
3

27N
2
3
− 8

3N
+O(N− 4

3 )
)

, ω+ = ϵ . (A.6)

The critical exponent ω− blows up in both cases.
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A.2 Interface with an interacting bulk

Next, we tune λ4 to its critical value. In this case, we need to solve PN (z) = 0 (cf. (3.14))
in the large N limit. As discussed at the end of section 3.2, the quartic equation PN (z) = 0
has two types of large N solutions. In this appendix, we are interested in solutions whose
leading large N behavior is determined by the cubic equation Nz3 + N2 = 0. These
solutions are

z0(N) = −N
1
3 − 1

3 − 16
9N

1
3
+O

( 1
N

2
3

)
,

z1(N) = z2(N)∗ = e
iπ
3 N

1
3 − 1

3 − 16 e−
iπ
3

9N
1
3

+O
( 1

N
2
3

)
, (A.7)

where z0(N) leads to a pair of purely imaginary fixed points, and z1,2(N) correspond to
two pairs of complex fixed points.

To compare with the purely imaginary fixed points given by (3.19), we solve the fixed
points corresponding to z0(N)

x0,±(N) = ± i

2

( 1
N

1
6
+ 1

3N
1
2

)
+O

(
N− 5

6
)

,

y0,±(N) = ∓ i

2

(
N

1
6 + 2

3N
1
6
+ 1

6N
1
2

)
+O

(
N− 5

6
)

. (A.8)

They have critical exponents

ω+ = ϵ

(3
2N

1
3 + 2 + 1

N
1
3
+ · · ·

)
,

ω− = ϵ

(
−1 + 2

3N
1
3
+ · · ·

)
, (A.9)

and hence are unstable. ω+ also shows some exotic large N behavior.
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