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1 Introduction

The investigation of high-energy proton-proton (pp) and proton-nucleus (pA) collisions is a
crucial area of study in particle and nuclear physics, as it provides valuable insight into the
fundamental structure of matter and the strong interaction among its constituents [1–4].
Jet production is a crucial observable in these collisions, where collimated sprays of particles
produced by the strong force, described by quantum chromodynamics (QCD), are observed.
One of the key features of jet production in proton-proton and proton-nucleus collisions
is the azimuthal angular distribution, or the difference in the azimuthal angle between
the two jets. In the perturbative region, this decorrelation is a result of emissions from
both the initial and final states that can alter the direction of the jets. The study of
azimuthal decorrelation is critical for a deeper understanding of QCD jets and for testing
QCD predictions and searching for new physics.

When one studies the dijet pseudorapidity spectrum while integrating over the full
range of the azimuthal angle, the observable can be studied within the usual collinear
factorization [5] and such a pseudorapidity spectrum is directly sensitive to the collinear
parton distribution functions (PDFs), allowing us to constrain longitudinal motion of partons
inside a free nucleon [6–8]. When going from pp to pA collisions, there have been two
approaches to deal with the nuclear modification [1], especially at the kinematic region
where one probes the small-x parton physics. One is a DGLAP-based approach, while
the other one is the saturation-based or color glass condensate (CGC) approach. In the
DGLAP-based approach, one replaces the usual proton PDFs with the nuclear modified
PDFs (nPDFs) [9–14] and follows the exact same collinear factorization. In this approach,
the nuclear modification is included in the parameterization of the initial conditions for
the DGLAP evolution of the nPDFs. On the other hand, in the saturation/CGC approach,
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gluon mergers and interactions dynamically lead to the nonlinear BK-JIMWLK evolution
equations [15–21]. For the theoretical formalism of the dijet production in the CGC
framework, see for example refs. [22, 23]. See also other work [24–28] along this direction.

Alternatively, when one studies more differential dijet observables, e.g. dijet azimuthal
decorrelation, the conventional pQCD collinear factorization could be impaired. In the
nearly back-to-back region where δϕ = π − ∆ϕ → 0, the perturbative expansion of the
azimuthal angle decorrelation diverges due to logarithmic singularities at δϕ → 0 [29, 30].
The pioneering work in this field has highlighted the necessity of all-order resummation
for accurately describing hadronic radiation, leading to a TMD-like factorization as shown
below. This conclusion has been supported by numerous studies that have performed
all-order resummation for various processes [31–54]. In figure 1 we depict this back-to-back
configuration for a narrow jet radius (R ≪ 1), where R is the radius of the jet. Fortunately,
the azimuthal decorrelation of QCD jets in the nearly back-to-back region is sensitive to
the intrinsic motion of the bound partons, allowing us to perform three-dimensional (3D)
quantum imaging of the proton at high-energy facilities such as the Relativistic Heavy Ion
Collider (RHIC) and the Large Hadron Collider (LHC). This three dimensional structure is
encoded in the transverse momentum dependent parton distribution functions (TMDPDFs),
which contain both collinear and transverse momentum degrees of freedom.

While studying the nuclear modification to the inclusive dijet pseudorapidity spectrum
in pA collisions, in the DGLAP-based approach, one encodes nuclear modification inside
the nPDFs within the collinear factorization formalism. The natural question is how
one handles the nuclear modification of the dijet production in the nearly back-to-back
region when going from pp to pA collisions. As a natural generalization, we could encode
nuclear modification of back-to-back dijet production inside nuclear modified TMDPDFs
(nTMDPDFs) within the TMD-like factorization formalism. Following such an approach, a
recent global extraction of nuclear-modified TMDPDFs has successfully described world
data for semi-inclusive electron-nucleus deep inelastic scattering and Drell-Yan processes in
proton-nucleus collisions in ref. [55]. Furthermore, an independent cross check of this analysis
was performed in ref. [56], verifying the results of ref. [55]. However, the applicability of
nTMDPDFs to other processes, such as dijet production, is yet to be determined. Finally,
the study of QCD jet production in forward rapidity regions where one probes small-x
parton dynamics is crucial for investigating the phenomenon of gluon saturation or CGC.
Just like nPDF vs CGC approaches, to confirm saturation effects, it is important to have a
proper understanding of the impact of nTMDPDFs vs CGC approaches in the back-to-back
dijet production. For recent studies that deal with the back-to-back dijet production within
the CGC formalism, see for example refs. [57–59].

Experimental measurements of the azimuthal angular decorrelations in proton-proton
and proton-lead (pPb) collisions at the LHC were performed in [60, 61], respectively;
while in [61, 62] the integrated dijet azimuthal angle decorrelation in the region ∆ϕ >

2π/3 was measured. The first phenomenological studies of these data have been used to
further constrain the nuclear modified collinear PDFs, see for instance in [12, 63, 64], by
approximating the integrated azimuthal angular decorrelations with the dijet pseudorapidity
spectrum within a next-to-leading order (NLO) collinear factorization formalism. However,
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Figure 1. Definition of the azimuthal angular δϕ of dijet pair production in the x-y plane, where
the transverse momentum of the leading jet j1 is chosen to be aligned with the −y direction
for convenience.

in the back-to-back region, which is encapsulated by ∆ϕ > 2π/3, the TMD effects, such as
non-perturbative corrections and resummation can also be explored. Due to the sensitivity
of these data to both collinear and transverse momentum contributions, these data can serve
as a window into a simultaneous extraction of both collinear and transverse momentum
effects in bound nucleons inside the heavy nucleus, which has so far not been performed.

In this study, we investigate the azimuthal angular decorrelation of dijet production in
proton-proton collisions using the soft-collinear effective theory (SCET) framework [65–69].
The utilization of the SCET framework enables us to perform QCD resummation of the large
logarithmic terms in the azimuthal angle and jet radius at next-to-leading logarithmic (NLL)
accuracy. Additionally, we examine the effects of nuclear modification on the azimuthal
angular distribution in proton-nucleus collisions through the incorporation of nTMDPDFs
and comment on the implications of our formalism to measuring nTMDPDFs as well as
understanding nuclear modification of both collinear and transverse motions of the partons
inside the nucleus.

Two predominant approaches are typically utilized for calculating the resummation
formula in azimuthal decorrelation, known as the indirect [32] and the direct [29] methods.
The indirect strategy focuses on the extraction of an all-order factorization and resummation
formula for the two-dimensional transverse momentum imbalance qT of dijet pairs and the
subsequent development of the azimuthal decorrelation ∆ϕ distribution originating from the
qT distribution. In contrast, the direct method underpins the derivation of a factorization
formula for the azimuthal angular distribution in the back-to-back limit, followed by the
direct computation of all-order resummation results. While the association between these
two methods is explicit for Drell-Yan-like procedures, it becomes increasingly intricate for
processes implicating jet production, necessitating the resummation of sizable logarithms
from final-state QCD radiation. Historically, it has been demonstrated that the indirect
method could induce divergences in the azimuthal integral for a narrow jet radius [37, 38]. To
mitigate these issues, various regularization schemes have been recommended [37, 38, 46]. In
this study, to evade such complexities, we have opted for the application of the direct method.
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The rest of this paper is organized as follows. In section 2 we first discuss the factoriza-
tion and resummation formula for nearly back-to-back dijet production in proton-proton
collisions. Then we present the nuclear modified resummation formula in proton-nucleus
collisions. In sub-section 3.1, we provide information for the numerical parameterization of
the non-perturbative physics as well as the non-global logarithms (NGLs). We present the
numerical results using the theoretical formula, enumerate all theoretical uncertainties and
compare our predictions with the LHC experimental data in sub-section 3.2. We also make
predictions for the azimuthal decorrelation of dijet production at the LHC, as well as for
the sPHENIX kinematics region at the RHIC. We summarize our paper in section 4. The
details of anomalous dimensions are provided in the appendix.

2 Factorization and resummation formula

In this section, we present our factorization and resummation formalism for the azimuthal
decorrelation of dijet production in pp and pA collisions in the back-to-back limit.

2.1 Factorization in SCET for pp collisions

In the back-to-back limit and with the narrow jet approximation, the QCD modes which
contribute to the dijet cross section are given by

hard : pµ
h ∼ pT (1, 1, 1), (2.1)

na,b-collinear : pµ
ci
∼ pT (δϕ2, 1, δϕ)nin̄i , (2.2)

soft : pµ
s ∼ pT (δϕ, δϕ, δϕ), (2.3)

nc,d-collinear : pµ
ci
∼ pT (R2, 1, R)nin̄i , (2.4)

nc,d-collinear-soft : pµ
csi

∼ pT δϕ

R
(R2, 1, R)nin̄i , (2.5)

where the momentum pµ is expressed in light-cone coordinates as pµ ≡ (ni ·p, n̄i ·p, pni⊥)nin̄i ,
and nµ

i are light-like vectors associated with the initial-state proton beams (na,b) or final-
state jets (nc,d). The na,b-collinear, nc,d-collinear-soft and soft modes all have the same
invariant mass and will result in rapidity divergences in the factorization formula. We
address these divergences using the standard Collins-Soper-Sterman (CSS) treatment [70, 71]
and collinear anomaly [72, 73] method, as explained in the next subsection. The contribution
from the Glauber modes, which would result in the breaking of TMD factorization [74–77],
is neglected in this study. The magnitude of factorization breaking effects from the Glauber
mode can be explored by comparing theoretical predictions with future high-precision
experimental data.

Based on the assumption of the above kinematic modes, we follow the standard steps
in SCET [78–80] to obtain the following factorization formula1

d4σpp
dyc dyd dp2

T dqx
=
∑
abcd

xaxb

16πŝ2
1

1 + δcd
Cx

[
funsub

a/p funsub
b/p Sunsub

ab→cd,IJ Scs
c Scs

d

]
(2.6)

× Hab→cd,JI(ŝ, t̂, µ) Jc(pT R, µ) Jd(pT R, µ) ,

1A comprehensive description of the TMD factorization formula in the context of SCET for jet production
can be found in the literature, for instance, in refs. [38, 43, 48].
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where we have taken the short-hand

Cx

[
funsub

a/p funsub
b/p Sunsub

ab→cd,IJ Scs
c Scs

d

]
=
∫

dkax dkbx dkcx dkdx dλx Sunsub
ab→cd,IJ(λx, µ, ν)

× funsub
a/p (xa, kax, µ, ζa/ν2) funsub

b/p (xb, kbx, µ, ζb/ν2)Scs
c (kcx, R, µ, ν)Scs

d (kdx, R, µ, ν)

× δ (qx − kax − kbx − kcx − kdx − λx) . (2.7)

The cross section is differential with respect to: the x component of the transverse momentum
imbalance of the jet pair (|qx| = pT δϕ), the outgoing rapidities of jets c and d (yc,d), the jet
transverse momentum (pT ). In this expression, a, b, c, d represent parton flavors which are
summed over in the cross section. The Kronecker delta symbol δcd in the prefactor on the
right side of this expression arises from the symmetry factor due to identical partons in
the final state. Additionally, in this expression we introduced the partonic center-of-mass
energy reads ŝ = xaxbs, and t̂ = −xapT

√
se−yc , where s is the hadronic CM energy and

xa and xb represent the Bjorken variables which are defined in terms of our phase space
variables through the relations

xa = pT

2Ep
(eyc + eyd) , xb =

pT

2Ep

(
e−yc + e−yd

)
, (2.8)

where Ep is the energy of the incoming protons in the lab frame. The functions funsub
a,b/p

represent the one-dimensional unsubtracted TMDPDFs for the incoming parton of flavor
a, b [81]. For these distributions, µ and ν are standard renormalization scale and rapidity
scales, while ζa,b represent the Collins-Soper parameters [82, 83].

The function Hab→cd and Sab→cd are the hard and soft functions. In our formalism, we
follow the work of [84, 85] to organize the hard and soft functions into matrices, denoted by
the bold characters. In this formalism, the IR divergent, UV finite scattering amplitudes
for the 2 → 2 process can be written as vectors in color space∣∣∣Mab→cd

(
ŝ, t̂, û, µ, ϵ

)〉
=
∑

I

1
⟨CICI⟩

MI
ab→cd

(
ŝ, t̂, û, µ, ϵ

)
|CI⟩ , (2.9)

where |CI⟩ denote basis vectors in the color space while I is an index that runs over the
dimensionality of the color space, which is determined purely through the species and the
number of the external particles in the hard partonic process. The prefactors of the color
basis vectors contain the kinematic contributions and the IR divergences of the amplitudes.
Following the work of [85], the basis vectors are absorbed into the soft sector. We now
note that the integration of the virtual partons in the amplitudes of eq. (2.9) contain
interactions at the hard scale as well as interactions at scales associated with the IR modes
in eqs. (2.2), (2.3), (2.4), and (2.5). To define a purely hard scattering amplitude, one needs
to subtract off the virtual loop contributions from these IR modes. As the virtual loop
integrals of the IR modes are scaleless, this subtraction scheme swaps the IR divergences
in the scattering amplitudes of eq. (2.9) to UV ones. Thus we can define the purely hard
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scattering amplitudes through the subtraction∣∣∣MH
ab→cd

(
ŝ, t̂, û, µ, ϵ

)〉
=
∣∣∣Mab→cd

(
ŝ, t̂, û, µ, ϵ

)〉
−
∑

i

∣∣∣Mi
ab→cd

(
ŝ, t̂, û, µ, ϵ

)〉
, (2.10)

where i runs over the IR modes in (2.2), (2.3), (2.4) and (2.5). The divergences entering into
the hard scattering amplitude are now UV and can therefore be handled in a multiplicative
renormalization procedure. Thus we can define UV subtracted amplitudes as∣∣∣MH sub

ab→cd

(
ŝ, t̂, û, µ

)〉
= ZH

(
ŝ, t̂, û, µ, ϵ

) ∣∣∣MH
ab→cd

(
ŝ, t̂, û, µ, ϵ

)〉
, (2.11)

where ZH is the hard multiplicative renormalization factor and is a matrix in color space.
From this expression, the evolution of the subtracted scattering amplitudes is given by
the expression

∂

∂ lnµ

∣∣∣MH sub
ab→cd

(
ŝ, t̂, û, µ

)〉
= ΓH

(
ŝ, t̂, û, µ

) ∣∣∣MH sub
ab→cd

(
ŝ, t̂, û, µ

)〉
(2.12)

where the hard anomalous dimension is defined as

ΓH

(
ŝ, t̂, û, µ

)
=
[

∂

∂ lnµ
ZH

(
ŝ, t̂, û, µ

)]
Z−1

H

(
ŝ, t̂, û, µ

)
. (2.13)

In the following section, we will provide the hard anomalous dimension matrix, while we
will further summarize the formalism in this section.

In SCET, the soft contributions enter as vacuum matrix elements. In our formalism,
we define a b-space unsubtracted global soft function as

S̃unsub
ab→cd(λx, µ, ν) =

∫ db

2π
eiλxb〈0∣∣T̄[O†

nanbncnd
(bµ)

]
T
[
Onanbncnd

(0)
]∣∣0〉 , (2.14)

with Onanbncnd
(bµ) = [SnaS†

nb
S†

nc
Snd

](xµ). In this expression, bµ = (0, b, 0, 0), nµ
i are the

light-like vectors defined below eq. (2.5), and T (T̄) represents (anti-) time ordering. The
soft Wilson line is given by

Sni(x) = P exp
[
igs

∫ 0

−∞
dt ni · As(x + tni)

]
, (2.15)

where P denotes path ordering. We stress that, since we derive the factorization formalism
in the direct method, the transverse vector bµ points along the x-direction, which is
perpendicular to all vectors na,b,c,d. This differs from the TMD soft function which was
derived in [42], where the TMD factorization was derived for the two-dimensional transverse
momentum imbalance of dijet pairs. As a result, the operator definition of the TMD soft
function in this paper is different from that in [42]. The soft function in eq. (2.14) also
enters into the factorization in the transverse energy-energy correlator event shape in [86].
To define the color matrix, we follow the work of ref. [87] to absorb the color vectors into
the soft function as

S̃unsub
ab→cd,IJ(λx, µ, ν) =

〈
CI

∣∣∣S̃unsub
ab→cd(λx, µ, ν)

∣∣∣ CJ

〉
, (2.16)

where the SU(3) generators in the Wilson lines beyond tree level modify the color structure
of the soft color matrices.
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Aside from these complications associated with the hard and soft color matrices, to
describe this observable, we must account for two final-state radiative effects. Firstly, in
the narrow jet approximation (R ≪ 1), radiative corrections of the final-state partons
are encoded in the jet and collinear-soft functions, Ji and S̃cs

i . The one loop exclusive
jet function is well-known, see for instance [88], while the one-loop calculation of the
collinear-soft function can be found in the appendix of [53]. In addition to the standard ϵ

divergences in dimensional regularization, the collinear-soft function that enters into our
factorization also contains rapidity poles. We stress that these rapidity poles enter into
the direct computation of the azimuthal angle decorrelation. However these poles do not
enter into the collinear-soft function for the two dimension dijet transverse momentum
imbalance in [42]. Secondly, as the observable is insensitive to radiative emissions within
the jet, this observable is non-global and is thus sensitive to NGLs [89]. Such NGLs
modify the factorization structure of the jet and collinear-soft function at two loops. The
full factorization formula can be obtained by introducing the multi-Wilson structure in
SCET [90, 91]. For simplicity, we do not write down the full formula in this paper, and in
the resummation calculation, we use the fitting function [89, 92] to include their contribution
at the NLL accuracy.

After taking these effects into account, we note that the convolution in the cross section,
Cx, can be simplified by working in b-space, the conjugate space to qx. After performing
the Fourier transform, the convolutional integral can be written as

Cx

[
funsub

a/p funsub
b/p Sunsub

ab→cd,IJ Scs
c Scs

d

]
=
∫ db

2π
eibpT δϕ S̃unsub

ab→cd,IJ(b,µ,ν)

×f̃unsub
a/p (xa, b,µ,ζa/ν2) f̃unsub

b/p (xb, b,µ,ζb/ν2) S̃cs
c (b,R,µ,ν) S̃cs

d (b,R,µ,ν) , (2.17)

where the b-space functions are defined as

f̃unsub
a/p (xa, b, µ, ζa/ν2) =

∫
dkax e−ikaxb f̃unsub

a/p (xa, kax, µ, ζa/ν2) , (2.18)

S̃unsub
ab→cd,IJ(b, µ, ν) =

∫
dλx e−iλxb S̃unsub

ab→cd,IJ(λx, µ, ν) , (2.19)

S̃cs
c (b, R, µ, ν) =

∫
dkcx e−ikcxb S̃cs

c (kcx, R, µ, ν) . (2.20)

After taking into consideration the simplification when working in b-space, the expression
for the factorized cross section is given by the expression

d4σpp
dyc dyd dp2

T dqx
=
∑
abcd

xaxb

16πŝ2
1

1 + δcd
Hab→cd,JI(ŝ, t̂, µ) Jc(pT R, µ) Jd(pT R, µ) (2.21)

×
∫ db

2π
eibpT δϕ S̃unsub

ab→cd,IJ(b, µ, ν) S̃cs
c (b, R, µ, ν) S̃cs

d (b, R, µ, ν)

× f̃unsub
a/p (xa, b, µ, ζa/ν2) f̃unsub

b/p (xb, b, µ, ζb/ν2) .

In the following sections, we will summarize the expressions for the evolution and resumma-
tion of each contribution in this cross section.
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2.2 RG evolution and resummation formula

In the above subsection, we have obtained a factorization formula for azimuthal angular
distribution in the joint back-to-back and small jet radius region. To achieve the resummation
formula, one solves the RG equations for each of the ingredients in (2.21). In this section,
we begin by performing resummation for pp scattering and then discuss our treatment for
the pA scattering.

The hard functions for all 2 → 2 processes in massless QCD are given up to next-to-
next-to-leading order (NNLO) in ref. [93]. To ensure consistency in the expressions for
the hard anomalous dimensions between this study and our work, we choose to use the
same color basis as this reference. Using these bases, the hard function satisfies the RG
equation as

d
d lnµ

H = ΓHH + H Γ†
H (2.22)

where the anomalous dimension takes the form

ΓHab→cd
=
[

CH

2 γcusp(αs)
(
ln ŝ

µ2 − iπ

)
+ γH(αs)

]
1+ γcusp(αs)Mab→cd, (2.23)

with CH = nqCF + ngCA and γH = nqγq + ngγg. Here nq and ng indicate the number of
quark and gluon, respectively. The matrix M reads

Mab→cd = (ln r + iπ)M1,ab→cd + ln r

1− r
M2,ab→cd,

where the dimensionless parameter r is defined as r = −t̂/ŝ. The expressions for M1,2 can
be found in ref. [93]. In this work, we consider QCD resummation at NLL accuracy, thus,
we include the double logarithms anomalous dimension up to two-loop order and the single
logarithms anomalous dimension up to one-loop order. The coefficients of all anomalous
dimensions used in our calculation are given in the appendix A and we remark that the
anomalous dimensions for quadrupole color and kinematic entanglement have been ignored
in (2.23), since they contribute at three-loop order and beyond [94, 95]. Lastly, we remark
that information associated with solving the RG equations in color space is provided in [85].

The jet functions in eq. (2.21) fulfill the RG equation

d
d lnµ

Ji (pT R, µ) = ΓJi(αs)Ji (pT R, µ) , (2.24)

where the anomalous dimension of the jet is given by

ΓJi(αs) = −Ciγcusp(αs) ln
p2

T R2

µ2 + γJi(αs) . (2.25)

In this expression, Ci = CF or CA is the Casimir of the parton i. It is worth noting
that our analysis here does not account for the non-global structures in the factorization
formula (2.21). As shown in [38], to obtain a complete description, the contribution of
non-global structures must also be incorporated. In our current study, we do not take into
consideration these structures in the factorization formula. However, the leading logarithmic
(LL) NGLs are resummed by a fitting function, which is explained later in the paper.
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In addition to the hard and jet function, all other terms in (2.21) also depend on the
rapidity scale ν. For the TMDPDFs, we resum the large logarithms using the Collins-
Soper equation. Specifically, in the Collins-11 treatment [82, 83], the properly-defined
TMDPDFs are obtained by absorbing the standard TMD soft function in the Dell-Yan
process, S̃ab(b, µ, ν), and we have

f̃unsub
a/p

(
xa, b, µ, ζa/ν2

)
f̃unsub

b/p

(
xb, b, µ, ζb/ν2

)
S̃ab(b, µ, ν) (2.26)

≡ f̃a/p (xa, b, µ, ζa) f̃b/p (xb, b, µ, ζb) ,

where the rapidity divergences cancel and no explicit ν-dependence in the arguments
anymore. For each TMDPDF, the CSS evolution equation for the ζ-dependence is given by√

ζa
d

d
√

ζa
f̃a/p(xa, b, µ, ζa) = κ̃a(b, µ)f̃a/p(xa, b, µ, ζa), (2.27)

where κ̃a(b, µ) represents the Collins-Soper kernel. In the perturbative region, one has
κ̃a(b, µ) = −Caγcusp(αs) lnµ2/µ2

b +O(α2
s) with µb = 2e−γE /b. The solution reads

f̃a/p(xa, b, µ, ζa,f ) = f̃a/p(xa, b, µ, ζa,i)
(√

ζa,f

ζa,i

)κ̃a(b, µ)

, (2.28)

where we choose the standard Collins-Soper parameter as ζa,i = ζb,i = µ2
b and ζa,f = ζb,f = ŝ.

In addition, the RG equation of TMDPDFs reads

d
d lnµ

f̃a/p(xa, b, µ, ζa,f ) =
[
Caγcusp(αs) ln

µ2

ζa,f
− 2γa(αs)

]
f̃a/p(xa, b, µ, ζa,f ) , (2.29)

where Ca denote the color of the incoming parton. In comparison to the two-dimensional
transverse momentum resummation formula [42], the presence of rapidity divergence in the
collinear-soft functions represents a new property. This divergence arises from the small
jet approximation [53] and requires resummation of the corresponding rapidity logarithms.
Two commonly used approaches to achieve this resummation are the rapidity RG [96, 97]
and collinear anomaly [72, 73] framework. In this study, we choose to use the collinear
anomaly framework.

In our study, we re-factorize the product of the global soft function and two collinear-soft
functions. Using the collinear anomaly framework, we define a novel soft function W as

Wab→cd(b, µ)R2Fcd(b,µ) ≡ S̃unsub
ab→cd(b, µ, ν) S̃cs

c (b, R, µ, ν) S̃cs
d (b, R, µ, ν)/S̃ab(b, µ, ν), (2.30)

where the rapidity logarithms arising from the narrow jet approximation in the collinear-soft
functions are refactorized through the collinear anomaly exponent Fcd = αs/(2π)(Cc +
Cd) ln

(
µ2/µ2

b

)
+O(α2

s). Notice that in this expression, we have subtracted the back-to-back
soft function, which has already been included in the properly-defined TMDPDFs as in
eq. (2.26). This subtraction is required to avoid double counting of the soft modes in the
final factorization formalism. Their renormalization group equations have the form as

d
d lnµ

Fcd(b, µ) = (Cc + Cd)γcusp(αs), (2.31)

d
d lnµ

W (b, µ) = Γ†
W W (b, µ) + W (b, µ)ΓW , (2.32)
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where ΓW is expressed as

ΓW =
∑
i<j

Ti ·Tjγcusp (αs) ln
ni · nj

2 (2.33)

+
[

Cc

2 γcusp(αs) ln
sech2yc

4 + Cd

2 γcusp(αs) ln
sech2yd

4

]
1+O(α2

s),

A rigorous test of our formalism is that we can obtain the RG invariance of the cross
section as

d
d lnµ

Tr [Hab→cdWab→cd]R2Fcd f̃a/pf̃b/pJcJd = 0 . (2.34)

At NLL accuracy, the TMDPDF matches onto the collinear PDF through the relation

f̃a/p(xa, b,µ,ζa,f )= fa/p (xa,µb∗) (2.35)

×exp
{∫ µ

µb∗

dµ′

µ′

[
Caγcusp(αs) ln

µ′2

ζa,f
−2γa(αs)

]}
exp

[
−Sa

NP(b,Q0,
√

ŝ)
]

,

where we have used the fact that the rapidity anomalous dimension vanishes at the scale
µb, κ̃a(b, µb) = 0 at NLL accuracy and the f on the right hand side denotes the collinear
PDF. Additionally, to circumvent the issue of the Landau pole in the large b limit, we have
introduced the b∗ prescription that will be discussed in more detail in section 3. Lastly
in eq. (2.35), we have introduced the non-perturbative Sudakov, which parameterizes the
intrinsic motion of the bound partons and depends on the initial TMD scale Q0.

Combining the results for the hard, jet, TMDPDFs, and soft functions at NLL accuracy,
our final resummed expression for azimuthal angular distribution is

d4σpp

dyc dyd dp2
T dδϕ

=
∑
abcd

pT

16πŝ2
1

1 + δcd

∫ ∞

0

2db

π
cos(bpT δϕ)xaf̃a/p(xa, µb∗)xbf̃b/p(xb, µb∗)

× exp
{
−
∫ µh

µb∗

dµ

µ

[
γcusp (αs)CH ln ŝ

µ2 + 2γH (αs)
]}

×
∑
KK′

exp
[
−
∫ µh

µb∗

dµ

µ
γcusp (αs) (λK + λ∗

K′)
]

HKK′

(
ŝ, t̂, µh

)
WK′K (b∗, µb∗)

× exp
[
−
∫ µj

µb∗

dµ

µ
ΓJc (αs)−

∫ µj

µb∗

dµ

µ
ΓJd (αs)

]
U c

NG (µb∗ , µj)Ud
NG (µb∗ , µj)

× exp
[
−Sa

NP(b, Q0,
√

ŝ)− Sb
NP(b, Q0,

√
ŝ)
]

. (2.36)

In this expression, the quantity λK represents the eigenvalue of the matrices M1,2. In
the small jet radius regime, the resummation of NGLs is achieved through a non-linear
RG evolution between the jet and collinear-soft functions [38] that is contained in the
U i

NG functions. Lastly, µh and µj are the hard and jet scales which will be discussed in
section 3.1.
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2.3 Nuclear modified formalism for pA collisions

Having established the factorization and resummation for dijet production in pp collisions
in the previous section, in this section we extend this formalism to incorporate the nuclear
modifications in pA collisions.

As we mentioned in the Introduction, for observables that can be described by the
collinear factorization formalism, a DGLAP-based approach can be used to deal with the
nuclear modification when going from pp to pA collisions. In this approach, one assumes
the same collinear factorization while replacing the proton PDFs with the nuclear modified
PDFs [9–13]. Now for the azimuthal decorrelation of dijet production in the nearly back-
to-back region, a TMD factorization and resummation in eq. (2.6) is derived. Thus, as
a natural generalization of the idea implemented in nPDFs, when going from pp to pA
collisions, we assume that the same factorization and resummation formalism in eq. (2.6)
holds for pA collisions, while replacing the proton TMDPDF f̃b/p with the nuclear modified
TMDPDF f̃b/A for the target nucleus. The nTMDPDF f̃b/A(xb, b, µ, ζb,f ) contains the
nuclear modification of both collinear (associated with x) and transverse (associated with
b) motions for the partons inside the nucleus. Follow the assumptions made in ref. [55],
these nuclear modification will be absorbed into the non-perturbative parameterizations
for the collinear PDF and the non-perturbative Sudakov. Thus under this assumption the
nTMDPDF f̃b/A(xb, b, µ, ζb,f ) can be matched onto the nPDF through the NLL relation

f̃b/A(xb, b,µ,ζb,f )= fb/A (xb,µb∗) (2.37)

×exp
{∫ µ

µb∗

dµ′

µ′

[
Cbγcusp(αs) ln

µ′2

ζb,f
−2γb(αs)

]}
exp

[
−Sb,A

NP (b,Q0,
√

ŝ)
]

.

Here, besides the collinear nPDF fb/A (xb, µb∗), we have introduced the medium modified
non-perturbative Sudakov Sb,A

NP (b, Q0,
√

ŝ), whose parameterization will be discussed in
the next section. Note that we only keep the leading power term in the OPE matching
in eq. (2.37) where the nTMDPDF is matched onto the collinear nPDF. In principle,
there could be power corrections O

(
b2Q2

s(A)
)

in the expansion which are associated with
higher-twist nuclear matrix elements [98]. Here Qs(A) is a dynamical scale, often referred
to as the saturation scale [99], associated with multiple scattering in the nuclear medium.
We do not consider the effect of such power corrections in this paper.

With this replacement for nTMDPDF and following the same resummation procedure,
the factorization and resummation formalism for back-to-back dijet production at NLL
accuracy in pA collisions is given by

d4σpA

dycdyddp2
T dδϕ

=
∑
abcd

pT

16πŝ2
1

1+δcd

∫ ∞

0

2db

π
cos(bpT δϕ)xaf̃a/p(xa,µb∗)xbf̃b/A(xb,µb∗)

×exp
{
−
∫ µh

µb∗

dµ

µ

[
γcusp (αs)CH ln ŝ

µ2 +2γH (αs)
]}

×
∑
KK′

exp
[
−
∫ µh

µb∗

dµ

µ
γcusp (αs)(λK+λ∗

K′)
]

HKK′
(
ŝ, t̂,µh

)
WK′K (b∗,µb∗)

×exp
[
−
∫ µj

µb∗

dµ

µ
ΓJc (αs)−

∫ µj

µb∗

dµ

µ
ΓJd (αs)

]
U c

NG (µb∗ ,µj)Ud
NG (µb∗ ,µj)

×exp
[
−Sa

NP(b,Q0,
√

ŝ)−Sb,A
NP (b,Q0,

√
ŝ)
]

. (2.38)
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In the next section, we will discuss our parameterization for both the collinear nPDFs
f̃b/A(xb, µb∗) and our nuclear modified Sudakov factor Sb,A

NP (b, Q0,
√

ŝ).

3 Numerical parameterization and results

3.1 Parameterization

To capture the resummation of the NGLs, we follow the prescription of ref. [89] to parame-
terize the U function as

U i
NG (µb∗ , µj) = exp

[
−CiCA

π2

3 u2 1 + (au)2

1 + (bu)c

]
, (3.1)

where u = ln[αs(µb∗)/αs(µj)]/β0, a = 0.85CA, b = 0.86CA and c = 1.33 [89]. Since
the factorized formula (2.6) involves two jet functions, the square of UNG is required to
incorporate the NGL resummation associated with each jet.

In previous work on CSS resummation, the b∗-prescription was introduced along with
non-perturbative Sudakov factors, which were modeled through various functional forms
and obtained by fitting to experimental data [100–106]. In this work, we follow the standard
b∗-prescription where

b∗ ≡ b/
√
1 + b2/b2

max , µb∗ = 2e−γE /b∗ , (3.2)

as in [71]. Since we also need to study the impact of the nuclear modification on the
azimuthal angular distribution in proton-nucleus collisions, we adopt the same functional
form used in refs. [102, 107] which was employed in the extraction of nTMDPDFs [55].
Specifically, the non-perturbative Sudakov factors in the last line of eq. (2.36) are given by

Sa,b
NP(b, Q0, Q) = gf

1 b2 + g2
2

Ca,b

CF
ln Q

Q0
ln b

b∗
, (3.3)

with gf
1 = 0.106GeV−2, g2 = 0.84 and Q2

0 = 2.4GeV2. Finally, in our numerical calculations
the intrinsic scales in the resummation formula (2.36) are chosen as

µh = pT , µj = pT R. (3.4)

To obtain numerical results for the pA collisions, we need a parameterization for nT-
MDPDF in eq. (2.37), which contains both the collinear and transverse motion for partons
inside the nucleus. To describe the medium modifications to the collinear PDF, specifically
fb/A (xb, µb∗), we follow the parameterization in [55] to use the EPPS16 parameterization
given in [63] while describing the collinear PDF for the proton, we use CT14nlo parame-
terization [108]. On the other hand, for the nuclear modification to the transverse motion
in nTMDPDFs, we follow the parameterization of ref. [55] to have a nuclear modified
Sudakov factor Sb,A

NP (b, Q0,
√

ŝ). Specifically, we replace the g1 parameter in eq. (3.3), which
accounts for the broadening effects of transverse momentum within the nucleus. Adopting
the functional form obtained from the global extraction in [55], we take

gA
1 = gf

1 + aN L, with aN = 0.016GeV−2 and L = A1/3 − 1, (3.5)
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Figure 2. Left: comparison between theoretical calculations of the azimuthal decorrelation with
the CMS data [60], where ∆ϕ is the difference in the azimuthal angle between two leading jets. The
solid curves are the theoretical distributions, which are normalized by dividing the LO cross section.
The black dots are the CMS results, and the uncertainties of the data are smaller than the symbol
size used in the plot. The colored bands indicate theoretical uncertainties from the variation of hard
and jet scales. Right: a comparison of the dijet azimuthal angle decorrelation in pPb collisions from
the CMS collaboration at the LHC [61].

where gA
1 characterizes the transverse momentum width of partons inside the nucleus and

is also proportional to the saturation scale in the small-x region [109]. Thus the nuclear
modified non-perturbative Sudakov factor is defined as

Sb,A
NP (b, Q0, Q) = gA

1 b2 + g2
2

Cb

CF
ln Q

Q0
ln b

b∗
. (3.6)

3.2 Numerical results

In this section, we present our numerical results for the pp and pA resummation formulas
derived in the previous section. Specifically, we apply the theory formalisms in eqs. (2.36)
and (2.38) for pp and pA collisions, respectively and compare them with the existing exper-
imental data. We discuss applications of this formalism to measuring nuclear modifications
to collinear and transverse motions of partons in nTMDPDFs. We also provide predictions
for the dijet production in the forward rapidity region in pPb collisions at the LHC, as well
as in pAu collisions for the sPHENIX kinematics at the RHIC.

A comprehensive investigation into the QCD resummation of azimuthal decorrelation
in dijet production in pp collisions was carried out in [32] using the indirect method, as
outlined in the introduction. The analysis successfully resummed the large logarithmic
terms of azimuthal angle and jet radius at NLL and LL accuracy, respectively, while
ignoring the contribution from NGLs. In our work, we present a resummation formula
for azimuthal decorrelation in the direct method. This approach accounts for both the
large logarithmic terms of the azimuthal angle and jet radius at NLL accuracy, including
the contribution from NGLs. As a verification of the formula, we compare its theoretical
predictions to measurements of dijet production in proton-proton collisions taken by the
CMS collaboration at the LHC with

√
s = 7TeV, as presented in the left panel of figure 2.
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The QCD jets were reconstructed using the anti-kT algorithm [110] with a radius of R = 0.5
and the rapidities of each jet were limited to |yc,d| < 1.1. Additionally, to construct the
denominator of the normalized ∆ϕ distribution, we use the LO expression for the cross
section. The data, shown as black dots, covers five bins ranging from 80GeV to 1TeV for the
jet transverse momentum pT . The theoretical results, displayed as lines of different colors,
are found to agree well with the measurements in the back-to-back region across all pT

bins. Besides, we also show the uncertainties from scale variations, which are given by the
colored bands. Here we vary the hard and jet scales by a factor of two around their default
values as defined in eq. (3.4), and the total uncertainty bands are obtained by the envelope
of all the variations. Since the non-perturbative Sudakov factor in eq. (3.3) is fitted at the
canonical scale µb∗ , we do not include uncertainties from its variations. It is noteworthy
that the contribution of Glauber modes, which can potentially violate TMD factorization,
is not considered in this analysis. Therefore, the magnitude of naive factorization breaking
due to Glauber modes can be evaluated by comparing theoretical predictions with future
high-precision experimental measurements.

On the right side of figure 2, we plot the azimuthal angle decorrelation in pPb collisions
at

√
s = 5.02TeV from the CMS collaboration [61]. The data is integrated within the region

|yc,d| < 3 and the jets were reconstructed using an anti-kT algorithm with R = 0.3. In
the theory calculation, we implement nTMDPDFs which encode the nuclear modification
to the collinear (as in nPDFs fb/A(x, µb∗)) and transverse motion (as in the broadening
parameter aN ) in eqs. (2.37) and (3.6). The dashed blue theory curve is computed with
the central fit of nPDFs in the EPPS16 parametrization and the broadening parameter aN

in eq. (3.5). The red band is the uncertainty from the nPDFs fit. Our calculations agree
with the experimental data in the back-to-back region ∆ϕ ∼ π. We also observed in both
plots of figure 2 that our theoretical prediction starts to deviate from the experimental
data points away from the back-to-back region, i.e. when ∆ϕ moves away from π. This is
expected since our formalism applies only to the resummation region. Such a discrepancy
can be corrected by including the fixed order calculation for the dijet azimuthal angular
decorrelation, see for instance [33].

In figure 3, we present a comparison between the NLL pQCD calculations of the
dijet integrated angular decorrelation plotted as a function of the dijet pseudorapidity
η = (yc + yd)/2 in pp collisions, respectively, and corresponding experimental measurement
taken by CMS [62]. The data are categorized based on the transverse momentum (pT ) of the
dijet system where the jet radius is R = 0.3. To enable an extensive comparison of the two
datasets, the experimental measurements are superimposed onto the theoretical predictions,
allowing us to evaluate the compatibility between the model and the experimental data. In
the theoretical calculation, we integrate ∆ϕ from 2π/3 to π using (2.36) and to form the σ

in the denominator of the integrated azimuthal angle decorrelation, we integrate over the
pseudorapidity coverage of both jets following the experimental cuts. We observe that our
theory calculations describes the experimental data quite well.

In figure 4, we present our NLL calculation of the integrated angular decorrelation
plotted as a function of the pseudorapidity in pPb collisions and the CMS experimental
data in [62]. To demonstrate the importance of nuclear modification to parton dynamics in
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Figure 3. Theoretical calculations for the dijet integrated angular decorrelation plotted as a function
of the pseudorapidity η are compared with the CMS data [62] in proton-proton collisions for different
kinematic cuts. The spectra were shifted by +0.465 to match the dijet pseudorapidity η range of
the corresponding proton-lead collisions.

the nucleus, we include a calculation where one only takes into account the isospin effect.
In other words, going from pp to pA collisions, one only replaces the PDFs in the proton by
the PDFs that include the isospin effect

fi/A (x, µ) = Z

A
fi/p (x, µ) + A − Z

A
fi/n (x, µ) , (3.7)

where Z is the atomic number of the nucleus while fi/p and fi/n denote the PDFs of the
proton and neutron. We find that the calculations with the isospin effect alone undershoots
the data rather significantly, especially in the mid-rapidity region 0 ≲ η ≲ 1 where an
antishadowing effect is evident from the data [12, 63]. On the other hand, the central blue
theory curve is computed with the central fit of nPDFs in the EPPS16 parametrization
and the broadening parameter aN in eq. (3.5). We further considered the uncertainty band
associated with the collinear nPDFs as well as the broadening parameter aN . It is evident
that our formalism with nuclear modification implemented in nTMDPDFs describe the CMS
pPb collision data well though the size of the uncertainties from the broadening parameter
aN is very small. This behavior is expected as the aN parameter acts to broaden the
intrinsic width of the partons. At the large pT values of the CMS data, this broadening is
small compared to the large transverse momentum that is generated from the resummation.
Experimental data at smaller values of pT , which should be measurable at RHIC, will then
depend more strongly on this parameter. However, the small dependence on aN indicates
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Figure 4. Theoretical calculations for dijet integrated angular decorrelation plotted as a function
of the pseudorapidity η are compared with the CMS data [62] in proton-lead collisions for different
kinematic cuts.
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pseudorapidity η are compared with the CMS data [62] for different jet transverse momentum cuts.
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that both the integrated and unintegrated azimuthal angle decorrelation can be used to
measure the collinear contribution to the nTMDPDFs.

To quantify the nuclear modification, we adopt the usual definition for the nuclear
modification factor

RpA = 1
A

d4σpA
dyc dyd dp2

T d∆ϕ

/
d4σpp

dyc dyd dp2
T d∆ϕ

. (3.8)

In figure 5, we present the nuclear modification factor RpA as a function of dijet rapidity η

between our theory calculations and corresponding experimental data taken by the CMS
collaboration at the LHC [62]. In this plot, we have included a central curve as well as
considered the uncertainty band associated with the nPDF and the broadening parameter
aN in nTMDPDFs. We have also included a prediction taking into account the isospin effect
alone. The nuclear modification factor RpA with the isospin effect alone is almost unity as
indicated by the dashed green curve. This is because the dijet production at this energy is
mostly sensitive to the gluon distribution inside the nucleus and thus the isospin symmetry
applied to u and d flavors does not play an important role here. On the other hand, we
observe a strong consistency between the central curve of the NLL pQCD prediction with
nTMDPDFs and the experimental data. However, we find that our calculations do not
describe the strong suppression in the CMS data in the proton’s forward region where
η ≳ 2 and the probed parton momentum fraction x ∼ 10−2 inside the nucleus. Since this
modification in our nTMDPDFs formalism is mainly driven by the collinear nPDFs in the
EPPS16 parametrization, as commented in [12, 63], this remains an open question. As
our formalism neglects all final-state interactions associated with Glauber interaction with
the jets [111–113], we suspect that the cause of these discrepancies lies in these final-state
effects [114]. Addressing this discrepancy is vitally important for understanding the gluon
distribution of the bound nucleons at this relatively small x region.

In the left and middle panels of figure 6 we present the results of our calculation for
the azimuthal angular distribution in pp and pA collisions in forward rapidity regions at
the ATLAS and ALICE kinematics at the LHC. In the right panel, we present the results
of the decorrelation for the sPHENIX kinematics at the RHIC. In our study, we adopt the
same kinematic cuts at the LHC as used in ref. [115] and at the RHIC in ref. [4], which are
defined as follows:

1. 28GeV < pT < 35GeV and 2.7 < y∗
c,d < 4.0 for the FCal calorimeter of the ATLAS

at the LHC ,

2. pT > 10GeV and 3.8 < y∗
c,d < 5.1 for the upgraded FoCal of the ALICE at the LHC ,

3. pT > 10GeV and |y∗c,d| < 0.7 for sPHENIX at the RHIC ,

where y∗ denotes the jet rapidity in both the pp and pA center of mass frame. The
upper panels in figure 6 show the azimuthal angular distributions in proton-proton (red
curves) and proton-nucleus (black curves) collisions, while the lower panels display the
nuclear modification factor RpA. Our results indicate that in the back-to-back region, the
suppression from the nTMDPDFs is substantial, with a reduction of around 20% for the
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Figure 6. Top: the azimuthal angular distribution in pp (red curve) and pA (black curve) collisions
for ATLAS (Left), ALICE (Middle), and sPHENIX (Right). In the lower panel, we plot the nuclear
modification factor RpA.

ATLAS and 30% for the ALICE kinematics, similar to the nuclear modification reported in
ref. [115] where a saturation-based formalism is used. This is due to the shadowing effect in
the small-x region where the probed x ∼ 10−4. On the other hand, our calculation predicts
a small enhancement ∼ 5% for the sPHENIX kinematics because of the anti-shadowing
effect at x ∼ 0.1 probed in the sPHENIX experiment. Once again in the left two panels, we
see that the size of the broadening parameter aN is small in comparison to the uncertainty
of the nPDFs. This behavior is once again expected as the LHC produces jets with large
values of pT . In the right panel, we see that the size of the uncertainty from the broadening
parameter aN grows larger, indicating that lower pT jets serve as a better probe of the
transverse dynamics of the bound nucleons.

4 Summary

In this paper, we derived a new resummation formula for the azimuthal decorrelation in
dijet production in proton-proton collisions using SCET. By utilizing the direct method,
we were able to account for both large logarithmic terms of the azimuthal angle and
jet radius. We compared our theoretical predictions with experimental data from the
CMS collaboration and found a strong agreement. We further proposed an approach to
deal with the nuclear modification for nearly back-to-back dijet production in proton-
nucleus collisions by introducing nuclear modified transverse momentum dependent parton
distribution functions (nTMDPDFs). The nTMDPDFs contain nuclear modification to
both the collinear and transverse motions for the partons inside the nucleus. Following
a simple model for nTMDPDFs in our previous work that encodes nuclear modification
to collinear dynamics in collinear nPDFs while nuclear modification to transverse motion
in a broadening parameter, we present theoretical calculations for dijet production in
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proton-nucleus collisions and show good agreement with the existing experimental data
at the LHC. Additionally, we presented our results for the forward rapidity region at the
LHC and for the mid-rapidity region for sPHENIX at the RHIC. We applied the formula
to two kinematic cuts relevant to the FCal calorimeter of the ATLAS and the upgraded
FoCal of the ALICE. The results showed significant suppression of about 20% for the
ATLAS and 30% for the ALICE in the back-to-back limit, due to the shadowing effect
in the small-x ∼ 10−4 region. This suppression is of the same order as previous results
within the saturation-based model. On the other hand, our calculation predicts a small
enhancement ∼ 5% for the sPHENIX kinematics because of the anti-shadowing effect with
x ∼ 0.1 probed in the sPHENIX experiment. Overall, this study represents an important
step towards a more complete understanding of azimuthal decorrelation in dijet production
and the role of nuclear modification effects. In future work, we see important applications
of our formalism, e.g. in performing a simultaneous fit to both collinear and transverse
momentum dependent contributions to the transverse momentum dependent distributions
in nuclei. It would also be interesting to extend our results to other kinematic regions and
incorporate the contributions from higher-order corrections, as well as to generalize our
formalism to describe dijet production in the polarized scattering [116].
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A Anomalous dimension

The QCD β-function and the cusp and non-cusp anomalous dimensions are expanded as

β(αs) = −2αs

∞∑
n=0

βn

(
αs

4π

)n+1
, γ(αs) =

∞∑
n=0

γn

(
αs

4π

)n+1
. (A.1)

The two-loop coefficients of the β-function and the cusp anomalous dimensions, and the
one-loop coefficient of the non-cusp anomalous dimensions read,

β0 = 11
3 CA − 4

3TF nf , β1 = 34
3 C2

A − 20
3 TF CAnf − 4TF CF nf ,

γcusp
0 = 4, γcusp

1 =
(
268
9 − 4π2

3

)
CA − 80

9 TF nf ,

γJi
0 = −2γi

0, γq
0 = −3CF , γg

0 = −β0, (A.2)

with TF = 1/2, CA = 3, CF = 4/3, nf = 5.
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